高三第一轮复习:《立体几何》综合检测试题

合集下载

高考数学一轮复习立体几何多选题测试试题及答案

高考数学一轮复习立体几何多选题测试试题及答案

高考数学一轮复习立体几何多选题测试试题及答案一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出6r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.4.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径2r =≥=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.5.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.6.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F ∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.7.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为24【答案】CD 【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为2. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =,又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=,故D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=,所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积1111336M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.10.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 6【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62.【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题1.空间中,用a,b,c表示三条不同的直线,γ表示平面,则下列说法正确的有()A.若a∥b,b∥c,则a∥cB.若a⊥γ,b⊥γ,则a∥bC.若a∥γ,b∥γ,则a∥bD.若a⊥b,b⊥c,则a⊥c答案AB解析根据空间平行直线的传递性可知A正确;由直线与平面垂直的性质定理知B正确;若a∥γ,b∥γ,则a,b可能平行、相交或异面,故C错误;若a⊥b,b⊥c,则a,c可能相交、平行或异面,故D错误.2.对于两条不同直线m,n和两个不同平面α,β,下列选项正确的为()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α⊥β,则m⊥n或m∥nC.若m∥α,α∥β,则m∥β或m⊂βD.若m⊥α,m⊥n,则n∥α或n⊂α答案ACD解析对A,令m,n分别为直线m,n的方向向量,因为m⊥α,n⊥β,所以m⊥α,n⊥β,又α⊥β,所以m⊥n,即m⊥n,所以选项A正确;对B,如图所示,在正方体ABCD-A1B1C1D1中,令平面ABCD为平面α,平面ABB1A1为平面β,直线A1C1为m,直线C1D为n,满足α⊥β,m∥α,n∥β,但m与n既不平行也不垂直,所以选项B错误;对C,若m⊄β,过m作一平面γ分别与平面α和平面β相交,且交线分别为a,b,则m∥a,a∥b,所以m∥b,所以m∥β;若m⊂β,符合题意,所以选项C 正确;对D,若n⊂α,符合题意;若n⊄α,过直线n作一平面β与平面α相交,设交线为b,因为b⊂α,m⊥α,所以m⊥b,又m⊥n,且n,b在同一平面内,所以n∥b,所以n∥α,所以选项D正确.综上,选ACD.3.如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CDB.CH∥BEC.DG⊥BHD.BG⊥DE答案BCD解析由正方体的平面展开图还原正方体如图,连接AH,DE,BG,BH,DG,HC.由图形可知,AE⊥CD,故A错误;因为HE∥BC,HE=BC,所以四边形BCHE为平行四边形,所以CH∥BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,HC,BC⊂平面BHC,所以DG⊥平面BHC,又BH⊂平面BHC,所以DG⊥BH,故C正确;因为BG∥AH,而DE⊥AH,所以BG⊥DE,故D正确.故选BCD.4.用一个平面截正方体,所得的截面不可能是()A.锐角三角形B.直角梯形C.有一个内角为75°的菱形D.正五边形答案BCD解析对于A,如图1,截面的形状可能是正三角形,故A可能;图1图2对于B,首先考虑平面截正方体得到的截面为梯形,且QR与AA1不平行,如图2所示,不妨假设PQ⊥QR,因为AA1⊥平面A1B1C1D1,PQ⊂平面A1B1C1D1,所以AA1⊥PQ,从而有PQ⊥平面A1ABB1,这是不可能的,故B不可能;对于C,当平面截正方体得到的截面为菱形(非正方形)时,只有如下情形,如图3,其中P,R为所在棱的中点,易知当菱形为PBRD1时,菱形中的锐角取得最小值,即∠PD1R最小.设正方体的棱长为2,则PD1=RD1=5,PR=22,则由余弦定理,得cos∠PD1R=PD21+RD21-PR22PD1·RD1=5+5-82×5×5=15<6-24=cos 75°,所以∠PD1R>75°,故C不可能;图3对于D,假设截面是正五边形,则截面中的截线必然分别在5个面内,由于正方体有6个面,分成两两平行的三对,故必然有一对平行面中有两条截线,而根据面面平行的性质可知这两条截线互相平行,但正五边形的边中是不可能有平行的边的,故截面的形状不可能是正五边形,故D不可能.综上所述,选BCD.5.已知正方体ABCD-A1B1C1D1的棱长为2,M为AA1的中点,平面α过点D1且与CM垂直,则()A.CM⊥BDB.BD∥平面αC.平面C1BD∥平面αD.平面α截正方体所得的截面图形的面积为9 2答案ABD解析如图,连接AC,则BD⊥AC.因为BD⊥AM,AM∩AC=A,AM,AC⊂平面AMC,所以BD⊥平面AMC,又CM⊂平面AMC,所以BD⊥CM,故A正确;取AD的中点E,连接D1E,DM,由平面几何知识可得D1E⊥DM,又CD⊥D1E,DM∩CD=D,DM,CD⊂平面CDM,所以D1E⊥平面CDM,又CM⊂平面CDM,所以D1E⊥CM.连接B1D1,过点E作EF∥BD,交AB于F,连接B1F,所以CM⊥EF,又D1E∩EF=E,D1E,EF⊂平面D1EFB1,所以CM⊥平面D1EFB1,所以平面α截正方体所得的截面图形即梯形D1EFB1.由EF∥BD,BD⊄平面α,EF⊂平面α,得BD∥平面α,故B正确;连接AB1,AD1,易知平面AB1D1∥平面C1BD,而平面AB1D1∩平面α=B1D1,所以平面C1BD与平面α不平行,故C不正确;截面图形为等腰梯形D1EFB1,EF=2,B1D1=22,D1E=B1F=5,所以截面图形的面积S=12×(2+22)×(5)2-⎝⎛⎭⎪⎫22-222=92,故D正确.6.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则()A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形答案BCD解析对于选项A,如图,连接NC,PC,则A,N,C三点共线.又M为AP的中点,N为AC的中点,所以CM与PN共面,故A错误;对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以AC>AP.在△MAC中,CM2=AC2+AM2-2AC·AM cos∠MAC=AC2+14AP2-AC·AP·cos∠MAC.在△PAN中,PN2=AP2+AN2-2AP·AN cos∠PAN=AP2+1 4AC 2-AP ·AC cos ∠PAN ,则CM 2-PN 2=34(AC 2-AP 2)>0,所以CM >PN ,故B 正确;对于选项C ,在正方体ABCD-A 1B 1C 1D 1中,易知AC ⊥平面BDD 1B 1,即AN ⊥平面BDD 1B 1,又AN ⊂平面PAN ,所以平面PAN ⊥平面BDD 1B 1,故C 正确; 对于选项D ,连接A 1C 1,在平面A 1B 1C 1D 1内作PK ∥A 1C 1,交C 1D 1于K ,连接KC .在正方体中,A 1C 1∥AC ,所以PK ∥AC ,PK ,AC 共面,所以四边形PKCA 就是过P ,A ,C 三点的正方体的截面,AA 1=CC 1,A 1P =C 1K ,所以AP =CK ,即梯形PKCA 为等腰梯形,故D 正确.故选BCD.7.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是( )A.直线PB 1∥平面BC 1DB.三棱锥P-BC 1D 的体积为13C.三棱锥D 1-BC 1D 外接球的表面积为3π2D.直线PB 1与平面BCC 1B 1所成角的正弦值的最大值为53 答案 ABD解析 对于A 选项,连接B 1D 1,AB 1,根据正四棱柱的性质可知AD 1∥BC 1,BD ∥B 1D 1,因为BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,同理得BD ∥平面AB 1D 1,又BC 1∩BD =B ,所以平面AB 1D 1∥平面BC 1D ,又PB 1⊂平面AB 1D 1,所以PB 1∥平面BC 1D ,所以A 选项正确;对于B 选项,易知AD 1∥平面BC 1D ,所以V P-BC 1D =V A-BC 1D =V C 1-ABD =13×12×1×1×2=13,所以B 选项正确;对于C 选项,三棱锥D 1-BC 1D 的外接球即正四棱柱ABCD-A 1B 1C 1D 1的外接球.设外接球的半径为R ,则4R 2=12+12+22=6,所以外接球的表面积为4πR 2=6π,所以C 选项错误;对于D 选项,过P 作PE ∥AB ,交BC 1于点E ,则PE ⊥平面BCC 1B 1,连接B 1E ,则∠PB 1E 即直线PB 1与平面BCC 1B 1所成的角,当B 1E 最小时,∠PB 1E 最大,此时B 1E ⊥BC 1,由等面积法得S △BB 1C 1=12BC 1·B 1E =12BB 1·B 1C 1,解得B 1E =25,在Rt △PB 1E 中,PE =AB =1,所以PB 1=12+⎝ ⎛⎭⎪⎫252=35,所以∠PB 1E 的正弦值的最大值为PE PB 1=53,所以D 选项正确.故选ABD.8.如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体ABCD-A1B1C1D1所得的截面的面积为9 2D.点A1和点D到平面AEF的距离相等答案BCD解析对于选项A,假设AF与D1D垂直,又D1D⊥AE,AE∩AF=A,AE,AF⊂平面AEF,所以D1D⊥平面AEF.因为EF⊂平面AEF,所以D1D⊥EF,这显然是错误的,所以假设不成立,故A错误;图1对于选项B,取B1C1的中点N,连接A1N,GN,如图1所示,易知A1N∥AE,又AE⊂平面AEF,A1N⊄平面AEF,所以A1N∥平面AEF.因为GN∥EF,EF⊂平面AEF,GN⊄平面AEF,所以GN∥平面AEF.又A1N,GN⊂平面A1GN,A1N∩GN=N,所以平面A1GN∥平面AEF.因为A1G⊂平面A1GN,所以A1G∥平面AEF,故B正确;对于选项C,连接AD1,FD1,如图2所示,因为AD1∥EF,所以四边形AD1FE 为平面AEF截正方体ABCD-A1B1C1D1所得的截面,又AD1=22+22=22,图2EF =12+12=2,D 1F =AE =12+22=5,所以四边形AD 1FE 为等腰梯形, 高为(5)2-⎝ ⎛⎭⎪⎫222=322,则S 梯形AD 1FE =12×(2+22)×322=92,故C 正确;对于选项D ,连接A 1D ,如图2所示,由选项C 可知A 1D 与平面AEF 相交且交点为A 1D 的中点,所以点A 1和点D 到平面AEF 的距离相等,故D 正确.综上,选BCD.9.已知棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M 是B 1C 1的中点,点P 在正方体的表面上运动,且总满足MP ⊥MC ,则下列结论中正确的是( ) A.点P 的轨迹中包含AA 1的中点B.点P 在侧面AA 1D 1D 内的轨迹的长为5a4 C.MP 长度的最大值为21a4D.直线CC 1与直线MP 所成角的余弦值的最大值为55 答案 BCD解析 如图,取A 1D 1的中点E ,分别取A 1A ,B 1B 上靠近A 1,B 1的四等分点F ,G ,连接EM ,EF ,FG ,MG ,易知EM ∥FG 且EM =FG ,所以E ,M ,F ,G 四点共面.连接GC ,因为MG 2=⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫a 42=5a 216,MC 2=⎝ ⎛⎭⎪⎫a 22+a 2=5a 24,GC 2=⎝ ⎛⎭⎪⎫3a 42+a 2=25a 216,因此MG 2+MC 2=GC 2,所以MG ⊥MC ,易知ME ⊥MC ,又MG ∩ME =M ,MG ,ME ⊂平面MEFG ,所以MC ⊥平面MEFG ,即点P 的轨迹为四边形MEFG (不含点M ),易知点P 在侧面AA 1D 1D 内的轨迹为EF ,且EF =MG =5a4,所以A 选项错误,B 选项正确;根据点P 的轨迹可知,当P 与F 重合时,MP 最长,易知FG ⊥平面BB 1C 1C ,则FG ⊥MG ,连接MF ,所以MF =a 2+5a 216=21a4,故C 选项正确;由于点P 的轨迹为四边形MEFG (不含点M ),所以直线CC 1与直线MP 所成的最小角就是直线CC 1与平面MEFG 所成的角,又向量CC 1→与平面MEFG 的法向量CM →的夹角等于∠C 1CM ,且sin ∠C 1CM =a25a 2=55,所以直线CC 1与平面MEFG 所成角的余弦值为55,即直线CC 1与直线MP 所成角的余弦值的最大值等于55,故D 选项正确.10.如图,长方体ABCD-A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N ,则( )A.截面α可能为六边形B.存在点N,使得BN⊥截面αC.若截面α为平行四边形,则1≤CN≤2D.当N与C重合时,截面图形的面积为36 4答案CD解析设N0为棱CC1的中点,当N从C1移动到C时,其过程中存在以下几种情况,如图1,当点N在线段C1N0上时,截面α为平行四边形;当点N在线段N0C上(不包括点N0,C)时,截面α为五边形;当点N与点C重合时,截面α为梯形.图1图2由以上分析可知,对于A,截面α不可能为六边形,所以A错误;对于B,假设BN⊥截面α,因为B1M⊂α,所以BN⊥B1M,所以必有点N,C重合,而BC与平面B1CQM不垂直,所以B错误;对于C,当截面α为平行四边形时,点N在线段C1N0上,则1≤CN≤2,所以C 正确;对于D,当点N与点C重合时,截面α为梯形,如图2,过M作MM′⊥B1C,垂足为M′.设梯形的高为h,B1M′=x,则在Rt△B1MM′中,由勾股定理,得h2=(2)2-x2,①同理h 2=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫52-x 2,② 由①②,解得x =255,h =65,所以截面α的面积等于12×⎝⎛⎭⎪⎫5+52·h =12×352×65=364,所以D 正确. 综上可知,选CD.。

江苏省高三数学一轮复习备考试题:立体几何(含答案)

江苏省高三数学一轮复习备考试题:立体几何(含答案)

高考一轮复习备考试题(附参考答案)立体几何一、填空题1、(2014年江苏高考)设甲、乙两个圆柱的底面积分别为21S ,S ,体积分别为21V ,V ,若它们的侧面积相等,49S S 21=,则=21V V▲ . 2、(2013年江苏高考)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V 。

3、(2012年江苏高考)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 ▲ cm 3.4、(2015届江苏南京高三9月调研)已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是 ▲5、(2015届江苏南通市直中学高三9月调研)如图,各条棱长均为2的正三棱柱111ABC A B C -中,M 为11A C 的中点,则三棱锥1M AB C -的体积为 ▲6、(2015届江苏苏州高三9月调研)若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为1S 、2,S 则有12:S S = ▲7、(南京市2014届高三第三次模拟)已知m ,n 是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m ⊥α,则m ∥β; ②若m ⊥α,m ⊥β,则α∥β; ③若m ∥α,m ⊥n ,则n ⊥α; ④若m ∥α,m ⊂β,则α∥β.其中所有真命题的序号是 ▲8、(苏锡常镇四市2014届高三5月调研(二))已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥C - ABD 的体积为 ▲ 9、(徐州市2014届高三第三次模拟)已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为 ▲ 10、(南京、盐城市2014届高三第二次模拟(淮安三模))表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲二、解答题1、(2014年江苏高考)如图,在三棱锥P ABC 中,D,E,F 分别为棱PC,AC,AB 的中点。

高考数学一轮复习立体几何多选题测试试题附解析

高考数学一轮复习立体几何多选题测试试题附解析

高考数学一轮复习立体几何多选题测试试题附解析一、立体几何多选题1.在正三棱柱111ABC A B C -中,AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+-B .三棱锥11D ABC -的体积为6C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为AD ===11111122DB C S BB B C =⨯⨯=,所以1111111133226D AB C A DB C DB C V V AD S --==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.2.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =1122B D =2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.3.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短,即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.4.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD 【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI 10,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅=. 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时22133532D N ⎛⎫=+= ⎪⎝⎭,223110EF =+=,故梯形1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,其长度为10,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅=,故D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD选项,通过//BM平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD 的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即2=6OF AO =,所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:,A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,0,,333AP x y AC →→⎛⎛=-=- ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以241392y +=,即222388=333y x y +++,平方化简可得:2232340039y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 15【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 55111222DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为155,故D 正确;故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为355B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积111212336M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF⊥平面EABB.该二十四等边体的体积为20 3C.该二十四等边体外接球的表面积为8πD.PN与平面EBFN2【答案】BCD【分析】A用反证法判断;B先补齐八个角成正方体,再计算体积判断;C先找到球心与半径,再计算表面积判断;D先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A,假设A对,即BF⊥平面EAB,于是BF AB⊥,90ABF∠=︒,但六边形ABFPQH为正六边形,120ABF∠=︒,矛盾,所以A错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为222PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

(完整版)高三数学立体几何复习测试题含答案

(完整版)高三数学立体几何复习测试题含答案

高三数学立体几何复习一、填空题1. 分别在两个平行平面内的两条直线间的地址关系不可以能为.... ①平行 ②订交③异面④垂直【答案】②【剖析】两平行平面没有公共点,因此两直线没有公共点,因此两直线不可以能订交2.已知圆锥的母线长为 8,底面周长为 6π,则它的体积为【答案】 3 55【剖析】设底面半径为r, 2 r 6 , r 3 , 设圆锥的高为 h ,那么 h823255 ,那么圆锥的体积 V1 r2 h 1 955 3 55 ,故填: 3 55 .3 33.已知平面/ / 平面 , P且 P ,试过点 P 的直线 m 与 , 分别交于 A , C ,过点 P 的直线 n 与 ,分别交于 B , D 且 PA6 , AC9, PD 8 ,则 BD 的长为 ___________.【答案】24 或 245【剖析】 第一种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交,那么它们的交线相互平行 . ”因此 AB / /CD ,设 BD x ,依照平行线分线段成比率,有6 8x, x249 x5第二种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交, 那么它们的交线相互平行. ”因此 AB / /CD ,设 BDx ,依照平行线分线段成比率,有PBA DCB A6X8, x 24 .384.半径为 R 的球 O 中有一内接圆柱,当圆柱的侧面积最大时,圆柱的侧面积与球的表面积之比是 ____________.【答案】 1: 2PCDr 2h2rhr2h 2h时取等号,【剖析】 R2,圆柱的侧面积2 rh 44 242 R 2,当且仅当 r42 2此时圆柱的侧面积与球的表面积之比为 2 R 2 : 4 R 2 1: 25.以下列图, G 、N 、M 、 H 分别是正三棱柱(两底面为正三角形的直棱柱)的极点或所在棱的中点,则表示直线 GH 、MN 是异面直线的图形有 ____________(填上所有正确答案的序号) .【答案】②④【剖析】由题意得,可知( 1)中,直线 GH // MN ;图( 2)中,G , H , N 三点共面,但M 面 GHN ,因此直线 GH 与 MN 异面;图( 3)中,连接 MG , GM // HN ,因此 GH 与MNG ,因此直线 GH 与 MN 共面;图( 4)中, G , M , N 共面,但 H面 GHN ,因此直线 GH 与 MN试卷第 1 页,总 9 页异面.6.已知 m, n 为直线,,m, n // ;②为空间的两个平面,给出下列命题:①m nm m mn,,m // n .其中的正确命题为, m // n ;③// ;④.m n//【答案】③④【剖析】关于① , 也会有n的结论 , 因此不正确;关于②, 也会有m, n异面的可能的结论, 因此不正确;简单考据关于③④都是正确的, 故应填答案③④ .7.设 a,b 是两条不同样的直线, , 是两个不同样的平面,则以下四个命题①若a b, a,b则,②若 a b, a则 b / /,③若 a,,则 a / /④若a / /, a,则其中正确的命题序号是.【答案】①④【剖析】① a b ,不如设a, b订交(如异面平移到订交地址),确定一个平面,设平面与平面的交线为 c ,则由 b,得 b c ,从而 a // c ,于是有 c,因此,①正确;②若a b, a,b 可能在内,②错;③若 a,, a 可能在内,③错;④若 a / / ,则由线面平行的性质定理,在内有直线 b 与a平行,又a,则 b,从而,④正确.故答案为①④.8.已知三棱锥 P ABC 的所有极点都在球 O 的球面上,ABC 是边长为1的正三角形,PC 为球 O 的直径,该三棱锥的体积为2,则球 O 的表面积为__________.6【答案】4【剖析】设 ABC 的中心为O1,由题意得 S ABC3212OO1SABC OO12, 因此球O的;6334半径 R 满足R2OO12( 3)2211,球O的表面积为 4R2 4 .3339.以下列图 ,在直三棱柱 ABC A1 B1C1中, AB BC CC11,AB BC, E 为CC1的中点,则三棱锥 C1ABE 的体积是.【答案】112【剖析】由于 E 是 CC1中点,因此 V C ABE 1V C ABC11(11 1)11.1212321210. 以下列图,在直三棱柱ABC A1 B1C1中,ACB90 , AA12, AC BC1 ,则异面直线A1 B 与AC所成角的余弦值是.【答案】66【剖析】由于AC / / A1C1,因此BA1C1(或其补角)就是所求异面直线所成的角,在 BA1C1中,A1 B6 ,A1C11, BC15, cos BAC11615 6 .261611.如图,在棱长为 1 的正方体ABCD - A1B1C1D1中,M , N分别是BB1, BC的中点,则图中阴影部分在平面 ADA1D1上的投影的面积为.【答案】1 8【剖析】图中点 M 在平面的投影是AA1的中点,点N在平面的投影是AD 的中点,点 D 的投影还是点 D ,连接三点的三角形的面积是1111,故填: 1 .2228812. 如图 , 正方体ABCD A1 B1C1D1中 ,AB 2 ,点 E 为 AD 的中点,点 F 在D F CECD 上,若 EF // 平面AB1C,则 EF________.A B【答案】 EF2D 1C1【剖析】依照题意,由于 EF // 平面AB1C ,因此EF // AC.又由于点E是AD中A1B1点,因此点 F 是 CD 中点.由于在 Rt DEF 中, DE DF 1,故EF2.13. 在棱长为 1 的正方体ABCD A B C D 中, E 为 AB 的中点,在面ABCD11111D 1C1中取一点 F ,使 EF FC1最小,则最小值为__________.A 1B 1【答案】142D E C 【剖析】如图,将正方体ABCD A1B1C1D1关于面ABCD对称,则 EC1就是所A BD1C1A1N B132114 .求的最小值, EC1EN 2NC121242D1C1 14.点 M 是棱长为3 2 的正方体ABCD A1B1C1D1的内切球 O球面上的动 A 1NB1点,点 N 为B1C1上一点,2NB1NC1, DM BN ,则动点M的轨迹的长度为 __________ .DM C【答案】310A B 5【剖析】由于DM BN ,因此 M 在过 D 且垂直于 BN 的平面上,以以下列图( 1 ),取BS 1SB1,2AT 1TA1,则BN平面 DTSC ,因此 M 在一个圆周上,如图以下列图(2),正方体的中心O 到该平面的2距离即为 O1F,在直角三角形 O1FC中, O1F O1C sin O1CF 3sin O1CF ,而111,故 sin5 3 5tan O CF tan BCS3O1CF,O1 F, M 所在的圆周的半径1411255322为 3 2353 30,故其轨迹的长度为 3 1025105D 1C 1B1C1NA 1NB 1O1OD STM S CA B图( 1)二、解答题FB C图( 2)15.如图,四棱锥P ABCD 中,底面 ABCD 为平行四边形,DAB60o,AB 2 AD , PD底面ABCD .( 1)证明:PA BD ;( 2)设PD AD 2 ,求点 D 到面 PBC 的距离.解析:( 1 )证明:因为DAB60o,AB2AD ,由余弦定理得BD3AD .从而BD2AD 2AB2,∴ BD AD ,又由 PD 底面EABCD , BD面 ABCD ,可得 BDPD . ∴ BD 面 PAD , PA面 PAD ,∴ PABD .( 2)法 1:在平面 PDB 内作 DEPB ,垂足为 E . ∵ PD 底面 ABCD ,BC 面 ABCD ,∴ PD BC ,由( 1 )知 BDAD ,又 BC / / AD ,∴ BC BD ,又 AD I BD D , . ∴ BC 平面 PBD ,又AD I BD D ∴ BC DE . 则 DE 平面 PBC . 由题设知, PD 2 ,则 BD2 3 , PB 4,依照DE gPB PD gBD ,得 DE3 ,即点 D 到面 PBC 的距离为3 .法2 : 设 点 D到平 面 PBC 的 距 离 为 d , 由 ( 1 ) 得 BD AD , ∴ AB4 ,V P BCD1V PABCD 11S Y ABCD PD1 2 43 24 3 , 又 V 1 S PBCd , 由2236 23 P BCD 3PD 底 面ABCD , BD 面 ABCD , DC面 ABCD ,PBD , PCD 为 Rt, ∴PCPD 2 CD 22 5 , PBPD 2CD 2 4 , 又 BCAD2 , ∴PBC 为 Rt且SPBC1 2 44 ,∴ d3 .216. 已知直角梯形 ABCD 中, AB / /CD , AB AD , CD2, AD2 , AB 1 ,如图 1所示,将ABD 沿 BD 折起到 PBD 的地址,如图2 所示 .( 1)当平面 PBD平面 PBC 时,求三棱锥 P BCD 的体积;( 2)在图 2 中, E 为 PC 的中点,若线段BQ / /CD ,且 EQ / / 平面 PBD ,求线段 BQ 的长;剖析 :( 1)当平面PBD 平面 PBC 时,由于 PB PD ,且平面 PBD I 平面 PBCPB , PD平面PBD ,因此 PD平面 PBC ,由于 PC 平面 PBC ,因此 PD PC . 由于在直角梯形ABCD 中,AB / /CD , AB AD , CD 2 , AD 2 , AB 1 , 所 以 BD BC3 , DP2 . 所 以CPCD 2 PD 22 . 又 因 为 BP1 , 所 以 BP 2CP 2 BC 2 , 所 以 BPCP . 所 以S PBC1PB PC2. 因此三棱锥PBCD 的体积等于VD PBC1S PBCgPD1221.223323(2)取 PD 的中点 F ,连接 EF , BF ,如上图所示 . 又由于 E 为 PC 的中点,因此EF / /CD ,且EF1CD . 又由于 BQ / /CD ,因此 EF / / BQ . 因此 B , F , E , Q 共面 .2因 为 EQ / / 平 面 PBD , EQ平 面 BFEQ , 且 平 面 BFEQ I 平 面试卷第 5 页,总 9 页PBD BF , 所 以 EQ / / FB . 又 因 为 EF / / BQ , 所 以 四 边 形 BFEQ 是 平 行 四 边 形 . 所 以 BQEF1CD 1 .2ACDF 所在平面与梯形BCDE 所在平面垂直,且BC 2DE , DE / / BC ,17. 如图几何体中,矩形BD AD , M 为 AB 的中点 .( 1)证明: EM / / 平面 ACDF ; ( 2)证明: BD 平面 ACDF .剖析 :( 1)法 1:延长 BE 交 CD 与 G ,连接 AG ,∵ E, M 为中点,∴EM // AG , EM 平面 AFDC , AG 平面 AFDC ,∴ EM / / 面 ACDF .G法 2:如图,取 BC 的中点 N ,连接 MN 、 EN .在 ABC 中, M 为 AB 的中点, N 为 BC 的中点,∴ MN / / AC ,又由于 DE / / BC ,且 DE1 CN ,∴四边形 CDEN 为平行四边形,BC2∴ EN / / DC ,又∵ MN I EN N , AC I CD C . ∴平面 EMN / / 平面 ACDF ,又∵ EM面EMN ,∴ EM / / 面 ACDF .法 3:如图,取 AC 的中点 P ,连接 PM , PD . 在 ABC 中, P 为 AC 的中点, M 为 AB 的中点,∴PM / / BC ,且 PM11BC ,又∵ DE / /BC , DEBC , ∴ PM / / DE ,故四边形 DEMP 为平行四22边形,∴ ME / / DP ,又∵ DP 平面 ACDF , EM平面 ACDF ,∴ EM / / 面 ACDF .( 2)∵平面 ACDF平面 BCDE ,平面 ACDF I平面 BCDEDC ,又 AC DC ,∴ AC平面BCDE ,∴ AC BD ,又 BD AD , BD I ADA ,∴ BD 平面 ACDF .18. 如图,在四棱锥 P - ABCD 中,四边形 ABCD 为矩形, AB ⊥ BP , M 为 AC 的中点, N 为 PD 上一点 .( 1)若 MN ∥平面 ABP ,求证: N 为 PD 的中点;( 2)若平面 ABP ⊥平面 APC ,求证: PC ⊥平面 ABP.【剖析】( 1)连接 BD ,由四边形 ABCD 为矩形得: M 为 AC 和 BD 的中点,∵ MN ∥平面 ABP , MN 平面 BPD ,平面 BPD I 平面 ABP = BP ,∴MN ∥ BP ,∵ M 为 AC 的中点,∴ N 为 PD 的中点 .( 2)在△ ABP 中,过点 B 作 BE ⊥ AP 于 E ,∵平面 ABP ⊥平面 APC ,平面 ABP ∩平面 APC =AP ,BE 平面 ABP , BE ⊥ AP∴ BE ⊥平面 APC ,又 PC 平面 APC ,∴ BE ⊥ PC.∵ ABCD 为矩形,∴ AB ⊥ BC ,又 AB ⊥ BP , BC ∩BP= B ,BC ,BP 平面 BPC ,∴ AB ⊥平面 BPC , ∴AB ⊥PC ,又 BE ⊥ PC , AB 平面 ABP ,BE 平面 ABP ,AB ∩BE =B , ∴ PC ⊥平面 ABPP ABCD∥1 是线段的中点 .19. 如图 ,在四棱锥AB, MPA中,AB DC , AD DC2( 1)求证: DM ∥ 平面 PCB ;( 2)若AD AB ,平面 PAC 平面 PBC ,求证: PA BC .【剖析】(1)如图,取PB中点N , 连接CN , MN . 由于M是线段PA的中点 ,因此 MN∥ AB, MN 1AB , 2因为 DC∥ AB, CD 1CD ,所以四边形 CDFM 为平行四边形,所以AB ,所以 MN∥DC , MN2CN∥DM ,由于 CN平面PCB,DM平面PCB,因此DM∥平面PCB.P( 2)连接AC , 在四边形ABCD中,由于AD AB,CD∥AB ,因此 AD CD ,设MNAD a ,因为 AD DC1AB ,所以 CD a, AB2a ,在ADC中,A2B ADC 90 , AD DC,所以DCA DAC45,从而D CAC2a,CAB45,在ACB中,AB2a, AC2a,CAB45 ,所以BC AC 2AB2 2 AB AC cos CAB2a, 所以AC 2BC 2AB2, 即AC BC .在平面PAC 中,过点 A 作 AE PC ,垂足为 E ,由于平面PAC平面 PBC ,因此 AE平面 PBC ,又由于BC平面 PBC ,因此 AE BC ,由于 AE平面PAC ,AC平面 PAC ,因此BC平面 PAC .因为PA 平面 PAC ,因此 PA BC .20. 如图 , 在直三棱柱ABC A B C 中,ACB 900,E, F ,G 分别是 AA , AC , BB 的中点,且1 1 111CG C1G .(1)求证:CG //平面BEF;( 2)求证:平面BEF平面 AC1 1G .【剖析】证 :( Ⅰ ) 连接AG交BE于D , 连接DF , EG . ∵E,G分别是AA1, BB1的中点,∴ AE ∥BG且 AE =BG,∴四边形AEGB 是矩形.∴D是 AG 的中点,又∵F是AC 的中点,∴ DF ∥CG,则由 DF面 BEF , CG面 BEF ,得CG∥面 BEF( Ⅱ ) ∵在直三棱柱ABC A1 B1C1中, C1C ⊥底面 A1B1C1,∴ C1C ⊥ A1C1.又∵A1C1B1ACB900,即 C1B1⊥ A1C1,∴ A1C1⊥面 B1C1CB ,而CG面 B1C1CB ,∴ A1C1⊥CG,又 CG C1G ,由(Ⅰ)DF∥CG ,AC DF , DF C G DF AC G,Q DF BEF BEF11 1 ,∴平面1 1平面,∴平面平面AC G .1 1三、提高练习21.在三棱锥P ABC 中,AB BC ,AB 6 ,BC 2 3 ,O 为 AC 的中点,过 C 作 BO 的垂线,交 BO 、 AB 分别于 R 、 D ,若DPR CPR ,则三棱锥 P ABC 体积的最大值为 __________.【答案】 3 3【剖析】在 Rt ABC 中, ACB 60,OCB 为等边三角形,DCB 30 ,因此 CD 4 , CR 3 , 因此 DR1,在 PDC 中, DPRCPR ,因此PDDR1 ,以以下列图( 2),设 P x, y , D 0,0 ,PC RC32则 C 4,0 ,从而有 9 x2y2x2y 2,整理获取 x1 y29,故 PCD 的边 CD 上的高424的最大值为3,从而 PABC 体积的最大值为 1 31 2 3 63 323 22PbPAODRCBD R C x图 (1)图( 2)22. 如图,直三棱柱 ABCA 1B 1C 1 中,D 、E 分别是棱 BC 、AB的中点,点F 在棱 CC 1 上,已知AB AC , AA 1 3 ,BC CF2 .( 1)求证: C 1E // 平面 ADF ;( 2)设点 M 在棱 BB 1 上,当 BM 为何值时, 平面 CAM 平面 ADF ?【剖析】( 1)连接 CE 交 AD 于 O ,连接 OF .由于 CE , AD 为ABC 中线,因此 O 为 ABC 的重心,CFCO 2.从而CC 1CE3OF // C 1E . OF 面 ADF , C 1E平面 ADF ,因此 C 1 E // 平面 ADF .( 2)当 BM 1 时,平面 CAM 平面 ADF .在直三棱柱ABC A 1 B 1C 1 中,由于 B 1 B 平面 ABC , B 1B 平面 B 1BCC 1 ,因此平面 B 1BCC 1 平面 ABC .由于 ABAC , D 是 BC 中点,因此 AD BC .又平面 B 1BCC 1 ∩平面 ABC BC , 因此 AD 平面(完满版)高三数学立体几何复习测试题含答案B1BCC1.而CM平面B1BCC1,于是AD CM .由于BM CD 1,BC CF 2 ,因此Rt CBM Rt FCD ,因此 CM DF DF , AD 订交,因此CM平面ADF,CM平面CAM ,因此平面CAM平面ADF.试卷第 9 页,总 9 页11 / 11。

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。

答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。

答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。

答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。

求棱锥体积。

解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。

2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。

求四棱锥的体积。

解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。

高考一轮复习-立体几何练习题

高考一轮复习-立体几何练习题

高考一轮复习练习卷立体几何初步一、选择题:本大题共4小题,每小题4分,共16分。

在每小题给出的四个选项中只有一项是符合题目要求。

1. 一个直角三角形绕斜边旋转360°形成的空间几何体为( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台2.如图,在长方体ABCD −A 1B 1C 1D 1中,AA 1=3,AD =4,AB =5,由A 在表面到达C 1的最短行程为( )A.12B.√74C.√80D.3√103.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73πa 2C.113πa 2 D.5πa 2 4.已知三棱锥S −ABC 中,底面ABC 为边长2的等边三角形,SA 垂直于底面ABC ,SA =3,AB 与面SBC 所成角的正弦值为( )A.√34B.√54C.√74D.34 二、选择题:本大题共2小题,每小题4分,共8分。

在每小题给出的四个选项中有多项是符合题目要求。

全部选对得7分,部分选对得DC 1B 1BD 1A3人,有选错的得0分。

5.已知已知m,n是两条不同直线,α,β是两个平面,则下列命题正确的是()A.α,β垂直于同一平面,则α与β平行B.m,n垂直于同一平面,则m与n平行C.α,β不平行,则α内不存在与β平行的直线D.m,n不平行,则m与n不可能垂直于同一平面6.设四面体的六条棱的长分别为1,1,1,1,√2,a,且长为a的棱与长为√2的棱异面,则a的取值可以是()A.32B.2 C.1 D.75三、填空题:本大题共4小题,每小题5分,共20分。

7.一个棱柱有10个顶点,且所有侧棱张之和为100,则其侧棱长为8.四面体S−ABC中,各个侧面都是边长为a的正三角形,E,F分别是SC和AB的中点,则异面直线EF与SA所成角等于9.设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:(1)α∥βα∥γ}⇒β∥γ;(2)α⊥βm∥α}⇒m∥β;(3)m⊥αm∥β}⇒α⊥β;(4)m∥nn⊂α}⇒α⊥β;其中假命题有10.如图所示为一个水平放置的正方形ABCO,在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B '到x'轴的距离为,该直观图的面积为四、解答题:本大题共2小题,共16分。

立体几何专题检测——江苏省2023届高三数学一轮总复习

立体几何专题检测——江苏省2023届高三数学一轮总复习

江苏省2023届高三数学一轮总复习专题检测立体几何一、选择题:本题共8小题,每小题5分共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、下列命题正确的是A 、正方形的直观图是正方形B 、用一个平面去截棱锥,底面和截面之间的部分组成的几何体是棱台C 、各个面都是三角形的几何体是三棱锥D 、圆锥有无数条母线2、设,αβ是两个不同的平面,,m n 是两条不同的直线,则下列结论中正确的是A 、 若m α⊥,m n ⊥,则 n α∥B 、 若αβ⊥,m α⊥,n β⊥,则m n ⊥C 、若n α∥,m n ⊥,则m α⊥D 、若αβ∥,m ⊂α,n ⊂β,则m n ∥3、已知圆锥的高为6,其侧面展开图为一个半圆,则该圆锥的母线长为A .2 2B .2 3C .2 6D .4 24、正多面体共有5种,统称为柏拉图体,它们分别是正四面体、正六面体(即正方体)、正八面体、正十二面体、正二十面体.连接正方体中相邻面的中心,可以得到另一个柏拉图体.已知该柏拉图体的体积为323,则生成它的正方体的棱长为( ) A. 2 B. 322 C. 324 D. 45、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .7 2.65≈)( ) A. 931.010m ⨯B. 931.210m ⨯C. 931.410m ⨯D.931.610m ⨯6、在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为 1 的正方形,侧棱1113,60AA A AD A AB ︒=∠=∠=,则1AC =( ).A 22 .B 10 .C 3 .D 177、如图,正方体1111ABCD A B C D -的棱长为1,,,,E F G H 分别是所在棱上的动点,且满足1DH BG AE CF +=+=,则以下四个结论正确的是( )A .,,,E G F H 四点一定不共面B .若四边形EGFH 为矩形,则DH CF =C .若四边形EGFH 为菱形,则,E F 一定为所在棱的中点D .若四边形EGFH 为菱形,则四边形EFGH 周长的取值范围为[4,25]8. 足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足2dm AB BC AD BD CD =====,二面角A BD C --的大小为23π,则该足球的体积为( ) A.342dm 27πB.3352dm 27πC.314dm 27πD.32dm 27π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得 5分,有选错的得0分,部分选对的得2分. 9、已知直线l 与平面α相交于点P ,则( ) A .α内不存在直线与l 平行 B .α内有无数条直线与l 垂直C .α内所有直线与l 是异面直线D .至少存在一个过l 且与α垂直的平面 10、已知正方体1111ABCD A B C D -,则( ) A. 直线1BC 与1DA 所成的角为90︒ B. 直线1BC 与1CA 所成的角为90︒ C. 直线1BC 与平面11BB D D 所成的角为45︒D. 直线1BC 与平面ABCD 所成的角为45︒11、在一个圆锥中,D 为圆锥的顶点,O 为圆锥底面圆的圆心,P 为线段DO 的中点,AE 为底面圆的直径,△ABC 是底面圆的内接正三角形,AB =AD =3,则下列说法正确的是 A .BE ∥平面PACB .PA ⊥平面PBCC .在圆锥侧面上,点A 到DB 中点的最短距离为32D .记直线DO 与过点P 的平面α所成的角为θ,当cos θ∈(0,33)时,平面α与圆锥侧面的交线为椭圆12、已知圆台1OO 上、下底面的半径分别为2和4,母线长为4.正四棱台上底面1111D C B A 的四个顶点在圆台上底面圆周上,下底面ABCD 的四个顶点在圆台下底面圆周上,则( ) A. 1AA 与底面所成的角为60° B. 二面角1A ABC 小于60°C. 正四棱台1111ABCD A B C D -的外接球的表面积为64πD. 设圆台1OO 的体积为1V ,正四棱台1111ABCD A B C D -的体积为2V ,则12V V π=三、填空题:本题共4小题,每小题5分,共20分.13、已知正四棱锥P ABCD -32,则正四棱锥P ABCD -的侧面积为14、已知圆台的一个底面周长是另一个底面周长的3倍,圆台的高为23cm ,母线与轴的夹角为30︒,则这个圆台的轴截面的面积等于 2.cm 15、已知,,,A B C D 在球O 的球面上,ABC 为等边三角形且其面积为33,AD ⊥平面,2ABC AD =,则球O 的表面积为 .16、在等腰梯形ABCD 中,22AB CD ==,3DAB CBA π∠=∠=,O 为AB 的中点.将BOC∆沿OC 折起,使点B 到达点B '的位置,则三棱锥B ADC '-外接球的表面积为 ;当3B D '=B ADC '-外接球的球心到平面B CD '的距离为 .四、解答题:本题共6小题,共 70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)在四棱锥P ABCD -中,//AB CD ,2CD AB =,AC 与BD 相交于点M ,点N 在线段AP 上,AN AP λ=(0λ>),且//MN 平面PCD . (I )求实数λ的值;(Ⅱ)若1AB AD DP ===,2PA PB ==,60BAD ︒∠=,求点N 到平面PCD 的距离.18.(本小题满分12分)如图,在以P ,A ,B ,C ,D 为顶点的五面体中,四边形ABCD 为等腰梯形,AB CD ∥,12AD CD AB ==,平面PAD ⊥平面PAB ,PA PB ⊥. (1)求证:平面PAD ⊥平面PBC ; (2)若二面角P AB D --的余弦值为33,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为2. (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.20.(本小题满分12分)如图,在多面体ABCDP 中,ABC 是边长为2的等边三角形,,22PA AB BD CD ===,22PC PB ==,点E 是BC 中点,平面ABC ⊥平面BCD .(1) 求证://DE 平面PAC ;(2) F 是直线BC 上的一点,若二面角F DA B --为直二面角,求BF 的长.21.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥点M 在棱PB 上,2PM MB =点N 在棱PC 上,223PA AB AD BC ====. (1)若2CN NP =,Q 为PD 的中点,求证:A ,M ,N ,Q 四点共面; (2)求直线PA 与平面AMN 所成角的正弦的最大值.22.(本小题满分12分)如图1,在平行四边形ABCD 中,AB =2,AD =33,∠ABC =30º,AE ⊥BC ,垂足为E .以AE 为折痕把△ABE 折起,使点B 到达点P 的位置,且平面PAE 与平面AECD 所成的角为90º(如图2).(1)求证:PE ⊥CD ;(2)若点F 在线段PC 上,且二面角F -AD -C 的大小为30º,求三棱锥F -ACD 的体积.补充练习:1、如图,在直四棱柱1111ABCD A B C D -中,//AD BC ,AD AB ⊥,122AA AD BC ===,2AB E 在棱11A D 上,平面1BC E 与棱1AA 交于点F .(1)求证:1BD C F ⊥;(2)若BE 与平面ABCD 所成角的正弦值为45,试确定点F 的位置.【解答】(1)证明:在直四棱柱中1111ABCD A B C D -中,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ∴⊥,连接AC ,2tan 2AB ADB AD ∠==,2tan 2CB CAB AB ∠==, ADB CAB ∴∠=∠,AC BD ∴⊥, 1AA ,AC ⊂平面11ACC A ,1AA AC A =,BD ∴⊥平面11ACC A ,1C F ⊂平面11ACC A ,1BD C F ∴⊥.(2)以A 为坐标原点,AD 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,则(0A ,0,0),(0B 20),(1C 20),1(1C 22), 平面ABCD 的法向量为(0n =,0,1),(BE x =,2-2),0x >,则242|cos ,|56BE n x =<>=+,解得12x =, 则1(2E ,0,2),1(2BE =,22),11(2C E =-,2-0),设(0F ,0,)z ,1(1C F =-,2-2)z -,则(1-,2-12)(2z m -=,2-12)(2n +-,2-0),∴11122222m n m n ⎧-=-⎪⎨⎪--=-⎩,解得12m =-,32n =,1z =,(0F ∴,0,1),F ∴为棱1AA 的中点.参考答案1、D2、B3、A4、D5、C6、D7、D8、A 8、【详解】根据题意,三棱锥A BCD -如图所示,图中点O 为线段BD 的中点,,N M 分别是线段,AO CO 上靠近点O 的三等分点, 因为2dm AB BC AD BD CD =====,所以ABD △和CBD 均为等边三角形,因为点O 为线段BD 的中点,所以,AO BD CO BD ⊥⊥, 所以AOC ∠为二面角A BD C --的平面角,所以23AOC π∠=, 因为ABD △和CBD 均为等边三角形,点O 为线段BD 的中点, 所以,AO CO 分别为ABD △和CBD 的中线,因为,N M 分别是线段,AO CO 上靠近点O 的三等分点, 所以,N M 分别为ABD △和CBD 的外心,过,N M 分别作平面ABD 和平面CBD 的垂线,EN EM ,交于点E ,则点E 为三棱锥A BCD -外接球的球心,即为足球的球心,所以线段EB 为球的半径,因为,AO BD CO BD ⊥⊥,2dm AB BC AD BD CD =====,所以6dm 2AO CO ==,则6dm 6NO MO ==, 因为,,90AO CO EO EO ENO EMO ==∠=∠=︒, 所以ENO △≌EMO △,所以123EON EMO AOC π∠=∠=∠=, 在直角EMO △中,2tan32EM OM π==,因为EM ⊥平面BCD ,BM ⊂平面BCD ,所以BM EM ⊥, 因为M 是CBD 的外心,所以63BM =,所以2276EB EM BM =+=, 所以3344774233627V EB πππ⎛⎫=⋅== ⎪ ⎪⎝⎭, 所以足球的体积为742dm 27π,故选:A9、ABD 10、ABD 11、BD 12、AC12、【详解】如图,过1A 作1A P AO ⊥,作出截面11ACC A 的平面图,易知11ACC A 为等腰梯形,且1,O O 为11,AC A C 中点,易得1114,8,4AC AC AA ===,1122AC AC AP -==,故22114223OO A P ==-=即圆台的高3h =111122,4222A B AB ====2242 选项A :易得1A AO ∠即为1AA 与底面所成角,则111cos 2AP A AO AA ∠==,故13A AO π∠=,正确;选项B :过P 作PQ AB ⊥于Q ,连接1A Q ,由1A P AB ⊥,1A P PQ P ⋂=,故AB ⊥面1A PQ ,1AQ ⊂面1A PQ ,故1AB A Q ⊥, 1A QP ∠即为二面角1A AB C 的平面角,111sin A P AQP A Q ∠=,111sin A PA AP A A∠=,又11A Q A A <,故11sin sin AQP A AP ∠>∠,即160AQP ∠>,B 错误; 选项C :设外接球半径为R ,球心到下底距离为x ,在11ACC A 的平面图中,2O 为球心, 则221,23O O x O O x ==,112,4O C OC ==,212O C O C R ==,故()2222164234R x R R x ⎧-=⎪⇒=⎨-=⎪⎩, 故表面积2464S R ππ==,正确;选项D :()2215632482333V ππ=++⨯=,()21112383216233V =++⨯=然12V V π≠,错误. 故选:AC.13、8 14、3 15、8π 16、4π313. 16、解:等腰梯形ABCD 中,22AB CD ==,3DAB CBA π∠=∠=,O 为AB 的中点,BOC ∴∆,ADO ∆,DOC ∆为等边三角形,1OA OB OC OD ====,∴三棱锥B ADC '-处接球的球心为O ,半径为1,414S ππ∴=⨯=,连接BD 与OC 交于M ,则OC MD ⊥,OC MB ⊥,OC MB ⊥',B MD ∴∠'是二面角的平面角,3BM DM B D =='=,3B MD π∴∠'=, B ∴'到平面COD 的距离为3334h π'==, 在△B CD '中,1B C '=,3B D '=1CD =,2133391()24B CDS '=-=, 设球心O 到平面B CD '的距离为h , 由O B CD B COD V V ''--=,得1133B CDCOD Sh S h '∆'⋅=⋅, ∴139133334h =,解得313h ,∴三棱锥B ADC '-外接球的球心到平面B ADC '-处接球的球心到平面B CD '的距离为31313. 故答案为:4π;31313.17、【详解】分析:解法一:(1)由平行线的性质可得13AM AC =,结合线面平行的性质定理有//MN PC .据此可得13λ=. (2) 由题意可知ABD ∆为等边三角形,则1BD AD ==,结合勾股定理可知PD BD ⊥且PD DA ⊥,由线面垂直的判断定理有PD ⊥平面ABCD ,进一步有平面PCD ⊥平面ABCD .作ME CD ⊥于E ,则ME ⊥平面PCD . ME 即为N 到平面PCD 的距离.结合比例关系计算可得N 到平面PCD 3解法二:(1)同解法一.(2)由题意可得ABD ∆为等边三角形,所以1BD AD ==,结合勾股定理可得PD BD ⊥且PD DA ⊥,则PD ⊥平面ABCD .设点N 到平面PCD 的距离为d ,利用体积关系:2233N PCD A PCD P ACD V V V ---==, 即2193ACDPCDPD Sd S ⋅=⋅.求解三角形的面积然后解方程可得N 到平面PCD 3 详解:解法一:(1)因为//AB CD ,所以1,2AM AB MC CD ==即13AM AC =. 因为//MN 平面PCD ,MN ⊂平面PAC ,平面PAC ⋂平面PCD PC =, 所以//MN PC . 所以13AN AM AP AC ==,即13λ=.(2) 因为0,60AB AD BAD =∠=,所以ABD ∆为等边三角形,所以1BD AD ==, 又因为1PD =,2PA PB ==,所以222PB PD BD =+且222PA PD AD =+,所以PD BD ⊥且PD DA ⊥,又因为DA DB D ⋂=,所以PD ABCD ⊥平面 因PD ⊂平面PCD ,所以平面PCD ⊥平面ABCD .作ME CD ⊥于E ,因为平面PCD ⋂平面=ABCD CD ,所以ME ⊥平面PCD . 又因为//MN 平面PCD ,所以ME 即为N 到平面PCD 的距离. 在△ABD 中,设AB 边上的高为h ,则3h =因为23MD MC BD AC ==,所以233ME h ==N 到平面PCD 3 解法二、(1)同解法一.(2)因为0,60AB AD BAD =∠=,所以ABD ∆为等边三角形,所以1BD AD ==, 又因为1PD =,2PA PB ==,所以222PB PD BD =+且222PA PD AD =+,所以PD BD ⊥且PD DA ⊥,又因为DA DB D ⋂=,所以PD ⊥平面ABCD . 设点N 到平面PCD 的距离为d ,由13AN AP =得23NP AP =, 所以2233N PCD A PCD P ACD V V V ---==, 即2193ACDPCDPD S d S ⋅=⋅.因为1322ACDS AD DC sin ADC =⋅⋅∠=,112PCDS PD CD =⋅=,1PD =, 所以23193d =,解得3d =N 到平面PCD 318、【1】因为平面PAD ⊥平面PAB ,平面PAD 平面PAB PA =,PA PB ⊥,PB ⊂平面PAB ,所以PB ⊥平面PAD ,又因为PB ⊂平面PBC ,所以平面PAD ⊥平面PBC . 【2】过D 作DH PA ⊥,⊥DO AB ,垂足分别为H ,O ,连接HO ,因为平面PAD ⊥平面PAB ,平面PAD 平面PAB PA =,DH PA ⊥,DH ⊂平面PAD ,所以DH ⊥平面PAB ,又AB 平面PAB ,所以DH AB ⊥,又⊥DO AB ,且DO DH D =,DO ,DH ⊂平面DHO ,所以AB ⊥平面DHO , 因为HO ⊂平面DHO ,所以AB HO ⊥,即DOH ∠即为二面角P AB D --的平面角, 不妨设4AB =,则可知2AD CD BD ===,且1AO =,3OD =因为3cos DOH ∠=1OH =,所以4BAP π∠=,过O 作OM ⊥平面PAB ,以{},,OA OH OM 为x ,y ,z 轴,建立空间直角坐标系,则()0,1,2D ,()1,2,0P -,()3,0,0B -,(2C -, 所以(1,2PD =-,()2,2,0BP =,(1,1,2CP =-,设平面PBC 的法向量为(),,m x y z =,则22020m BP x y m CP x y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则1y =-,0z =,所以()1,1,0m =-,设直线PD 与平面PBC 所成角为θ,则2sin 211112m PD m PDθ⋅===+⋅++⋅, 即4πθ=.19、【1】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V ---=⋅===⋅==, 解得2h =所以点A 到平面1A BC 2;【2】取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =12AA AB ==,122A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩, 可取()0,1,1n =-, 则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --21312⎛⎫-= ⎪⎝⎭. 20、(1)ABC 是边长为2的等边三角形,则2PA AB AC ===,又22PC PB ==股定理知,PA AB PA AC ⊥⊥,故PA ⊥平面ABC ,BD CD =,点E 是BC 中点,则DE BC ⊥,由于平面ABC ⊥平面BCD 知DE ⊥平面ABC ,则//DE PA ,//DE 平面PAC (2) 以点E 为原点,EC 方向为x 轴,EA 方向为y 轴,ED 方向为z 轴建系 则(0,0,1),3,0),(1,0,0)D A B -,设(,0,0)F a平面FDA 内,(0,3,1),(,0,1)DA DF a =-=-,法向量(3,3)m a a = 平面BDA 内,(0,3,1),(1,0,1)DA DB =-=--,法向量(3,1,3)m =-设直二面角F DA B --的平面角θ,则37cos 0,430,,44m n a a BF θ==-===21、【1详】解:以A 为坐标原点建立如图所示空间直角坐标系,如图所示,则()0,0,0A ,()0,1,1Q ,42,0,33M ⎛⎫ ⎪⎝⎭,24,1,33N ⎛⎫ ⎪⎝⎭, 则42,0,33AM ⎛⎫= ⎪⎝⎭,()0,1,1AQ Q =,24,1,33AN ⎛⎫= ⎪⎝⎭,设AN x AM y AQ =+,则243314233x y x y ⎧=⎪⎪=⎨⎪⎪=+⎩,解得1,12x y ==,则12AN AM AQ =+,即A ,M ,N ,Q 四点共面.【2】解:由(1)中的空间直角坐标系,可得(0,0,2)P ,()2,3,0C ,()0,0,2AP =, 设PN PC =λ,(其中01λ≤≤),且(),,N x y z , 则()(),,22,3,2x y z λ-=-,解得()2,3,22N λλλ-, 可得42(,0,)33AM =()2,3,22AN λλλ=-设平面AMN 的法向量为(),,n a b c =,由4203323(22)0n AM a c n AN a b c λλλ⎧⋅=+=⎪⎨⎪⋅=++-=⎩, 取1a =,可得42,23b c λ=-=-,所以41,2,23n λ⎛⎫=-- ⎪⎝⎭设直线AP 与平面AMN 所成角为θ,则225sin 4523AP n AP nθλ⋅==≤⎛⎫+- ⎪⎝⎭,当且仅当23λ=时等号成立. 直线PA 与平面AMN 25.22、解:(1)方法1在平行四边形ABCD 中,AE ⊥BC ,所以AE ⊥PE .因为平面PAE 与平面AECD 所成的角为90º,即平面PAE ⊥平面AECD . ················· 2分 又因为平面PAE ∩平面AECD =AE ,PE ⊂平面PAE ,所以PE ⊥平面AECD .因为CD ⊂平面AECD ,所以PE ⊥CD . ············································································ 4分 方法2在平行四边形ABCD 中,AE ⊥BC ,所以AE ⊥PE ,AE ⊥CE , 所以∠PEC 为平面PAE 与平面AECD 所成角的平面角.因为平面PAE 与平面AECD 所成的角为90º,所以∠PEC =90º,即PE ⊥CE . ········· 2分 又PE ⊥AE ,AE ∩CE =E ,AE ⊂平面AECD ,CE ⊂平面AECD ,所以PE ⊥平面AECD . 因为CD ⊂平面AECD ,所以PE ⊥CD . ············································································ 4分 (2)方法1由(1)得PE ⊥平面AECD ,AE ⊥EC ,故以{EA →,EC →,EP →}为正交基底,建立空间直角坐标系.易得A (1,0,0),C (0,23,0),D (1,33,0),P (0,0,3),所以PC →=(0,23,-3),AP →=(-1,0,3),AD →=(0,33,0). ································································································· 5分 设PF →=λPC →=(0,23λ,-3λ),λ∈[0,1],则AF →=AP →+PF →=(-1,23λ,3-3λ). ······························································ 6分设平面FAD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y =0,-x +23λy +(3-3λ)z =0,取z =1,得x =3-3λ,则平面FAD 的一个法向量为n =(3-3λ,0,1). ·················································· 8分 又因为平面AECD 的一个法向量为m =(0,0,1), 且二面角F -DA -C 的大小为30º,所以|cos <m ,n >|=|m ·n |m |·|n ||=|1(3-3λ)2+1|=32,整理得9λ2-18λ+8=0,即(3λ-2)(3λ-4)=0,解得λ=23或λ=43(舍去),故PF →=23PC →. ................................................................................ 10分因为S △ACD =12×33×1=332,所以V F -ACD =13V P -ACD =13S △ACD ×13PE =12. ............................................................................... 12分方法2在△PEC 中,过F 作FG ∥EC ,交PE 于点G .因为EC ∥AD ,所以FG ∥AD ,因此A ,D ,F ,G 共面. 在平行四边形ABCD 中,易知AD ⊥AE .由(1)得PE ⊥平面AECD , 因为AD ⊂平面AECD ,所以AD ⊥PE .又PE ∩AE =E ,AE ,PE ⊂平面PAE ,所以AD ⊥平面PAE . 因为AG ⊂平面PAE ,所以AD ⊥AG .所以∠GAE 为二面角F -AD -C 的平面角,所以∠GAE =30º. ································· 8分 在Rt △AEG 中,∠AEG =90º,∠GAE =30º,AE =1,所以EG =33. ···················· 10分 因为FG ∥AD ,FG ⊄平面AECD ,AD ⊂平面AECD ,所以FG ∥平面AECD .因此V F -ACD =V G -ACD =13×(12×33×1)×33=12.······················································ 12分。

高三一轮复习—立体几何综合测试卷(基础版)

高三一轮复习—立体几何综合测试卷(基础版)

一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 若直线n≠⊂平面α,直线m 在平面α外,则“m ∥n ”是“m ∥α”的___________条件.2. 已知直线l 的一个方向向量()1,3,4=,平面α的一个法向量()5,3,-=m ,且l ∥α,则=m ____________.3. 若n m ,表示直线,α表示平面,则下列命题中,正确命题的个数为___________.①αα⊥⇒⎭⎬⎫⊥n m n m ∥;②n m n m ∥⇒⎭⎬⎫⊥⊥αα;③n m m m ⊥⇒⎭⎬⎫⊥αα∥;④αα⊥⇒⎭⎬⎫⊥n n m m ∥.4. 若一个圆锥的母线与旋转轴的夹角为42cot arc ,则该圆锥的侧面积是底面积的____倍. 5. 平面直角坐标系xOy 内有点()1,2A ,()2,2B ,()2,0C ,()1,0D ,将四边形ABCD 绕直线1=y 旋转一周,所得到几何体的体积为________.6. 已知四边形ABCD 是边长为a 的正方形,⊥PD 平面ABCD ,且a PD =,则点P 到直线AC 的距离为___________.7. 在长方体1111D C B A ABCD -中,3=AB ,4=AD ,21=AA ,二面角D BB C --1的大小是____________(用反三角表示).8. 如图,在正方体1111D C B A ABCD -中,E 为1CC 的中点,则直线DE 与平面11BC A 的夹角为__________(结果用反三角函数值表示).9. 如图,在ABC △中,2==BC AB ,120=∠ABC .若平面ABC 外的点P 和线段AC 上的点D ,满足DA PD =,BA PB =,则四面体BCD P -的体积的最大值是_________.10. 在正方体1111D C B A ABCD -中,点P 在线段1AD 上运动,则异面直线CP 与1BA 所成的角θ的取值范围是_______.11. 在北纬 45的维度圈上有M 、N 两点,点M 在东经 20,点N 在西经 70,若地球半径为R ,点M 、N 两点的球面距离是___________.12. 联结球面上两点的线段称为球的弦,半径为7的球的两条弦AB 、CD 的长度分别等于332、104,点M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为7 ④MN 的最小值为2其中真命题的序号为____________.二、选择题(本大题共4题,满分20分,每题5分)13. 下列命题中,是假命题的为( ).A 平行于同一直线的两个平面平行 .B 平行于同一平面的两个平面平行.C 垂直于同一平面的两条直线平行 .D 垂直于同一直线的两个平面平行14. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是283π,则它的表面积是( ) .A 17π .B 18π .C 20π .D 28π15. 若a 、b 表示两条直线,α表示平面,下列说法中正确的为( ).A 若a α⊥,a b ⊥,则b a ∥ .B 若a α∥,a b ⊥,则b a ⊥.C 若a α⊥,b ≠⊂α,则a b ⊥ .D 若a α∥,b α∥,则a b ∥16. 如图,已知三棱锥P ABC -,PA ABC ⊥平面,D 是棱BC 上的动点,记PD 与平面ABC 所成的角α,与直线BC 所成的角β,则α与β的大小关系为( ).A αβ> .B αβ= .C αβ< .D 不能确定三、解答题(本大题共5题,共76分)17. (本题满分14分)如图,梯形ABCD 满足AB CD ∥,90ABC ∠=,且AB =1BC =,30BAD ∠=,现将梯形ABCD 绕AB 所在的直线旋转一周,所得的几何体记作Ω.(1)求Ω的体积V ;(2)求Ω的表面积S .18. (本题满分14分)如图,三棱锥P ABC -中,PA ABC ⊥平面,M 是BC 的中点,若底面ABC 是边长为2的正三角形,且PB 与平面ABC 所成的角为3π. 求:(1)三棱锥P ABC -的表面积;(2)异面直线PM 与AC 所成角的大小.(结果用反三角函数表示)19. (本题满分14分)如图,AB 是圆柱下底面的直径,点O 是下底面的圆心,1AA 是圆柱的一条母线,圆柱的底面半径是1,表面积是8π,点C 在半圆弧AB 上,且30ABC ∠=.(1)求证:1BC A AC ⊥平面;(2)求三棱锥1A A BC -的体积.20. (本题满分16分)设在直三棱柱111ABC A B C -中,12AB AC AA ===,90BAC ∠=,E 、F 分别为1C C 、BC 的中点.(1)求异面直线1A B 与EF 所成角θ的大小;(2)求点1B 到直线AEF 的距离.21. (本题满分18分)我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥;堑堵指底面是直角三角形,且侧棱垂直于底面的三棱柱.(1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;(2)在堑堵111ABC A B C -中,如图2,AC BC ⊥,若12AA AB ==,当阳马11B AA C C -的体积最大时,求二面角11C A B C --的大小.参考答案:一、填空题1. 充分非必要条件2. 1-3.34. 45. 2π6. 2a7. 3arctan 48. arcsin 5 9. 12 10. 0,3π⎛⎤ ⎥⎝⎦11. 13R π 12. ②③ 二、选择题13. A 14. A 15. C 16. C三、解答题17. (1 (2)3π+18. (1) (2)19. (1)略 (220. (1)arccos 3(2 21. (1)2 (2)1arccos 3。

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为A .3πB .3π3C .3πD .2π2.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的如图所示的正八面体.若某金刚石的棱长为2,则它的表面积为A .8B .82C .83D .1633.如图,用斜二测画法作水平放置的正三角形111A B C 的直观图,则正确的图形是A .B .C .D .4.已知两条不同直线,l m 与两个不同平面,αβ,下列命题正确的是A .若//,l l m α⊥,则m α⊥B .若,//l l αβ⊥,则αβ⊥C .若//,//l m αα,则//l m D .若//,//m αβα,则//m β5.如图,平行六面体1111ABCD A B C D -的体积为482,11A AB A AD ∠=∠,16AA =,底面边长均为4,且π3DAB ∠=,M ,N ,P 分别为AB ,1CC ,11C D 的中点,则A .//MN APB .1AC ⊥平面BDN C .1AP AC ⊥D .//AP 平面MNC6.如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点.F 则下列结论中错误..的是A .存在点E ,使得11//AC 平面1BED FB .存在点E ,使得1B D ⊥平面1BED FC .对于任意的点E ,平面11ACD ⊥平面1BED FD .对于任意的点E ,四棱锥11B BEDF -的体积均不变7.足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足2dm AB BC AD BD CD =====,二面角A BD C --的大小为23π,则该足球的体积为A .3742dm 27πB .3352dm 27πC .314dm 27πD .3322dm 27π8.一个长方体的盒子内装有部分液体(液体未装满盒子),以不同的方向角度倾斜时液体表面会呈现出不同的变化,则下列说法中错误的个数是①当液面是三角形时,其形状可能是钝角三角形②在一定条件下,液面的形状可能是正五边形③当液面形状是三角形时,液体体积与长方体体积之比的范围是150,,166⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭④当液面形状是六边形时,液体体积与长方体体积之比的范围是13,44⎛⎫ ⎪⎝⎭A .1个B .2个C .3个D .4个二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列关于空间向量的命题中,正确的是A .若空间向量,a b ,满足a b =r r ,则a b= B .若非零向量,,a b c ,满足,a b b c ⊥⊥ ,则有a c∥ C .若,,OA OB OC 是空间的一组基底,且111333OD OA OB OC =++ ,则,,,A B C D 四点共面D .若向量,,a b b c c a +++ 是空间的一组基底,则,,a b c 也是空间的一组基底10.如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是A .沿正方体的表面从点A 到点P 的最短路程为132B .若保持2PM =,则点M 在侧面内运动路径的长度为π3C .三棱锥1B C MD -的体积最大值为16D .若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为线段11.已知a ,b ,c 为三条不同的直线,α,β,γ为三个不同的平面,则下列说法错误的是A .若a b ∥,b α⊂,则a αP B .若a αβ⋂=,b βγ= ,c αγ⋂=,a b ∥,则b c ∥C .若b β⊂,c β⊂,a b ⊥r r ,a c ⊥,则a β⊥D .若a α⊂,b β⊂,a b ∥,则αβ∥12.如图,已知二面角l αβ--的棱l 上有A ,B 两点,C α∈,AC l ⊥,D β∈,BD l ⊥,若2AC AB BD ===,22CD =,则A .直线AB 与CD 所成角的大小为45°B .二面角l αβ--的大小为60°C .三棱锥A BCD -的体积为23D .直线CD 与平面β所成角的正弦值为64三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知()3,2,1OA = ,()1,0,5OB = ,()1,2,1OC =-- ,点M 为线段AB 的中点,则CM = .14.用一个平面将圆柱切割成如图的两部分.将下半部分几何体的侧面展开,平面与圆柱侧面所形成的交线在侧面展开图中对应的函数表达式为 1.52cos y x =+.则平面与圆柱底面所形成的二面角的正弦值是.15.“云南十八怪”描述的是由云南独特的地理位置、民风民俗所产生的一些特有的现象或生活方式,是云南多元民族文化的写照.“云南十八怪”中有一怪“摘下草帽当锅盖”所指的锅盖是用秸秆或山茅草编织成的,因其形状酷似草帽而传为佳话.一种草帽锅盖呈圆锥形,其母线长为6dm ,侧面积为2183dm π,若此圆锥的顶点和底面圆都在同一个球面上,则该球体的表面积等于2dm .16.在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,122AA AB ==.点P 在侧面11BCC B 内,满足1A C ⊥平面BDP ,设点P 到平面ABCD 的距离为1h ,到CD 的距离为2h ,则12h h +的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图所示,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4,PA PD PB ==,点E 在线段PA 上,3,PE EA BE AD =⊥,点,F G 分别是线段,BC CD 的中点.(1)证明:PA ⊥平面ABCD ;(2)求三棱锥P EFG -的体积.18.三棱锥P ABC -中,PA PB PC BC a ====,且PB 与底面ABC 成60°角.(1)设点P 在底面ABC 的投影为H ,求BH 的长;(2)求证:ABC △是直角三角形;(3)求该三棱锥体积的最大值.19.故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,AB =2AD =2EF =8,EF ∥底面ABCD ,EA =ED =FB =FC ,M ,N 分别为AD ,BC 的中点.(1)证明:EF ∥AB 且BC ⊥平面EFNM .(2)若二面角E AD B --为4π,求CF 与平面ABF 所成角的正弦值.20.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.21.《瀑布》(图1)是埃舍尔最为人所知的作品之一,图中的瀑布会源源不断地落下,落下的水又逆流而上,荒唐至极,但又会让你百看不腻.画面下方还有一位饶有兴致的观察者,似乎他没发现什么不对劲.此时,他既是画外的观看者,也是埃舍尔自己.画面两座高塔各有一个几何体,左塔上方是著名的“三立方体合体”由三个正方体构成,右塔上的几何体是首次出现,后称“埃舍尔多面体”(图2)埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为2,定义正方形,1,2,3n n n n A B C D n =的顶点为“框架点”,定义两正方形交线为“极轴”,其端点为“极点”,记为,n n P Q ,将极点11,P Q ,分别与正方形2222A B C D 的顶点连线,取其中点记为,,,1,2,3,4m m E F m =,如(图3).埃舍尔多面体可视部分是由12个四棱锥构成,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,图4我们构造了其中两个四棱锥11122A PE P E -与22131A P E P F -.(1)求异面直线12P A 与12Q B 成角余弦值(2)求平面111PA E 与平面122AE P 的夹角余弦值(3)若埃舍尔体的表面积与体积(直接写出答案)22.在长方体1111ABCD A B C D -中,(1)已知P 、Q 分别为棱AB 、1CC 的中点(如图1),做出过点1D ,P ,Q 的平面与长方体的截面.保留作图痕迹,不必说明理由;(2)如图2,已知13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,求这两个球的半径之和的最大值.。

高考数学第一轮复习专题检测试题 立体几何基础题题库一(有详细答案)

高考数学第一轮复习专题检测试题 立体几何基础题题库一(有详细答案)

立体几何基础题题库一(有详细答案)1、二面角是直二面角,,设直线与所成的角分别为∠1和∠2,则(A )∠1+∠2=900(B )∠1+∠2≥900(C )∠1+∠2≤900(D )∠1+∠2<900解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面所成的角。

根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是(A ) (B ) (C ) (D ) D解析:A 项:底面对应的中线,中线平行QS ,PQRS 是个梯形B 项: 如图βα--l βα∈∈B A ,AB βα、,αβ2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤PPQQRSSPP PQQRR RSSSPP PQQQR RS SS PP Q QR RRSSPSC 项:是个平行四边形D 项:是异面直线。

3. 有三个平面,β,γ,下列命题中正确的是(A )若,β,γ两两相交,则有三条交线 (B )若⊥β,⊥γ,则β∥γ(C )若⊥γ,β∩=a ,β∩γ=b ,则a ⊥b (D )若∥β,β∩γ=,则∩γ= D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。

B 项:如正方体的一个角,三个平面互相垂直,却两两相交。

C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为C解析:平面AB 1,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。

5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条ααααααα∅α∅11111B C ⊥11,B C PB ∴⊥C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

第九章立体几何与空间向量第1节简单几何体的结构、三视图和直观图一、选择题1.如图是由哪个平面图形旋转得到的( A )解析:根据面动成体的原理即可解,一个直角三角形绕直角边旋转一周可以得到一个圆锥.一个直角梯形绕着直角腰旋转一周得到圆台.该几何体的上部分是圆锥,下部分是圆台,圆锥的轴截面是直角三角形,圆台的轴截面是直角梯形,所以这个几何图形是由直角三角形和直角梯形围绕直角边所在的直线为轴旋转一周得到.故选A.2.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4, AB⊥AC,AA1=12,则球O的半径为( C )(A) (B)2 (C) (D)3解析:构建长方体的棱长分别为3,4,12.体对角线长为=13,外接球的半径为,故选C.3.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( B )(A)8 (B)(C)(D)解析:若以4作为圆柱的高、2作为底面圆的周长,则圆柱轴截面面积为;若以2作为圆柱的高、4作为底面圆的周长,则圆柱轴截面面积为,所以此圆柱轴截面面积为.故选B.4.正四棱锥S-ABCD的底面边长为4,高SE=8,则过点A,B,C,D,S的球的半径为( C )(A)3 (B)4 (C)5 (D)6解析:由正四棱锥及其外接球的对称性,球心O在正四棱锥的高线SE上,球半径R=OS=OB,EB=BD=4.所以在直角三角形OEB中,由勾股定理得,(8-R)2+42=R2,解得R=5,故选C.5.三棱锥P-ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为( B )(A)16 (B)(C)(D)32解析:因为PA,PB,PC两两垂直,又因为三棱锥P-ABC的四个顶点均在半径为1的球面上,所以以PA,PB,PC为棱的长方体的对角线即为球的一条直径.所以16=PA2+PB2+PC2,因为PA=2PB,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC,因为5PB2+PC2=16,设PB=4cos α,PC=4sin α,则3PB+PC=cos α+4sin α=sin(α+φ)≤=. 可知其最大值为,选B.6.已知一个四面体其中五条棱的长分别为1,1,1,1,,则此四面体体积的最大值是( B )(A) (B) (C) (D)解析:设四面体为P-ABC,则设PC=X,AB=,其余的各边为1,那么取AB 的中点D,那么连接PD,因此可知,AB垂直于平面PCD,则棱锥的体积可以运用以PCD为底面,高为AD,BD的两个三棱锥体积的和来表示,因此只要求解底面积的最大值即可.由于PD=CD=,那么可知三角形PDC的面积越大,体积越大,可知S△PDC=××sin θ≤=,也就是当PD垂直于CD时,面积最大,因此可得四面体的体积的最大值为××=,选B.二、填空题7.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:因为圆柱的侧面展开图是边长为6π和4π的矩形,①若6π=2πr,r=3,所以圆柱的表面积为4π×6π+2×πr2=24π2+18π;②若4π=2πr,r=2,所以圆柱的表面积为4π×6π+2×πr2=24π2+8π.答案:24π2+8π或24π2+18π8.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.解析:设球的半径为r,则V圆柱=πr2×2r=2πr3,V圆锥=πr2×2r=,V球=πr3,所以V圆柱∶V圆锥∶V球=2πr3∶∶πr3=3∶1∶2.答案:3∶1∶29.将4个半径都是R的球体完全装入底面半径是2R的圆柱形桶中,则桶的最小高度是.解析:由题意知,小球要分两层放置且每层两个,令下层两小球的球心分别是A,B,上层两小球的球心分别是C,D.此时,圆柱底面的半径=两小球半径的和,恰好使小球相外切,且与圆柱母线相切.圆柱的高=上层小球的上方半径+AB与CD间的距离+下层小球的下方半径=2R+AB与CD间的距离.令AB,CD的中点分别为E,F.很明显,四面体ABCD每条棱的长都是2R,容易求出:EC=ED,FA=FB,由EC=ED,CF=DF,得EF⊥CD.由FA=FB,AE=BE,得EF⊥AB.所以EF是AB与CD间的距离,所以圆柱的高=2R+EF.由勾股定理,有CE2+AE2=AC2,CE2=EF2+CF2.两式相减,消去CE,得AE2=AC2-EF2-CF2,所以EF2=AC2-AE2-CF2=(2R)2-R2-R2=2R2,所以EF=R.所以圆柱的高=2r+R=(2+)R.答案:(2+)R10.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为.解析:设母线长为l,因圆锥有三条母线两两垂直,则这三条母线可以构成以它们为侧棱、以底面边长为l的正三角形的正三棱锥,故由正弦定理得,圆锥的底面直径2R=,解得R=,因此可知侧面展开图的圆心角大小为π.答案:π11.若圆锥的侧面展开图是圆心角为180°,半径为4的扇形,则这个圆锥的表面积是.解析:因为圆锥的侧面展开图是圆心角为180°,母线长等于4,半径为4的扇形,则这个圆锥的表面积是底面积加上侧面积,扇形面积加上底面面积的和为12π.答案:12π12.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是.解析:从长方体的一条对角线的一个端点A出发,沿表面运动到另一个端点B,有三种方案,如图是它们的三种部分侧面展开图,AB路程可能是:最短路程是.答案:三、解答题13.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.解:如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C=,则它的正视图投影长为A 1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2·()2,即a2+b2=8,又≤,当且仅当“a=b=2”时等号成立.所以a+b≤4,即a+b的最大值为4.14.某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.(2)直观图如图所示.15.已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该正三棱锥的侧视图和直观图;(2)求出侧视图的面积.解:(1)如图.(2)侧视图中V A===2,则S △VBC=×2×2=6.第2节简单几何体的表面积与体积一、选择题1.如图所示是一个几何体的三视图,则该几何体的体积为( B )(A)16+2π(B)8+2π(C)16+π (D)8+π解析:由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此V=1×2×4+π×12×2=8+2π.故选B.2.一个三条侧棱两两互相垂直并且侧棱长都为a的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( B )(A)πa2(B)3πa2(C)6πa2(D)πa2解析:由题可知该三棱锥为一个棱长a的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为a,则球半径为a,则S=4πr2=4π(a)2=3πa2.故选B.3.一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( A )(A)πa2(B)2πa2(C)πa2(D)πa2解析:如图,设O1,O2为棱柱两底面的中心,球心O为O1O2的中点.又直三棱柱的棱长为a,可知OO1=a,AO1=a,所以R2=OA2=O+A=,因此该直三棱柱外接球的表面积为S=4πR2=4π×=πa2,故选A.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A) (B)2 (C) (D)解析:由三视图可知,该几何体的直观图为一个竖立的圆锥和一个倒立的圆锥组成,其体积为V=2×π×12×1=,选D.5.某四棱锥的三视图如图所示,则该四棱锥的体积是( C )(A)5 (B)2 (C) (D)解析:由三视图知,该四棱锥的底面是直角梯形,上底长为2,下底长为3,高为,四棱锥的高为h=2,故该四棱锥的底面积S=(2+3)×=,所以该四棱锥的体积V=Sh=××2=.6.已知边长为2的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得二面角A BD C为120°,此时点A,B,C,D在同一个球面上,则该球的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:如图,分别取BD,AC的中点M,N,连接MN,则容易算得AM=CM=3,MN=,MD=,CN=,由图形的对称性可知球心必在MN的延长线上,设球心为O,半径为R,ON=x,则由题设可得解得x=,则R2=+=7,所以球面面积S=4πR2=28π,故选C.二、填空题7.一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.解析:令正方形的边长为a,则圆柱的侧面积S1=2π××a=πa2,与它同底等高的圆锥的侧面积S2=πrl=π××a=,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.答案:8.球O与直三棱柱ABC-A1B1C1的各个面都相切,若三棱柱的表面积为27,△ABC的周长为6,则球的表面积为.解析:设内切球半径为r,那么直三棱柱的底面内切圆半径为r,棱柱的高为2r,由等面积法,则直三棱柱底面面积S 底=r×6=3r,由等体积法,V三棱柱=S底·2r=r·27,所以9r=6r2,解得r=.其表面积为4π×()2=3π.答案:3π9.已知母线长为6,底面半径为3的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积是 .解析:取圆锥的轴截面,则截面是边长为6的正三角形,正三角形的内切圆的圆心即为球心,R=6××,所以R=,所以V=πR3=4π.答案:4π10.棱长为a的正方体ABCD A 1B1C1D1的8个顶点都在球O的表面上,E,F 分别是棱AA1,DD1的中点,则过E,F两点的直线被球O截得的线段长为.解析:设过E,F两点的直线与球O交于M,N,所以△OMN,△OEF均为等腰直角三角形,所以OM=ON=R=a,点O到EF的距离为棱长一半,所以|MN|=2= a.答案: a11.四棱锥P-ABCD的各顶点都在同一球面上,且矩形ABCD的各顶点都在同一个大圆上,球半径为R,则此四棱锥的体积的最大值为.解析:点P到平面ABCD的最大距离为R,设矩形ABCD的长宽分别为x,y,则x2+y2=4R2,四棱锥P ABCD的体积V=xyR≤×=R3,当且仅当x=y=R时,V max=R3.答案:R312.设正四面体ABCD的棱长为a,P是棱AB上的任意一点,且P到平面ACD,BCD的距离分别为d1,d2,则d1+d2= .解析:根据题意,由于正四面体ABCD的棱长为a,各个面的面积为a2,高为a,所以V=×a2×a=×a2×(d1+d2),所以d1+d2= a.答案: a三、解答题13.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=(2πa)·(a)=πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以S 表=πa2+4πa2+πa2=(+5)πa2.(2)沿P点所在母线剪开圆柱侧面,如图.则PQ===a,所以从P点到Q点在侧面上的最短路径长为a.14.如图,四棱锥P ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体NBCM的体积.(1)证明:由已知得AM=AD=2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.所以AM=TN,又AD∥BC,故TN AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解:因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S △BCM=×4×=2.所以四面体NBCM的体积V N-BCM=×S△BCM×=.15.如图所示,在空间几何体ADE BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.(1)试确定点M的位置,使AC∥平面MDF,并说明理由;(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM BCF的体积之比.解:(1)当M是线段AE的中点时,AC∥平面MDF.理由如下:连接CE交DF于点N,连接MN.因为M,N分别是AE,CE的中点,所以MN∥AC.又因为MN⊂平面MDF,AC⊄平面MDF,所以AC∥平面MDF.(2)将几何体ADE-BCF补成三棱柱ADE-B′CF,如图所示,三棱柱ADE-B′CF的体积为V=S△ADE·CD=×2×2×4=8,则几何体ADE-BCF的体积=-=8-×(×2×2)×2=.因为三棱锥M-DEF的体积=×(×2×4)×1=,所以=-=,所以两几何体的体积之比为∶=1∶4.第3节空间图形的基本关系与公理一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面( C )(A)若m∥α,n∥α,则m∥n(B)若m∥α,m∥β,则α∥β(C)若m∥n,m⊥α,则n⊥α(D)若m∥α,α⊥β,则m⊥β解析:设直线a⊂α,b⊂α,a∩b=A,因为m⊥α,所以m⊥a,m⊥b.又n∥m,所以n⊥a,n⊥b,所以n⊥α.故选C.2.下列命题中,错误的是( D )(A)平行于同一平面的两个不同平面平行(B)一条直线与两个平行平面中的一个相交,则必与另一个平面相交(C)如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直(D)若直线不平行于平面,则此直线与这个平面内的直线都不平行解析:当直线l在平面α内,即l⊂α时,直线l不平行于平面α,但平面α内存在直线与直线l平行,可知D选项错误,故选D.3.下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( D )(A)①和②(B)②和③(C)③和④(D)②和④解析:①显然错误,因为这两条直线相交才满足条件;②成立;③错误,这两条直线可能平行、相交,也可能异面;④成立,用反证法容易证明.故选D.4.若α,β是两个相交平面,则在下列命题中,真命题的序号为( C )①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.(A)①③(B)②③(C)②④(D)①④解析:若α⊥β且直线m⊥α,则在平面β内,一定存在与直线m平行的直线,所以①错误;若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直,故②正确;若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确,故选C.5.设不在同一条直线上的A,B,C三点到平面α的距离相等,且A∉α,则( B )(A)α∥平面ABC(B)△ABC中至少有一条边平行于α(C)△ABC中至多有两条边平行于α(D)△ABC中只可能有一条边平行于α解析:因为A∉α,所以A,B,C均不在平面α内.当A,B,C三点在平面α的同侧时,α∥平面ABC,此时△ABC的三条边都平行于α,排除C,D;当A,B,C三点不在平面α的同侧时,易知△ABC中只有一条边平行于α,此时平面α和平面ABC相交,故选B.6.若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( B )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为l⊥m,m⊥α,所以l∥α或l⊂α.故充分性不成立.若l∥α,m⊥α,一定有l⊥m.故必要性成立.选B.二、填空题7.长方体ABCD-A1B1C1D1的底面是边长为1的正方形,点E在侧棱AA1上(不与A,A1重合),满足∠C1EB=90°,则异面直线BE与C1B1所成的角为,侧棱AA1的长的最小值为.解析:在长方体ABCD-A1B1C1D1中,CB⊥平面ABB1A1,所以∠CBE=90°,又C1B1∥BC,所以异面直线BE与C1B1所成的角为90°.连接BC1,设AA1=x,AE=m(m>0),则有BE2=1+m2,C1E2=(x-m)2+2,C1B2=1+x2,因为∠C1EB=90°,所以C1B2=C1E2+BE2,即1+x2=(x-m)2+2+1+m2,即m2-mx+1=0,所以x=m+≥2,当且仅当m=,即m=1时,“=”成立.答案:90° 28.四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A1-BCD,使平面A1BD⊥平面BCD,给出下列结论:(1)A1C⊥BD;(2)∠BA1C=90°;(3)四面体A1-BCD的体积为.其中正确的命题是.(把所有正确命题的序号都填上) 解析:若A1C⊥BD,因为BD⊥CD,A1C∩CD=C,所以BD⊥平面A1CD,所以BD⊥A1D.而由A 1B=AB=1,A1D=AD=1,BD=,得A1B⊥A1D,与BD⊥A1D矛盾,故(1)错.因为CD⊥BD,平面BCD⊥平面A1BD,所以CD⊥平面A1BD,则CD⊥A1B.又A1B⊥A1D,A1D∩CD=D,所以A1B⊥平面A1CD,则A1B⊥A1C,故(2)正确.由(2)知==×·A1D·DC·A1B=,故(3)错.答案:(2)9.在正方体ABCD A 1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.解析:在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD 与平面α不平行,所以它们相交,设α∩CD=Q,连接PQ,则PQ与EF必然相交.由点P的任意性,知有无数条直线与A1D1,EF,CD都相交.答案:无数10.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB =90°,AC=6,BC=CC 1=,P是BC1上一动点,则CP+PA1的最小值为.解析:连接A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A 1BC1中,A1B==2,A1C1=6,BC1=2,所以A1+B=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,如图,在△A 1C1C中,C1C=,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA 1=A1C===5.答案:511. 如图,三棱锥A BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.因为M为AD的中点,所以MK∥AN,所以∠KMC为异面直线AN,CM所成的角.因为AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=2,所以MK=.在Rt△CKN中,CK==.在△CKM中,由余弦定理,得cos∠KMC===.答案:12.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE 翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.解析:取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB 是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.答案:③三、解答题13.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.解:如图所示,取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD.所以∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,所以BE=.在Rt△EAF中,AF=AC=,AE=,所以EF=.在Rt△BAF中,AB=1,AF=,所以BF=.在等腰三角形EBF中,cos∠FEB===.所以异面直线BE与CD所成角的余弦值为.14.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且∈β.则R∈PQ,故P,Q,R三点共线.15.在长方体ABCD A 1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.(1)过P点在空间内作一条直线l,使l∥直线BD,应该如何作图?并说明理由;(2)过P点在平面A1C1内作一条直线m,使m与直线BD成α角,其中α∈(0°,90°],这样的直线有几条,应该如何作图?解:(1)连接B1D1,BD,在平面A1C1内过P点作直线l,使l∥直线B1D1,则l即为所求作的直线.因为直线B1D1∥直线BD,l∥直线B1D1,所以l∥直线BD.如图(1).(2)在平面A1C1内作直线m,使直线m与B1D1相交成α角,因为BD∥B1D1,所以直线m与直线BD也成α角,即直线m为所求作的直线,如图(2).由图(2)知m与BD是异面直线,且m与BD所成的角α∈(0,90°].当α=90°时,这样的直线m有且只有一条,当α≠90°时,这样的直线m 有两条.第4节直线、平面平行的判定与性质一、选择题1.若直线l∥平面α,直线a⊂平面α,则l与a的位置关系是( D )(A)l∥a (B)l与a异面(C)l与a相交 (D)l与a没有公共点解析:因为直线平行于平面,那么l与平面内的任何一条直线都没有公共点,因此l与a的位置关系是没有公共点,选D.2.下列条件能推出平面α∥平面β的是( D )(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:因为根据面面平行的判定定理可知,如果存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,则可以利用线线平行得到面面平行,选D.3.已知直线l,m,平面α,β,则下列命题中:①若α∥β,l⊂α,则l∥β②若α⊥β,l⊥α,则l∥β③若l∥α,m⊂α,则l∥m④若α⊥β,α∩β=l,m⊥l,则m⊥β,其中真命题有( B )(A)0个(B)1个(C)2个(D)3个解析:当两个平面平行时,一个平面上的线与另一个平面平行,故①正确;一条直线垂直于两个垂直平面中的一个平面,那么这条直线平行于或包含于另一个平面,故②不正确;④不正确;③中l,m的关系是不相交,故③不正确,故选B.4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( B )(A)①③(B)①④(C)②③(D)②④解析:对图①,构造AB所在的平面,即对角面,可以证明这个对角面与平面MNP平行,由线面平行的定义可得AB∥平面MNP;对图④,通过证明AB∥PN得到AB∥平面MNP;对于②,证MP中点为K,延长BA,KN则相交,所以BA与平面MNP相交,②错;对于③平面MNP与直线AB相交于点B,③错.故选B.5.类比平面几何中的定理“设a,b,c是三条直线,若a⊥c,b⊥c,则a∥b”,得出如下结论:①设a,b,c是空间的三条直线,若a⊥c,b⊥c,则a∥b;②设a,b是两条直线,α是平面,若a⊥α,b⊥α,则a∥b;③设α,β是两个平面,m是直线,若m⊥α,m⊥β,则α∥β;④设α,β,γ是三个平面,若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是( B )(A)1 (B)2 (C)3 (D)4解析:①错;②垂直于同一个平面的两条直线平行,正确;③垂直于同一条直线的两个平面平行,正确;④错;两个平面也可能相交.6.在空间中,下列命题正确的是( D )(A)平面α内的一条直线a垂直于平面β内的无数条直线,则α⊥β(B)若直线m与平面α内的一条直线平行,则m∥α(C)若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β(D)若直线a与平面α内的无数条直线都垂直,则不能说一定有a⊥α解析:直线a与平面α内的任意直线都垂直,则有a⊥α,所以D正确.二、填空题7.点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF= .解析:取BC的中点D,连接ED与FD,因为E,F分别是SC和AB的中点,点D为BC的中点所以ED∥SB,FD∥AC,而SB⊥AC,SB=AC=2,则三角形EDF为等腰直角三角形,则ED=FD=1,即EF=.答案:8.正四棱锥S ABCD的底面边长为2,高为2,E是边BC的中点,动点P 在这个棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.解析:由题意知,点P的轨迹为如图所示的三角形EFG,其中G,F为其所在棱的中点,所以EF=BD=,GE=GF=SB=,所以轨迹的周长为+.答案:+9.将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F分别为AC,BD的中点,则下列命题中正确的是.①EF∥AB;②EF⊥BD;③EF有最大值,无最小值;④当四面体ABCD的体积最大时,AC=;⑤AC垂直于截面BDE.解析:因为将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD 折成四面体ABCD,点E,F分别为AC,BD的中点,则可知EF⊥BD,当四面体ABCD的体积最大时,AC=,AC垂直于截面BDE成立.答案:②④⑤10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D且PA=6,AC=9,PD=8,则BD的长为.解析:因为平面α∥平面β,所以AB∥CD,①当P在两平面外时,==,所以=,所以BD=.②当P在两平面之间时,=,所以=,所以BD=24,所以BD的长为或24.答案:或2411.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等.其中正确的命题序号为.解析:①中,成90度角的时候,就只有一条,因此错误.②中是线面平行的性质定理,显然成立.③不正确.④中,利用等角定理,可知成立. 答案:②④12.侧棱长为2的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A 作截面AEF,则截面△AEF周长的最小值为.解析:沿着侧棱VA把正三棱锥V ABC展开在一个平面内,则设VA的另一边为VA′,则AA′即为截面△AEF周长的最小值,且∠AVA′=3×40=120°.△VAA′中,由余弦定理可得AA′=6.答案:6三、解答题13.已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E 在棱C1D1上,且D1E=3.(1)试在棱CD上确定一点E1,使得直线EE1∥平面D1DB,并证明;(2)若动点F在底面ABCD内,且AF=2,请说明点F的轨迹,并探求EF 长度的最小值.解:(1)取CD的四等分点E1,使得DE1=3,则有EE1∥平面D1DB.证明如下:因为D1E∥DE1且D1E=DE1,所以四边形D1EE1D为平行四边形,则D1D∥EE1,因为DD1⊂平面D1DB,EE1⊄平面D1DB,所以EE1∥平面D1DB.(2)因为AF=2,所以点F在平面ABCD内的轨迹是以A为圆心,半径等于2的四分之一圆弧.因为EE1∥DD1,D1D⊥平面ABCD,所以E1E⊥平面ABCD,故EF==.所以当E1F的长度取最小值时,EF的长度最小,此时点F为线段AE1和四分之一圆弧的交点,即E1F=E1A-AF=5-2=3,所以EF==.即EF长度的最小值为.14.在正方体ABCD-A1B1C1D1中,棱长为2,E是棱CD的中点,P是棱AA1的中点,(1)求证:PD∥平面AB1E;(2)求三棱锥B-AB1E的体积.(1)证明:取AB1中点Q,连接PQ,则PQ为中位线,PQ A1B1,而正方体ABCD-A1B1C1D1,E是棱CD的中点,故DE A1B1,所以PQ DE,所以四边形PQED为平行四边形.所以PD∥QE,而QE⊂平面AB1E,PD⊄平面AB1E,故PD∥平面AB1E.(2)解:正方体ABCD-A1B1C1D1中,BB1⊥平面ABE,故BB1为高,BB1=2,因为CD∥AB,所以S△ABE=S△ABC=AB·BC=×2×2=2.故==BB1·S△ABC=.15.如图,在四面体PABC中,PA=PB,CA=CB,D,E,F,G分别是PA,AC,CB,BP的中点.(1)求证:D,E,F,G四点共面;(2)求证:PC⊥AB;(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=,求四面体PABC的体积.(1)证明:依题意DG∥AB,EF∥AB,所以DG∥EF,DG,EF共面,从而D,E,F,G四点共面.(2)证明:取AB中点为O,连接PO,CO.因为PA=PB,CA=CB,所以PO⊥AB,CO⊥AB,因为PO∩CO=O,所以AB⊥平面POC,PC⊂平面POC,所以AB⊥PC.(3)解:因为△ABC和△PAB是等腰直角三角形,所以PO=CO=AB=1,因为PC=,OP2+OC2=PC2,所以OP⊥OC,又PO⊥AB,且AB∩OC=O,所以PO⊥平面ABC,=PO·S△ABC=×1×2×1×=.第5节直线、平面垂直的判定与性质一、选择题1.已知直线l,m和平面α, 则下列命题正确的是( C )(A)若l∥m,m⊂α,则l∥α(B)若l∥α,m⊂α,则l∥m(C)若l⊥α,m⊂α,则l⊥m(D)若l⊥m,l⊥α,则m∥α解析:A项中直线l与平面α可能平行,可能直线在平面内;B项中直线l,m平行或异面;C项中当直线垂直于平面时,直线垂直于平面内任意直线;D项中直线m与平面α平行或直线在平面内.2.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P ABC中共有直角三角形个数为( A )(A)4 (B) 3 (C) 2 (D) 1解析:因为PA⊥平面ABC,AB⊥BC,所以PA⊥AB,PA⊥AC,PB⊥CB,所以△ABC,△PBC, △ABP, △APC都是直角三角形,故选A.3.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则( C )(A)n⊥β (B)n∥β,或n⊂β(C)n∥α或n⊂α(D)n⊥α解析:由题意画出图形,容易判断选项.由于直线m⊥n,m⊥α,α⊥β,选项A,中线面可能相交,也可能垂直,选项B中,n与β还可能相交,错误,选项D中,直线不能垂直于平面,故结合图象不难得到选项为C.4.正方体的棱长为1,C,D,M分别为三条棱的中点,A,B是顶点,那么点M到截面ABCD的距离是( B )(A)(B)(C)(D)解析:过M作AB的垂线MN交AB于N,连接CN.由于CM⊥AB,MN⊥AB,则AB⊥平面CMN,所以,M到面ABCD的距离h是直角三角形CMN的斜边CN上的高.由于BM=,CM=1,MN=,CN=,则结合=求得h=.故选B.。

高考数学一轮总复习单元质检卷七空间向量与立体几何北师大版

高考数学一轮总复习单元质检卷七空间向量与立体几何北师大版

单元质检卷七空间向量与立体几何(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021湖南衡阳月考)下列说法正确的是()A.三点确定一个平面B.如果一条直线平行于一个平面,则这条直线平行于这个平面内的任意一条直线C.如果一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直D.平行于同一平面的两条直线互相平行2.平面α外的一条直线l上有相异的三个点A,B,C,且三个点到平面α的距离相等,那么直线l 与平面α的位置关系是()A.l⊥αB.l∥αC.l与α相交D.l∥α或l⊂α3.(2021山东济宁二模)“直线m垂直平面α内的无数条直线”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.一个正四棱锥的底面边长为2,高为√3,则该正四棱锥的表面积为()A.8B.12C.16D.205.(2021广东清远一中开学考试)把一个已知圆锥截成一个圆台和一个小圆锥,已知圆台的上、下底面半径之比为1∶3,母线长为6 cm,则已知圆锥的母线长为()A.8 cmB.9 cmC.10 cmD.12 cm6.(2021河南安阳一中月考)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1成的角为()A.π2B.π3C.π4D.π67.(2020河北博野中学高三开学考试)如图,在棱长为4的正方体ABCD-A1B1C1D1中,E为D1C1的中点.过点B1,E,A的平面截该正方体所得的截面周长为() A.6√2+4√5 B.4√2+2√5C.5√2+3√5D.8√2+4√58.(2021河北石家庄质量检测二)在三棱锥P-ABC中,PA⊥底面ABC,BC⊥PC,PA=AC=√2,BC=a,动点Q从B点出发,沿外表面经过棱PC上一点到点A的最短距离为√10,则该棱锥的外接球的表面积为()A.5πB.8πC.10πD.20π9.关于空间两条不同直线a,b和两个不同平面α,β,下列命题正确的是()A.a⊥α,b⊥α,则a⊥bB.a⊥b,b⊥β,则a∥βC.a⊥α,b⊥β,α⊥β,则a⊥bD.a∥α,α⊥β,则a⊥β10.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图,在堑堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列说法不正确的是()A.四棱锥B-A1ACC1为“阳马”B.四面体A1-C1CB为“鳖臑”C.过A点分别作AE⊥A1B于点E,AF⊥A1C于点F,则EF⊥A1BD.四棱锥B-A1ACC1体积最大为2311.如图,已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,F为棱AA1上的点,且满足A1F∶FA=1∶2,点F,B,E,G,H为过三点B,E,F的平面BMN与正方体ABCD-A1B1C1D1的棱的交点,则下列说法正确的是()A.HF与BE相交B.三棱锥B1-BMN的体积为6C.直线MN与平面A1B1BA的夹角是45°D.D1G∶GC1=1∶312.在正方体AC1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F与平面D1AE的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段B.A1F与BE是异面直线C.A1F与D1E不可能平行D.三棱锥F-ABD1的体积为定值二、填空题:本题共4小题,每小题5分,共20分.13.在正三棱柱ABC-A1B1C1中,D是AB的中点,则在所有的棱中与直线CD和AA1都垂直的直线有.14.如图,在正方体ABCD-A1B1C1D1中,平面A1CC1与平面BDC1的交线是.15.将半径为4的半圆卷成一个圆锥,则圆锥的体积为.16.(2021浙江杭州二中模拟)如图,△ABC的三边AB=10,BC=12,CA=14,D,E,F分别是三边的中点,沿DF,FE,ED将△ADF,△CEF,△BED折起,使得A,B,C重合于点P,则四面体PDEF的表面积为;体积为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图在边长是2的正方体ABCD-A1B1C1D1中,E,F分别为AB,A1C的中点.(1)求异面直线EF与CD1所成角的大小;(2)证明:EF⊥平面A1CD.18.(12分)(2021安徽马鞍山三模)如图,在四棱锥P-ABCD中,底面ABCD为菱形,△PAD为等边三角形,∠ABC=60°,O为AD的中点.(1)证明:平面PAD⊥平面POC;(2)若AD=2,PC=√6,点M在线段PD上,PM=3MD,求三棱锥P-OCM的体积.19.(12分)(2021北京延庆三模)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的正方形,侧面ADD1A1为矩形,且侧面ADD1A1⊥底面ABCD,AA1=4,E,M,N分别是BC,BB1,A1D的中点.(1)求证:MN∥平面C1DE;(2)求二面角D-C1E-B1的余弦值.20.(12分)(2021北京,17)已知正方体ABCD-A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F.(1)证明:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M-CF-E 的余弦值为√53,求A 1MA 1B 1的值.21.(12分)(2020新高考Ⅰ,20)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.22.(12分)(2021天津滨海新区塘沽第一中学月考)已知如图,四边形PDCE为矩形,四边形ABCDCD=1,PD=√2.为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=12(1)若M为PA中点,求证:AC∥平面MDE;(2)求直线PA与平面PBC所成角的正弦值;(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为π?若3存在,请说明点Q的位置;若不存在,请说明理由.单元质检卷七 空间向量与立体几何1.C 解析:当三点共线时,不能确定一个平面,故A 错误;如果一条直线平行于一个平面,则这条直线与这个平面内的任意一条直线可能平行也可以异面,故B 错误;由线面垂直的判定定理知C 正确;平行于同一平面的两条直线可能平行,可能相交也可以异面,故D 错误. 故选C .2.B 解析:当直线l 与平面α相交时,直线l 上只有2个不同点到平面α的距离相等,故A ,C 错误;当直线l ∥平面α时,直线上所有点到平面距离都相等,满足题意,故B 正确; 因为平面α外的一条直线l ,所以l ⊄α,故D 错误. 故选B .3.B 解析:因为当直线m 垂直平面α内的所有直线时,可得m ⊥α, 所以由直线m 垂直平面α内的无数条直线不一定能推出m ⊥α; 当m ⊥α时,直线m 垂直平面α内的无数条直线,所以直线m 垂直平面α内的无数条直线是m ⊥α的必要不充分条件. 故选B .4.B 解析:如图所示,在正四棱锥P-ABCD 中,底面ABCD 的边长为2, 设点P 在底面ABCD 的投影点为点O ,则四棱锥P-ABCD 的高PO=√3, 则O 为AC 的中点,且AO=12AC=√22AB=√2,PB=PA=√PO 2+AO 2=√5.取AB 的中点E ,连接PE ,则PE ⊥AB ,且PE=√PA 2-AE 2=2,则S △PAB =12AB ·PE=2,故正四棱锥P-ABCD 的表面积S=4S △PAB +S 四边形ABCD =4×2+2×2=12.故选B .5.B 解析:设圆锥的母线长为l , 因为圆台的上、下底面半径之比为1∶3, 所以(l-6)∶l=1∶3, 解得l=9. 故选B .6.D 解析:(方法1)如图1所示,连接BC 1,则∠PBC 1就是直线PB 与AD 1所成的平面角,易得PB ⊥PC 1,且BC 1=2PC 1,所以∠PBC 1=π6.故选D .(方法2)以点D 为坐标原点,直线DA ,DC ,DD 1分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,如图2.设AB=1,则B (1,1,0),P12,12,1,A (1,0,0),D 1(0,0,1),所以PB ⃗⃗⃗⃗⃗ =12,12,-1,AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),设直线PB 与AD 1所成的角为θ,则cos θ=|PB ⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗ ||PB⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=32√32×√2=√32,所以θ=π6.图1图2故选D .7.A 解析:如图,取DD 1的中点F ,连接AF ,EF ,显然EF∥AB1,则四边形AB1EF为所求的截面.因为D1E=C1E=2,所以B1E=√22+42=2√5,AB1=√42+42=4√2,EF=√22+22=2√2,AF=√42+22=2√5,所以截面的周长为6√2+4√5.8.B解析:将侧面PBC沿PC翻折到与侧面PAC共面,如图所示.则动点Q从B点出发,沿外表面经过棱PC上一点到点A的最短距离为AB.∵PA⊥底面ABC,AC⊂平面ABC,∴PA⊥AC.又BC⊥PC,PA=AC,∴∠ACB=π2+π4=3π4,∴AB2=AC2+BC2-2AC·BC cos∠ACB=2+a2+2√2a×√22=10,解得a=2.∴PB=√PC2+BC2=√PA2+AC2+BC2=2√2.取PB中点O,连接AO,CO,∵PA⊥AB,PC⊥BC,∴AO=CO=12PB,∴O为该棱锥的外接球的球心,其半径R=12PB=√2,∴球O的表面积S=4πR2=8π.故选B.9.C解析:对于A,当a⊥α,b⊥α,直线a和b相当于平面α的法向量,则a∥b,故A错误; 对于B,当a⊥b,b⊥β,则a∥β或a⊂β,故B错误;对于C ,a ⊥α,b ⊥β,α⊥β,则a ⊥b ,故C 正确;对于D ,a ∥α,α⊥β,则a ⊥β或a 与β相交,或a ∥β,故D 错误. 故选C .10.D 解析:因为底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”,所以在“堑堵”ABC-A 1B 1C 1中,AC ⊥BC ,侧棱AA 1⊥平面ABC ,因为AA 1⊥BC ,又AC ⊥BC ,且AA 1∩AC=A ,则BC ⊥平面AA 1C 1C , 所以四棱锥B-A 1ACC 1为“阳马”,故A 项正确;由AC ⊥BC ,得A 1C 1⊥BC ,又A 1C 1⊥C 1C 且C 1C ∩BC=C ,所以A 1C 1⊥平面BB 1C 1C , 所以A 1C 1⊥BC 1,则△A 1BC 1为直角三角形. 又由BC ⊥平面AA 1C 1C ,得△A 1BC 为直角三角形,由“堑堵”的定义可得△A 1C 1C 为直角三角形,△CC 1B 为直角三角形, 所以四面体A 1-C 1CB 为“鳖臑”,故B 项正确;因为BC ⊥平面AA 1C 1C ,则BC ⊥AF ,又AF ⊥A 1C 且A 1C ∩BC=C ,则AF ⊥平面A 1BC ,所以AF ⊥A 1B.又AE ⊥A 1B 且AF ∩AE=A ,则A 1B ⊥平面AEF ,则A 1B ⊥EF ,故C 项正确;在底面有4=AC 2+BC 2≥2AC ×BC ,即AC ×BC ≤2,当且仅当AC=BC 时等号成立, V B -A 1ACC 1=13S A 1ACC 1×BC=13AA 1×AC ×BC=23AC ×BC ≤43,故D 项不正确.故选D .11.D 对于A 选项,由于平面ADD 1A 1∥平面BCC 1B 1,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF ∥BE ,故A 错误; 由于A 1F ∶FA=1∶2,而E 是CC 1的中点,故MA 1=1,C 1N=2.对于B 选项,V B 1-BMN =V B -MNB 1=13×12×MB 1×NB 1×BB 1=13×12×3×4×2=4,故B 错误; 对于C 选项,由于B 1N ⊥平面A 1B 1BA ,所以直线MN 与平面A 1B 1BA 所成的角为∠NMB 1,且tan ∠NMB 1=B 1N B 1M =43≠1,故C 错误;对于D 选项,可知D 1G=12,GC 1=32,故D 正确. 故选D .12.C 解析:对于选项A ,如图,分别找线段BB 1,B 1C 1的中点M ,N ,连接A 1M ,MN ,A 1N.由题得MN ∥AD 1,MN ⊄平面D 1AE ,AD 1⊂平面D 1AE ,所以MN ∥平面D 1AE.又A 1M ∥DE ,A 1M ⊄平面D 1AE ,D 1E ⊂平面D 1AE ,所以A 1M ∥平面D 1AE.又MN ∩A 1M=M ,所以平面A 1MN ∥平面D 1AE.因为A 1F 与平面D 1AE 的垂线垂直,又A 1F ⊄平面D 1AE ,所以直线A 1F 与平面D 1AE 平行.又A 1F ⊂平面A 1MN ,且点F 是侧面BCC 1B 1内的动点,平面A 1MN ∩平面BCC 1B 1=MN ,所以点F 的轨迹为线段MN ,故选项A 正确;对于选项B ,由图可知,AF 与BE 是异面直线,故选项B 正确;对于选项C ,当点F 与点M 重合时,直线A 1F 与直线D 1E 平行,故选项C 错误;对于选项D ,因为MN ∥AD 1,MN ⊄平面ABD 1,AD 1⊂平面ABD 1,所以MN ∥面ABD 1,则点F 到平面ABD 1的距离是定值,又三角形ABD 1的面积是定值,所以三棱锥F-ABD 1的体积为定值,故选项D 正确.故选C .13.AB ,A 1B 1 解析:由正三棱柱的性质可知,与直线CD 和AA 1都垂直的直线有AB ,A 1B 1. 14.C 1M 解析:因为C 1∈平面A 1CC 1,且C 1∈平面BDC 1,同时M ∈平面A 1CC 1,且M ∈平面BDC 1, 所以平面A 1CC 1与平面BDC 1的交线是C 1M. 15.8√3π3解析:由题知,圆锥的母线长为l=4.设圆锥的底面半径为r ,则2πr=4π,即r=2.所以圆锥的高h=√l 2-r 2=2√3.故圆锥的体积V=13·πr 2·h=13×4π×2√3=8√3π3. 16.24√6 2√95 解析:四面体的表面展开图即△ABC. △ABC 中,由余弦定理得cos ∠ABC=AB 2+BC 2-AC 22AB ·BC=102+122-1422×10×12=15,则sin ∠ABC=2√65. 四面体PDEF 的表面积为S △ABC =12AB ·BC sin ∠ABC=12×10×12×2√65=24√6. 因为四面体PDEF 相对棱等长,则该四面体的每一组相对棱可作为一个矩形的两条对角线,从而把四面体PDEF 补形成长方体D 1EP 1F-DE 1PF 1,如图.PD=EF=5,PE=DF=6,PF=DE=7,设FP 1=x ,FD 1=y ,FF 1=z ,则有{x 2+y 2=25,y 2+z 2=36,z 2+x 2=49,解得{x 2=19,y 2=6,z 2=30,故xyz=6√95.所以四面体PDEF 的体积V=V D 1EP 1F -DE 1PF -4V P -P 1EF =xyz-4×16xyz=13xyz=2√95. 17.解据题意,建立如图空间直角坐标系.则D (0,0,0),A 1(2,0,2),C (0,2,0),E (2,1,0),F (1,1,1),D 1(0,0,2), ∴EF ⃗⃗⃗⃗⃗ =(-1,0,1),CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,2),DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0,2),DC ⃗⃗⃗⃗⃗ =(0,2,0). (1)cos <EF ⃗⃗⃗⃗⃗ ,CD 1⃗⃗⃗⃗⃗⃗⃗ >=EF ⃗⃗⃗⃗⃗ ·CD 1⃗⃗⃗⃗⃗⃗⃗⃗ |EF ⃗⃗⃗⃗⃗||CD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√2×2√2=12,∴<EF ⃗⃗⃗⃗⃗ ,CD 1⃗⃗⃗⃗⃗⃗⃗ >=60°,即异面直线EF 和CD 1所成的角为60°. (2)∵EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =-1×2+0×0+1×2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥DA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,即EF ⊥DA 1. ∵EF ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =-1×0+0×2+1×0=0, ∴EF ⃗⃗⃗⃗⃗ ⊥DC⃗⃗⃗⃗⃗ ,即EF ⊥DC. 又DA 1,DC ⊂平面DCA 1,且DA 1∩DC=D , ∴EF ⊥平面A 1CD.18.(1)证明根据题意可得,PA=PD ,AO=OD ,∴PO ⊥AD.∵底面ABCD 为菱形,∠ABC=60°,则△ACD 为等边三角形,∴CO ⊥AD. ∵PO ∩OC=O ,PO ,OC ⊂平面POC ,∴AD ⊥平面POC.又AD ⊂平面PAD ,∴平面PAD ⊥平面POC.(2)解在等边三角形PAD 中,∵AD=2,∴OP=OC=√3. 又PC=√6,∴OP 2+OC 2=PC 2,即PO ⊥OC , ∴S △POC =12·PO ·OC=12×√3×√3=32.由(1)可知,AD ⊥平面POC ,又PM=3MD , ∴V P-OCM =V M-POC =34V D-POC =34×13S △POC ×DO=34×13×32×1=38.19.(1)证明连接B 1C ,ME.因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC ,可得B 1C A 1D ,故ME ND ,故四边形MNDE 为平行四边形,则MN ∥ED.又MN ⊄平面C 1DE ,所以MN ∥平面C 1DE.(2)解因为底面ABCD 是正方形,所以CD ⊥AD.因为侧面ADD 1A 1⊥底面ABCD ,且侧面ADD 1A 1∩底面ABCD=AD ,所以CD ⊥平面ADD 1A 1,所以CD ⊥DD 1,AD ⊥DD 1.又因为侧面ADD 1A 1为矩形,所以AD ⊥DD 1.如图建立空间直角坐标系Dxyz ,其中D (0,0,0),C 1(0,2,4),E (1,2,0),C (0,2,0),且DC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,4),DE ⃗⃗⃗⃗⃗ =(1,2,0). 因为CD ⊥平面ADD 1A 1,所以DC ⊥平面BCC 1B 1, 故DC⃗⃗⃗⃗⃗ =(0,2,0)为平面C 1EB 1的一个法向量, 设n =(x ,y ,z )为平面DC 1E 的法向量,则{n ·DC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·DE ⃗⃗⃗⃗⃗ =0,即{2y +4z =0,x +2y =0,取y=-2,可得n =(4,-2,1).所以cos <DC ⃗⃗⃗⃗⃗ ,n >=DC ⃗⃗⃗⃗⃗·n |DC ⃗⃗⃗⃗⃗||n|=2×√21=-2√2121.因为二面角A-DE-B 1的平面角是钝角,所以二面角A-DE-B 1的余弦值为-2√2121. 20.(1)证明如图所示,取B 1C 1的中点F',连接DE ,EF',F'C , 由于ABCD-A 1B 1C 1D 1为正方体,E ,F'为中点,故EF'∥CD , 从而E ,F',C ,D 四点共面,则平面CDE 即为平面CDEF', 故可得直线B 1C 1交平面CDE 于点F'.当直线与平面相交时只有唯一的交点,故点F 与点F'重合, 即点F 为B 1C 1中点.(2)解以点D 为坐标原点,DA ,DC ,DD 1方向分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,设正方体的棱长为2,设A 1MA 1B 1=λ(0≤λ≤1),则M (2,2λ,2),C (0,2,0),F (1,2,2),E (1,0,2), 从而MC⃗⃗⃗⃗⃗⃗ =(-2,2-2λ,-2),CF ⃗⃗⃗⃗⃗ =(1,0,2),FE ⃗⃗⃗⃗⃗ =(0,-2,0), 设平面MCF 的法向量为m =(x 1,y 1,z 1),则{m ·MC⃗⃗⃗⃗⃗⃗ =−2x 1+(2−2λ)y 1-2z 1=0,m ·CF⃗⃗⃗⃗⃗ =x 1+2z 1=0,令z 1=-1,可得m =2,11−λ,-1. 设平面CFE 的法向量为n =(x 2,y 2,z 2),则{n ·FE ⃗⃗⃗⃗⃗ =−2y 2=0,n ·CF ⃗⃗⃗⃗⃗ =x 2+2z 2=0,令z 2=-1可得n =(2,0,-1). 则cos <m ,n >=m ·n|m||n|=√5+(11−λ) ×√5=√53, 整理可得(λ-1)2=14,解得λ=12λ=32舍去. 21.解(1)因为PD ⊥底面ABCD ,所以PD ⊥AD. 又底面ABCD 为正方形,所以AD ⊥DC. 所以AD ⊥平面PDC.因为AD ∥BC ,AD 不在平面PBC 中,所以AD ∥平面PBC ,又因为AD ⊂平面PAD ,平面PAD ∩平面PBC=l ,所以l ∥AD.所以l ⊥平面PDC.(2)以D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系Dxyz.由PD=AD=1,得D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1),则DC ⃗⃗⃗⃗⃗ =(0,1,0),PB ⃗⃗⃗⃗⃗ =(1,1,-1).由(1)可设Q (a ,0,1),则DQ⃗⃗⃗⃗⃗⃗ =(a ,0,1). 设n =(x ,y ,z )是平面QCD 的法向量, 则{n ·DQ ⃗⃗⃗⃗⃗⃗ =0,n ·DC ⃗⃗⃗⃗⃗ =0,即{ax +z =0,y =0.可取n =(-1,0,a ). 所以cos <n ,PB ⃗⃗⃗⃗⃗ >=n ·PB ⃗⃗⃗⃗⃗|n||PB⃗⃗⃗⃗⃗ |=√3√1+a 2.设PB 与平面QCD 所成角为θ,则sin θ=√33√1+a 2=√33√1+2aa 2+1.因为√33√1+2aa 2+1≤√63,当且仅当a=1时,等号成立,所以PB 与平面QCD 所成角的正弦值的最大值为√63.22.(1)证明如图,设PC 与DE 交于点N ,连接MN. 因为四边形PDCE 为矩形,所以N 为PC 的中点.又M 为PA 的中点, 因为MN ∥AC ,而MN ⊂平面MDE ,AC ⊄平面MDE , 所以AC ∥平面MDE.(2)解因为平面PDCE ⊥平面ABCD ,平面PDCE ∩平面ABCD=DC ,PD ⊥DC ,PD ⊂平面PDCE , 所以PD ⊥平面ABCD.因为AD ⊂平面ABCD ,所以PD ⊥AD. 因为∠BAD=∠ADC=90°, 所以DA ,DC ,DP 两两垂直.以D 为坐标原点,以DA ,DC ,DP 所在直线为x ,y ,z 轴建立空间直角坐标系,根据题意,则有A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,√2), 所以PA⃗⃗⃗⃗⃗ =(1,0,-√2),PB ⃗⃗⃗⃗⃗ =(1,1,-√2),PC ⃗⃗⃗⃗⃗ =(0,2,-√2). 设平面PBC 的一个法向量为m =(x ,y ,z ),则{m ·PB ⃗⃗⃗⃗⃗ =0,m ·PC ⃗⃗⃗⃗⃗ =0,即{x +y -√2z =0,2y -√2z =0,取y=1,则m =(1,1,√2).设直线PA 与平面PBC 所成角的平面角为θ, 则有sin θ=|cos <m ,PA⃗⃗⃗⃗⃗ >|=m ·PA⃗⃗⃗⃗⃗ |m||PA⃗⃗⃗⃗⃗ |=1−2√3×2=√36.(3)解假设存在点Q 满足题意,则PQ ⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ (0<λ<1), 故PQ⃗⃗⃗⃗⃗ =(0,2λ,-√2λ),则Q (0,2λ,√2−√2λ).所以DQ ⃗⃗⃗⃗⃗⃗ =(0,2λ,√2−√2λ),DA ⃗⃗⃗⃗⃗ =(1,0,0). 设平面DAQ 的一个法向量为n =(a ,b ,c ),则有{n ·DQ ⃗⃗⃗⃗⃗⃗ =0,n ·DA ⃗⃗⃗⃗⃗ =0,即{2λb +(√2-√2λ)c =0,a =0,取b=1,则n =0,1,√2λλ-1,由(2)知平面PBC 的一个法向量为m =(1,1,√2), 根据题意,有cos π3=cos <m ,n >,则|m ·n||m||n|=12|1+2λλ-1|2×√1+2λ2(λ-1)2=12,解得λ=23.即得PQ ⃗⃗⃗⃗⃗ =23PC ⃗⃗⃗⃗⃗ ,即点Q 为线段PC 上靠近点C 的一个三等分点,坐标为Q 0,43,√23.。

2022年高考数学一轮复习专题 专题35 立体几何初步基础巩固检测题(解析版)

2022年高考数学一轮复习专题 专题35 立体几何初步基础巩固检测题(解析版)
根据斜二测画法的方法:平行于 y 轴的线段长度减半,水平长度不变即可判断..
【详解】 由于直角在直观图中有的成为 45°,有的成为 135°; 当线段与 x 轴平行时,在直观图中长度不变且仍与 x 轴平行,
当线段与 x 轴平行时,线段长度减半,
直角坐标系变成斜坐标系,而平行关系没有改变. 故选:B. 11.侧面都是等腰直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的表面积是( )
试卷第 3页,总 16页
【分析】 根据面面平行的知识对选项逐一分析,由此确定正确选项. 【详解】 对于 A 选项,这两个平面可能相交,故 A 选项错误. 对于 B 选项,如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行, 正确,故 B 选项正确. 对于 C 选项,这两个平面可能相交,故 C 选项错误. 对于 D 选项,这两个平面可能相交,故 D 选项错误. 故选:B
A. ,
B. ,
C. ,
D. ,
【答案】B 【分析】
根据角的定义作出 , , ,再利用三角函数的单调性比较.
【详解】 如图所示:
设 M 在底面 ABCD 内的射影为 H ,过 H 作 AC 的垂线 HE ,垂足为 E ,过 M 作 CD 的垂线 MF ,垂足为 F ,连接 ME , HC ,
A. 3 3 a2 4
B. 3 a2 4
C. 3 3 a2 2
D. 6 3 a2 4
【答案】A 【分析】
先求出侧棱长,即可求出表面积. 【详解】
如图,PA,PB,PC 两两垂直且 PA=PB=PC,
△ABC 为等边三角形,AB=a,
试卷第 5页,总 16页
∴ PA PB PC 2 a , 2
(1)B,C,H,G 四点共面;

高三数学一轮复习 第二章立体几何阶段质量检测二 理 B 试题

高三数学一轮复习 第二章立体几何阶段质量检测二 理 B 试题

阶段质量检测(二)制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

一、选择题(本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设A 1B 1→=a ,A 1D →=b ,A 1A →=c ,那么以下向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +cD .-12a -12b +c【答案】 A2.一个几何体的三视图如下图,那么这个几何体的外表积等于A .72B .66C .60D .30【解析】 根据题目所给的三视图可知该几何体为一直三棱柱,且底面是一直角三角形,两直角边分别为3,4,斜边为5,三棱柱高为5,所以外表积为S =3×4+3×5+4×5+5×5=72,所以答案为A.【答案】 A3.在以下图中,G、H、M、N分别是正三棱柱的顶点或者所在棱的中点,那么表示直线GH、MN是异面直线的图形有( )A.(1)(2) B.(1)(3)C.(2)(4) D.(3)(4)【解析】对于图(1),GH∥MN,对于图(2),GH与NM异面,对于图(3),GH与MN相交,对于图(4),GH与NM异面,应选C.【答案】 C4.假设正三棱锥的侧面都是直角三角形,那么侧面与底面所成二面角的余弦值是( )A.63B.33C.23D.13【答案】 B5.直线m⊥平面α,直线n⊂平面β,那么以下命题正确的选项是( ) A.假设α∥β,那么m⊥n B.假设α⊥β,那么m∥nC.假设m⊥n,那么α∥βD.假设n∥α,那么α∥β【解析】易知A选项由m⊥α,α∥β⇒m⊥β,n⊂β⇒m⊥n,故A选项命题正确.【答案】 A6.如图,四边形ABCD 的直观图是直角梯形A 1B 1C 1D 1,且A 1B 1=B 1C 1=2A 1D 1=2,那么四边形ABCD 的面积为( )A .3B .3 2C .6 2D .6【解析】 如图,取∠GB 1C 1=135°,过点A 1作A 1E ∥GB 1,易求得B 1E =2,A 1E =22,故以B 1C 1和B 1A 1为坐标轴建立直角坐标系,由直观图原那么,B ,C 与B 1,C 1重合,然后过点E 作B 1A 1的平行线,且使得AE =2A 1E =42,即得点A ,然后过A 作AD ∥BC 且使得AD =1,即四边形ABCD 上底和下底边长分别为1,2,高为42, 故其面积S =12(2+1)×42=6 2.【答案】 C7.中心角为34π,面积为B 的扇形围成一个圆锥,假设圆锥的外表积为A ,那么A :B 等于( )A .11∶8B .3∶8C .8∶3D .13∶8【解析】 设扇形半径为R ,那么B =12lR =12|α|·R 2=38πR 2,其中l 为扇形弧长,也为圆锥底面周长, 设圆锥底面圆半径为r ,2πr=|α|·R =34πR ,r =38R .S 圆=πr 2=964πR 2, 故A =B +S 圆=38πR 2+964πR 2=3364πR 2.∴A :B =3364πR 2:38πR 2=11:8.应选A. 【答案】 A8.m ,n 为不同的直线,α,β为不同的平面,以下四个命题中,正确的选项是( ) A .假设m ∥α,n ∥α,那么m ∥nB .假设m ⊂α,n ⊂α,且m ∥β,n ∥β,那么α∥βC .假设α⊥β,m ⊂α,那么m ⊥βD .假设α⊥β,m ⊥β,m ⊄α,那么m ∥α【解析】 A 错,平行于同一平面的两直线可平行、相交和异面;B 错,必须平面内有两条相交直线分别与平面平行,此时两平面才平行;C 错,两垂直平面内的任一直线与另一平面可平行、相交或者垂直;D 对,由空间想象易知命题正确. 【答案】 D9.如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,那么以下命题中正确的选项是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC∥平面A′DE;③三棱锥A′-FED的体积有最大值.A.① B.①②C.①②③ D.②③【解析】①中由可得面A′FG⊥面ABC,∴点A′在面ABC上的射影在线段AF上.②BC∥DE,∴BC∥平面A′DE.③当面A′DE⊥面ABC时,三棱锥A′-FDE的体积到达最大.【答案】 C10.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,那么直线OM( )A.和AC、MN都垂直B.垂直于AC,但不垂直于MNC.垂直于MN,但不垂直于ACD.与AC、MN都不垂直【答案】 A11.用一些棱长是1 cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图(或者正视图),假设这个几何体的体积为7 cm3,那么其左视图为( )【解析】 由这个几何体的体积为7 cm 3可知一共有7个小正方体.通过俯视图可以排除选项A 、D ,结合俯视图与主视图即可选出正确答案为C(假设左视图为D ,那么只需要6个小正方体即可).【答案】 C12.一个圆柱的正视图的周长为12,那么该圆柱的侧面积的最大值等于( )A.92π B .6π C .9πD .18π【解析】 圆柱的正视图是一个矩形,假设设圆柱的底面半径为r ,高为h ,那么依题意有4r +2r =12,且0<r <3.故其侧面积S =2πr h =2πr(6-2r)=4πr(3-r)≤4π·⎝ ⎛⎭⎪⎫322=9π,此时r =32,所以圆柱的侧面积的最大值等于9π.【答案】 C二、填空题(本大题一一共4小题,每一小题5分,一共20分,把答案填在题中横线上)13.OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .假设圆M 的面积为3π,那么球O 的外表积等于________.【解析】 ∵圆M 的面积为3π,∴圆M 的半 径r =3,设球的半径为R ,由图可知,R 2=14R 2+3,∴34R 2=3,∴R 2=4.∴S 球=4πR 2=16π. 【答案】 16π14.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,那么该几何体的体积是________.【解析】 由可得几何体是底面半径为1,母线长为2的圆锥的一半,即半圆锥,易知其体积为12×13×π×12×3=36π. 【答案】36π. 15.a ,b ,c 是空间中互不重合的三条直线,下面给出五个命题: ①假设a ∥b ,b ∥c ,那么a ∥c ; ②假设a ⊥b ,b ⊥c ,那么a ∥c ;③假设a 与b 相交,b 与c 相交,那么a 与c 相交;④假设a ⊂平面α,b ⊂平面β,那么a ,b 一定是异面直线; ⑤假设a ,b 与c 成等角,那么a ∥b . 上述命题中正确的________(只填序号). 【解析】 由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故 ②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内〞,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 【答案】 ①16.如图为一几何体的展开图,其中ABCD 是边长为6的正方形,SD =PD =6,CR =SC ,AQ =AP ,点S ,D ,A ,Q 及点P ,D ,C ,R 一共线,沿图中虚线将它们折叠起来,使P ,Q ,R ,S 四点重合,那么需要________个这样的几何体,可以拼成一个棱长为6的正方体.【解析】 由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P -ABCD (如图),其中PD ⊥平面ABCD ,因此该四棱锥的体积V =13×6×6×6=72,而棱长为6的正方体的体积V =6×6×6=216,故需要21672=3个这样的几何体,才能拼成一个棱长为6的正方体.【答案】 6三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤) 17.图1(10分)如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直(图1),图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形图2(1)根据图2所给的正视图、侧视图画出相应的俯视图,并求出该俯视图的面积.(2)图3中,E 为棱PB 上的点,F 为底面对角线AC 上的点,且BE EP =CF FA,求证:EF ∥平面PDA .图3【解析】 (1)该四棱锥的俯视图为内含对角线,边长为6 cm 的正方形,如图.其面积为36 cm 2.(2)连接BF 并延长交AD 于G ,连接PG , 那么在正方形ABCD 中,BF FG =CF FA.又CF FA =BE EP ,∴BF FG =BEEP,∴在△BGP 中,EF ∥PG . 又EF ⊄平面PDA ,PG ⊂平面PDA , ∴EF ∥平面PDA .18.(12分)如图,在四棱台ABCD -A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2.(1)求证:B 1B ∥平面D 1AC ; (2)求证:平面D 1AC ⊥平面B 1BDD 1.【证明】 (1)设AC ∩BD =E ,连结D 1E ,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=2,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.19.(12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.【解析】(1)证明:如下图,由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE⊂平面ABC,所以DE⊥AA1.而DE⊥A1E.AA1∩A1E=A1,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,故平面A 1DE ⊥平面ACC 1A 1. (2)如图所求,设O 是AC 的中点,以O 为原点建立空间直角坐标系,那么相关各点的坐标分别是A (2,0,0),A 1(2,0,7),D (-1,3,0),E (-1,0,0).易知A 1D →=(-3,3,-7),D E →=(0,-3,0),A D →=(-3,3,0).设n =(x ,y ,z )是平面A 1DE 的一个法向量,那么⎩⎪⎨⎪⎧ n ·D E →=-3y =0,n ·A 1D →=-3x +3y -7z =0.解得x =-73z ,y =0. 故可取n =(7,0,-3).于是cos n ,A D →=n ·A D →|n |·|AD →|=-374×23 =-218. 由此即知,直线AD 和平面A 1DE 所成角的正弦值为218. 20.(12分)某高速公路收费站入口处的平安标识墩如图(1)所示.墩的上半局部是正四棱锥P -EFGH ,下半局部是长方体ABCD -EFGH .图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.(1)请画出该平安标识墩的侧(左)视图;(2)求该平安标识墩的体积;(3)证明:直线BD ⊥平面PEG .【解析】 (1)侧视图同正视图(略).(2)该平安标识墩的体积为V =V P -EFGH+V ABCD -EFGH =13×402×60+402×20 =32 000+32 000=64 000(cm 3).(3)证明:如图,连结EG 、HF 及BD ,EG 与 HF 相交于O 点,连结PO ,由正四棱锥的性质可知,PO ⊥平面EFGH ,∴PO ⊥HF .又∵EG ⊥HF ,∴HF ⊥平面PEG .又∵BD ∥HF ,∴BD ⊥平面PEG .21.(12分)四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1.E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN?(3)假设存在,求线段AS 的长;假设不存在,请说明理由.【解析】 (1)如图,以D 为坐标原点,建立空间直角坐标系D -xyz .依题意,易得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0. ∴NE →=⎝ ⎛⎭⎪⎫-12,0,-1, AM →=(-1,0,1).∵cos N E →,A M →=NE →·AM →|NE →|·|AM →|=-1252×2=-1010, ∴异面直线NE 与AM 所成角的余弦值为-1010. (2)假设在线段AN 上与存在点S .使得ES ⊥平面AMN .∵A N →=(0,1,1), 可设A S →=r AN →=(0,λ,λ),又E A →=(12,-1,0), ∴E S →=E A →+A B →=(12,λ-1,λ). 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ E S →·A M →=0,E S →·A N →=0,即⎩⎪⎨⎪⎧ -12+λ=0,(λ-1)+λ=0.故λ=12, 此时A S →=⎝ ⎛⎭⎪⎫0,12,12,|A S →|=22. 经检验,当AS =22时. ES ⊥平面AMN .故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 22.(12分)如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点.(1)假设BM MA =BN NC,求证:无论点P 在D 1D 上如何挪动,总有BP ⊥MN ; (2)假设D 1P :PD =1∶2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的余弦值;(3)棱DD 1上是否总存在这样的点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.【解析】 (1)连接AC 、BD 、那么BD ⊥AC , ∵BM MA =BN NC,∴MN ∥AC ,∴BD ⊥MN .又∵DD 1⊥平面ABCD ,∴DD 1⊥MN ,∵BD ∩DD 1=D ,∴MN ⊥平面BDD 1.又P 无论在DD 1上如何挪动,总有BP ⊂平面BDD 1, ∴无论点P 在D 1D 上如何挪动,总有BP ⊥MN .(2)以D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴,建立如下图的坐标系.设正方体的棱长为1,AM =NC =t ,那么M (1,t,0),N (t,1,0),B 1(1,1,1),P (0,0,23),B (1,1,0),A (1,0,0), ∵MB 1→=(0,1-t,1),B P →=⎝ ⎛⎭⎪⎫-1,-1,23. 又∵BP ⊥平面MNB 1,∴MB 1→·B P →=0,即t -1+23=0,∴t =13, ∴MB 1→=(0,23,1), M N →=(-23,23,0). 设平面MNB 1的法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧ MB 1→·n =0M N →·n =0,得x =y ,z =-23y .令y =3,那么n =(3,3,-2). ∵AB ⊥平面BB 1N ,∴A B →是平面BB 1N 的一个法向量, A B →=(0,1,0).设二面角M -B 1N -B 的大小为θ, ∴cos〈n ,A B →〉 =|(3,3,-2)·(0,1,0)|22=32222. 那么二面角M -B 1N -B 的余弦值为32222. (3)存在点P ,且P 为DD 1的中点, 使得平面APC 1⊥平面ACC 1. 证明:∵BD ⊥AC ,BD ⊥CC 1, ∴BD ⊥平面ACC 1.取BD 1的中点E ,连PE ,那么PE ∥BD ,∴PE ⊥平面ACC 1.∵PE ⊂平面APC 1,∴平面APC 1⊥平面ACC 1.制卷人:打自企; 成别使; 而都那。

2022高三数学高考一本通立体几何第一轮复习单元测试 棱柱

2022高三数学高考一本通立体几何第一轮复习单元测试 棱柱

棱柱一、选择题1、下列命题中,真命题的个数是( )(1)正棱柱的棱长都相等;(2)直棱柱的侧棱就是直棱柱的高;(3)直棱柱的侧面是矩形;(4)有一个侧面是矩形的棱柱是直棱柱;(5)有一条侧棱垂直于底面的棱柱是直棱柱。

A :2个 B :3个 C :4个 D :5个2、长方体的高等于h, 底面积等于S ,过相对侧棱的截面面积为S 1,则长方体的侧面积为( )A B C D3、(2022,北京春季高考)两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长底是( ) A :cm B :7cm C :5cm D :10cm4、如图,已知多面体ABC -DEFG 中,AB 、AC 、AD 两两互相垂直,平面ABC // 平面DEFG ,平面DEF 平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A :2B :4C :6D :85、斜三棱柱的一个侧面面积为S ,另一条侧棱到这个侧面的距离为a ,则这三个棱柱的体积是( )A:31Sa B:41Sa C:21Sa D:32Sa6、斜三棱柱A 1B 1C 1-ABC 中,各棱长为a ,A 1B =A 1C =a ,则该棱柱的侧面积和体积分别为( )A :(123+)a 2, 42 a 3B :13+ a 2,42a 3 C :123+ a 2,123a 3 ) D :13+ a 2,123a 3 7、平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,BAD =60°,对角面BB 1D 1D 是边长为a 的正方形,且B 1BC =60°,此平行六面体的高为 。

8、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,当底面四边形ABCD 满足条件 时,有A 1CB 1D 1(注:填上你认为正确的一种条件即可)9、一个正本棱柱形容器ABC -A 1B 1C 1,以三角形ABC 为底面成水平放置,其高为2a ,内盛水若干,水面高度为,若将此容器放倒,使它的一个侧面为底面成水平放置,这时水面恰为中截面,则= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章《立体几何》综合检测试题一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1、一个几何体的三视图如图所示,则该几何体可以是( )A .棱柱B .棱台C .圆柱D .圆台2、一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为 ①矩形;②直角三角形;③圆;④椭圆.其中正确的是A.①B.②C.③D.④3 .设m.n 是两条不同的直线,α.β是两个不同的平面, ( )A .若m∥α,n∥α,则m∥nB .若m∥α,m∥β,则α∥βC .若m∥n,m⊥α,则n⊥αD .若m∥α,α⊥β,则m⊥β4.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .16B .13C .23D .125 .在空间,下列命题正确的是 ( )A .平行直线在同一平面内的射影平行或重合 B. 垂直于同一平面的两条直线平行 C. 垂直于同一平面的两个平面平行 D. 平行于同一直线的两个平面平行6、一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是( )A .45,8B .845,3C .84(51),3+ D .8,87、如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A.π6B.π4C.π3D.π28、如图是不锈钢保温饭盒的三视图,根据图中数据(单位:cm ), 则 该饭盒的表面积为A .1100π2cmB .900π2cmC .800π2cmD .600π2cm9、已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A .3172B .210C132D .31010.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A 、233πB 、23πC 、736πD 、733π11、若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =A . 1:1.B . 2:1.C . 3:2.D . 4:1.12、在棱长为1的正方体1111ABCD A BC D -中,1P,2P 分别为线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 A .124 B .112C .16 D .12二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13、已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________。

14、某几何体的三视图如图所示, 则其表面积为________.15、已知球与棱长均为2的三棱锥各条棱都相切,则该球的表面积为 .16.(2013湖北 文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在直三棱柱111C B A ABC -中, AB BC ⊥, D 为棱1CC 上任一点. (1)求证:直线11A B ∥平面ABD ; (2)求证:平面ABD ⊥平面11BCC B .18.(本小题满分12分) 如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(1)求证:BC PAC ⊥平面;(2)设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面19.(本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 12AB AA ==.OD 1B 1C 1D ACBA 1(Ⅰ) 证明: 平面A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.20.(本小题满分12分)如图1,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图2所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3)当23AD =时,求三棱锥F DEG -的体积F DEG V -.图1 图221.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,1AB AC AA ==,且E 是BC 中点.(1)求证:1//A B 平面1AEC ; (2)求证:1B C ⊥平面1AEC .22.(本小题满分12分)已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE = 3,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:AE⊥MN;(2)求四棱锥M–ADNP的体积。

参考答案一、选择题 1、【答案】D【解析】由三视图可知,该几何体为圆台. 2、【答案】C【解析】当俯视图为圆时,由三视图可知为圆柱,此时主视图和左视图应该相同,所以俯视图不可能是圆,选C.3、【答案】C【解析】平行的传递性只有在线线和面面之间成立,其他的线面混合的不成立,所以A,B 错误。

两条平行线中的一条直线垂直于某个平面,则另一条也垂直该平面,所以C 正确. 4、【答案】B【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则111112323V =⨯⨯⨯⨯=,选B. 5、【答案】B【解析】A 中的射影也有可能是两个点,错误。

C 中两个平面也可能相交,错误。

D 中的两个平面也有可能相交,错误。

所以只有B 正确。

6、【答案】B【解析】由三视图可知四棱锥的底面边长是2,高为2,斜高是5,所以11842545,222233S V =⨯⨯⨯==⨯⨯⨯=侧,故选B.7、答案 C解析 连结AC 、BD 交于点O ,连结OE ,易得OE ∥P A . ∴所求角为∠BEO .由所给条件易得OB =62,OE =12P A =22,BE =2,∴cos ∠OEB =12,∴∠OEB =3π,选C.8、B由三视图可知,该饭盒是一个圆柱和半球的组合体,圆柱的底面半径为10cm ,高为30cm ,半球的半径为10cm ,则S 圆柱=22700rh r πππ+=.S 半球=22r π=200π,所以这个饭盒的表面积为90πcm 2.9、【答案】C【解析】由球心作平面ABC 的垂线,则垂足为BC 中点M 。

计算AM=52,由垂径定理,OM=6,所以半径R=22513()622+=,选C.10、答案 D解析 上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.故选D.11、【答案】C 12、【答案】A【解析】过2P 作2PO ⊥底面于O,连结1OP , 则1OP AB ⊥,即1OP 为三棱锥211PPAB -的高,设101AP x x =<<,,则由题意知1//OP AD ,所以有11OP BP AD AB=,即11OP x =-。

所以四面体121PP AB 的体积为11211111111(1)(1)()33266224AP B x x S OP x x x x ∆+-⋅=⨯-=-≤=,当且仅当1x x =-,即12x =时,取等号,所以四面体121PP AB 的体积的最大值为124,选A.二、填空题13、【答案】24π【解析】设正四棱锥的高为h ,则2132(3)32h ⨯=,解得高322h =。

则底面正方形的对角线长为236⨯=,所以22326()()622OA =+=,所以球的表面积为24(6)24ππ=. 14、【答案】π3【解析】 由三视图可知,该几何体是一个半径r=1的半个球体。

其表面积为πππ342122=+⋅r r 。

15、【答案】2π【解析】将该三棱锥放入正方体内,若球与三棱锥各棱均相切等价于球与正方体各面均相切,所以222,2R R ==,则球的表面积为214422S R πππ==⨯=.16、【答案】3【解析】本题考查圆台的体积公式。

做出圆台的轴截面如图,由题意知,14BF =(单位寸,下同),6OC =,18,9OF OG ==,即G 是中点,所以GE 为梯形的中位线,所以146102GE +==,即积水的上底面半径为10.所以盆中积水的体积为1(1003610036)95883πππππ++⨯⨯=。

盆口的面积为214196ππ=,所以5883196ππ=,即平地降雨量是3寸。

⊥三、解答题17、(1)证明:由直三棱柱111C B A ABC -,得11//A B AB ,而11,A B ABD AB ABD ⊄⊂平面平面,所以直线11A B ∥平面ABD . (2)因为三棱柱111C B A ABC -为直三棱柱,所以1AB BB ⊥,又AB BC ⊥,而1B B ⊂平面11BCC B ,BC ⊂平面11BCC B ,且1BB BC B = ,所以AB ⊥平面11BCC B 又AB ABD ⊂平面,所以平面ABD ⊥平面11BCC B .18、证明:(1)由AB 是圆O 的直径,得AC ⊥BC. 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC. 又PA∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC.11(2)连结OG 并延长交AC 于M ,连结QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点,由Q 为PA 中点,得QM ∥PC. 又O 为AB 中点,得OM ∥BC.因为QM∩MO =M ,QM ⊂平面QMO. MO ⊂平面QMO ,BC∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC ,所以平面QMO ∥平面PBC. 因为QG ⊂平面QMO ,所以QG ∥平面PBC.19、解: (Ⅰ) 设111O D B 线段的中点为. 在正方体AG 中有BD ∥B 1D 1,A 1O 1∥OC∴平面A 1BD ∥平面CD 1B 1.11111,AO BD O OC B D O == ∴平面A 1BD ∥平面CD 1B 1.(Ⅱ) ∵A 1O ∥O 1C.且平.在正方形AB CD 中,AO = 1 .三棱柱A 1B 1D 1-ABD 的体积V A1B1D1-ABD =S △ABD ·A 1O=12×()22×1=1. 11)2(2121111111=⋅⋅=⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱. 所以,1111111=--ABD D B A V ABD D B A 的体积三棱柱.20、解:(1)在等边三角形ABC 中,AD AE = AD AE DB EC ∴=,在折叠后的三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄ 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==.. 1 1 1 = ≥ O A OA RT 中,在 A12在三棱锥A BCF -中,22BC =,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥ 平面;(3)由题意可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111131332323323324F DEG E DFG V V DG FG GF --⎛⎫==⋅⋅⋅⋅=⨯⨯⨯⨯⨯= ⎪ ⎪⎝⎭21、解:(I) 连接A C 1交AC 1于点O ,连接EO因为四边形1ACC A 1为正方形,所以O 为A C 1中点,又E 为CB 中点,所以EO 为1A BC ∆的中位线,所以1//EO A B又EO ⊂平面1AEC ,1A B ⊄平面1AEC ,所以1//A B 平面1AEC .(2)因为AB AC =,又E 为CB 中点,所以AE BC ⊥又因为在直三棱柱111ABC A B C -中,1BB ⊥底面ABC ,又AE ⊂底面ABC , 所以1AE BB ⊥,又因为1BB BC B = ,所以AE ⊥平面11BCC B .又1B C ⊂平面11BCC B ,所以AE ⊥1B C .在矩形11BCC B 中, 1112tan tan 2CB C EC C ∠=∠=,所以111CB C EC C ∠=∠, 所以11190CB C EC B ∠+∠= ,即11B C EC ⊥又1AE EC E = ,所以1B C ⊥平面11BCC B ,22、解: (1),//AE BE MP BE ⊥ MP AE ∴⊥又BC ⊥ 平面ABE ,AE ⊂平面ABE ,BC AE ∴⊥, P N M AD CBE13 N 为DE 的中点,P 为AE 的中点,,//AD NP ∴ BC NP BC AD //,//∴ , ,NP AE ∴⊥ 又,,NP MP P NP MP =⊂ 平面PMN .MN AE MNP MN MNP AE ⊥∴⊂⊥∴,,平面平面(2)由(1)知AE MP ⊥,且2121==BE MP . //,ABE AD BC AD ∴⊥ 平面,ABE MP 平面⊂ ,MP AD ⊥∴, ADNP AE AD A AE AD 平面⊂=,, ,⊥∴MP ADNP 平面 //,ABE AD BC AD ∴⊥ 平面,AP AD ⊥∴, 又,//AD NP ADNP 四边形∴为直角梯形 131332228ADNP S ⎛⎫+⋅ ⎪⎝⎭==梯形,21=MP , ∴四棱锥ADNP M -的体积1331338216ADNP V S MP =⋅=⋅⋅=梯形 .。

相关文档
最新文档