新课标2019中考数学复习第三章函数及其图像第12节二次函数的图象和性质正文课件

合集下载

初三二次函数的图像与性质

初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。

本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

2019中考数学一轮复习教材同步复习函数第13讲二次函数的图象与性质实用课件

2019中考数学一轮复习教材同步复习函数第13讲二次函数的图象与性质实用课件

与x轴有⑩__________ 交点 唯一
与x轴有⑪__________ 两个不同 交点 没有 与x轴⑫__________ 交点
b2-4ac<0
a+b+c 当x=1时,y=⑬__________
特殊关系
a-b+c 当x=-1时,y=⑭__________ 若a+b+c>0,即当x=1时,y⑮__________0 > < 若a+b+c<0,即当x=1时,y⑯__________0
20
(3)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c). (4)抛物线与x轴的交点个数. 当b2-4ac>0时,抛物线与x轴有2个交点;当b2-4ac=0时,抛物线与x轴有1个 交点;当b2-4ac<0时,抛物线与x轴没有交点.
21
重难点3 二次函数解析式的确定
形式一
重点
已知顶点坐标及系数a,b,c中的一个
23
形式三
已知两点坐标和系数a,b,c中的一个
例5
式.
已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9),求抛物线的解析
c=-6, 依题意有 9a-12+c=-9,
【解答】
a=1, 解得 c=-6,
∴抛物线的解析式为 y=x2-4x-6.
24
形式四
例6
例3
已知抛物线 y=ax2+bx+3的开口向上,顶点为P,若P点坐标为(4,1),求
∵抛物线 y=ax2+bx+3 的顶点 P 的坐标是(4,1),
抛物线的解析式.
【解答】
∴y=a(x-4)2+1=ax2-8ax+16a+1, 1 即 16a+1=3,解得 a= , 8 1 2 ∴抛物线的解析式是 y= x -x+3. 8

2019年人教版中考数学《二次函数的图象与性质》复习课件

2019年人教版中考数学《二次函数的图象与性质》复习课件

或利用顶点公式求得抛物线的顶点坐标;
(2)对称取点:首先应取顶点,然后在对称轴两侧对称取点,其目的是为了方便
计算,取点个数一般不少于5个; (3)曲线平滑:由于所取的点只是函数图象上的几个点,因此连接时要用“平
滑”的曲线,并且所画曲线要超出所描的
第一个 点和 最后一个 点.
中考题型突破
题型一 考查二次函数的图象
(3)设同一个自变量的值对应的两函数值分别为p,q,
1 1 1 1 2 2 2 2 ( x 2) 3 则q-p= ( x +2) = ( x +2) -3 ( x +2) =-3,即两函数值相差3个单 10 10 10 10 1 1 2 位,∴把y1= (x+2) 的图象向下平移3个单位,则得到y1= (x+2)2-3的图象. 10 10
二次函数的图象与性质
基础知识梳理
考点一 二次函数的图象和性质
二次函数y=ax2+bx+c(a≠0)的图象和性质如下表所示
2 2
b 4ac b2 其中h 2a , k 4a :
函数表达式 y=ax +bx+c(a>0) y=ax +bx+c(a<0) 开口方向 向① 上 向② 下 对称轴 x =h x =h 顶点坐标 (h,k) (h,k)
抛物线的顶点坐标、对称轴代入,得到关于
解方程组即可得到a,h,k的值,进而得到这个二次函数; (3)若已知抛物线与x轴的两交点坐标,根据抛物线的 对称性 ,可以得到
抛物线的对称轴,然后利用设顶点式的方法,即可求得这个二次函数.
考点四
利用描点法画二次函数的图象
因为二次函数的图象是一条抛物线,因此,在利用描点法画函数图象时,应注 意下列三点:(1)取点之前应了解所画函数图象的大致形状,如抛物线的 开口方向 顶点式 、 顶点 、 对称轴 等,为此先把函数表达式化为

2019中考数学第一轮复习 第3章第12讲 二次函数的图象与性质 (共28张PPT)

2019中考数学第一轮复习 第3章第12讲 二次函数的图象与性质 (共28张PPT)
【思路分析】由抛物线开口方向得到a>0,然后利用抛物线的对称 轴得到b的符号,则可对①进行判断;利用判别式的意义和抛物线 与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进 行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时, y>0,即a-b+c>0,则可对④进行判断.
个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析
式为( A )
A.y=2x2+1
B.y=2x2-3
C.y=2(x-8)2+1 D.y=2(x-8)2-3
A 抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线 解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位 长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1.
3
【思路分析】根据抛物线的开口方向,利用二次函数的性质 判断A;根据图形直接判断B;根据图象,当-1<x<2时,抛物 线落在x轴的下方,则y<0,进而判断C;根据对称轴结合开口 方向得出函数的增减性,从而判断D.
D 由抛物线的开口向上,可知a>0,函数有最小值,正确,故
A不选符项合不题符意合;题由意图;象由可图知象,可当知-,1对<称x<轴2为时x,=y<12 0,,正正确确,,故故BC选选项
项不符合题意;因为a>0,抛物线开口向上,对称轴为x= 1 ,所
以 而当减小x>,12错误时,,故y随D选x的项增符大合而题增意大.,而当x<
1 2
时,y随x的2 增大
技法点拨►解决这类问题要掌握二次函数的图象和性质 ,灵活运用数形结合思想解题是关键.
变式运用►1.对于抛物线y=-(x+1)2+3,下列结论: ①抛物线的开口向下; ②对称轴为直线x=1; ③顶点坐标为(-1,3); ④x>1时,y随x的增大而减小, 其中正确结论的个数为( C ) A.1 B.2 C.3 D.4

2019年中考数学总复习 第12讲 二次函数的图象与性质 新版 新人教版

2019年中考数学总复习 第12讲 二次函数的图象与性质 新版 新人教版
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时 ,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
当a>0时,抛物 线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
1a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
32 a+b的符号,需判断对称
轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.形中的关系式;
2根据几何图形的关系式确定二次函数解析式;
3利用配方法等确定二次函 数的最值,解决问题
由于 面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.
6.
二次函数与不等式
抛物线y=a x2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.

第12节 二次函数的图象和性质

第12节  二次函数的图象和性质
27-10a a≥5, 综上可得,f(x)min=2-a2 -5≤a<5,
27+10a a<-5.
练习:若函数 f(x)解:=x函2+数afx(+xb)在=x2区+ax间+b[的0图,象1是]上开的口朝最上大且值以直是线Mx=,﹣最为小对值称是轴的m抛,物则线,
解:函数 y=x2+(1﹣a)x+2 的对称轴 x= 又函数在区间(﹣∞,4]上是减函 数,可得 ≥4,,得 a≥9. 故选 A.
典例分析:
(3)如果函数 f(x)=ax2+2x﹣3 在区间(﹣∞,4)上是单调递增的,则实数 a
的取值范围是( )
A.(- 1,+) 4
B.[- 1 ,+) 4
C.[- 1 ,0) 4
典例分析:
例 4:(1)已知函数 f(x)=mx2﹣mx﹣1,对一切实数 x,f(x)<0 恒成立,则
m 的范围为( )
A.(﹣4,0)
解:当 m=0 时,代B.入(得﹣f(4x),=0﹣]1<0 恒成立;
当 m≠0 时,由 f(x)<0 恒成立,
C.(﹣∞,﹣4)∪得(到0m,<+0,∞且)△=D(.﹣(m﹣)2∞﹣4,×m﹣(4﹣)1)∪=[m02+,4m+<∞0,)
∴(x﹣a)(1﹣x﹣a)<1,
D.﹣
即 a2﹣a﹣1<x2﹣x.
令 t=x2﹣x,只要 a2﹣a﹣1<tmin.
t=x2﹣x=
,当 x∈R,t≥﹣ .
∴a2﹣a﹣1<﹣ ,即 4a2﹣4a﹣3<0,
解得:﹣

故选:C.
练习:若函数 f(x)=x2﹣4x+a 对于一切 x∈[0,1]时,恒有 f(x)≥0 成立, 则实数 a 的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(﹣∞,3] D.(﹣∞,3)

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材

2019年中考数学第三章函数及其图象3.4.1二次函数的图象与性质(讲解部分)素材

b a
>0,对称轴在

轴������������ 左侧 ;
) 程为


������������ -
b 2a
b a
<0,对称轴在

轴������������ 右侧
c = 0,抛物线过������������ 原点 ;
决定抛 轴;
交点的位置
c<0,抛物线与 y 轴交于负半轴
考点 2 二次函数与一元二次方程之间的联系
在二次函数 y = ax2 +bx+c( a≠0) 中,当 y = 0 时,x 的取值就 是一元二次方程 ax2 +bx+c = 0 的解,即 y = ax2 +bx+c 与 x 轴交点 的横坐标就是一元二次方程 ax2 +bx+c = 0 的根.
式:y = a( x-h) 2 +k( a≠0) ,其中顶点坐标为( h,k) ,对称轴为直
线 x = h;
(3)若已知抛物线与 x 轴的交点的坐标,则可设解析式为 y
= a(x-x1) ( x -x2 ) ( a≠0),其中与 x 轴的交点坐标为( x1,0), ( x2 ,0) .
例 3 (2017 广西百色,17,3 分) 经过 A( 4,0) ,B( - 2,0) ,
68
考点 1 二次函数的图象与性质
1.概念:一般地,形如① y = ax2 +bx+c ( a≠0,a,b,c 为常数) 的函数叫做二次函数.
2.二次函数的图象与性质
函数
y = ax2 +bx+c( a≠0)
a>0
a<0
图象
开口方向 对称轴
顶点坐标
② 开口向上
③ 开口向下
④ 直线

(2) 在这 30 天内,哪一天的利润是 6 300 元?

2019届冀教版中考《第12讲二次函数的图象与性质》知识梳理

2019届冀教版中考《第12讲二次函数的图象与性质》知识梳理

第12讲二次函数的图象与性质值大小的方法:①直接代yc22,1.轴上方的部分点的纵坐ax bx2019-2020学年数学中考模拟试卷一、选择题1.在1x ,12,212x +,3xy π,3x y +,1a m +中分式的个数有()A .2 个B .3 个C .4 个D .5 个2.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是( ) A .1m =B .1m >C .1m ≥D .1m ≤3.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.014.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A.B.C.D.5.将抛物线y =x 2﹣2x+3向上平移1个单位,平移后所得的抛物线的表达式为( ) A .y =x 2﹣2x+4B .y =x 2﹣2x+2C .y =x 2﹣3x+3D .y =x 2﹣x+36.下列命题是真命题的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .对角线互相垂直平分的四边形是正方形 D .对角线互相平分的四边形是平行四边形7.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .2458.小明沿着坡角为45°的坡面向下走了5米,那么他竖直方向下降的高度为( )A.1米B.2米C.米9.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为 (,M 是圆上一点,∠BMO=120°.⊙C 的圆心C 的坐标是( )A .1)22B .1()22- C .1()22-D .1()22-- 10.如图,矩形ABCD 中,AB 2=,AD 3=,点E 、F 、G 、H 分别是矩形AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长为( )A .10B .5C D .11.下列事件属于必然事件的是( ) A .明天我市最高气温为56℃B .下雨后有彩虹C .在1个标准大气压下,水加热到100℃沸腾D .中秋节晚上能看到月亮12.某校九年级3月份中考模拟总分760分以上有300人,同学们在老师们的高效复习指导下,复习效果显著,在4月份中考模拟总分760分以上人数比3月份增长5%,且5,6月份的760分以上的人数按相同的百分率x 继续上升,则6月份该校760分以上的学生人数( ). A .()()30015%12x ++人 B .()()230015%1x ++人 C .()()3005%3002++人 D .()30015%2x ++人二、填空题13.如图,矩形ABOC 的面积为3,反比例函数y =kx的图象过点A ,则k =( )A .3B .﹣1.5C .﹣3D .﹣614.抛物线 221y x =-的顶点坐标是________.15.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E.当△A′EF 为直角三角形时,AB 的长为_____.16.分解因式:8a 3﹣2a =_____.17.把多项式224m n -因式分解的结果是______. 18x 的取值范围为_____. 三、解答题19.我市今年中考体育测试,男生必考项目是1000米跑,男生还须从以下六个项目中任选两个项目进行考核:①坐位体前屈、②立定跳远、③掷实心球、④跳绳、⑤50m 、⑥引体向上. (1)男生在确定体育选项中所有可能选择的结果有 种;(2)已知某班男生只在①坐位体前屈、②立定跳远、④跳绳中任选两项,请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.20.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表: 根据以上信息,回答下列问题: (1)m = ;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是 (填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.21.如图,在平面直角坐标系中,△ABC 的三个顶点为:A (1,1),B (4,4),C (5,1). (1)若△ABC 和△A 1B 1C 1关于原点O 成中心对称图形,画出△A 1B 1C 1;(2)在x 轴上存在一点P ,满足点P 到点B 1与点C 1距离之和最小,请直接写出PB 1+PC 1的最小值为 .22.如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.(1)当3x =时,求区域Ⅱ的面积. (2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________.23.为如图,已知女排球场的长度OD 为18米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系. (1)若排球运行的最大高度为2.8米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由;(3)若李明同学发球要想过网,又使排球不会出界(排球压线属于没出界)求二次函数中二次项系数的最大值.24.如图是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______; (2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分): 七年级:89,92,92,92,93,95,95,96,98,98 八年级:88,93,93,93,94,94,95,95,97,98 整理得到如下统计表根据以上信息,完成下列问题(1)填空:a = ;m = ;n = ; (2)两个年级中, 年级成绩更稳定;(3)七年级两名最高分选手分别记为:A 1,A 2,八年级第一、第二名选手分别记为B 1,B 2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】*** 一、选择题二、填空题13.-314.(0,-1)15. 416.2a(2a+1)(2a﹣1)17.(2m+n)(2m-n)18.x≥﹣1且x≠2.三、解答题19.(1)30;(2)16.【解析】【分析】(1)画树状图可得所有等可能结果;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(1)根据题意画图如下:一共有30种不同的情况,故答案为:30;(2)画树状图如下:由树状图知,共有18种等可能结果,其中两名男生在体育测试中所选项目完全相同的有3种结果,所以两名男生在体育测试中所选项目完全相同的概率为31 186.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)96.5;(2)王;(3)140人.【解析】【分析】(1)根据中位数的定义即可解决问题;(2)利用中位数的性质即可判断;(3)首先确定甲校的96分以上人数为206120⨯=人,再求出乙校的96分以上的人数即可. 【详解】解:(1)中位数96.596.596.52+==,故答案为96.5.(2)根据中位数即可判断,甲校的王老师成绩在各自学校参与测试老师中成绩的名次相比较更靠前.故答案为王.(3)甲校的96分以上人数为206120⨯=人,所以乙校的96分以上的人数为2120100140⨯-=人.【点睛】本题考查了用样本估计总体,中位数,平均数,众数等,理解题意,灵活运用所学知识解决问题是解题关键.21.(1)见解析;(2【解析】【分析】(1)分别作出三角形ABC三顶点关于原点的对称点,再顺次连接即可得;(2)作点C1关于x轴的对称点C′,连接B1C′与x轴的交点即为所求点P,继而利用勾股定理求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,PB1+PC1.【点睛】本题主要考查作图﹣旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点.22.(1)8m2;(2)68m2;(3) 40,8【解析】【分析】(1)根据中心对称图形性质和,OP AB ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8. 【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB ,∴142OM AB == ∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯= (2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=-∴I IIII I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭,∵04OP <<,06OQ <≤,1968II S ≤⨯ ∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小. ∴当2x =时, III S 取得最大值为()2242627268m-⨯+⨯+=(3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8. 【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积. 23.(1)p =145 (x ﹣6)2+2.8;(2)见解析;(3)154-. 【解析】 【分析】(1)利用抛物线的顶点坐标为(6,2.8),将点(0,2)代入解析式求出即可 (2)利用当x =9时,x =18时,分别求出p 值即可判断(3)设抛物线的解析式为:p=a(x﹣6)2+h,将点C代入,此时抛物线的解析式为p=a(x﹣6)2+2﹣36a,再根据x=9时,p>2.24,当x=18时,p≤0,即可得a的范围,从而取得最大值.【详解】解:(1)由排球运行的最大高度为28米,则顶点的坐标点G为(6,2.8),则设抛物线的解析式为p=a(x ﹣6)2+2.8∵点C坐标为(0,2),点C在抛物线上∴2=a(0﹣6)2+2.8解得a=﹣1 45∴p=-145(x﹣6)2+2.8则排球飞行的高度p(单位:米)与水平距离x(单位:米)之间的函数关系式:p=-145(x﹣6)2+2.8(2)当x=9时,p=-145(9﹣6)2+2.8=2.6>2.24当x=18时,p=-145(18﹣6)2+2.8=﹣0.4<0故这次发球可以过网且不出边界(3)设抛物线的解析式为:p=a(x﹣6)2+h,将点C代入得:36a+h=2,即h=2﹣36a∴此时抛物线的解析式为p=a(x﹣6)2+2﹣36a根据题意,不过边界时有:a(18﹣6)2+2﹣36a≤0,解得a≤-1 54要使网球过网:a(9﹣6)2+2﹣36a≥2.24,解得a≤2 225故李明同学发球要想过网,又使排球不会出界(排球压线属于没出界)二次函数中二次项系数的最大值为154【点睛】本题考查了二次函数的性质在实际生活中的应用.可根据二次函数的解析式的最值作为临界值来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.24.(1)逐渐变短;(2)详见解析;(3)16 7【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA并延长交直线BO于点E,则线段BE即为小亮站在AB处的影子(3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴1.6 1.6,4.2 1.6 AB BEOP OE x==+即∴x=5.8米当OD=6米时,设小亮的影长是y米,∴DF CD DF OD OP=+∴1.6 6 5.8 yy=+y=167(米)即小亮的影长是167米。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的图像与性质课件

二次函数的图像与性质课件

一阶导数等于零的点是函数的拐点,也是单调性的分界点。通过分析这
些点的左右两侧的导数符号变化,可以判断出函数的单调性。
二次函数的极值问题
极值的概念
01
02
03
极值
函数在某点的值大于或小 于其邻近点的值,称为该 函数在该点有极值。
极大值
函数在某点的左侧递减, 右侧递增,则该点为极大 值点。
极小值
函数在某点的左侧递增, 右侧递减,则该点为极小 值点。
顶点坐标
总结词
顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点坐标可以通过公式计算得出,顶点的x坐标为-b/2a,y坐标为cb^2/4a。这个顶点是抛物线的最低点或最高点,取决于抛物线的开口方向。
对称轴
总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是抛物线的对称轴,也是顶点的x 坐标。
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于x轴对称当且仅当$a > 0$,关于y轴对称当且仅当 $a < 0$。
点对称
总结词
二次函数的图像关于某点对称。
详细描述
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于点$(h, k)$对称当且仅当 $f(h+x) = f(h-x)$且$f(k+y) = f(k-y)$。
解方程问题
总结词
通过二次函数的图像与x轴的交点,可以求 解一元二次方程的根。
详细描述
一元二次方程的根即为二次函数图像与x轴 的交点横坐标。通过观察二次函数的开口方 向和与x轴的交点数,可以判断一元二次方 程实数根的个数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档