y=ax2+bx+c的图象与性质配方法
二次函数y=ax2+bx+c的图象和性质
课堂练习
完成课本P12练习 (1)(3)用公式法 (2)(4)用配方法
反思
求抛物线y=ax2+bx+c的顶点坐标和对称轴有两 种方法:
1.配方法
2.公式法
顶点:
(
b
4ac b2
,
)
2a 4a
对称轴: x b 2a
总结小结
顶点坐标
对称轴
y=ax2 y=ax2+c y=a(x-h)2
(0,0)
(0,c) (h,0)
y轴
y轴 直线x=h
y=a(x-h)2+k (h,k) 直线x=h
y=ax2+bx+c
(
b
4ac b2
,2a
最值
0 c 0
k
4ac b2 4a
能力训练
1.二次函数y=-2x2-x+1的顶点位于第 象限 2.已知二次函数y=2x2-8x+1,当x= ,函数有最 小值为 3.若函数y=-0.5x2+2x+m有最大值为5,则m___ 4.将抛物线y=2x2-4x+5向左平移2个单位长度,再 向下平移3个单位长度得
x=h时,y最小=k
x=h时,y最大=k
抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移 得到的。 x:左加右减
y:上加下减
课前练习
顶点坐标 对称轴
y=-2x2 y=-2x2-5
(0,0) y轴 (0,-5) y轴
y=-2(x+2)2 (-2,0) 直线x=-2
y=-2(x+2)2-4 (-2,-4) 直线x=-2
a( x b )2 4ac b2
二次函数知识梳理
(3)抛物线 y ax2 bx c与 x 轴的两个交点的横 坐个标实数x1根、x.抛2,物是线对与应x一轴元的二交次点方情程况a可x以2 由b对x应的c一元0的二两
次方程的根的判别式判定:
①有两个交点 △>0 抛物线与 x轴相交; ②有一个交点(顶点在轴上) △=0 抛物线与 x 轴
二次函数与一元二次方程、一元二次不等式的关系
利用二次函数 y ax2 bx c 的图象
ax2 bx c 0 ax2 bx c 0 ax2 bx c 0
看图象与 x轴的交点 看 x轴上方的图象 看 x轴下方的图象
1.定义:一般地,如果 y ax2 bx c
( a、b 、c 是常数,a 0),那么 y
叫做 x 的二次函数.
2.二次函数 y ax2 bx c用配方法可
化成:y ax h2 k 的形式.
其中: h b ,k 4ac b2
2a
4a
3.抛物线的三要素: 开口方向、对称轴、顶点.
y x2 x 2
抛物线
△>0
顶点坐标 对称轴
△=0
开口方向
△<0
a>0
图
△>0
a<0
像
△=0
利润问题
△<0
磁道问题
性质
最值
应用
拱桥问题
二
面积问题
次 顶点式 y ax h2 ka 0
y ax2 bx c(a 0)
函 交点式 y ax x1x x2 a 0
数
x1、x2是图象与x轴的交点的横标
k k
0,向上平移 0,向下平移
k 个单位 k 个单位
y
ax 2
二次函数y=ax2+bx+c的图像与性质
◆本节课内容一、二次函数y=ax2+bx+c1、二次函数y=ax2+bx+c可以用配方法转化为y=a(x-h)2+k的形式:2、二次函数y=ax2+bx+c的图像的作法:二次函数y=ax2+bx+c的图像是一条对称轴平行于y轴的抛物线。
它的图像常见作法有两种:五点法和平移法。
方法一:五点法先用配方法将y=ax2+bx+c(a≠0)化为y=a(x-h)2+k(a≠0)的形式,确定抛物线的顶点、开口方向、再以顶点为中心,在对称轴的两侧对称地各取两对值进行列表,最后描点画图。
方法二:平移法利用平移法作二次函数y=ax2+bx+c的图像的一般步骤如下:(1)利用配方法将二次函数y=ax2+bx+c化为y=a(x-h)2+k的形式,确定其顶点为(h,k);(2)作出二次函数y=ax2的图像;(3)将函数y=ax2的图像平移,使其顶点(0,0)平移到(h,k),平移后的图像即是二次函数y=ax2+bx+c的图像。
3、二次函数y=ax2+bx+c的图像及性质如下表:二、二次函数y=ax2+bx+c(a≠0)的图像特征与系数a,b,c的符号关系注意:(1)b的符号由a的符号和对称轴的位置来决定(2)a+b+c(或a-b+c)可以看成是x=1(或x=-1)时的函数值。
三、二次函数解析式的求法求二次函数的解析式y=ax2+bx+c,需求出a,b,c的值。
由已知条件(如二次函数图像上三点的坐标)列出关于a,b,c的方程组,求出a,b,c的值,就可以写出二次函数的解析式。
◆课堂练习题型一利用公式法直接求抛物线的顶点、对称轴及最值1、求二次函数y=(x+5)(x-1)的对称轴、顶点及最值。
题型二、由抛物线的顶点、对称轴及最值求字母或代数式的取值范围2、二次函数y=ax2+bx+1(a≠0)的图像的顶点在第一象限,且过点(-1,0)。
设t=a+b+1,则t 的取值范围是()A、0<t<1B、0<t<2C、1<t<2D、-1<t<1题型三、二次函数图像平移规律的直接应用3、抛物线y=-2x2-4x-5经过平移得到抛物线y=-2x2,平移的方法是()A、向左平移1个单位,再向下平移3个单位B、向左平移1个单位,再向上平移3个单位C、向右平移1个单位,再向下平移3个单位D、向右平移1个单位,再向上平移3个单位题型四、根据抛物线的平移求字母的值4、已知抛物线y=x2+4x+1向上平移m(m>0)个单位得到的新抛物线过点(1,8),求m的值1题型五、利用二次函数y=ax2+bx+c的图像判断各项系数的符号5、二次函数y=ax2+bx+c的图像如图,那么abc,2a+b,a+b+c这3个代数式中,值为正数的有( c )A、3个B、2个C、1个D、0个题型六、利用二次函数的性质比较函数值得大小6、若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图像上的三点,则y1,y 2,y3的大小关系是()题型七、利用二次函数的增减性求字母的取值范围7、已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,求m的取值范围。
《二次函数y=ax2+bx+c的图像和性质》二次函数PPT精品课件
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
用几何画板探究二次函数y=ax2+bx+c的图象和性质
用几何画板探究二次函数c bx ax y ++=2的 图象和性质资料编号:202211051045在探究二次函数()02≠++=a c bx ax y 的图象及其性质时,我们可以利用配方法把一般式化为顶点式进行探究,配方过程如下:c a b a b x a b x a c x a b x a c bx ax y +⎪⎪⎭⎫ ⎝⎛-++=+⎪⎭⎫ ⎝⎛+=++=222222244 a b ac a b x a 44222-+⎪⎭⎫ ⎝⎛-= ∴二次函数()02≠++=a c bx ax y 的顶点式为a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛-=,其图象的对称轴为直线a b x 2=,顶点坐标为⎪⎪⎭⎫ ⎝⎛-a b ac a b 44,22.当a b x 2=时,函数取得最值,最值为a b ac y 442-=:当0>a 时,ab ac y 442min -=;当0<a 时,a b ac y 442max -=. 虽然我们可以用学习顶点式的成果来研究一般式,但我们还不能对一般式有一个全面的了解和掌握,如b a ,的符号与对称轴的位置关系、抛物线与y 轴的交点与c 的关系以及抛物线与x 轴的相交情况等.下面,我们通过制作几何画板课件,设置c b a ,,三个参数,来探究一下二次函数()02≠++=a c bx ax y 的图象及其性质. 几何画板课件制作1.打开几何画板,单击“绘图”,选择“定义坐标系”,单击“点工具”,在x 轴上任意作出一点A ,选中点A 和x 轴,依次单击“构造”、“垂线”,作出x 轴的垂线.单击“点工具”,在x 轴上方的垂线上任取一点B ,在x 轴下方的垂线上任取一点C .选中点B 、C ,依次单击“构造”、“线段”,作出线段BC .选中垂线BC 并隐藏.单击“点工具”,在线段BC 上任取一点,标签设为a .选中点a ,依次单击“度量”、“纵坐标”,量出点a 的纵坐标.选中点a 纵坐标的度量值,右单击,选择“度量值的标签”,在“标签”中输入a .如图1所示.单击确定.2.用同样的方法制作参数c b ,.依次单击“绘图”、“隐藏网格”,如图2所示.3.依次单击“绘图”、“绘制新函数”,在弹出的对话框中依次输入“a 的值”、“*”、“x ”、“∧”、“2”、“+”、“b 的值”、“*”、“x ”、“+”、“c 的值”,如图3所示.单击确定,作出函数()c bx ax x f ++=2的图象.如图4所示.4.选中函数的图象,修改线型为“中等”.选中函数解析式,右单击,选中“函数的标签”,在“标签”中输入“y ”,如图5所示.单击“确定”.5.单击“点工具”,在抛物线上任取一点P ,选中点P 和x 轴,依次单击“构造”、“平行线”,交抛物线于另一点Q .双击点P ,选中点Q ,依次单击“变换”、“缩放”,设置“固定比”为“1/2”,如图6所示.单击“确定”,作出线段PQ 的中点'Q .6.选中直线PQ、点P、点Q并隐藏,选中点'Q和x轴,依次单击“构造”、“垂线”,作出抛物线的对称轴.选中对称轴,修改线型为“细线/虚线”,颜色为红色.选中点'Q并隐藏.如图7所示.7.单击抛物线与y轴的交点处,得到点M.选中点M,依次单击“度量”、“纵坐标”,量出点M的纵坐标.如图8所示.8.选中点a,修改点的颜色为浅蓝色;选中点b,修改点的颜色为粉红色;选中点c,修改点的颜色为浅绿色.如图8所示.经此一步,作图完成.课件探索对于二次函数()02≠++=a c bx ax y ,课件设置了三个参数c b a ,,,通过拖动点c b a ,,,使这三个参数可以在一定范围内变化,以观察函数图象的变化与这三个参数之间的关系.探究参数a 对函数图象的影响(1)拖动点a 在线段AB 上移动,此时0>a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越小,函数图象的开口越_________;(2)拖动点a 在线段AC 上移动,此时0<a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越大,函数图象的开口越_________.对于二次函数()02≠++=a c bx ax y ,当0>a 时,函数图象开口_________,当0<a 时,函数图象开口_________,并且a 越小,函数图象的开口越_________,a 越大,函数图象的开口越_________.探究参数b a ,对函数图象的影响在由二次函数的一般式化为顶点式的过程中,我们得到函数图象的对称轴为直线ab x 2-=,这说明抛物线的对称轴与b a ,有着直接的关系,同时参数b a ,的改变也必将影响抛物线的变化.我们来实际操作一下.(3)把点a 移动到线段AB 上,此时0>a ,拖动点b 在线段EF 上移动,可以发现:当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的左侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的右侧.(4)把点a 移动到线段AC 上,此时0<a ,拖动点b 在线段EF 上移动,可以发现: 当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的右侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的左侧.对于二次函数()02≠++=a c bx ax y ,当0,0>>b a 或0,0<<b a 时,函数图象的对称轴在y 轴的_________侧;当0,0<>b a 或0,0><b a 时,函数图象的对称轴在y 轴的_________侧.特别地,当0=b 时,函数图象的对称轴是_________.由此,我们可以根据b a ,的符号确定抛物线对称轴与y 轴的相对位置关系,也可以根据抛物线的对称轴与y 轴的相对位置关系,确定b a ,的符号.实际上,当b a ,同号时,02<-=a b x ,抛物线的对称轴位于y 轴的左侧;当b a ,异号时,02>-=ab x 抛物线的对称轴位于y 轴的右侧.如此,我们探究参数b a ,对二次函数图象影响的过程,经历了由观察到推理,由感性认识到理性认识的过程.探究参数c 对函数图象的影响(5)拖动点c 在线段HI 上移动,观察函数图象的变化,不难发现,函数图象与y 轴的交点的纵坐标,等于_________的值.当0>c 时,函数图象与y 轴的_________轴相交;当0=c 时,函数图象经过_________;当0<c 时,函数图象与y 轴的_________轴相交.因此,参数c 的值,决定了函数图象与y 轴的相交情况.实际上,对于二次函数()02≠++=a c bx ax y ,当函数图象与y 轴相交时,令0=x ,则=y _________,所以函数图象与y 轴的交点为_________.二次函数c bx ax y ++=2的图象及性质二次函数c bx ax y ++=2的图象及性质的应用例1. 用配方法将二次函数6422++-=x x y 化为()k h x a y +-=2的形式,则k h a ++的值为【 】(A )5 (B )7 (C )1- (D )2-解析 ∵()()81261122642222+--=+-+--=++-=x x x x x y ∴8,1,2==-=k h a∴7812=++-=++k h a∴选择答案【 B 】.例2. 关于抛物线122+-=x x y ,下列说法错误的是【 】(A )开口向上 (B )顶点在x 轴上(C )对称轴是直线1=x (D )当1>x 时,y 随x 的增大而减小 解析 ()22112-=+-=x x x y . 对于(A ),01>=a ,抛物线开口向上.故(A )正确;对于(B ),抛物线顶点坐标为()0,1,在x 轴上.故(B )正确;对于(C ),抛物线的对称轴为直线1=x .故(C )正确;对于(D ),当1>x 时,y 随x 的增大而增大.故(D )错误.∴选择答案【 D 】.例3. 若二次函数a x ax y ++=42的最大值是3,则=a _________。
二次函数的图像与性质
二次函数的图象与性质知识要点概述1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.3、二次函数的解析式有下列三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0);)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.(3)交点式:y=a(x-x1确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.4、抛物线y=ax2+bx+c中系数a、b、c的几何意义抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点(1)a>0,开口向上;a<0,开口向下;(2)x=h为抛物线对称轴;(3)顶点坐标为(h,k).依顶点式,可以很快地求出二次函数的最值.当a>0时,函数在x=h处取最小值y=k;当a<0时,函数在x=h处取最大值y=k.6、抛物线y=a(x-h)2+k与y=ax2的联系与区别抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.要想弄清抛物线的平移情况,首先将解析式化为顶点式.7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).典型剖析例1、已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a.其中正确结论的个数是()A.4B.3C.2D.1解:选A.令x=1及由图象知a+b+c<0,①正确;令x=-1及由图象a-b+c>0,②正确;由对称轴知,④正确;由④知a、b同号且抛物线与y轴的交点在x轴上方,即c>0,故③正确.所以选A.例2、二次函数y=x2+(a-b)x+b的图象如图所示.那么化简的结果是____________.解:原式=-1.∵图象与y轴交点在x轴上方,∴b>0.又∵图象的对称轴在y轴右边且二次项系数为1,一次项系数为a-b,例3、已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.(1)用配方法求顶点C的坐标(用含m的代数式表示);(2)若AB的长为,求抛物线的解析式.解:(1)∵y=x2-(2m+4)x+m2-10=[x-(m+2)] 2-4m-14,∴顶点C的坐标为(m+2,-4m-14).(2)∵A、B是抛物线y=x2-(2m+4)x+m2-10与x轴的交点且|AB|=,化简整理得:16m=-48,∴m=-3.当m=-3时,抛物线y=x2+2x-1与x轴有交点且AB=,符合题意.故所求抛物线的解析式为y=x2+2x-1.例4、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.(1)求m的取值范围;(2)若a︰b=3︰1,求m的值,并写出此时抛物线的解析式.解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).∵A、B分处原点两侧,∴xx2<0,1即-(m+1)<0,得m>-1.又∵△=[2(m-1)]2-4×(-1)(m+1)=4m2-4m+8=4(m-)2+7>0,∴m>-1为m的取值范围.(2)∵a︰b=3︰1.设a=3k,b=k(k>0),=3k,x2=-k.则x1例5、已知某二次函数,当x=1时有最大值-6,且其图象经过点(2,-8).求此二次函数的解析式.解:∵二次函数当x=1时有最大值-6,∴抛物线的顶点为(1,-6),故设所求的二次函数解析式为y=a(x-1)2-6.由题意将点(2,-8)的坐标代入上式得:a(2-1)2-6=-8,∴a=-2,∴二次函数的解析式为y=-2(x-1)2-6,即y=-2x2+4x-8.例6、二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C.当△AMC的面积为△ABC面积的倍时,求a的值.解:(1)由图象可知:a<0,图象过点(0,1),∴c=1.图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴实数a的取值范围是-1<a<0.(2)此时函数为y=ax2-(a+1)x+1,与x轴两交点A、C之间的距离为例7、根据下列条件,求抛物线的解析式.(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与x轴两交点(-1,0)和(2,0)且过点(3,-6).分析:求解析式应用待定系数法,根据不同的条件,选用不同形式求二次函数的解析式,可使解题简捷.但应注意,最后的函数式均应化为一般形式y=ax2+bx+c.解:(1)设y=ax2+bx+c,把(0,-1),(1,),(-2,-5)代入得方程组∴解析式为y=+x-1.(2)设y=a(x+2)2+3,把(-3,2)代入得2=a(-3+2)2+3,解得a=-1.解析式为y=-x2-4x-1.(3)设y=a(x+1)(x-2),把(3,-6)代入得-6=a(3+1)(3-2),解得.∴解析式为y=(x+1)(x-2),即.。
5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
二次函数y=-x2-4x-5 的图像如图所示.
由图像可知, 当x=-2时, y的值最大, 最大值是-1.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
y=
1 2
x2-6x+21
y=
1 2
(x2-12x)+21
你知道是怎样配方的吗? 1. “提”:提出二次项系数;
1 y= 2 (x2-12x+36-36)+21
y= 1 (x-6) 2+21-18 2
2.“配”:括号内配成完全平方式;
a<0时,抛物线开口向下,函数有最大值;
4ac - b2
函数在顶点处取得有最大(小)值 4a
.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
练一练:用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式 为( B ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
例1 画出二次函数y=-x2-4x-5的图像,并指出它的开口方向、顶点坐 标、对称轴、最大值或最小值. 【分析】要画出二次函数y=-x2-4x-5的图像,可先将函数表达式变
二次函数y=ax2+bx+c的图象和性质
0,
解得 b
3 4
,
c 3,
∴抛物线的解析式为y=- 3 x2+
8
3 x+3.
4
解法二:设抛物线的解析式为y=a(x+2)(x-4),把C(0,3)代入得-8a=3,即a=
知识点三 待定系数法求二次函数解析式
6.(2018黑龙江大庆龙凤期中)已知一个二次函数,当x=1时,y有最大值8, 其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的表达 式是 ( ) A.y=-2x2-x+3 B.y=-2x2+4 C.y=-2x2+4x+8 D.y=-2x2+4x+6 答案 D ∵二次函数的图象的形状、开口方向与抛物线y=-2x2相同, 故设该二次函数的解析式为y=-2(x-h)2+k,∵当x=1时,y有最大值8,∴该二 次函数的顶点为(1,8),∴h=1,k=8,∴该二次函数的解析式为y=-2(x-1)2+8, 即y=-2x2+4x+6.
图22-1-4-1
解析 二次函数y=x2-2x-3=(x-1)2-4的图象的顶点坐标为(1,-4),对称轴为 直线x=1, ∵a=1>0,∴函数有最小值-4.其图象如图.
知识点二 抛物线y=ax2+bx+c与系数的关系 4.(2017北京昌平期中)二次函数y=ax2+bx+c(a≠0)的图象如图22-1-4-2所 示,则下列关系式不正确的是 ( )
题型二 利用二次函数y=ax2+bx+c(a≠0)的性质比较函数值的大小
例2 (2017河南商丘柘城模拟)已知二次函数y=-x2+2x+c的图象上三个 点的坐标分别为A(-2,y1),B(-1,y2),C(2,y3),则y1,y2,y3的大小关系为 ( ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2 解析 ∵y=-x2+2x+c, ∴函数y=-x2+2x+c的对称轴为直线x=1,开口向下, 当x<1时,y随x的增大而增大. ∵C(2,y3)关于x=1的对称点为(0,y3), 又∵0>-1>-2, ∴y3>y2>y1.
2.2二次函数的图像与性质(5)y=ax2+bx+c
=3(x -4x+4-4)-3
2
=3(x -4x+4)-3×4-3
=3(x-2)2-15
∵3>0
∴当 x=2 时,函数有最小值-15.
1 2
例 4 求抛物线 y=- x -2x+3 的顶点坐标.
2
1 2
解:∵y=-2x -2x+3
1 2
=-2(x +4x)+3
1 2
=-2(x +4x+4-4)+3
2
解:∵y=x +x+1
1 1
2
=x +x+ - +1
4 4
1 3
2
=(x +x+4)+4
12 3
=(x+2) +4
1 3
∴顶点坐标为(-2,4)
变式练习 2
求抛物线 y=x 2-3x+2 的顶点坐标.
2
解:∵y=x -3x+2
9
9
=x -3x+4+2-4
2
32 1
=(x-2) -4
3
1
∴顶点坐标为 (2,-4)
1 2
1
=-2(x +4x+4)+(-2)×(-4)+3
1
2
=-2(x+2) +5
∴顶点坐标为(-2,5)
变式练习 4
3 2
求抛物线 y=- x +3x+1 的顶点坐标.
2
3 2
解:y=-2x +3x+1
3 2
=-2(x -2x+1-1)+1
3 2
3
=-2(x -2x+1)+(-2)×(-1)+1
b 2 4ac b
y ax bx c a ( x )
.
2a
4a
2
2
因此,抛物线y=ax2+bx+c
人教版九年级数学上册《二次函数y=ax2 bx c的图像和性质》教学设计
《二次函数y=ax²+bx+c的图像和性质》教学设计教材依据人民教育出版社义务教育教科书《数学》(九年级上册)22.1.4二次函数y=ax²+bx+c的图像和性质.设计思路一、指导思想新课程标准指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
在教学设计时,我以布鲁纳认知发现学习理论的实质——主动的形成认知结构为指导思想,结合新课标“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.”的教育理念,设计了二次函数的图像和性质这节课。
二、设计理念本节课授课班级的学生已经获得的二次函数解析式中待定系数与图象的关系、二次函数图象的性质的基础上学习的,根据学生的认知特点和所学知识的特征,我在教学过程中重点运用我校的三段两重心教学模式:揭示目标,突破目标,检测目标。
使学生经历数学知识的形成与应用过程,以达到促进学生有效学习的目的。
这就需要我们在教学的过程中,利用教师的智慧,对教材和资源进行重新整合,并根据具体的学生的环境和接受能力,对课堂教学内容进行合理设计,将图象与数量结合到一起、将代数与几何结合到一起解决问题,提高学生在动手操作能力、分析问题能力的过程中,养成认真观察、主动思考的习惯,体会数形结合思想在解题中的优势。
从而提高课堂教学的效率。
三、教材分析本节属于《数学课程标准》(2011年)中“数与代数”领域的内容,课标中明确指出要求学生“会用配方法将数字系数的的二次函数的表达式化为y=a(x-h)²+k的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。
”设计本节课是学生在已经学习了二次函数的顶点式的基础上,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。
二次函数的图象与性质也是中考内容的重点考察之一。
四、学情分析二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。
九年级数学上册第21章第4课时二次函数y=ax^2 bx c的图象和性质习题课件新版沪科版ppt
1 2
,y2),(3 1
2
,y3),则y1,y2,y3的大小关系为
y1<y2<y3 .
9.已知二次函数y=-x2+2x+3. (1)求抛物线的顶点及与x轴交点的坐标; 解:(1)它与x轴的交点为(-1,0),(3,0),顶点为(1,4).
(2)x取什么值时,y的值随x值的增大而减小? (2)x>1时,y的值随x值的增大而减小.
知识点四 二次函数y=ax2+bx+c与y=ax2的关系
10.(2018·广西)将抛物线y=1 x2-6x+21向左平移2个单位长度后,得到新抛 2
物线的表达式为( D )
A. y=12 (x-8)2+5 B. y=1 (x-4)2+5
2
C. y=1(x-8)2+2
2
D. y=1(x-4)2+3
2
A.图象与y轴的交点坐标为(0,1)
B.图象的对称轴在y轴的右侧
C.当x<0时,y的值随x值的增大而减小 D. y的最小值为-3
8.(1)如图,抛物线的顶点是P(1,3),则函数y随自变量x的增大
而减小的x的取值范围是 x>1 ;
(2)小颖在二次函数y=2x2+4x+5的图象上找到三点
(-1,y1),(
解:(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥x轴 于点C.∵点A的坐标为(-1,0),点B的坐标为(2,3),∴AC=BC=3, ∴∠BAC=45°.∵点M是抛物线y=x2-1的顶点,∴点M的坐标为(0, -1),∴OA=OM=1.∵∠AOM=90°,∴∠MAC=45°,∴∠BAM= ∠BAC+∠MAC=90°,∴△ABM是直角三角形.
11.(2018·德州)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同 一平面直角坐标系的图象可能是( B )
知识卡片-二次函数y=ax^2+bx+c(a≠0)的图象和性质
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质能量储备二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质了解二次函数y=ax2+bx+c的图象与性质,一般方法是现将一般式y=ax2+bx+c通过配方化为顶点式y=a(x--h)2+k,然后找出顶点坐标、对称轴,画出图象并观察图象得到它的增a>0a<0通关宝典★ 基础方法点方法点1:利用抛物线的对称性解题如果抛物线上两点(x 1,m ),(x 2,m )的纵坐标相等,那么这两点关于抛物线的对称轴直线x =x 1+x 22对称;反过来,如果两点(x 1,y 1),(x 2,y 2)是抛物线上的对称点,那么这两点的纵坐标相等,即y 1=y 2.例:如图所示,已知抛物线y =x 2+bx +c 的对称轴为直线x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3)解析:∵ 点A ,B 均在抛物线上,且AB 与x 轴平行,∴ 点A 与点B 关于对称轴x =2对称.又∵ A (0,3),∴ AB =4,y B =y A =3,∴ 点B 的坐标为(4,3),故选D . 答案:D方法点2:比较两个二次函数值大小的方法 (1)把自变量直接代入解析式求值.(2)当点在对称轴同侧时,根据函数的增减性判断.(3)当点在对称轴的两侧时,找某点关于对称轴的对称点,均转化到同侧求解,或利用抛物线上的点到对称轴的距离比较大小:当抛物线开口向上时,点到对称轴的距离越大,相应的函数值越大;当抛物线的开口向下时,点到对称轴的距离越大,相应的函数值越小. 例: 若A (413,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3解析:把y =-x 2-4x +5配方,得y =-(x +2)2+9,因为a =-1<0,所以当x >-2时,y 随x 的增大而减小.由抛物线的对称性知,y 1的值等于函数在x =-34处的函数值.又53>-34>-1>-2,所以y 3<y 1<y 2.答案:C★★易混易误点易混易误点1: 用配方法求抛物线的顶点坐标时出错例:用配方法求y =2x 2-8x +6的顶点坐标.分析:在二次函数y =2x 2-8x +6中a =2,为了便于配方,需逆用乘法分配律,将原解析式变形为y=2(x2-4x+3),然后再把括号内的多项式进行配方.解:原二次函数变形为y=2(x2-4x+3),∴y=2(x2-4x+4-4+3)=2[(x-2)2-1]=2(x-2)2-2.∴顶点坐标为(2,-2).常见错因:在解决本题中容易犯的错误是只在解析式的右边除以2,把二次项系数变为1,这不符合等式的基本性质,从而会造成错解.蓄势待发考前攻略考查二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的顶点坐标、开口方向、对称轴及函数的增减性等,注重数形结合思想的运用,中考中既有考查基础知识的选择题、填空题,又有考查能力的综合题.完胜关卡。
人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质
问题1 你能说出 y 1 (x 6)2 3 的对称轴及顶点坐标吗
?答:对称轴是直线
2 x=
6,顶点坐标是
(6,3).
(1)a、b 同号;
(2)当 x = -1 和 x = 3 时,函数值相
等;
(3)4a + b = 0;
–1 O
(4)当 y = -2 时,x 的值只能取 0. –2
其中正确的是 (2) .
x 3
x=1
4. 已知抛物线 y = 2x2 - 12x + 13. (1)当 x 为何值时,y 有最小值?最小值是多少? (2)当 x 为何值时,y 随 x 的增大而减小? (3)将该抛物线向右平移 2 个单位长度,再向上平移 2 个单位长度,请直接写出新抛物线的解析式. 解:∵ y = 2x2 − 12x + 13 = 2(x − 3)2 − 5, ∴抛物线开口向上,顶点为(3,−5),对称轴为直线x =为 −5. (2)当 x<3 时,y 随 x 的增大而减小. (3)新抛物线的解析式为 y = 2(x − 5)2 − 3.
5 当 x>6 时,y 随 x 的增大而增大.
O
5 10 x
要点归纳 二次函数 y = ax2 + bx + c 的图象和性质
1.一般地,二次函数 y = ax2 + bx + c 可以通过配方化成
y = a(x - h)2 + k 的形式,即
y ax2 bx c
a
《二次函数y=ax2+bx+c的图像和性质》二次函数PPT
2.y=ax²+bx+c(a≠0 )的b图象
(1)对称轴是直线x= 2a
。
课堂总结
b 4ac - b2
(2)顶点坐标是( 2a
,
4a
)
(3)当a>0时,抛物线的开口向上,顶点是抛物线上的最低点。
当a<0时,抛物线的开口向下,顶点是抛物线上的最高点。
解法二:
a1 0 2
∴抛物线开口向下,
b 3 3
2a
2
1 2
∴ 对称轴是直线x=-3,当 x>-3时,y随x的增大而减小。
课堂总结
1.二次函数的一般形式:y=ax2+bx+c(其中a,b,c是常数,a≠0) 顶点式:y=a(x+m)2+k。 二次函数的特殊形式: 当b=0时,y=ax2+c 当c=0时,y=ax2+bx 当b=0,c=0时,y=ax2 。
人民教育出版社 九年级 | 上册
第二十二章 ·二次函数
二次函数y=ax2+bx+c的图像和性质
温故知新
二次函数y=a(x+m)2+k的图象和y=ax2的图象之间的关系。
y=ax2(a≠0)图像 当m>0时
当m<0时
向左平移m个单位 向右平移|m|个单位
y=a(x+m)2
当k>0时 向上平移k个单位 y=a(x+m)2+k
在y=-x2-2x+1中,m、k分别是什么?从而可以确定由什么函数的图象经怎 样的平移得到的?
知识点详解
二次函数y=ax²+bx+c(a≠0 )的图象及图象的形状、开口方向、位置又是
怎样的?
二次函数y=ax2bxc的图像和性质
旦马乡初级中学教学方案授课题目22.1.4二次函数y=ax2 +bx+c的图像和性质授课班级九年级授课时间 2016. 授课教师武学鹏教学目标及教学过程教学目标知识与能力目标体会建立二次函数对称轴和顶点坐标公式的必要性.能够利用二次函数的对称轴和顶点坐标公式解决问题.方法与情感目标通过解决实际问题,让学生训练把教学知识运用于实践的能力.教学重点运用二次函数的对称轴和顶点坐标公式解决实际问题.教学难点把数学问题与实际问题相联系的过程.学法指导预习,思考,练习。
教具运用常规教具教学流程师生活动补充与反思Ⅰ.创设问题情境,引入新课前几节课我们研究了不同形式的二次函数的图象,形如y=ax2,y=ax2+c,y=a(x-h)2,y=a(x-h)2+k.并对它们的性质进行了比较.但对于二次函数的一般形式y=ax2+bx+c(a、b、c是常数,a≠0),它是属于上面形式中的哪一种呢?还是另外一种,它的对称轴和顶点坐标是什么呢?下面我们一起来讨论这个问题.Ⅱ.新课讲解例:求二次函数y=ax2+bx+c的对称轴和顶点坐标.解:把y=ax2+bx+c的右边配方,得y=ax2+bx+c=a(x2+acxab+)=a[x2+2·a2bx+(ab2)2+-(ab2)2]=a(x+ab2)2+abac442-.[师]大家看配方以后的形式属于前面我们讨论过的哪一种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 个单位长度。
1 2 试研究二次函数 y x 2x 3 的图象。 2
你知道吗?
用配方法
1 2 怎样把 y x - 2x 3 2 1 2 改写成 y (x 2) 1 呢? 2
1 2 y= x -2x+3 2
1 2 解: y 2 x - 2x 3 1 2 (x - 4x 6) 2 1 2 2 2 x 4x 2 2 6 2 1 2 (x 2) 2 2 1 2 ( x 1 2 4 3 ( 2) 2 4ac b 2 y 1 1 4a 4 2 顶点坐标:(2,1) 对称轴: x
(1) y 2x2 - 12x 13
1 2 y x - 2x 3 2
解: a 1 0 2 开口方向:向上。
1 2 y x 2 - 2x 3 (1) y 2x - 12x 13 2 1 2 (x - 4x 6) 2 1 2 2 x 2 4x (2) (2) 6 2 1 (x 2)2 2 2 1 ( x 2)2 1 2
∴开口方向:向上; 对称轴:x=2; 顶点坐标:(2,1).
b 2 2 1 2a 2 2 1 2 4 3 ( 2) 2 4ac b 2 y 1 1 4a 4 2 顶点坐标:(2,1) 对称轴: x
(1) y 2x2 - 12x 13
1 2 y x - 2x 3 2
解: a 1 0 2 开口方向:向上。
1.抛物线y=x2-4x+3的定点坐标是(2,-1) 与y轴的交点坐标是 (0,3) , 与x轴的交点坐标是 (1,0)或(3,0)。
抛物线与y轴的交 点有什么特征?
抛物线与x轴的交 点有什么特征?
若知道抛物线与x轴的交 点,你能找出对称轴吗?
1.抛物线
y 2x 4x 5 如何平移得到 y 2 x
提取a 配方 写成完全平方 去中括号
2y x - 4x 6
2
二次项系数化1 配方
4 + 2y x - 4x 4 6
2
4 2 y ( x 2) 6
2
写成完全平方
移项合并
2 y ( x 2) 2
2
1 y系数化1 2 y ( x 2) 1 2 ∴开口方向:向上;
对称轴:x=2; 顶点坐标:(2,1).
1 2 y x 2 - 2x 3 (1) y 2x - 12x 13 2 y 2x2 - 12x 13 1 2 (x - 4x 6) 13 2 2(x2 - 6x ) 1 2 2 2 x 2 4x (2) (2) 6 2 13 2 2 2 x 2 6x (3) (3) 1 2 (x 2)2 2 2 5 2 2 (x 3) 1 2 ( x 2)2 1 2 2 ∴开口方向:向上; 2( x 3) 5
2 y=ax +bx+c的图象与性质
回顾:二次函数y=a(x+h)2+k的性质
y=a(x+h)2 +k(a≠0) a>0 a<0 向上 向下 开口方向 (-h ,k) (-h ,k) 顶点坐标 对称轴 x=-h x=-h 增 当x<-h时, 当x<-h时, y随着x的增大而减小。 y随着x的增大而增大。 减 当x>-h时, 当x>-h时, y随着x的增大而增大。 y随着x的增大而减小。 性 x=-h时,y最小值=k x=-h时,y最大值=k 极值 抛物线y=a(x+h)2+k(a≠0)的图象可由y=ax2的图象通 过上下和左右平移得到.
解: a 2 0 开口方向:向上。
b 2 b 12 2 对称轴: x 3 1 2a 2 2a 2 2 2 2 2 1 2 4ac b 4 2 13 ( 12) 4 3 ( 2) y -5 4ac b2 2 y 1 4a 42 1 4a 4 顶点坐标:(3, - 5) 2 顶点坐标:(2,1) 对称轴: x
1、二次函数y=(x-1)2-2的顶点坐标是( C )
A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2)
2、若点A(3,m)是抛物线y 2( x 1)2 5 上一点,则 m= -3 . 3、抛物线y=(x+2)2+3的对称轴是直线 X=-2 ;顶点坐标是 ;当x= -2 时,有最 小 (-2,3) 值 3 ;它是抛物线 y x 2 先向 上 移动 3 个单位长度,再向 左 移动
顶点坐标:(2,1).
要记住方法哦!
对称轴:x=2;
1 y x 2 - 2x 3 2 1 2 (x - 4x 6) 2 1 2 2 2 x 4x (2) (2) 6 2 1 (x 2)2 2 2 1 ( x 2)2 1 2
∴开口方向:向上; 对称轴:x=2; 顶点坐标:(2,1).
对称轴:x=2; 顶点坐标:(2,1).
∴开口方向:向上; 对称轴:x=3; 顶点坐标:(3,-5).
你能把 y ax bx c
2
改写成 y a(x + h) k 吗?
2
用配方法
你知道吗?
y ax2 bx c b c a(x x ) a a 2 2 2 b b b c a x x a 2a 2a a
1 2 y x 2 - 2x 3 (1) y 2x - 12x 13 2 y 2x2 - 12x 13 1 2 (x - 4x 6) 13 2 2(x2 - 6x ) 1 2 2 2 x 2 4x (2) (2) 6 2 13 2 2 2 x 2 6x (3) (3) 1 2 (x 2)2 2 2 5 2 2 (x 3) 1 2 ( x 2)2 1 2 2 ∴开口方向:向上; 2( x 3) 5
2 b 2 4ac - b a (x ) 2 2a 4a 2 b 2 4ac b a( x ) 2a 4a
b 对称轴: x 2a b 4ac b2 顶点坐标: ( , ) 2a 4a
要记住公式哦!
1 2 y x - 2x 3 2
解: a 1 0 2 开口方向:向上。
2 2 b 2 4ac - b a (x ) 2 2a 4a 2 b 2 4ac b a( x ) 2a 4a
∴开口方向:由a决定;
y ax2 bx c
2
b c a(x x ) a a 2 2 2 b b b c a x x a 2a 2a a
2
2
1 1 2 2.把二次函数y=-5(x- 2 ) + 4 写成y=ax2+bx+c的形式, 则a= -5 b= 5 c= -1 。
3.抛物线y=2x2-4x-5化成y=a(x-h)2+k的形式为 y=2(x-1)2-7
1 2 5 4.抛物线y=x -x+ 的顶点坐标是 (-1,3), 2 2 对称轴是 x=-1 。 3 5.函数y=4x2-3x-1,当x= 8 时,函数值y取得 25 最 小 值,最 小 值 y= 。 16 6.抛物线y=x2-5x+6与y轴的交点坐标是 (0,6) ,与x轴的 交点坐标是 (2,0)或(3,0) 。