小学五年级奥数完全平方数
完全平方数知识讲解
奥数:完全平方数1、把1—50这50个数的平方数从小到大排成一个多位数149162536……,请问这个多位数共有()位数字。
分析与解答:1-3的平方只有一位数,共3个数字;4-9的平方有两位数字,共2×6=12个数字;10-31的平方有三位数字,共有3×22=66个数字;32-50的平方有四位数字,共有4×19=76个数字;合计:3+12+66+76=157个数字。
2、46305乘以一个自然数a,积是一个完全平方数,则最小的a是()。
分析与解答:46305=5×3×3×3×7×7×7所以a最小是5×3×7=105。
3、祖孙三人,孙子和爷爷的年龄之积是1512,而爷爷,父亲,孙子三人的年龄之积是完全平方数,父亲的年龄是()岁。
分析与解答:1512=3×3×3×2×2×2×7要使1521乘一个数的积是完全平方数,那么这个数最小是:3×2×7=42。
所以父亲的年龄是42岁。
4、把一个两位数的个位与十位数字交换后得到一个新数,它与原来的数字加起来恰好是某个自然数的平方,这个和数是()。
分析与解答:我们设这个数原来为10a+b,那么现在是10b+a,它们的和为11×(a+b)是一个完全平方数,所以a+b必等于11,那么这个和数就为11×11=121。
5、已知n/2是完全平方数,n/3是立方数,则n的最小值为()。
分析与解答:根据n/2是完全平方数,我们知道n里面有奇数个质因数2,而联系n/3是立方数,所以我们知道n里至少有3个质因数2;同样的道理我们知道n里至少有4个质因数3,那么n最小值为2×2×2×3×3×3×3=648。
6、已知一个自然数的平方的十位数是8,这个完全平方数的个位数字是()。
奥数数论:完全平方数要点及解题技巧
奥数数论:完全平方数要点及解题技巧一、完全平方数的定义:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
二、完全平方数特征:1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2三、完全平方数的性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。
性质9:完全平方数的数字之和只能是0,1,4,7,9。
性质10:为完全平方数的充要条件是b为完全平方数。
性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若n^2<k^2<(n+1)^2,则k一定不是整数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。
(小学奥数)完全平方数及应用(二)
1. 學習完全平方數的性質;2. 整理完全平方數的一些推論及推論過程3. 掌握完全平方數的綜合運用。
一、完全平方數常用性質1.主要性質 1.完全平方數的尾數只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在兩個連續正整數的平方數之間不存在完全平方數。
3.完全平方數的約數個數是奇數,約數的個數為奇數的自然數是完全平方數。
4.若質數p 整除完全平方數2a ,則p 能被a 整除。
2.性質性質1:完全平方數的末位數字只可能是0,1,4,5,6,9.性質2:完全平方數被3,4,5,8,16除的餘數一定是完全平方數.性質3:自然數N 為完全平方數⇔自然數N 約數的個數為奇數.因為完全平方數的質因數分解中每個質因數出現的次數都是偶數次,所以,如果p 是質數,n 是自然數,N 是完全平方數,且21|n p N -,則2|n p N .性質4:完全平方數的個位是6⇔它的十位是奇數.性質5:如果一個完全平方數的個位是0,則它後面連續的0的個數一定是偶數.如果一個完全平方數的個位是5,則其十位一定是2,且其百位一定是0,2,6中的一個.性質6:如果一個自然數介於兩個連續的完全平方數之間,則它不是完全平方知識點撥教學目標5-4-5.完全平方數及應用(二)數.3.一些重要的推論1.任何偶數的平方一定能被4整除;任何奇數的平方被4(或8)除餘1.即被4除餘2或3的數一定不是完全平方數。
2.一個完全平方數被3除的餘數是0或1.即被3除餘2的數一定不是完全平方數。
3.自然數的平方末兩位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方數個位數字是奇數(1,5,9)時,其十位上的數字必為偶數。
5.完全平方數個位數字是偶數(0,4)時,其十位上的數字必為偶數。
6.完全平方數的個位數字為6時,其十位數字必為奇數。
7.凡個位數字是5但末兩位數字不是25的自然數不是完全平方數;末尾只有奇數個“0”的自然數不是完全平方數;個位數字為1,4,9而十位數字為奇數的自然數不是完全平方數。
小五奥数-完全平方数
一个自然数自乘所得的积称为完全平方数,100以内的完全平方数(又称平方数)是0、1、2x2=4、3x3=9,4x416,5x5=25,6x6=36,7x7=49,8x8=64,9x9=81共10个。
平方数有些特别的性质,可以解决一些有趣的问题:少年宫游戏厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,闪烁不停。
这200个灯泡按1~200编号,它们每过1秒变化一下自己的明暗状态。
开始时,灯泡全部是暗的;第1秒,全部灯泡是亮着的;第2秒,凡编号为2的倍数的灯泡改变自己的明暗状态,即变暗。
第3秒,凡编号为3的倍数的灯泡改变自己的明暗状态:明的变暗,暗的变明,...,以此类推,第n秒钟,凡编号为n 的倍数的灯泡改变自己的明暗状态,每200秒钟为一周期,即到201秒时,全部灯泡大放光明,然后继续上述规则改变原来的状态。
问:第200秒时明亮的灯泡有多少?事实上,每个灯泡如果明暗改变次数为偶数次时,它还保持原来的明暗状态;如果变化次数为奇数次时,则明暗状态发生改变,原来明亮的灯泡将变暗,原来不亮的的灯泡将变明亮。
由于平方数的不同约数个数为奇数,从第2秒开始(此时偶数编号灯泡变暗,奇数编号灯泡变亮)起到200秒止,中间的平方数有4,9,16,25,36,49,64,81,100,121,144,169,196,在这些秒时,同样编号的灯泡由暗变明,加上1号灯泡始终是亮的,共14个灯泡是亮的。
下面举例来讨论平方数的一些问题。
从1~1989的自然数中,完全平方数共有个。
试一试在324,897,211,247,546中,哪些数是完全平方数。
46035乘以一个自然数a,是一个平方数,a最小是多少?试一试203500乘一个自然数a,是一个平方数,求a最小是多少?下面是一个算式:11x2+1x2x3+1x2x3x4+1x2x3x4x5+1x2x3x4x5x6.这个算式的得数能否是某个数的平方?请找出符合下列性质的所有四位数:(1)它是一个平方数(2)开始两位数的数字要相同(3)最末两位数的数字要相同试一试自然数N是一个两位数,它是一个完全平方数,而且N的个位数字与十位数字都是完全平方数,这样的自然数是自然数的平方按大小排成1,4,9,16,25,36,49,...,问第612个位置的数是几?下式中每个汉字表示1~9中的一个数字,不同的汉字代表不同的数字。
五年级奥数专题 约数、倍数、完全平方数(学生版)
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
小学奥数 完全平方数 知识点+例题+练习 (分类全面)
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
奥数专题完全平方数
学而思奥数网奥数专题 (数论问题完全平方数) 1、五年级数论问题:完全平方数难度:中难度/高难度一个自然数减去45及加上44都仍是完全平方数,求此数。
答:2、五年级数论问题:完全平方数难度:中难度/高难度求证:四个连续的整数的积加上1,等于一个奇数的平方答3、五年级数论问题:完全平方数难度:中难度/高难度求证:11,111,1111,这串数中没有完全平方数答:4、六年级数论问题:完全平方数难度:中难度/高难度求满足下列条件的所有自然数:(1)它是四位数。
(2)被22除余数为5。
(3)它是完全平方数。
答:5、六年级数论问题:完全平方数难度:中难度/高难度甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。
为了平均分配,甲应该补给乙多少元(答:学而思奥数网奥数专题(数论问题完全平方数)1、五年级完全平方数习题答案:解答:设此自然数为x,依题意可得x-45=m^2; (1)x+44=n^2 (2)(m,n为自然数)(2)-(1)可得 :n^2-m^2=89或: (n-m)(n+m)=89因为n+m>n-m又因为89为质数,所以:n+m=89; n-m=1解之,得n=45。
代入(2)得。
故所求的自然数是1981。
2、五年级完全平方数习题答案:解答:设四个连续的整数为,其中n为整数。
欲证是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。
证明设这四个整数之积加上1为m,则m为平方数而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。
这就证明了m是一个奇数的平方。
3、五年级完全平方数习题答案:解答:形如的数若是完全平方数,必是末位为1或9的数的平方,即或在两端同时减去1之后即可推出矛盾。
证明若,则因为左端为奇数,右端为偶数,所以左右两端不相等。
完全平方数奥数题目
完全平方数奥数题目摘要:一、完全平方数的定义和性质1.完全平方数的定义2.完全平方数的性质二、完全平方数的应用1.求解完全平方数2.完全平方数与勾股定理3.完全平方数与概率论三、完全平方数的奥数题目1.判断一个数是否为完全平方数2.求一个数的平方根3.求两个完全平方数的和正文:完全平方数是一个数学概念,它指的是一个数可以表示为某个整数的平方。
例如,4、9、16 等都是完全平方数,因为它们可以表示为2^2、3^2、4^2 的形式。
完全平方数具有一些有趣的性质,例如,如果一个数是完全平方数,那么它的因数一定是成对出现的。
在数学中,完全平方数有着广泛的应用。
例如,在求解完全平方数时,我们可以使用公式:如果一个数的平方根是整数,那么这个数就是完全平方数。
此外,完全平方数还与勾股定理有着密切的关系。
勾股定理指出,在一个直角三角形中,斜边的平方等于两直角边的平方和。
因此,如果一个数是完全平方数,那么它一定可以表示为两个整数的平方和。
在概率论中,完全平方数也有着重要的应用。
例如,假设有一个袋子,里面有若干个红球和白球,我们想要取出一个红球。
如果我们随机地从袋子中取出一个球,那么取出红球的概率就等于红球的个数除以球的总数。
如果我们想要计算这个概率的平方,那么我们就需要计算所有可能的取球方式的概率,这些概率可以表示为完全平方数。
在奥数比赛中,完全平方数也是一个常见的考点。
例如,可能会给出一个数,要求我们判断它是否为完全平方数。
或者,可能会给出两个数,要求我们求它们的平方和。
对于这类题目,我们需要熟悉完全平方数的性质,并且能够灵活运用它们来解决问题。
总的来说,完全平方数是一个有趣的数学概念,它在数学和概率论中都有着广泛的应用。
五年级奥数春季班第8讲 完全平方数
第八讲完全平方数模块一、认识完全平方数和完全平方数的尾数性质1:完全平方数的末位数字只可能是0、1、4、5、6、9;性质2:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数;例1.(1)写出12、22、32、……、202的得数,观察这些得数的个位,并总结一下完全平方数的个位有什(2)根据刚才发现的规律,判断20737是平方数吗?为什么?(3)进一步判断1000是平方数吗?1004000呢?解:(1)如果完全平方数末位是0,那么它从个位开始,连续的0的个数一定是偶数个。
例2.(1)10001到11000之间存在哪些数的平方?写出这些数;(2)非零自然数的平方按大小排列成14916253649……,则第92个位置的数字是。
解:(1)1002=10000,1042=10816,1052=11025,所以10001到11000之间存在101、102、103、104的平方。
(2)1、4、9、16、25、36、49、64、81共有15个数字,100、121、……、直到312=961,一共有22×3=66个数字,前面共有66+15=81个数字,从322=1024开始,每个平方数有4个数字,32、33、34、35,它们的平方都有4个数字,81+11=92,所以第92个位置上是342=1156的第三个数字5.模块二、偶指奇因性质3:自然数N为完全平方数⇔自然数N因数的个数为奇数;性质4:自然数N为完全平方数⇔自然数N的质因数分解中每个质因数出现的次数都是偶次。
特别地,因数个数为3的自然数是质数的平方。
例3.240乘一个非零自然数a,或者除以一个非零自然数b,结果都是一个完全平方数,那么a的最小值是;b的最小值是。
解:240=24×3×5,乘a是一个完全平方数,a的最小值是3×5=15,同样240÷15也是一个完全平方数,b的最小值是15.例4.(1)从1到100这100个自然数中,有奇数个因数的自然数有;(2)从1到100这100个自然数中,有且仅有3个因数的自然数有;解:(1)1到100有奇数个因数的有1、4、9、16、25、36、49、64、81、100,共10个;(2)1到100这100个自然数中,有且仅有3个因数的自然数有4、9、25、49,共4个。
五年级奥数完全平方数
五年级奥数完全平方数五年级奥数完全平方数:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。
阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现:1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n 毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。
(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。
那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?A=1008×B,其中A,B都是自然数,B的最小值是()。
练习二:2【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。
五年级下册数学试题-奥数——完全平方数 全国通用(无答案)
完全平方数一、知识点1. 完全平方数表示两个相同的数相乘的结果.2. 完全平方数分解质因数时,它的每个相同的质因数都有偶数个.3. 完全平方数的个位数字只可能是965410、、、、、这六个数字. 4. 两个完全平方数的积还是完全平方数.5. 一个完全平方数如果能被n 整除,则它一定能被2n 整除.二、例题例 1 下面是一个算式:9876543214321321211⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯+⨯⨯+⨯+ ,问这个算式的得数是否是一个完全平方数?例2 两个不相等的完全平方数相除,结果还是一个完全平方数,并且这个完全平方数与前两个完全平方数不相等,问两个完全平方数的和最小是多少?例3 从1到2000的所有正整数中,有多少个数乘以72后是完全平方数?例4 计算:2222222222221234569596979899100-+-+-++-+-+- .例5 有六张四位数的数字卡片,每张卡片上有一个或两个数字已被弄脏看不清了.它们分别是24□2、58□7、23□4、4□□8、□□45、□□20,其中只有一个是完全平方数,问这个数是多少?例6 50张卡片,写着1-50这50个数字,正反两面写的数字相同,拉片一面是红,一面是蓝.某班有50名学生,老师把50张卡片中蓝色的一面都朝上摆在桌上,对同学说:“请你们按学号顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝”,那么到最后每个学生都翻完后红色朝上的卡片还有多少张?例7 求一个四位完全平方数,它的前两位数码相同,后两位数码也相同.三、练习1. 已知a 是一个两位数,且a +92是一个完全平方数,则=a _______________.2. 在300-600之间,有___________个完全平方数.3. 如果x 32(0≠x )是一个完全平方数,那么x 至少是_________.4. 如果3!+n 是一个完全平方数,那么=n ___________.(其中n n ⨯⨯⨯⨯= 321!)5. 个位数字与百位数字的和恰好等于十位数字的三位完全平方数是_______________.6. 2002加上一个两位质数后得到一个完全平方数,这个质数是____________.。
小学奥数25完全平方数
2.7完全平方数2.7.1相关概念完全平方即用一个整数乘以自己例如1*1,2*2,3*3等等,依此类推。
若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数。
完全平方数是非负数。
2.7.2性质推论例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质:性质1:末位数只能是0,1,4,5,6,9。
此为完全平方数的必要不充分条件,且定义为“一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数”,0为整数,故0是完全平方数性质2:奇数的平方的个位数字一定是奇数,十位数字为偶数;偶数的平方的个位数字一定是偶数。
证明奇数必为下列五种形式之一:10a+1,10a+3,10a+5,10a+7,10a+9分别平方后,得(10a+1)2=100a2+20a+1=20a(5a+1)+1(10a+3)2=100a2+60a+9=20a(5a+3)+9(10a+5)2=100a2+100a+25=20 (5a+5a+1)+5(10a+7)2=100a2+140a+49=20 (5a+7a+2)+9(10a+9)2=100a2+180a+81=20 (5a+9a+4)+1综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
证明已知m2=10k+6,证明k为奇数。
因为k的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。
则10k+6=(10n+4)2=100+(8n+1)x10+6或10k+6=(10n+6)2=100+(12n+3)x10+6即k=10+8n+1=2(5+4n)+1或k=10+12n+3=2(5+6n)+3∴k为奇数。
小学奥数 数论问题 第七讲 提高篇之完全平方数
第七讲提高篇之完全平方数课后习题:基础篇:【闯关1】一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?解析:第一个平方数为b2,第二个平方数为a2,由题意得:b2+100=a2+63,a2-b2=100-63=37,即:a2-b2=37=37×1考虑同奇偶性,可知a=19,b=18,这个数为a2+63=19×19+63=424;【闯关2】两个完全平方数的差为77,则这两个完全平方数的和最大是多少?最小是多少?解析:第一个平方数为b2,第二个平方数为a2,由题意得:a2-b2=77=77×1=7×11所以a-b=1,a+b=77,可知a=39.b=38,完全平方数的和是2965a-b=7,a+b=11,可知a=9,b=2,完全平方数的和是89提高篇:【闯关3】有一个正整数的平方,它的最后三位数字相同但不为0,试求满足上述条件的最小的正整数解析:平方数的末尾只能是0,1,4,5,6,9,因为111,444,555,666,999都不是完全平方数,所以所求的数最小是4位数.考察1111,1444……可以知道14443838=⨯,所以满足条件的最小正整数是1444.【闯关4】三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”.问:所有小于2008的美妙数的最大公约数是多少?解析:(1)任何连续三个正整数必有一个能为3整除,所以任何“美妙数”必有因子3. (2)中间的数是偶数,它又是完全平方数,必定能为4整除,若中间的数是奇数,则第一和第三个数是偶数,所以任何“美妙数”必有因子4.(3)完全平方数的个位只能是1,4,5,6,9,0,若个位是5和0,则中间的数必能被5整除,若其各位是1和6,则第一个必能被5整除,若其个位是4和9,则第三个数必能被5整除,所以,任何“美妙数”必有因子5(4)上述说明“美妙数”都有因子3,4,5,也就是有因子60,即所有的美妙数的最大公约数至少是60,60=3×4×5,美妙数的最大公约至多是60,所以只能是60.巅峰篇:【闯关5】设p,a,b,c 均为互不相等的质数,且满足3444-++=c b a p ,则满足条件的p 的和为多少?解析:显然a,b,c 中必有2,否则若a,b,c 都不等于2,则a,b,c 均为奇数,则p 为非零偶数。
五年级奥数.数论.完全平方数的性质和应用
完全平方数的性质和应用课前预习数字不重复的平方数观察只含两位数字的完全平方数:16=4225=5236=6249=7264=8281=92其中每个平方数都是两位数字互不相同。
含有三位数字的完全平方数,情况就不一样了。
例如:100=102121=112144=122这些平方数都已包含重复数字。
不过,也有许多三位平方数的各位数字互不相同,例如:169=132196=142256=162 62=5252含有四位数的完全平方数,包含重复数字的现象更为普遍。
1444=382不含重复数字的四位平方数也很多,例如1024=322 2401=4921369=3721936=442如果一个平方数有九位数字,每位数字各不相同,并且不含数字0,那么在这个数中,从1到9全都出现,全只出现一次。
其中最小的是:139854276=118262,最大的是:923187456=303842知识框架完全平方数常用性质1.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.不可能是2,3,7,8。
性质2:在两个连续正整数的平方数之间不存在完全平方数。
性质3:自然数N为完全平方数⇔自然数N约数的个数为奇数⇔.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次.性质4:若质数p整除完全平方数2a,则p能被a整除。
2.一些重要的推论(1)任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
(2)一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
(3)自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
(4)完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
(5)完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
(6)完全平方数的个位数字为6时,其十位数字必为奇数。
2018五年级奥数.数论.完全平方数的性质和应用(A级).学生版
完全平方数的性质和应用数字不重复的平方数观察只含两位数字的完全平方数:16=4225=5236=6249=7264=8281=92其中每个平方数都是两位数字互不相同。
含有三位数字的完全平方数,情况就不一样了。
例如:100=102121=112144=122这些平方数都已包含重复数字。
不过,也有许多三位平方数的各位数字互不相同,例如:169=132196=142256=16262=5252含有四位数的完全平方数,包含重复数字的现象更为普遍。
1444=382不含重复数字的四位平方数也很多,例如1024=3222401=4921369=3721936=442如果一个平方数有九位数字,每位数字各不相同,并且不含数字0,那么在这个数中,从1到9全都出现,全只出现一次。
其中最小的是:139854276=118262,最大的是:923187456=303842知识框架完全平方数常用性质1.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.不可能是2,3,7,8。
性质2:在两个连续正整数的平方数之间不存在完全平方数。
性质3:自然数N为完全平方数⇔自然数N约数的个数为奇数⇔.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次.性质4:若质数p整除完全平方数2a,则p能被a整除。
2.一些重要的推论(1)任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
(2)一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
(3)自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
(4)完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
(5)完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
(6)完全平方数的个位数字为6时,其十位数字必为奇数。
小学五年级奥数完全平方数
第八讲 完全平方数一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。
阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现: 1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。
(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。
那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?练习二:2A=1008×B,其中A,B都是自然数,B的最小值是()。
【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲 完全平方数
一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
例如:
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……
判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。
阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:
分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现: 1a =1=21
2a =1+3=4=22
3a =1+3+5=9=23
4a =1+3+5+7=16=24
………
n a =1+3+5+…+(2n -1)=[]2
)1(1n n ⨯-+=2n
毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。
(注:这个和其实就是奇数个数的平方)
【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)
一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。
那么,最后袋中留下多少个球?
【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?
练习一:1×2×3×4×5×6×45×121是多少的平方?
练习二:2A=1008×B,其中A,B都是自然数,B的最小值是()。
【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?
一讲一练: 360、3969、7744各有多少个约数?
【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。
这200个灯泡按1到200编号,它们的亮暗规则是:第一秒,全部灯泡变亮;
第二秒,凡编号为2的倍数的灯泡由亮变暗,改变原来的亮暗状态;
第三秒,凡编号为3的倍数的灯泡由亮变暗,改变原来的亮暗状态;
第四秒,凡编号为4的倍数的灯泡由亮变暗或者由暗变亮,改变原来的亮暗状态;
第五秒,凡编号为5的倍数的灯泡由亮变暗或者由暗变亮,改变原来的亮暗状态;
一般地,第n 秒,凡编号为n 的倍数的灯泡都改变原来的亮暗状态;
那么第200秒时,明亮的灯泡有( )个。
练习一:1~2012中含有奇数个约数的数共有多少个?
练习二:从200到1800的自然数中有奇数个约数的数有多少个?
【例五】从1到1998的所有自然数中,有多少个数乘以72后是完全平方数?
一讲一练:自然数1~2012中,多少个数乘以12后得到一个完全平方数?
课后作业:
1、公元前6世纪,古希腊的毕达哥拉斯学派发现了正方形数:
……
他们发现:
1=1,1+3=22=4,1+3+5=23=9,1+3+5+7=24=16……
那么第100个图有 个点,第n 个图有 个点。
也就是说:从1开始的连续n 个奇数的和,等于 。
2、黑板上写有从1开始的若干个连续奇数:1、
3、5、7、9……,擦掉其中一个奇数后,剩下的奇数之和为1998。
那么擦掉的奇数是多少?
3、一个数与2940的积是完全平方数,那么这个数最小是多少?
4、祖孙三人,孙子和爷爷的年龄的乘积是1512,而爷爷、父亲、孙子三人的年龄之积是完全平方数,则父亲的年龄是多少岁?
5、求下面各数的约数个数:45、112、225、660。
6、200名同学面向教官,他们依次从1开始报数,直到200。
第一次他们都向后转,第二次报数是2的倍数的同学转回来,第三次报数是3的倍数的同学往后转,第四次报数是4的同学往后转……不断下去,直到最后一次报数是200的倍数的同学往后转。
问:这时面向教官的同学有多少个?
7、从1000到5000的自然数中有奇数个约数的数有多少个?
8、1~100中的一个数乘以6后,乘积是一个完全平方数,这个数最大是多少?
9、求一个能被180整除的最小完全平方数。
10、“1993与一个三位数的和”是一个完全平方数,这样的三位数有多少个?
11、已知一个自然数n满足:12!(即1×2×3×4×……×12)除以n后,商是一个完全平方数,则n的最小值是多少?
大于100小于10000的完全平方数开平方用心算,正确率达100﹪。
现介绍其方法如下: 首先要记住或会心算这几个乘法: 15×15=225,25×25=625,35×35=1225,45×45=2025,55×55=3025,65×65=4225,75×75=5625,85×85=7225,95×95=9025。
上面这组计算经观察可发现:相乘结果最后两位都是25,25前面的数字是由乘数的十位数字乘以十位上的数字加1得出。
如:85×85=7225中的72是由8×9得出的。
又如65×65=4225中的42是由6×7得出的。
现在我们来研究大于100小于10000的完全平方数的开平方:
例1: 求5776算术平方根先把5776从个位按每两位分节为57,76; 考查57,因为 7的平方=49<57<64=8的平方。
所以 5776的算术平方根的十位上的数字是7。
又因为 5776>5625=75×75,且个位是6 ,而在5至9之间的平方数个位是6的只有6的平方,所以5776的算术平方根的个位上的数字是6;所以5776的算术平方根是76。
例2:求6724的算术平方根解:①分节:67,24 ②观察67在那两个平方数之间64<67<81 ③取小定十位: 十位上的数字是8 ④与85的平方=7225比较定个位: ∵ 6724<7225且个位是4,而在0至4之间的平方数个位是4的只有2的平方∴6724的算术平方根个位上的数字是2 所以6724的算术平方根是82 例3:求1369的算术平方根解:①分节:13,69 ②观察取小:∵9<13<16,∴3是十位上的数字
③与35的平方1225比较定个位:∵1369>1225,且个位数是9 在5至9之间的平方数个位是9的只有7,∴1369的算术平方根个位上的数字是7;所以1369的算术平方根是37。