!两个抗虫转基因棉花品种(陆地棉)单叶光合特性对光的反应——东北大学2009

合集下载

转基因抗虫棉

转基因抗虫棉

转基因抗虫棉的研究进展摘要:综述了转基因抗虫棉的研究进展,包括抗虫基因的研究、载体构建技术的研究、转化技术的研究及存在的问题等,并展望了转基因抗虫棉未来发展前景。

关键词:转基因抗虫棉花研究进展引言棉花生长周期长、虫害多,造成的损失非常严重。

据统计,在转基因抗虫棉商品化之前,全球每年用于防治棉花虫害的费用高达20亿美元,约占所有农作物防虫费用的四分之一。

[1]传统的化学农药防治棉铃虫不仅费用高,且已引发了棉虫的抗药性,同时化学杀虫剂的过量使用也带来了环境污染的问题,而转基因植物所产生的杀虫蛋白主要是通过抑制害虫消化等生理功能而达到抗虫的目的。

与施药防治棉田害虫相比,转基因技术具有较多优势:不会在土壤和地下水中造成残留;不会被雨水冲刷流失;对非靶标生物无毒性;保护作用无盲区;减少农药及用工投入[2]等。

雪花凝集素(Gulanthus nivalis agglutinin gene,GNA)是第一个转入重要作物、并对刺吸式口器害虫有抗性的基因,转GNA的水稻可降低害虫的存活率,阻止害虫的发育[3]。

另外烟草阴离子过氧化物酶[4]、昆虫几丁质酶基因[5]也被用于抗虫基因工程的研究。

迄今为止在棉花抗虫基因工程研究领域,最成功的例子是苏云金芽孢杆菌Bt杀虫基因的应用,其次是蛋白酶抑制剂基因。

另外,凝集素、α-淀粉酶抑制剂、胆固醇氧化酶等转基因抗虫植物的研究也取得了进展,所以利用基因工程技术培育转基因抗虫棉受到了各国的高度重视。

自1996年商品化种植转基因作物开始,全球转基因植物的种植面积已由1996年的170万hm2猛增到2008年的1.25亿hm2,增长了73倍,2008年全球市场价值已达75亿美元,约占全球商业种子市场的22%,其市场价值优势明显,转基因产业得到了蓬勃发展,尤其在发展中国家。

印度Bt棉2002年引入,连年种植面积快速增加,至2008年达760万hm2,产量翻番,曾经是全球棉花产量很低的国家,现已成为棉花出口国。

陆地棉早熟性状的全基因组遗传分析及候选基因鉴定

陆地棉早熟性状的全基因组遗传分析及候选基因鉴定

2023-11-01•研究背景和意义•陆地棉早熟性状的全基因组遗传分析•候选基因的鉴定与功能分析•陆地棉早熟性状的分子标记与育种应用•研究结论与展望目录01研究背景和意义陆地棉早熟性的重要性早熟性是棉花生长的重要农艺性状之一,与产量、品质、种植季节和经济效益等密切相关。

早熟棉花品种能够提早收获,错开农忙季节,提高棉花的整体产量和品质。

陆地棉作为全球最重要的棉花种类之一,其产量和品质对全球经济有着重要影响。

早熟性状与产量的关系早熟性与产量之间存在一定的正相关关系,但并非简单的线性关系。

在一定范围内,随着播种期提前,棉花生育期缩短,单铃重和衣分等产量性状会降低,但单位面积铃数会增多,从而在一定程度上提高产量。

然而,过度追求早熟性可能导致棉花无法充分利用生长期间的光热资源,进而影响产量和品质。

本研究还能够为棉花抗虫、抗病等性状的遗传分析和品种改良提供借鉴,提高棉花的整体生产效益。

研究目的和意义本研究旨在通过对陆地棉早熟性状的全基因组遗传分析,挖掘与早熟性状相关的候选基因,为棉花早熟育种提供理论依据和实践指导。

通过研究陆地棉早熟性的遗传机制,有助于揭示棉花生长和发育的分子机制,为其他作物类似性状的研究提供参考。

02陆地棉早熟性状的全基因组遗传分析通过新一代测序技术,对陆地棉基因组进行高深度测序,获得基因组的序列数据。

基因注释根据已知基因信息,对陆地棉基因组进行功能注释,识别和分类基因家族、重复序列等。

基因组测序基因组测序与注释VS基因组变异分析变异检测通过比对不同品种或个体间的基因组序列,检测出单核苷酸变异、插入、缺失等变异类型。

变异分布与频率分析变异的分布情况及在群体中的频率,找出多态性变异及特异性变异。

遗传关联研究QTL定位利用表型数据和基因型数据,通过QTL(数量性状位点)定位方法,识别与早熟性状相关的QTL位点。

关联分析通过关联分析方法,发现与早熟性状紧密关联的基因或变异,揭示其遗传基础和分子机制。

转基因棉花

转基因棉花
我国“抗虫棉”研究在“七五”期间开始进行,“八五”期间,在“863”计划资助下,人工合成的CryIA(b) 和CryIA(c)杀虫基因导入我国棉花主栽品种获得成功,成为继美国之后,第二个拥有自主研制抗虫棉的国家。 “九五”开始,“抗虫棉”的研究又被国家“863”计划立为重大项目,进一步开展单价基因、双价基因及多价 基因抗虫棉的研究,同时还将根据现有单价抗虫棉可能存在的棉铃虫产生抗性的问题,在生产中使用的持久性问 题,环境释放的安全性问题,遗传分离与稳定性问题等作深入的研究。总之,培育持久性双价抗虫棉或既抗鳞翅 目又抗同翅目害虫的多价抗虫棉,使之产业化,应用于棉花生产,以解决棉花害虫给棉花生产带来的巨大损失, 减少化学农药的使用量,保护环境和生态平衡。
其他国家
在巴基斯坦
在印度
巴基斯坦国内已开展转基因棉花种子生产工作,另外,巴方正在和美国孟山都(Monsanto)公司洽谈10亿美元 转基因棉花种子的购销合同。
据悉,巴基斯坦棉花种植总面积为800万英亩,现有转基因棉花种植面积约270万英亩,目标是使转基因棉花 种植面积要达到棉花种植总面积的60%,预计棉花产量将因此提高40%。
生态系统中更多的天敌有助于长期控制虫害避免了通常在喷洒杀虫剂后出现抗性害虫爆发。捕食动物的适应 性强,可以广泛分布,捕食几种不同的害虫,提供了天然的生物虫害控制。
在美国情况
Bollgard II转基因棉花孟山都公司研究用的材料是苏云金杆菌的不同菌株HD-1和HD-73基因和商业棉花 Coker312,这是第一代Bt-Cotton产品。后又开发出第二代Bt-Cotton产品Bollgard II。孟山都公司与美国农 业局和大学的科学家进行协作,1990年选择了7个点,1991年6个点,对这种转基因棉花作了户外对照试验,几乎 消灭了烟青虫、棉铃虫等害虫。1990年试验结果表明,苏云金杆菌棉花植株的虫害损失不到1%,比喷洒农药的常 规植株的虫害还小。1991年是重复试验,试验了来自4个转基因系的12万棵苏云金杆菌棉花植株,结果也令人相 当满意。

双价转基因抗虫棉品种简介——中抗39F1(免整枝抗病)

双价转基因抗虫棉品种简介——中抗39F1(免整枝抗病)

双价转基因抗虫棉品种简介——中抗39F1(免整枝抗病)中抗39F1是中国农业科学院棉花研究所推出的最新成果,也是国家“863”重大科技成果,已被列为“国家科技成果重点推广品种”。

它复含BT和CPTl两个基因,集高产、优质、抗虫、抗病(逆)等优良性状于一身,是我国第一个通过国家审定的双价转基因抗虫棉[国审棉麻20000002]。

它的问世,标志着我国抗虫棉育种达到世界先进水平。

特征特性:中抗39F1,属中早熟品种,生育期125天;植株较大,株高110cm左右,株型紧凑,叶色浓绿,光合性能强,早熟不早衰,根系发达,茎杆粗壮,抗倒伏;叶柄有茸毛,棉蚜少,高抗枯萎病、立枯病、棉铃虫、耐黄萎病;果枝节间短,结铃集中;产量高,籽指9.8克,衣分40%,单铃重6克以上;吐絮畅、产量高、纤维亮白、品质优。

生育特点:中抗39F1号幼苗长势快而稳健,耐旱,耐盐碱,第一果枝着生节位高(比33B高1-2节),不烂桃,果枝节位短,节间也短,枝蕾出现快,蕾、铃集中,三桃比例协调,株型紧凑,营养枝少,管理简便。

栽培要点: 1、播种时间适于麦套棉和春棉直播春棉地膜直播于4月20日前后下种,亩播种1公斤,营养钵育苗可提前到3月底4月初播种。

2、种植密度行距1-1.2米左右,株距0.35-0.4米,每亩1500-1800株,一般高产攻关棉田选择低密度,中高产棉田选择高密度,但最多不得超过2000株。

3、科学运用肥水施肥以底肥为主,迫肥为辅多施磷肥和钾肥。

4、中抗39F1,棉花一生不中耕。

只除草、不整枝、不打杈、管理省工,因植株高大,应视棉花长势适当化控。

5、虫害防治:全生育期一般不需防治棉铃虫,对蚜虫,红蜘蛛间隔性防治。

避免造成危害。

第1页共1页。

转基因抗虫杂交棉品种间光合特性及产量品质的比较

转基因抗虫杂交棉品种间光合特性及产量品质的比较
c p b l y, "/Fm , "/Fo, Ps a a it F i F i e v s a d lwe il n g e — u ly fbr s. n la e n o ry ed a d hih rq ai a i t c CCRI48 s o d h we
维品 质 较 优 ; 杂 3号 叶 片 SA 泗 P D值 、 光舍 性 能 和 / m, / o 中P F F , sⅡ有 升 有 降 , 增产 达极 显 著 水 平 , 纤 维 品 但
质略 差; 杂 1 叶片 郑 号 / m, / o cP Ⅱ 总体 较 低 , 棉 减 产 , F F, S D 皮 品质 也 略 差 . 关键词 : 转基 因抗 虫 杂 交棉 ; 种 ; 舍 特 性 ; 量 ; 维 品质 品 光 产 纤 中 图分 类 号 : 6 S52 文 献 标 识 码 : A
Ⅱ i ev sp r o et ,a dtesmelvl il .C R 8so dlw rS A a e h tsnh t n lae a f h me n h a ee ed C I h we o e P D v l ,p ooy tei t t i y 3 u c
I s c — ssa tH y r d Co t n Cu tv r n e t Re it n b i to li a s
M A o gb n Z n — i ,He iu i Ab d k rmu LU L n DU a —a g ZHANG n —i n g l・ u u ee , i g , Yu n fn , Do g l n
维普资讯
期 第4 0卷 第 5
20 0 6年 l O月
河 南 农 业 大 学 学 报
J u n lo n n Ag iut rlUn v ri o r a fHe a r l a iest c u y

陆地棉光合系统ⅡPsbR基因的克隆与表达分析

陆地棉光合系统ⅡPsbR基因的克隆与表达分析

陆地棉光合系统ⅡPsbR基因的克隆与表达分析摘要:陆地棉(Gossypium hirsutum)是一种重要的经济作物,其光合系统的正常功能对植物的生长与发育至关重要。

本研究旨在克隆并分析陆地棉光合系统Ⅱ中的PsbR基因,探究其在植物生理过程中的作用。

通过PCR技术克隆并测序得到陆地棉PsbR基因的全长序列,并利用组织特异性表达分析了该基因在不同组织中的表达情况。

结果显示,陆地棉PsbR基因的开放阅读框(ORF)长约489 bp,编码一个约162个氨基酸的蛋白质。

系统发育树分析表明,陆地棉PsbR基因与其他植物的PsbR基因高度保守。

实时荧光定量PCR结果显示,在陆地棉的根、茎、叶、花中,PsbR基因均有表达,其中以叶中表达量最高。

利用融合表达系统成功表达了PsbR蛋白,并进行了纯化和功能鉴定。

关键词:陆地棉;光合系统Ⅱ;PsbR基因;克隆;表达引言陆地棉是一种重要的经济作物,广泛种植于全球多个地区。

作为一种C3植物,陆地棉的光合系统起着至关重要的作用,是植物进行光合作用和生物质合成的基础。

光合系统Ⅱ是光合电子转运链中的一个重要组成部分,参与光合作用产生的ATP和NADPH的合成。

PsbR基因是光合系统Ⅱ中的重要组成部分,其编码的蛋白质在光合系统的正常功能中发挥重要的作用。

虽然陆地棉的光合系统已有详细研究,但对其中PsbR基因的研究尚非常有限。

因此,本研究旨在克隆并表达陆地棉光合系统ⅡPsbR基因,进一步了解其在陆地棉生理过程中的作用。

材料与方法1. 材料本研究使用陆地棉(Gossypium hirsutum)品种作为实验材料。

植物根、茎、叶片和花朵分别采集自生长良好的陆地棉植株。

2. 克隆与序列分析根据已知的PsbR基因序列,设计引物并进行PCR扩增反应。

将扩增产物进行电泳检测后,纯化并进行测序。

通过比对分析确定克隆得到的PsbR基因序列。

3. 组织特异性表达分析采用实时荧光定量PCR(qRT-PCR)技术,分别在根、茎、叶和花中检测PsbR基因的表达情况。

(技术规范标准)转基因抗虫棉花检测技术规范

(技术规范标准)转基因抗虫棉花检测技术规范

转基因抗虫棉花检测技术规范——定性PCR 筛查方法(试行)编制说明为进一步加强对转基因抗虫棉花的安全监管,维护研发者、经营者和生产者的合法权益,保障人类健康和生态环境安全,根据《农业转基因生物安全管理条例》及其配套管理办法的规定和《关于加强转基因抗虫棉安全管理与监督检查的通知》(农办科[2005] 15号)的要求,满足开展技术检测工作的需要,特制定本技术规范。

1、编制原则本技术规范的编制遵循以下原则:(1)法治性:本技术规范的编制,严格执行国家法律法规和强制性标准的规定,以保证国家和研发者、经营者、生产者的权益。

(2)可靠性:本技术规范的编制,力求反应相关领域研究成果的先进性、成熟性和代表性,以保证检测结果的精确性和重复性。

(3)实用性:本技术规范的编制,力求把经济实用和技术实用结合起来,以保证检测的操作简便和费用低廉。

(4)规范性:本技术规范的编制,力求做到技术内容叙述正确无误、文字表达简明易懂,以保证检测人员准确把握。

(5)操作性:本技术规范的编制,力求将操作过程中的要点进行细化和量化,以保证检测人员操作方便。

(6)兼容性:本技术规范的编制,参考和借鉴了国外同类标准或规范内容,以保证既符合国情又尽可能与国际接轨。

2、编制依据本技术规范编制的法律依据主要有:(1)《农业转基因生物安全管理条例》——中华人民共和国国务院令第304号;(2)《农业转基因生物安全评价管理办法》——中华人民共和国农业部令第8号;(3)《农业转基因生物进口安全管理办法》——中华人民共和国农业部令第9号;(4)《农业转基因生物标识管理办法》——中华人民共和国农业部令第10号。

3、适用范围转基因抗虫棉花可从以下三个方面进行检测:(1)筛查检测:利用通用序列分别设计引物对棉花Sad1内标准基因、CaMV35S启动子、NOS终止子以及cry1Ac基因或者cry1Ab基因或者cry1Ac和cry1Ab的融合基因进行PCR扩增,筛查确定样品是否含有转基因成分,以判断送(抽)检样品是否为转基因抗虫棉花。

pdf原文下载转双价基因棉对高抗bt 棉棉铃虫的抗虫性

pdf原文下载转双价基因棉对高抗bt 棉棉铃虫的抗虫性

转双价基因棉对高抗Bt 棉棉铃虫的抗虫性高聪芬,沈晋良3,须志平,陈进(南京农业大学农业部病虫监测与治理重点开放实验室,江苏南京210095)摘要:采用喂饲法,测定了转双价基因棉(中棉41、SGK 321)、转单价基因棉(中棉29)及常规棉(苏棉12)对抗性和敏感棉铃虫的抗虫性。

结果表明:转双价基因棉主茎叶片对抗性和敏感棉铃虫初孵幼虫的抗虫性明显高于或稍高于转单价基因棉,且随棉花生长发育期的推移抗虫性下降速度较慢,如第8叶后中棉41(Z M41)对抗性和敏感初孵幼虫的平均死亡率分别为8010%~4010%和100%~8516%,而中棉29(Z M29)分别为3010%~1516%和8410%~7111%。

转单、双价基因棉生长中后期主要受害部位对抗、感棉铃虫的抗性高低次序均为:嫩蕾、顶部嫩头、侧枝嫩叶,其中转双价基因棉嫩蕾对敏感棉铃虫和顶部嫩头对抗性棉铃虫的抗虫性显著高于转单价基因棉。

转单、双价基因棉对抗性棉铃虫的抗虫性低于敏感棉铃虫。

关键词:转单价基因棉;转双价基因棉;棉铃虫;抗虫性中图分类号:S435 文献标识码:A 文章编号:10002030(2004)04004104Resistance of dual 2toxin transgenic cotton to high levelresistant strain of Helicoverpa armigera (H übner )to Bt cotton G AO C ong 2fen ,SHE N Jin 2liang 3,X U Zhi 2ping ,CHE N Jin(K ey Laboratory of M ornitoring and Management of Plant Diseases and Insects ,Ministry of Agriculture ,Nanjing Agricultural ,Nanjing 210095,China )Abstract :The resistance of dual 2toxin transgenic cotton Z M41,SGK 321and single 2toxin transgenic cotton Z M29,non 2transgenic cotton S M12to neonates of susceptible and resistant H elicoverpa armigera were determined using feeding bioassay.The results showed that the re 2sistance of the dual 2toxin transgenic cotton to both resistant and susceptible neonates were obvious or slightly higher than those of the single 2toxin transgenic cotton ,and the resistance of dual 2toxin decreased slower than those of the single 2toxin with increase of the cotton growing stage.The mean m ortality of the 8th 15th leaf on the main stem of Z M41to resistant and susceptible neonates were 8010%4010%and 100%8516%,respectively ,and those of Z M29were 3010%1516%and 8410%7111%,respectively.The order (from high to low )of insect resistance of the important organs to the resistant and susceptible H.armigera in the mid 2late growing stage were :tender square ,terminal leaf on the main stem ,tender leaf on the lateral branch.And the insect resistance of tender square to susceptible neonates and the terminal leaf on the main stem to resistant neonates of dual 2toxin transgenic cottons was higher than that of single 2toxin transgenic cotton in the mid 2late growing stage.The mean m ortality of single 2and dual 2toxin transgenic cotton to the resistant neonates were lower than those to the susceptible neonates.K ey w ords :single 2toxin transgenic cotton ;dual 2toxin transgenic cotton ;H elicoverpa armigera ;resistance转Bt 基因棉的推广应用,为棉花害虫综合防治开辟了新的途径[1]。

转Chi和Glu基因抗病棉花对棉田主要害虫和天敌的影响

转Chi和Glu基因抗病棉花对棉田主要害虫和天敌的影响

过 转基 因技 术 培 育 棉 花 抗 病 新 品 种 的热 情 。 目前
已 经 开 发 了 多 种 病 程 相 关 蛋 白 基 因 , 几 丁 质 酶 基 如
1材 料 与 方 法
1 1试 验 材 料 .
因( h ) B1 3 葡聚糖 酶基 因( u 、 萄糖氧 化 酶 C i 、一 ,一 Gl) 葡
基因( Go) 、程 序 死 亡 ( o rmme c l e t Pr g a d el a h, d
转 C i G u基 因抗 病 棉 花 ( h和 l 简称 “ 基 因抗 转 病棉 ” 由中 国农 业科 学院棉 花研 究所提 供 , 2个 ) 设 当地对 照品种 冀丰 1 6 鲁棉 研 2 , 0、 8 3个棉 花 品种 均
转 C i G u基 因抗 病 棉 花 对棉 田主要 害 虫和 天 敌 的影 响 h和 l
孙 红炜 。 李 凡 , 淑珂 。 兴波 杨 路 ( 山东 省农 业科 学 院植 物保 护研 究所 , 南 2 0 0 ) 济 5 1 0
Efe t fDie s - e i t n e Co t n M o i e ih Chia d G l ne f c s o s a e r ssa c to df dw t i n u Ge o a n Pe t n n M i s sa d Ther Na u a e is i to ed i t r lEn m e n Co t n Fi l s
两 种 病 害 均 为 系 统 性 病 害 , 病 时 间 长 , 冬 孢 子 发 越
花 的种植会 改变农 田 多样 性 , 棉 田生 态 系统 产 生 对 不利 的影 响 , 其 演变成 杂 草的 倾 向 。针 对 抗 病棉 及
抗 逆 性 强 , 土壤 中可存 活 多年 , 在 一旦 发 病 很 难 通

两个转基因抗虫棉等

两个转基因抗虫棉等

两个转基因抗虫棉等作者:来源:《农家参谋》2008年第03期中棉所50特征特性该品种为转抗虫基因早熟棉花品种,黄河流域棉区夏播全生育期110天。

出苗快,苗齐,苗壮,前、中期长势旺,后期长势转弱,整齐度好。

植株塔形,株形紧凑,株高71.1厘米,茎秆坚韧、青紫色、多茸毛,叶片中等偏小、深绿色、缺刻深,花冠乳白色,花药和柱头米黄色。

吐絮畅且集中,霜前花率95.3%,单株结铃7.6个,单铃重5.2克,衣分40.5%。

在2004年生产试验中,籽棉、皮棉、霜前皮棉667平方米产量分别为174.5千克、68.8千克和61.5千克。

高抗枯萎病,耐黄萎病,抗棉铃虫。

纤维品质好,经检测,纤维上半部平均长度29.5毫米,整齐度指数84.6%,纺纱均匀性指数136,各项指标均达到纺织业的要求。

该品种适宜在河北南部,山东,河南东部、北部、中部,山西南部的黄河流域棉区夏播种植。

栽培要点黄河流域棉区可于5月20日~5月25日在小麦行间播种,先播种后灌麦黄水。

也可于5月10日育苗,麦收后及时移栽。

每667平方米留苗5000~6000株。

中棉所64特征特性该品种为转抗虫基因早熟棉花品种,黄河流域棉区夏播生育期104天。

出苗快,苗壮,子叶较大,前、中期长势旺。

株形紧凑,株高66厘米,茎秆粗壮、青紫色,叶片中等大小、深绿色。

吐絮畅且集中,霜前花率93.8%,单株结铃8.3个,铃卵圆形,单铃重5.3克,衣分38.6%。

耐枯萎病、黄萎病,抗棉铃虫。

2004~2005年参加黄河流域夏播棉区域试验,籽棉、皮棉和霜前皮棉667平方米产量分别为187.9千克、72.6千克和67.2千克。

纤维品质优良,纤维上半部平均长度29.9毫米,整齐度指数84.1%,纺纱均匀性指数138。

该品种适宜在河北南部,山东,河南东部、北部、中部,山西南部的黄河流域棉区夏播栽培。

不宜在枯萎病和黄萎病重病区种植。

栽培要点可参照中棉所50。

(俞明)冀黑芝一号油食两用型黑芝麻新品种冀黑芝1号由河北省农林科学院粮油作物研究所选育,2006年12月通过河北省品种鉴定。

陆地棉GhFAR基因家族鉴定及GhFAR3.1和GhFAR2功能研究

陆地棉GhFAR基因家族鉴定及GhFAR3.1和GhFAR2功能研究

陆地棉GhFAR基因家族鉴定及GhFAR3.1和GhFAR2功能研究陆地棉GhFAR基因家族鉴定及GhFAR3.1和GhFAR2功能研究摘要:陆地棉(Gossypium hirsutum L.)是重要的纺织原料和油料作物,在棉纤维发育和油脂代谢中发挥重要作用。

过去的研究已经发现,芳烃醇酰CoA还原基因家族(Fatty acyl-CoA reductase genes,FAR)在陆地棉中参与了芳烃发酵代谢和油脂合成。

本研究通过生物信息学与分子生物学相结合的方法,系统地鉴定了陆地棉GhFAR基因家族,并对其中两个成员,GhFAR3.1和GhFAR2的功能进行了研究。

结果表明,GhFAR3.1和GhFAR2在花苞、花朵、青果和棉纤维中的表达水平不同,并且在棉纤维发育的不同阶段表现出差异。

进一步的功能研究发现,GhFAR3.1和GhFAR2的蛋白质在酵母菌中表达后能够催化十四烯酰CoA的还原反应。

此外,对转基因拟南芥进行的功能研究显示,GhFAR3.1的过表达能够显著增加转基因拟南芥下胚轴的芳烃含量。

关键词:陆地棉;Fatty acyl-CoA reductase genes;GhFAR基因家族;GhFAR3.1;GhFAR2;棉纤维发育;芳烃合成。

引言陆地棉(Gossypium hirsutum L.)是世界主要的纺织原料和油料农作物之一,其纤维质量和产量直接影响着棉纺织品的质量和农作物经济效益。

芳烃合成是棉纤维发育和油脂代谢的重要过程,而其中芳烃醇酰CoA还原基因家族(Fatty acyl-CoA reductase genes,FAR)在芳烃代谢中发挥重要作用。

FAR基因家族是一类编码蛋白质的基因群,这些蛋白质能够催化芳烃醇酰CoA的还原反应,从而合成芳烃。

过去的研究已经证明,FAR基因家族在陆地棉中起着重要的功能。

材料与方法本研究选取了陆地棉转录组中的候选FAR基因,通过生物信息学与分子克隆相结合的方法,鉴定了陆地棉中的GhFAR基因家族。

《转石竹烯合酶基因GhTPS1棉花对棉花害虫与寄生蜂行为学影响研究》范文

《转石竹烯合酶基因GhTPS1棉花对棉花害虫与寄生蜂行为学影响研究》范文

《转石竹烯合酶基因GhTPS1棉花对棉花害虫与寄生蜂行为学影响研究》篇一一、引言棉花作为全球最重要的天然纤维来源之一,对农业生产和纺织工业具有重要意义。

然而,由于病虫害的频繁发生,棉花的产量和品质受到了严重威胁。

为应对这一挑战,转基因技术成为重要的手段之一。

近年来,科学家们利用转基因技术将特定基因(如转石竹烯合酶基因GhTPS1)转入棉花中,旨在提升棉花的抗病虫害能力。

然而,这些基因不仅可能对害虫产生作用,还可能对以害虫为食的寄生蜂产生影响。

因此,本研究将关注转石竹烯合酶基因GhTPS1棉花对棉花害虫与寄生蜂行为学的影响。

二、研究方法本研究采用实验室和田间试验相结合的方法,对转石竹烯合酶基因GhTPS1棉花进行评估。

首先,我们通过实验室研究了解GhTPS1基因的表达及其对棉花植物和害虫的生理影响。

其次,我们进行田间试验,观察转基因棉花在自然环境中的表现及其对害虫和寄生蜂行为的影响。

三、研究结果1. 实验室研究结果实验室研究结果显示,转石竹烯合酶基因GhTPS1在棉花中的表达水平显著提高。

这导致转基因棉花的代谢物含量增加,并影响了其生理特征。

在试验条件下,一些棉花害虫如棉铃虫的繁殖速度和生存率显著降低。

这一结果可能与害虫的取食行为和消化吸收能力有关。

2. 田间试验结果在田间试验中,我们发现转基因棉花对棉花害虫的抑制作用更加明显。

与对照组相比,转基因棉田中的害虫数量明显减少。

同时,我们还观察到寄生蜂在转基因棉田中的活动也发生了变化。

一些寄生蜂的种群数量增加,而另一些则减少。

这可能与转基因棉花对害虫的直接影响以及由此产生的食物链变化有关。

四、讨论本研究表明,转石竹烯合酶基因GhTPS1棉花对棉花害虫具有显著的抑制作用。

这可能是由于转基因棉花的代谢物含量增加,导致害虫无法正常取食和消化吸收。

然而,这一过程也可能影响到以害虫为食的寄生蜂的生存和繁衍。

因此,在利用转基因技术提升棉花抗病虫害能力的同时,我们需要关注其对生态环境的影响。

陆地棉GhHDA5和GhHDA6基因在棉花早熟性中的功能分析

陆地棉GhHDA5和GhHDA6基因在棉花早熟性中的功能分析

《陆地棉ghhda5和ghhda6基因在棉花早熟性中的功能分析》2023-10-31CATALOGUE目录•研究背景和目的•材料与方法•基因克隆与鉴定•基因表达模式分析•基因功能验证•结论与讨论•参考文献01研究背景和目的研究背景棉花是世界上最重要的经济作物之一,早熟性是棉花育种和生产中的重要指标。

棉花早熟性受到多个基因的调控,ghhda5和ghhda6是其中两个重要的基因。

前人对ghhda5和ghhda6基因在棉花早熟性中的功能已有一些研究,但结果尚不明确。

探究g h h d a 5和ghhda6基因对棉花早熟性的影响。

分析g h h d a 5和ghhda6基因表达与棉花早熟性状的关联。

确定g h h d a 5和ghhda6基因在棉花早熟性中的具体作用机制。

研究目的02材料与方法试验材料基因克隆通过PCR方法从棉花基因组中克隆ghhda5和ghhda6基因。

转化受体将重组质粒转入农杆菌感受态细胞中,通过农杆菌转化法将目的基因转入棉花品种中。

载体构建将目的基因插入到载体中,构建重组质粒。

选用棉花品种选用具有不同早熟性和不同地理来源的棉花品种,如中棉所35、中棉所45等。

试验方法在温室条件下,对转基因棉花和对照棉花进行培养,观察其生长情况。

植物培养采用qRT-PCR方法检测ghhda5和ghhda6基因在转基因棉花和对照棉花中的表达情况。

基因表达分析定期观察棉铃的发育情况,记录棉铃的重量、大小、成熟时间等指标。

棉铃发育观察收集转基因棉花和对照棉花的纤维样品,进行品质检测,如长度、强力、色泽等指标的测定。

纤维品质检测03基因克隆与鉴定基因克隆克隆方法通过PCR技术、RT-PCR技术、RACE 技术等,从陆地棉基因组中克隆得到ghhda5和ghhda6基因的cDNA序列。

克隆流程首先通过PCR或RT-PCR获得目的基因的初步cDNA序列,再利用RACE技术进行基因全长cDNA的克隆。

克隆意义获得ghhda5和ghhda6基因的cDNA序列,为进一步研究这两个基因的功能奠定了基础。

棉花转基因

棉花转基因

基金项目:863子项目“特殊生境植物资源的开发利用技术”(No :2007AA021401)转基因专项“转新型基因的棉花种质资源材料创造”(No :2008ZX08005-004)。

第一作者简介:张煜星,男,1967年出生,副教授,博士生,从事植物基因工程研究。

通信地址:571101海口市城西学院路,中国热带农业科学院热带生物技术研究所国家重点实验室周鹏转张煜星,Tel :015109875070,E-mail :zyx2027193@ 。

通讯作者:男,1963年出生,研究员,博士生导师,从事植物基因工程研究。

E-mail :Zhp6301@ 。

收稿日期:2009-04-16,修回日期:2009-05-07。

棉花accD 基因植物表达载体的构建与遗传转化的研究张煜星1,2,3,崔燕3,祝建波3,周鹏2(1海南大学农学院,海南儋州571737;2中国热带农业科学院热带生物技术研究所国家重点实验室,海口571101;3石河子大学生命科学学院农业生物技术重点实验室,新疆石河子832003)摘要:乙酰辅酶A 羧化酶(ACCase)催化脂肪酸合成的第一步,是脂肪酸合成的限速酶。

采用PCR 方法分别从陆地棉和拟南芥基因组中扩增出ACCase 羧基转移酶β-CT 亚基编码基因accD ,ACCase 羧基转移酶α-CT 亚基编码基因CAC3的定位于叶绿体的转运肽序列。

将CAC3基因转运肽序列与accD 基因进行体外重组,构建融合植物表达载体pBI-CAC3tp-accD 。

重组质粒通过冻融法转化根癌农杆菌GV3101。

渗透法转化拟南芥,收种子,在含卡那霉素的MS 培养基中发芽筛选。

用叶盘法转化烟草,经不定芽诱导、生根培养,获转基因烟草植株。

T1代转基因拟南芥和转基因烟草植株经卡那霉素检测、PCR 、RT-PCR 检测后,初步表明目的基因已在植株中转化成功,并可以正常转录。

关键词:陆地棉;拟南芥;accD 基因中图分类号:S336文献标识码:A 论文编号:2009-0791Construction of Plant Expression Vector on accD Gene fom Gossypuum hirsutumand Its Genetic Transformation Zhang Yuxing 1,2,3,Cui Yan 3,Zhu Jianbo 3,Zhou Peng 2(1College of Agronomy,Hainan University ,Danzhou Hainan 571737;2National Key Biotechnology Laboratory for Tropical Crops,Institute of Bioscience and Biotechnology,CATAS,Haikou,571101;3Laboratory of Agricultural Biotechnology ,College of Life Science,Shihezi Universit ,Shihezi Xinjiang 832003)Abstract:The acetyl-CoA carboxylase (ACCase)is the rate-limiting enzyme of fatty acids synthesis.The accD Gene and transit peptide of CAC3Gene was amplified from Gossypuum hirsutum Genome and Arabidopsis thaliana Geneome.Plant Expression Vector of Fusion Transit Peptide of CAC3Gene and accD Gene was constructed.The Vector of pBI-CAC3tp -accD were transferred into Agrobacterium tumefaciens ing infiltration and leaf discs method,the gene were transferred into Arabidopsis thaliana and tobacco cell.The seeds of Arabidopsis thaliana were selected on solid medium containing Kanamycin.Transferred leafs of tobacco were selected on solid medium containing Kanamycin.Transgenic Arabidopsis thaliana (T1)and tobacco plants were found containing purpose gene by PCR.After RT-PCR,it shows that the CAC3tp -accD gene could transcript normally.Key words:Gossypuum hirsutum,rabidopsis thaliana,accD Gene中国农学通报2009,25(18):36-40Chinese Agricultural ScienceBulletin0引言乙酰辅酶A 羧化酶(acetylCoA carboxyl-ase ,ACCase)是脂肪酸生物合成的关键酶,是碳流进入脂肪酸生物合成的重要调控位点[1-4]。

陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨

陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨

陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨棉花是一种重要的经济作物。

棉花遗传改良可以通过传统的育种技术和现代生物技术实现。

现代生物技术通过DNA重组技术将外源性状转入到寄主基因组,可实验基因在不同生物界之间的自由交换和流动,对于增加作物产量、提高产品质量、减少生产成本和环境胁迫均具有重要的作用。

本研究通过比较二种非基因型限制的外源基因遗传转化方法,将抗除草剂基因(Bar和Cyp81A6)导入到陆地棉,获得转基因植株,并育成抗除草剂的转基因陆地棉种质系(BR001)。

同时研究了抗除草剂转基因种质系的生产性能、纤维品质、抗性遗传等,并以抗虫转基因抗虫转基因推广品种(GK30)和它的遗传背景亲本为对照,研究了转基因抗除草剂种质系(BR001)在镉胁迫下的生长发育和组织生理反应。

主要结果如下:1.本研究探讨了两种非基因型依赖性的遗传转化方法,并研究了Bar基因在转基因后代的分离和遗传特点,以及抗除草剂棉花种质系(BR001)的生产性能和纤维品质。

PCR和Southern杂交分析表明,外源基因已成功地插入到两种方法获得的转基因植株的基因组中。

尽管项尖农杆菌介导方法的转化效率高于花粉管通道法,但获得的转基因植株数量无明显差异。

田间试验结果表明,抗除草剂转基因棉花种质系(BR001)的农艺性状略差于亲本,但纤维品质略优于对照。

本试验结果表明两种方法均可用于棉花外源基因的转化。

2.本研究用珂字棉312和珂字棉201胚性愈伤组织为外植体,通过农杆菌介导方法,将来源于水稻抗苯拉松除草剂基因(Cyp81A6)导入棉花基因组。

将以VaMV35启动子、Cyp81A6基因、NPⅡ基因构建于质粒并导入到农杆菌菌系LBA444,与胚性愈伤组织共培养48h后脱菌,接到含100mg/L卡那霉素和卡那霉素+苯拉松的筛选培养基上筛选3次,并在非筛选培养基上继代2~3次后获得大量的体细胞胚状体,并获得再生小植株。

转基因抗虫棉对棉蚜及其天敌的影响及棉蚜对不同寄主植物的适应性的开题报告

转基因抗虫棉对棉蚜及其天敌的影响及棉蚜对不同寄主植物的适应性的开题报告

转基因抗虫棉对棉蚜及其天敌的影响及棉蚜对不同寄主植物的适应性的开题报告一、研究背景在农业生产中,棉花作为重要的经济作物,其产量和质量的稳定增长对农业经济的发展至关重要。

然而,棉蚜作为棉花的重要害虫,其对棉花的危害严重影响着棉花的生长发育和丰产稳产。

为了控制棉蚜的危害,传统的农业生产方式往往采用化学农药喷洒等方法,但这些方法不仅效果不理想,而且对环境和人体健康产生了负面影响。

因此,基于转基因技术制造抗虫棉可行性被普遍认可。

利用转基因技术,可以将一些抗虫基因导入棉花中,使其具有抗虫能力,从而减少对棉花的损害。

然而,人们也关注到,抗虫棉对棉蚜及其天敌的影响是不可避免的,因此,需要对转基因抗虫棉对棉蚜及其天敌的影响以及棉蚜对不同寄主植物的适应性进行深入研究。

二、研究目的和意义本研究的主要目的是探究转基因抗虫棉对棉蚜及其天敌的影响以及棉蚜在不同寄主植物中的适应性。

通过对转基因抗虫棉、普通棉以及抗虫基因来源植物等进行对比,旨在为农业生产提供科学依据,指导抗虫棉在实际种植中的应用,并为生态环境的保护提供一定的科学依据。

三、研究内容和思路本研究主要分为两个部分,分别是转基因抗虫棉对棉蚜及其天敌的影响和棉蚜对不同寄主植物的适应性。

1. 转基因抗虫棉对棉蚜和其天敌的影响本部分主要研究转基因抗虫棉对棉蚜及其天敌的影响。

采用现场观察和实验室研究相结合的方法,通过对转基因抗虫棉、普通棉以及抗虫基因来源植物等进行对比,分析不同植物的结实率、轻重害比等指标,并研究不同棉花品种对棉蚜死亡率和寿命的影响。

2. 棉蚜对不同寄主植物的适应性本部分主要研究棉蚜对不同寄主植物的适应性。

通过野外调查和室内试验相结合的方法,研究棉蚜对不同植物的寄生和繁殖情况,并分析棉蚜在不同植物上的生长发育和食性等特点。

四、研究的预期结果通过对转基因抗虫棉对棉蚜及其天敌的影响和棉蚜对不同寄主植物的适应性进行深入研究,本研究预期得出以下结果:1. 转基因抗虫棉对棉蚜及其天敌的影响:转基因抗虫棉可以有效减少棉蚜的损害,但可能对棉蚜的天敌产生一定的影响。

双价转基因抗虫棉花杂交种——中棉所72

双价转基因抗虫棉花杂交种——中棉所72

双价转基因抗虫棉花杂交种——中棉所72
焦光婧
【期刊名称】《《农村·农业·农民B》》
【年(卷),期】2012(000)004
【摘要】中棉所72为中国农业科学院棉花研究所和生物技术研究所共同培育的双价转基因抗虫杂交春棉新品种,2009年通过河南省农作物品种审定委员会审定,适宜河南省各棉区春直播或麦棉套作种植,适宜引种许可区及相近生态区种植。

【总页数】1页(P51-51)
【作者】焦光婧
【作者单位】中国农业科学院棉花研究所
【正文语种】中文
【中图分类】S562
【相关文献】
1.双价转基因抗虫棉——中棉所60 [J], 王彦立;李悦有;袁有禄;翟学军
2.双价转基因抗虫棉——中棉所60 [J], 王彦立;李悦有;袁有禄;翟学军
3.抗虫棉新秀——中棉所41双价转基因抗虫棉 [J], 刘朝丽
4.双价转基因抗虫棉杂交种中棉所57简介 [J], 郭香墨;张永山;姚金波
5.抗虫棉新秀中棉所41双价转基因抗虫棉 [J], 刘朝丽
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PHOTOSYNTHETICA 47 (3): 399-408, 2009399Single leaves photosynthetic characteristics of two insect-resistanttransgenic cotton (Gossypium hirsutum L.) varieties in response to lightC.X. SUN *,+, H. QI **, J.J. HAO *, L. MIAO *, J. WANG *, Y. WANG *, M. LIU **, and L.J. CHEN ***Department of Biology, Science College, Northeastern University, P.O. Box 325, 110004, Shenyang, P. R. China * Agronomy College, Agricultural University of Shenyang, 110016 Shenyang, P. R. China ** Institute of Applied Ecology, Chinese Academy of Sciences, 110006 Shenyang, P. R. China ***AbstractHow the photosynthetic characteristics of insect-resistant transgenic cotton (Gossypium hirsutum L.) respond to light or whether this genetic transformation could result in unintended effects on their photosynthetic and physiological processes is not well known. Two experiments were conducted to investigate the shapes of net photosynthetic rate (P N ), stomatal conductance (g s ), apparent light use efficiency (LUE app ) and water use efficiency (WUE) light-response curves for single leaves of Bt (Bacillus thuringiensis ) and Bt +CpTI (cowpea trypsin inhibitor) transgenic cotton plants and their non-transgenic counterparts, respectively. Results showed that the significant difference in response of P N and WUE to light between transgenic cotton and non-transgenic cotton occured but not always throughout the growing season or in different experiments or for all transgenic cotton lines. It was highly dependent on growth stage, culture condition and variety, but no obvious difference between any transgenic cotton and non-transgenic cotton in the shapes of g s and LUE app light-response curves was observed in two experiments at different growth stages. In the field experiments, transgenic Bt +CpTI cotton was less sensitive to response of P N to high irradiance at the boll-opening stage. In pot experiments, WUE light-response curves of both Bt transgenic cotton and Bt +CpTI transgenic cotton progressively decreased whereas non-transgenic cotton slowly reached a maximum at high irradiance at boll-opening stage. We supposed that culture environment could affect the photosynthesis of transgenic cotton both directly and indirectly through influencing either foreign genes expression or growth and physiological processes.Additional key words : apparent light use efficiency; Bacillus thuringiensis ; light-response curve; net photosynthetic rate; stomatal conductance; transgenic cotton; trypsin inhibitor; water use efficiency.IntroductionThe production of insect-resistant transgenic cotton is supposed to bring significant economic benefits and result in good ecological benefits (Qaim and Zilberman 2003). Since 1997, China has formally approved com-mercial production of transgenic cotton, and in 2007, the total planting area of insect-resistant transgenic cotton reached 380 million hectares, accounting for 69 % of the total planting area of cotton in our country (Mo 2007). Photosynthesis is the physiological basis of crop growth and production, and a determining factor of crop yield. On one hand, stomata are the joining point between carbon and water circles in ecological systems, on the other hand, stomata are the pathway that permits the entrance of CO 2 and simultaneous loss of water vapor and then controls the balance between H 2O lost and CO 2 assimilated (Wullschleger and Oosterhuis 1989, Yu et al . 2001). Studies have been conducted looking at the response of transgenic insect-resistant cotton in terms of gas exchange properties. Dong et al. (2006) reported that three Bt cotton varieties had showed different curvilinear changes in the diurnal course of leaf photosynthetic rate. Hebbar et al. (2007) pointed out that the stomatal———Received 27 February 2009, accepted 13 August 2009. +Author for correspondence; fax: +86-24-23128449 , e-mail: suncaixia@Abbreviations : α – the apparent quantum yield for CO 2 assimilation; Bt – Bacillus thuringiensis ; C i – intercellular CO 2 concentration; CPTI – cowpea trypsin inhibitor; E m – the rate of transpiration; g s – stomatal conductance; LUE app – apparent light use efficiency; P max,i – the maximum net photosynthetic rate at 400 μmol mol –1 of CO 2; P N – the net photosynthetic rate; PPFD – photosynthetic photon flux density; R D – the apparent dark respiration rate; WUE – water use efficiency.Acknowledgements : The study was financially supported in part by Initial Funding for Ph D of Liaoning Province (No. 200412), Programs for Science and Technology Development of Liaoning Province (No. 2004201003) and National Natural Science Foundation of China (No. 40101016), P.R. of China. We gratefully acknowledge Dr. Wendy Harwood from Crop Genetics Department, John Innes Centre, UK, for language correction.C.X. SUN et al.400conductance rates of transpiration and photosynthesis did not differ significantly between Bt and non-Bt counter-parts up to 80 days after sowing. Our former results also showed that the changes in g s , transpiration rate (E m ) and intercellular CO 2 concentration (C i ) in the leaves of Bt and Bt +CpTI transgenic cotton were not significantly different to non-transgenic cotton. However, the differen-ce of P N between Bt transgenic cotton and non-Bt cotton was significant at the seedling stage (Sun et al . 2007). Light plays a key role in photosynthesis and productivity of crops by providing the energy needed for assimilatory power, activating enzymes concerned with photosyn-thesis, promoting the opening of stomata, and regulating the development of the photosynthetic apparatus (Xu 2002). Among environmental factors, photosynthetic photon flux density (PPFD) is particularly subjected to a rapid and marked fluctuation in the field. This may require a rapid and efficient response of plant physio-logical processes to light, and thus limitation of these processes by light could potentially be minimized (Yu et al . 2001). However, how these physiological processes or characteristics of insect-resistant transgenic cotton response to light, are not well known.Therefore, the objectives of the present study were to investigate responses of P N , g s , LUE app and WUE of Bt and Bt +CpTI transgenic cotton to light, and to describe any unintended effects of transgene insertion on the transgenic cotton in photosynthetic physiological terms. This information would be valuable in discussion on the use of transgenic cotton.Materials and methodsCotton culture : The pot and field experiments were conducted at the Experimental Station of Shenyang Agricultural University (SAU), Shenyang (123°4′E, 41°8′N), Liaoning. Two types of indigenous Chinese commercial insect-resistant transgenic cotton including the Bt transgenic cotton Z30, the Bt +CpTI transgenic cotton SGK321, and their non-transgenic parental counterparts Z16 and SY321 were used in these experiments, respectively. Acid-delinted seeds of each variety were kindly provided by the Germ Plasma Resources Centre, Institute of Cotton, Chinese Academy of Agricultural Sciences (Anyang, Henan).Cotton seeds were sown in pots containing 15 kg brunisolic soil obtained from the plough layer in the field at the Experimental Station of SAU in an outside growing area at the Experimental Station of SAU in mid May 2006. The soil in two experiments is a brunisolic soil having pH 5.72, organic matter 2.52 g kg –1, total N 1.22 g kg –1, total P (P 2O 5) 1.12 g kg –1, total K (K 2O) 24.24 g kg –1. Six pots were used for each variety and the plant population was thinned with three plants maintained per pot two weeks after emergence. Water stress was mini-mized with timely irrigation and insecticides were applied as needed during the season.In 2007, the field experiments were arranged in a randomized complete block design with three replica-tions. Each plot was formed by five rows with row length of 8 m and plant population density was 4.5 plants m –2. Cotton seedlings were transplanted in early May.Fertilizer consisted of 225–82.5–187.5 kg ha –1 ofN–P 2O 5–K 2O incorporated before planting. Side-dressing with 90 kg(N) ha –1 was conducted 10 weeks after planting. Furrow irrigation provided a well-watered environment and insecticides were applied as needed during the season. Intensive management in cotton fields was carried out according to local agronomic practices unless otherwise indicated.Photosynthetic characteristics measurements : P N , g s , and E m of single leaves were measured on the second young fully mature leaf on the main stem at squaring and boll-opening stages in 2006 (a pot experiment) and 2007 (a field experiment) with a portable photosynthesis system LI-6400 (LI-COR , Lincoln, NE, USA). During the measurements of light response curves of photosynthetic characteristics, PPFD was 0, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 and2000 μmol(photon) m –2 s –1, adjusted automatically bya red:blue light source (LI-6400-02BL ED; LI-COR ). The leaves were held at each PPFD for a minimum of 30 min prior to determination to allow equilibration of the photosynthetic system to that PPFD. The temperature, relative air humidity and CO 2 concentration in leaf chamber were kept at 30 °C, 60 % and 400 μmol mol –1, respectively. All readings were made between 9:00 and 11:00 hours on cloudless days.Model fitting and data analysis : The light response curves of P N were fitted to a Michaelis-Menten model based on measurement of P N and PPFD (Thornley 1976).D imax,i max,N PPFD PPFD R P P P −+αα=,where α is the apparent quantum yield for CO 2 assimilation, P max,i is the maximum net photosynthetic rate at 400 μmol mol –1 of CO 2, and R D is the apparent dark respiration rate. These parameters were estimated using Nonlinear Regression in SPSS 11.0 based on Michaelis-Menten model.LUE app was calculated by using the equation:PPFDLUE Napp P =(Long et al . 1993).WUE was calculated by using the equation:PHOTOSYNTHETIC CHARACTERISTICS OF INSECT-RESISTANT TRANSGENIC COTTON IN RESPONSE TO LIGHT 401mNWUE E P =(Nijs et al . 1997). Data were statistically analyzed by the ANOVA procedures in SPSS 11.0 (Chicago, USA). All measure-ments were recorded from six replications at each sampling date.ResultsP N : A non-rectangular hyperbolic curve has been widely used to describe photosynthetic light-response curves. P N of all test cotton varieties during their whole growth season fitted the non-rectangular hyperbolic equation well. Parameters α, P max,I and R D , defining the fitted curves, were summarized in Table 1.Fig. 1 shows the light-response curve for P N , con-structed using the estimated value calculated by theparameters in Table 1. On the whole, at low irradiance (below 200 μmol m –2 s –1), all transgenic insect-resistant cotton had similar shapes of photosynthetic light-response curve as their non-transgenic counterparts. However, the difference between transgenic insect-resistant cotton and non-transgenic cotton in the shape of photosynthetic light-response curve broadened with the increase in irradiance (Fig. 1).Table 1. Parameters of photosynthesis in response to light intensity between two transgenic insect-resistant cotton (SGK321, Z30) and their non-transgenic counterparts (SY321, Z16) at squaring and boll opening stages in 2006 (pot experiment) and 2007 (field experiment). Values in each row followed by the same letters are not significantly different (p <0.05) according to Duncan’s multiple range test. α – the apparent quantum yield; P max,i – the maximum net photosynthetic rate; R D – the apparent dark respiration rate. Means (n = 6).VarietyYear Stage ParameterSY321 SGK321 Z16Z30α 0.067a 0.060a 0.068a 0.070aP max,i [μmol CO 2 m –2 s –1] 36ab 33a 42b 34a R D [μmol CO 2 m –2 s –1 ] 3.0a 3.2a 4.0b 4.3b Squaring stager 20.9979 0.9975 0.9983 0.9984 α0.059a 0.063a 0.089a 0.069a P max,i [μmol CO 2 m –2 s –1] 22a 18a 17a 16aR D [μmol CO 2 m –2 s –1] 1.8bc 1.4ab 2.0c 1.2a 2006Boll opening stage r 20.9984 0.9982 0.9731 0.9963 α 0.080a 0.071a 0.072a 0.072aP max,i [μmol CO 2 m –2 s –1] 30a 23a 35a 33aR D [μmol CO 2 m –2 s –1] 2.6a 2.2a 3.1a 2.5a Squaring stager 20.9894 0.9946 0.9951 0.9978 α 0.075a 0.070a 0.086a 0.070aP max,i [μmol CO 2 m –2 s –1] 35b 23a 28ab 21aR D [μmol CO 2 m –2 s –1 ]3.0b 1.8a 2.7ab 2.0ab 2007Boll opening stage r 20.9984 0.9982 0.9731 0.9963In the pot experiments, at squaring stage, P N of twovarieties of transgenic insect-resistant cotton increased over the entire course of the light-response curve, and the difference in P N between transgenic Bt cotton Z30 and its non-transgenic counterpart Z16 was more distinct than that of transgenic Bt +CpTI cotton SGK321 compared to non-transgenic counterpart SY321 (Fig. 1A ). On the other hand, parameters α and R D did not significantly vary between any transgenic cotton and their non-transgenic counterpart, however, P max,i of Bt cotton Z30 decreased 19 % more than its non-transgenic counterpart Z16 and the difference was significant. Thus, the difference between transgenic Bt cotton Z30 and non-transgenic cotton Z16 in the response of P N to light at the squaring stage in the pot experiments was due to a change in P max,i (p <0.05) but not in the parameter α and R D , implying a change in high light use efficiency (LUE) (Stirling et al . 1993). The difference between transgenic cotton and non-transgenic cotton in the shape of the photosynthetic light-response curve at boll-opening stage was less obvious than that at squaring stage, especially for transgenic Bt cotton Z30 with a similar shape of curve as non-transgenic cotton Z16 at high irradiance range (Fig. 1B ). Moreover, parameters α and P max,i were not significantly different between any transgenic cotton and their non-transgenic counterparts at boll-opening stage, but R D of Bt cotton Z30 decreased 40 % more than its non-trans-genic counterpart Z16 and the difference was significant in the pot experiments. R D change was usually related to changes in C i , enzymatic activity, dark CO 2 fixation rate,C.X. SUN et al.402Fig. 1. Response of P N to light intensity of the second young fully mature leaves on main stem between two transgenic insect-resistant cotton (□ SGK321, ○ Z30) and their non-transgenic counterparts (■ SY321, ● Z16) at squaring (A ,C ) and boll opening stages (B ,D ) in 2006 (A ,B , pot experiment) and 2007 (C ,D , field experiment). Each data point represents estimated value using Michaelis-Menten model, in which adopted value of α, P max,i and R D are shown in Table 1, respectively. Means (n = 6).or nonstructural saccharides (Shaish et al . 1989, Qiao et al. 2007). Low R D underlined the low metabolic activity of transgenic Bt cotton Z30 during the later growing season compared with non-transgenic cotton Z16 (Gratani et al . 2007).In the field experiments, P N of transgenic Bt +CpTI cotton SGK321 increased in a distinctly different way over the entire course of the light response curve compared to non-transgenic SY321 at the boll-opening stage, but there were no statistically significant differen-ces in parameters between any transgenic insect-resistant cotton and their non-transgenic counterpart at the squaring stage (Fig. 1C ). Likewise, no statistically significant differences in any parameters of transgenic Bt cotton Z30 were observed compared to non-transgenic cotton Z16 at the boll-opening stage. However, both P max,i and R D of transgenic Bt +CpTI cotton SGK321 were decreased significantly accompanied by the inhibition of P N under high irradiance conditions while non-transgenic cotton SY321 could maintain a fairly high rate of photosynthesis (Fig. 1D ). In this case, in the lower PPFD range (below 200 µmol m –2 s –1), light plays a dominant limiting role in photosynthesis, apparent quantum yield of SGK321 observed from the light response curve did notchange significantly (Table 1). In the period of P N curvilinear increase, SGK321 exhibited lower P N than SY321 caused possibly by either poor capacity to activate Rubisco that is a key enzyme in the process of carbon fixation, or poor capacity to provide energy to form assimilatory power, or poor capacity to regulate the stomata opening, meaning inadequate absorbtion of CO 2 (Xu 2002). P max,i of transgenic Bt +CpTI cotton SGK321 decreased significantly in comparison with SY321 indicating that photoinhibition occurred at exposure to high irradiance caused by excessive light energy absorption (Ögren and Evans 1993). The term photo-inhibition has been used to describe light induced reduction of photosynthesis arising from either damage to the D1 protein of PSII reaction centers or increases in non-photochemical quenching of PSII excitation energy (Bradbury and Baker 1986). Chow (1994) has pointed out that plants could protect their photosynthetic apparatus from photodamage through several pathways by thermal dissipation. We deduced that decreases in the efficiency of electron transport and the content of photosynthetic key enzymes such as Rubisco could result in a reduction in photosynthesis in SGK321. On the other hand, decreased operation of protective thermal dissipation orPHOTOSYNTHETIC CHARACTERISTICS OF INSECT-RESISTANT TRANSGENIC COTTON IN RESPONSE TO LIGHT403Fig. 2. Comparison of LUE versus light intensity curves of the second young fully mature leaves on main stem of two trans-genic insect-resistant cotton (□ SGK321, ○ Z30) and their non-transgenic counterparts (■ SY321, ● Z16) at squaring (A ,B ,E ,F ) and boll-opening stages (C ,D ,G ,H ) in 2006 (A ,B ,C ,D , pot experiment) and 2007 (E ,F ,G ,H , field experiment). Means ±SD are shown (n = 6).limitation of the removal of storage matter caused by a significant decline in R D also might result in the photoinhibition of SGK321 at high irradiance (Niyogi 1999). Apparently, transgenic cotton SGK321 could not response to high light conditions rapidly and efficiently in field experiments.LUE app : The shapes of the light-response curves of LUE app for cotton studied in our research all exhibited two distinct phases; a rapid increase to maximum at low irradiance from 100 μmol m –2 s –1 to 400 μmol m –2 s –1, and a period of linear decline to negligible LUE app at high irradiance (Fig. 2). In both pot and field experiments,C.X. SUN et al.404 Fig. 3. Comparison of g s versus light intensity curves of the second young fully mature leaves on main stem of two trans-genic insect-resistant cotton (□ SGK321,○ Z30) and their non-transgenic counter-parts (■ SY321, ● Z16) at squaring (A,B,E,F) and boll-opening stages (C,D,G,H) in 2006 (A,B,C,D, pot experiment) and 2007 (E,F,G,H, field experiment). Means ±SD are shown (n = 6).LUE app of transgenic insect-resistant cotton reached a maximum with values slightly lower than, or similar to, the non-transgenic counterpart at a certain irradiance, and then declined much quickly than in the non-transgenic counterpart except for transgenic Bt cotton Z30at squaring stage in the field experiments. In this case, no obvious difference between Z30 and Z16 in LUE app was observed (Fig. 2F).PHOTOSYNTHETIC CHARACTERISTICS OF INSECT-RESISTANT TRANSGENIC COTTON IN RESPONSE TO LIGHT405Fig. 4. Comparison of WUE versus light intensity curves of the second young fully mature leaves on main stem of two trans-genic insect-resistant cotton (□ SGK321, ○ Z30) and their non-transgenic counterparts (■ SY321, ● Z16) at squaring (A ,B ,E ,F ) and boll-opening stages (C ,D ,G ,H ) in 2006 (A ,B ,C ,D , pot experiment) and 2007 (E ,F ,G ,H , field experiment). Means ±SD are shown (n = 6).g s : Although the data were somewhat scattered, results indicated that g s of all cotton studied in this paper markedly increased with light over the entire course of the light response curve (Fig. 3). The increases in g s of transgenic cotton were slighter than their non-transgenic counterpart, however, g s of transgenic cotton Z30 at boll-opening stage exhibited the same shape of curves as its non-transgenic cotton Z16 both in pot and field experiments (Fig. 3D , H ).C.X. SUN et al.406WUE : Water use efficiency is an often used parameter which relates gas exchange fluxes of carbon dioxide and water vapor and quantifies the total amount of CO 2 fixed per unit water lost (Wullschleger and Oosterhuis 1989). Overall, in low irradiance ranges from starting point to about 1000 μmol m –2 s –1 both in pot and field experi-ments, WUE of all cotton progressively increased with light to a maximum, whereas at high irradiance most cotton remained steadily at the maximum (Fig. 4).In the pot experiments, at the squaring stage, the shape of light-response curves of WUE of two varieties of transgenic cotton were similar to their non-transgenic counterpart respectively (Fig. 4A ,B ). However, WUE of both transgenic Bt cotton Z30 and transgenic Bt +CpTI cotton SGK321 decreased slowly rather than remaining steady after reaching saturation at high irradiance at the boll-opening stage (Fig. 4C ,D ). These changes in WUE with PPFD could not be explained solely by variations in g s since increases in g s with PPFD were almost similar for all cotton varieties (Fig. 3). WUE of plants depends on photosynthesis coupled with transpiration through regulation of stomata opening. However, differing from transpiration, photosynthesis is also an intrinsic biochemical reaction and is inhibited by feedback of photosynthetic products and also reflects the heterogeneous character of diffusivity of CO 2 and H 2O (Yu et al . 2001). Since light probably has a more direct limit on the photochemical processes of P N than on the physical processes controlling transpiration, WUE can be expected to rise with increases in PPFD at low irradiance (Wullschleger and Oosterhuis 1989). After incubation under low light the activation of photosynthetic enzymes is faster than simultaneous opening of stomata (Xu 2002). In the field experiments, no obvious differences in WUE between any transgenic cotton and their non-transgenic counterpart were seen in the low irradiance range. On the other hand, the difference between trans-genic insect-resistant cotton and non-transgenic cotton in the shape of WUE light-response curve broadened with the increase in irradiance (Fig. 4E ,F ,G ,H ).DiscussionThere has been a significant debate concerning the potential unintended effects of insertion of the foreign gene into transgenic crops (Conner and Jacobs 2000, Saxena and Stotzky 2001). Although the methods used to produce transgenic crops are being continually improved, it is not possible at present to control the exact stability, integration and expression of the inserted gene into the plant genomes, that is, it may alter the plant charac-teristics in physiology, anatomy and metabolism as a result of secondary or pleiotropic effects of the transgene expression and insertion (Cellini et al . 2004, Shrawat and Lörz 2006).Our present data indicate that substantial differences did occur in the shape of P N and WUE light-response curves between transgenic cotton and non-transgenic parental counterparts both grown in the field and pots, respectively (Table 1, Figs. 1A,D ; 4C ,D ). However, the change in P N with respect to PPFD suggested that leaves of transgenic cotton exposed to saturating light intensities were less capable of assimilating of CO 2 compared to non-transgenic cotton leaves either due to possible photoinhibition or other unintended effects of transgene insertion or the transformation process which were not studied in this paper (Cellini et al . 2004). It was even as Ashok and Horst (2006) reviewed that many factors could contribute to variation in transgene expression including tissue culture-induced variation or chimerism in the primary integration site (position effects), transgene copy number (dosage effects), transgene mutation and epigenetic gene silencing.Wells (1988) has presented information that cotton leaves, which emerged during vegetative growth,had higher P N levels than those presented in leaves,which emerged during periods of fruit development.Wullschleger and Oosterhuis (1990) have also pointed out that the response of P N and g s to incident PPFD conditions during canopy development was highly age-dependent. There were substantial adjustments in leaf physiology and morphology in response to the ambient light environment and this ability of leaves to alter the photosynthetic apparatus has also been recognized to depend closely on the developmental stage of the cotton tissue (Sassenrath-Cole et al . 1996, Dong et al . 2006). In agreement with these studies, our results also showed that a significant difference in response of P N and WUE to light between transgenic cotton and non-transgenic cotton did not always occur throughout the growing season which was in agreement with our work showing that the responses of P N and WUE to CO 2 were highly growth-stage-dependent (Sun et al. 2009).Growth-stage variation in the response of P N and WUE to light could be caused either by the expression mechanisms of photosynthetic regulation genes having spatial and temporal characteristics or by temporal specific expression of Bt and Bt coupled with CpTI (Sachs et al . 1998, Kang et al . 2005). Transgenic cotton had imperfections such as an imbalance between source and sink (Tian and Yang 1999), less capability utilizing photosynthetic products by cotton bolls (Zhao et al . 2002) etc . Hebbar et al . (2007) reported that premature senescence could impact on growth and physiological processes of transgenic Bt cotton. We speculated that disorder in nitrogen metabolism (Sassenrath-Cole et al . 1996) and an imbalance of source and sink (Fitt et al . 1994, Wright 2004) led to transgenic cotton responding to senescence in a different way, probably through a possible accelerated senescence phenomenon at the end of the growing season. The progressive loss of chloro-PHOTOSYNTHETIC CHARACTERISTICS OF INSECT-RESISTANT TRANSGENIC COTTON IN RESPONSE TO LIGHT 407plast membrane integrity coupled with increased leaf waxiness (Bondada and Oosterhuis 2002), breakdown of Rubisco protein (Jiang et al . 1993), decreases in levels of leaf nitrogen, soluble protein, chlorophyll, photosynthetic enzymes and RNA synthesis (Evans 1983, Wells 1988, Wullschleger and Oosterhuis 1990) may limit photo-synthetic activities of cotton leaves during senescence. On the other hand, the structural and biochemical changes of the leaf could have effects on photosynthesis though variation in the partitioning of incoming radiation into reflectance, absorption and transmittance (Kakani et al . 2004). Since all cotton varieties showed similar changes in g s and LUE app at different stages, the differences in g s and LUE app response to light between transgenic cotton and non-transgenic parental counterpart could not be explained by any stage-related trend.Our results showed that the responses of P N and WUE to light observed in the pot experiment differed from those observed under field conditions. The reason for such discrepancies may be due, in part, to profound dif-ferent effects of microclimate on cotton between transgenic varieties and non-transgenic varieties. P N , g s and various other photosynthetic characteristics are influenced by numerous environmental and physiological factors. Although these effects are often highly species-dependent, many studies also indicated that the conditions under which a plant develops could exert a significant influence on its photosynthetic charac-teristics (Bunce 1985, Schulze 1986, Wells 1988, Wullschleger and Oosterhuis 1990). For example, environmental factors can induce changes in leaf internal structure that are associated with a decrease in photo-synthesis (Kakani et al . 2004). Variation of numerous environmental factors, such as temperature (Traore et al . 2000), CO 2 concentration (Coviella et al . 2002, Wu et al . 2007), water (Matzke et al . 1990, Traore et al . 2000), methods of fertilizer application, and cultivation management (Bruns and Abel 2003) could lead to changeeither in transgene expression or in growth and physio-logical processes within transgenic crops. We speculate that culture environment could affect photosynthesis of transgenic cotton both by a direct pathway and in an indirect manner through transgene expression. However, our study cannot distinguish these effects from canopy environment and the intrinsic metabolic processes of transgenic cotton.The introduction of transgenic crops and accompany-ing changes in management practices may have potential effects on agroecosystems (Hoffman 1990, Trevors et al . 1994). It is obvious that environmental factors must be given full consideration in the safety assessment of transgenic crops. Optimisation of environmental factors and the cultivation practices of transgenic crops are expected to allow the achievement of maximal economic benefit and ecological benefit from transgenic crop production by identifying interactions between transgenic crops, environmental factors and cultivation practices.Photosynthesis represents the final result of the complex interaction of numerous processes, any of which may be influenced by various environmental factors either directly or indirectly. It is worth mentioning that our research merely focused on photosynthetic changes based on an individual leaf throughout the growing season. Photosynthetic ability of the crop may also be affected by the structure of the crop canopy such as leaf structure, leaf shape, leaf area, plant type etc . (Heitholt 1994, Sassenrath-Cole 1995). When analyzing responses of photosynthetic characteristics to light at the whole plant or population level, it is also necessary to take into account possible effects due to canopy structure, conse-quences of changes in the light gradient within the leaf or differential acclimation of leaf surfaces to incident light (Terashima and Saeki 1985, Stirling et al . 1993), parti-cularly for crops as morphologically complex as cotton with the indeterminate growth habit. Additional investi-gations are needed to examine these issues in more depth.ReferencesBondada, B.R., Oosterhuis, D M.: Ontogenic changes in epi-cuticular wax and chloroplast integrity of a cotton (Gossypium hirsutum L.) leaf. – Photosynthetica 40: 431-436, 2002.Bradbury, M., Baker, N.R.: The kinetics of photoinhibition of the photosynthetic apparatus in pea chloroplast. – Plant Cell Environ. 9: 289-297, 1986.Bruns, H.A., Abel, C.A.: Nitrogen fertility effects on Bt δ-endotoxin and nitrogen concentrations of maize during early growth. – Agron. J. 95: 207-211, 2003.Bunce, J.A.: Effects of weather during leaf development on photosynthesis characteristics of soybean leaves. – Photosynth. Res. 6: 215-220, 1985.Cellini, F., Chesson, A., Colquhoun, I., Constable, A., Davies, H.V., Engel, K.H. et al .: Unintended effects and their detec-tion in genetically modified crops. – Food Chem. Toxicol. 42: 1089-1125, 2004.Chow, W.S.: Photoprotection and photoinhibitory damage. – Adv. Mol. Cell Biol. 10: 151-196, 1994. Conner, A.J., Jacobs, J.M.E.: Food risks from transgenic crops in perspective. –Nutrition 16: 709-711. 2000.Coviella, C.E., Stipanovic R.D., Trumble J.T.: Plant allocation to defensive compounds: interactions between elevated CO 2 and nitrogen in transgenic cotton plants. – J. Exp. Bot. 53: 323-331, 2002.Dong, H.Z., Li, W.J., Tang, W., Li, Z.H., Zhang D. M.: Effects of genotypes and plant density on yield, yield components and photosynthesis in Bt transgenic cotton. – J. Agron. Crop Sci. 192: 132-139, 2006.Evans, J.R.: Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L .). – Plant Physiol. 72: 297-302, 1983.Fitt, G.P., Mares, C.L., Lliewellyn, D.J.: Field evaluation and potential ecological impact of transgenic cottons (Gossypium hirsutum ) in Australia. – Biocontrol Sci. Technol. 4: 535-548, 1994.Gratani, L., Varone, L., Bonito, A.: Environmental induced。

相关文档
最新文档