论文定稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北工业大学
毕业设计说明书(论文)
作者:李彦巧学号:084780 系:电子系
专业:电子仪器仪表与维修
题目:红外感应式楼道照明开关的设计
指导者:安亚军中级
评阅者:
2011年 6 月 11 日
目次
1.引言 (1)
2.楼道红外感应开关的总体设计 (1)
2.1红外线感应的原理 (1)
2.2应用简述 (2)
2.3人体红外感应开关的原理 (3)
3.热释电红外感应开关的具体设计 (5)
3.1人体热释电红外线传感器的基本结构和原理 (5)
3.2菲涅尔透镜 (11)
3.3.CDS传感器 (12)
3.4BISS0001红外传感器的原理 (13)
4.红外线感应照明开关的安装调试以及注意事项 (17)
4.1功能特点 (17)
4.2安装调试 (18)
4.3注意事项 (18)
结论 (19)
参考文献 (20)
致谢 (21)
附录红外感应式照明开关的原理图 (22)
1.引言
近几年,节能与环保已经成为商人开发的首要考虑因素。

由于我国在新能源研发方面处于落后局面,目前市场上的普通开关、拉线开关占据着灯具开关市场的主要位置。

然而由于许多不可控因素的出现及人们日常习惯所限,造成了大量的电能的浪费。

这种现象在我们的生活中随处可见。

空无一人的教室十多盏日关灯依然亮着,非常安静的楼道内灯火通明,卫生间无人使用却不熄灭灯光……全国每年因此而损耗的电能可以以亿度计量,同时因灯具使用时间的过长,也缩短了灯具的使用寿命,频繁的更换灯具也造成了人力,财力的大量浪费。

所以通过这种直接和间接的损耗,每年电能的损失就达数亿元。

近十年以来,我国建筑体系的不断发展,也对照明系统提出了更高的要求。

随着大量采用电子技术的家用电器面市, 住宅电子化出现。

近几年楼宇智能化(智能家居是以家为平台,兼备建筑、网络通讯、信息家电、网络家电、自动化和智能化,集系统、结构、服务、管理、控制于一体的高效、舒适、安全、便利、节能、健康、环保的家居环境。

)又飞速发展起来,其中实现自动照明系统可以减少电能浪费成为实现现代化住宅的重要一笔。

本课题从实际出发,准备对红外线楼道自动照明系统进行探索,随着现代化的发展,工业,农业,商业,教育等等行业的用电量都大幅度增加,在这种情况下电能的浪费成为人们普遍关注的问题。

由此观之,如何有效的减少照明用电的浪费和更好的管理照明系统已成为一个不可忽视问题。

2.楼道红外感应开关的总体设计
2.1红外线感应的原理
任何温度超过绝对零度(-273摄氏度)的物体都会发出电磁辐射。

人体温度产生的辐射在光谱中属于红外线的范围。

红外感应器,亦称为活动探测器,能
对活动的人体热能辐射作出反应,自动开启和关闭电源。

而人体各部份的温度存在着差异,这就使得人体成为最方便的开关。

任何发热体都会产生红外线,热释电人体红外线传感器对红外线的敏感程度主要表现在传感器敏感单元的温度所发生的变化,而温度的变化导致电信号的产生。

环境与自身的温度变化由其内部结构决定了它不向外输出信号;而传感器的低频响应(一般为0.1~10Hz)和对特定波长红外线(一般为5~15um)的响应决定了传感器只对外界的红外线的辐射而引起传感器的温度的变化而敏感,而这种变化对人体而言就是移动。

所以,传感器对人体的移动或运动敏感,对静止或移动很缓慢的人体不敏感;它可以抗可见光和大部分红外线的干扰。

普通人体会发射10um左右的特定波长红外线,用专门设计的传感器就可以针对性的检测这种红外线的存在与否,当人体红外线照射到传感器上后,因热释电效应将向外释放电荷,后续电路经检测处理后就能产生控制信号。

这种专门设计的探头只对波长为10μm左右的红外辐射敏感,所以除人体以外的其他物体不会引发探头动作。

探头内包含两个互相串联或并联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,于是输出检测信号。

人体是一特定波长红外线的发射体,由红外传感器检测到这种红外线的变化并予以放大选频处理后,可以推动适当的负载,此乃人体红外自动开关。

这一检测技术较之超声、哑声、微波方式更为灵敏与准确。

它要求PIR热释电人体红外传感器的信号放大处理电路有很高的灵敏度并要能准确鉴别生物体与非生物体的运动,使误动作率降到最低。

且体积小,自耗电微少。

采用热释电红外传感器及专用单片集成电路构成的这种开关能成为人到灯亮、人走灯灭。

它安装方便,可直接替换面板式开关,无需改动市电线路
2.2 应用简述
安装只需要火、零线,它能够智能探测环境光度和感应区域内是否有人在活动,只有当环境光度低于感应器设置的光敏值,并有人在感应区域内活动,感应器才会启动其连接的负载。

当人离开感应区域,感应器进入延时状态,待已设置
的延时时间段过后,感应器自动关闭其连接的负载。

2.3人体红外感应开关的原理
该电路的主要元件是热释电红外传感器,热释电红外开关是BISS0001配以热释电红外传感器和少量外接元器件构成的被动式红外开关,它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇和烘干机等装置,是一种高技术产品。

特别适用于企业,宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。

图a
图b
图2.1 红外感应开关电路
图a电源模块图b 热释电红外感应模块
外围电路元件说明:
如图2.1所示,当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。

由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1 mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为O.1Hz~10Hz左右),所以运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信号Vo经晶体管T1放大驱动继电器去接通负载。

上图中,R3为光敏电阻,用来检测环境照度。

当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。

SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。

输出延迟时间Tx由外部的R9和C7的大小调整,值为Tx≈24576xR9C7;触发封锁时间Ti由外部的R10和C6的大小调整,值为Ti≈24xR10C6。

3.热释电红外感应开关的具体设计
3.1人体热释电红外线传感器的基本结构和原理
人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。

其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~
0.46μm。

比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线。

热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。

一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的
红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。

人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检验处理后即可产生报警信号。

人体热释电红外线传感器(以下简称:传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成。

热释电传感器是对温度变化敏感的传感器。

它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极,在传感器监测范围内温度有ΔT的变化时,热释电效应会在两个电极上产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。

由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。

热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。

当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。

所以这种传感器检测人体或者动物的活动传感。

由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可大于7m。

如图3.1所示
3.1.1 热释电效应
当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。

通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。

当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,图3-1表示了热释电效应形成的原理。

能产生热释电效应的晶体称之为热释电体或热释电元件,其常用的材料有单晶(LiTaO3 等)、压电陶瓷(PZT等)及高分子薄(PVFZ 等)
热释电传感器利用的正是热释电效应,是一种温度敏感传感器。

它由陶瓷氧化物或压电晶体元件组成,元件两个表面做成电极,当传感器监测范围内温度有
ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱电压ΔV。

由于它的输出阻抗极高,所以传感器中有一个场效应管进行阻抗变换。

热释电效应所产生的电荷ΔQ会跟空气中的离子所结合而消失,当环境温度稳定不变时,ΔT=0,传感器无输出。

当人体进入检测区时,因人体温度与环境温度有差别,产生ΔT,则有信号输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出,所以这种传感器能检测人体或者动物的活动。

传感器主要有外壳、滤光片、热释电元件PZT、场效应管FET等组成。

其中,滤光片设置在窗口处,组成红外线通过的窗口。

滤光片为6mm多层膜干涉滤光片,对太阳光和荧光灯光的短波长(约5mm以下)可很好滤除。

热释电元件PZT将波长在8mm-12mm之间的红外信号的微弱变化转变为电信号,为了只对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅耳滤光片,使环境的干扰受到明显的抑制作用。

如图3.2所示
对不同的传感器来说,敏感单元的制造材料有所不同。

如,SD02的敏感单
制成。

这些材料再做成很薄的薄片,每一元由锆钛酸铅制成;P2288由LiTaO
3
片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容,例P1、P2。

因为这两个小电容是做在同一硅晶片上的,而它们形成的等效小电容能自身产生极化,极化的结果是,在电容的两端产生极性相反的正、负电荷。

但这两个电容的极性是相反串联的。

这正是传感器的独特设计之处,因而使得它具有
图3.2 热释电红外传感器的结构及内部电路
独特的抗干扰性。

当传感器没有检测到人体辐射出的红外线信号时,由于P1、P2自身产生极化,在电容的两端产生极性相反、电量相等的正、负电荷,而这两个电容的极性是相反串联的,所以,正、负电荷相互抵消,回路中无电流,传感器无输出。

当人体静止在传感器的检测区域内时,照射到P1、P2上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消。

传感器仍然没有信号输出。

同理,在灯光或阳光下,因阳光移动的速度非常缓慢,P1、P2上的红外线光能能量仍然可以看作是相等的,且在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感。

当环境温度变化而引起传感器本身的温度发生变化时,因P1、P2做在同一硅晶片上的,它所产生的极性相反、能量相等的光电流在回路中仍然相互抵消,传感器无输出。

从原理上讲,任何发热体都会产生红外线,热释电人体红外线传感器对红外线的敏感程度主要表现在传感器敏感单元的温度所发生的变化,而温度的变化导致电信号的产生。

环境与自身的温度变化由其内部结构决定了它不向外输出信号;而传感器的低频响应(一般为0.1~10Hz)和对特定波长红外线(一般为5~15um)的响应决定了传感器只对外界的红外线的辐射而引起传感器的温
度的变化而敏感,而这种变化对人体而言就是移动。

所以,传感器对人体的移动或运动敏感,对静止或移动很缓慢的人体不敏感;它可以抵抗可见光和大部分红外线的干扰。

3.1.2滤光窗
表3.1热释电人体红外线传感器SCA02-1的主要电参数。

它是由一块薄玻璃片镀上多层滤光层薄膜而成的,滤光窗能有效地滤除
7.0~14um波长以外的红外线。

例如,SCA02-1对7.5~14um波长的红外线的穿透量为70%,在6.5um处时下降为65%,而在5.0um处时陡降为0.1%;P2288的响应波长为6~14um,中心波长为10um。

物体发射出的红外线辐射能,最强波长和温度的关系满足λm*T=2989(um k)(其中λm为最大波长,T为绝对温度)。

人体的正常体温为36~37.5。

C ,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)
=9.67~9.64um,中心波长为9.65um。

因此,人体辐射的最强的红外线的波长正好落在滤光窗的响应波长(7~14um)的中心。

所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。

综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。

3.1.3热释电红外线传感器的优缺点
不同于主动式红外传感器,被动红外传感器本身不发任何类型的辐射,隐蔽性好,器件功耗很小,价格低廉。

但是,被动式热释电传感器也有缺点,如:
1.信号幅度小,容易受各种热源、光源干扰;
2.被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收;
3.易受射频辐射的干扰;
4.环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵;
5.被动红外探测器的主要检测的运动方向为横向运动方向,对径向方向运动的
物体检测能力比较差
抗干扰性能:
1.防小动物干扰
探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。

2.抗电磁干扰
探测器的抗电磁波干扰性能符合GB10408中4 6 1要求,一般手机电磁干扰不会引起误报。

3.抗灯光干扰
探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。

3.1.4红外线热释电传感器的安装要求:
红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有极大的关系。

正确的安装应满足下列条件:
1.红外线热释电传感器应离地面
2.0-2.2米。

2.红外线热释电传感器远离空调,冰箱,火炉等空气温度变化敏感的地方。

3.红外线热释电传感器探测范围内不得隔屏、家具、大型盆景或其他隔离物。

4.红外线热释电传感器不要直对窗口,否则窗外的热气流扰动和人员走动会引
起误报,有条件的最好把窗帘拉上。

红外线热释电传感器也不要安装在有强气流活动的地方。

红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。

红外线热释电传感器对于径向移动反应最不敏感, 而对于横切方向(即与半径垂直的方
向)移动则最为敏感在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。

3.2菲涅尔透镜
图3.3 菲涅尔透镜
根据菲涅耳原理制成,把红外光线分成可见区和盲区,同时又有聚焦的作用,使热释电人体红外传感器 (PIR) 灵敏度大大增加。

菲涅耳透镜折射式和反射式两种形式,其作用一是聚焦作用,将热释的红外信号折射(反射)在PIR上;二是将检测区内分为若干个明区和暗区,使进入检测区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这样PIR就能产生变化电信号。

不使用菲涅尔透镜时传感器的探测半径不足2米,只有配合菲涅尔透镜使用才能发挥最大作用。

配上菲涅尔透镜时传感器的探测半径可达到10米。

例如,一些传感器对远在20米处快速行驶的汽车里的人体也能可靠地检测到。

菲涅尔透镜采用塑料片制作而成。

上图为它的平面图。

从图中可以看出,透镜在水平方向上分寸成3个部分,每一部分在竖直方向上又等分成若干不同的区域。

最上面部分的每一等份为一个透镜单元,它们由一个个同心圆构成,同心圆圆心在透镜单元内。

中间和下半部分的每一等份也为分别一个透镜单元,同样由同心圆构成,但同心圆圆心不在透镜单元内。

当光线通过这些透镜单元后,就会形成明暗相间的可见区和盲区。

由于每一个透镜单元只有一个很小的视角,视角内为可见区,视角外为盲
区。

任何两个相邻透镜单元之间均以一个盲区和可见区相间隔,它们断续而不重叠和交叉,如图3.3这样,当把透镜放在传感器正前方的适当位置时,运动的人体一旦出现在透镜的前方,人体辐射出的红外线通过透镜后在传感器上形成不断交替变化的阴影区(盲区)和明亮区(可见区),使传感器表面的温度不断发生变化,从而输出电信号。

也可以这样理解,人体在检测区内活动时,一离开一个透镜单元的视场,又会立即进入另一个透镜单元的视场,(因为相邻透镜单元之间相隔很近),传感器上就出现随人体移动的盲区和可见区,导致传感器的温度变化,而输出电信号。

菲涅尔透镜不仅可以形成可见区和盲区,还有聚焦作用,其焦点一般为5厘米左右,实际应用时,应根据实际情况或资料提供的说明调整菲涅尔透镜与传感器之间的距离,一般把透镜固定在传感器正前方1~5厘米的地方。

菲涅尔透镜一般采用聚乙烯塑料片制成,颜色为乳白色或黑色,呈半透明状,但对波长为10um左右的红外线来说却是透明的。

3.3.CDS传感器
硫化镉(Cds)即光敏电阻器,这是目前最常见的光敏电阻器。

光敏电阻器是利用半导体光致导电的原理制造的。

这种光敏电阻器的基座是陶瓷片,上面涂有硫化镉多晶体,再经烧结制成。

光敏电阻器的表面还涂有防潮树脂。

光敏电阻器的光谱特性曲线与人眼对可见光的响应曲线比较接近。

光敏电阻器的电阻值随光照强度而变化。

在暗光条件下它的电阻值可达10MΩ,在强光下它的电阻值仅为数百欧姆或数千欧姆。

光敏电阻器的光照特性在多数情况下是非线性的,只有在微小区域内呈线性。

光敏电阻器的电阻值有较大的离散性。

光敏电阻器的灵敏度是指光敏电阻器不受光照时的电阻值(暗阻)和受光照时的电阻值(亮阻)的相对变化值。

在一般情况下,照度越低,单位照度改变时的电阻值变化越大。

即在低照度下光敏电阻器的灵敏度较高。

光敏电阻器是电路的关键元件,它对光线的强弱有敏感的反应,在本电路中要求光敏电阻器受到光照时的阻值应小于5kΩ,在暗光情况下阻值应大于1MΩ,可选符合要求的MG41-22光敏电阻器。

3.4 BISS0001红外传感器的原理
BISS0001热释电红外控制集成电路采用标准的DIP16脚塑封结构,内部由系统时钟、两级运放、电压比较器、检测器、计时器、过零检测器及输出控制电路等组成。

静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器。

广泛用于安防、自控等领域。

图3.4红外传感器的原理框图
工作原理:
上图为BISS0001红外传感器信号处理器的原理框图。

BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成数模混合专用集成电路。

图3.5 BISS0001管脚图
表3.2管脚说明
首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。

然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。

由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V 时,可有效抑制±1V的噪声干扰,提高系统的可靠性。

COP3是一个条件比较器。

当输入电压Vc<VR(≈0.2VDD)时,COP3输出为低电平封住了与门U2,禁止触发信
图3.6 不可重复触发方式
号Vs向下级传递;而当Vc>VR时,COP3输出为高电平,进入延时周期。

当A 端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。

当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。

在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。

可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发V o 为有效状态。

在Vc=“1”、A=“1”时,Vs可重复触发V o为有效状态,并可促使V o
图3.7 可重复触发方式
Tx周期内一直保持有效状态。

在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。

3.4.1运算放大器
集成运算放大器(简称运放)是一种高电压放大倍数的直接耦合放大器。

它工作在放大区时,输入和输出呈线性关系,所以它又被称为线性集成电路。

集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路。

集成运放有四部分组成:
1.偏置电路:偏置电路是提供各级静态工作电流的;
2.输入级:其作用是提供与输出端成同相关系和反相关系的两个输入端,为了抑
制零漂,采用差动放大电路
3.中间级:其作用是提供较高的电压放大倍数;为了提高放大倍数,一般采用有
源负载的共射放大电路。

4.输出级:其作用是提供一定的电压变化和电流变化;为了提高电路驱动负载的
能力,一般采用互补对称输出级电路
3.4.2电压比较器
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系)。

电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。

注:电压比较器中的集成运放通常工作在非线性区。

及满足如下关系:
U ->U
+
时,U
O
=U
OL
U
-
<U
+
时,U
O
=U
OH
简单电压比较器:我们把参考电压和输入信号分别接至集成运放的同相和
反相输入端,就组成了简单的电压比较器。

图3.8 电压比较器及输出特性。

相关文档
最新文档