阻抗和导纳
电路分析第8章 阻抗与导纳
i1 i2
0
i2 滞后i1
t
i1
i1与i2反相 i2
t
0
0
i2
i1
i1与i2同相
t
i1
i2 i1与i2正交
t
0
0
8.1 变换方法的概念(变换域方法)
正弦量具有幅值、频率和初相位三个要素,它们除了 用三角函数式和正弦波形表示外,还可用相量来表示同 频率的正弦量。 相量表示法就是用复数来表示同频率的正弦量。 相量法是一种用来表示和计算同频率正弦量的数学 工具,应用相量法可以使正弦量的计算变得很简单。
比照复数和正弦量,正弦量可用复数来表示。复数的模即为 正弦量的幅值(或有效值),复数的辐角即为正弦量的初相位。 为与一般复数相区别,把表示正弦量的复数称为相量。并用 在大写字母上打一“•”的符号表示。 • 例如 i (t)= Imcos ( t+ ) 的相量为 (最大值相量)
Im=Im = Imej =Im (cos +jsin ) I=I = Iej =I(cos +jsin )
例如:已知两个支路电流
i1= I1 mcos( t+i1)
正弦电量 (时间函数) 变换
正弦量运算
相量 (复数) 相量运算 (复数运算)
i2= I2 mcos( t+i2)
若求:i = i1 + i2
所求正弦量 反变换 相量结果
8.2 复数
+j
由欧拉公式,得出:
j 1
模
cos +jsin =ej
额定电压纯电阻元件交流电路纯电阻元件交流电路ir电压与电流同频率同相位电压与电流大小关系urdidt纯电感元件交流电路纯电感元件交流电路电流超前电压90dudt纯电容元件交流电路纯电容元件交流电路电压与电流相量式单一参数的交流电路单一参数的交流电路纯电阻元件交流电路纯电阻元件交流电路电压与电流相量表达式电压与电流相量式二二纯电感元件交流电路纯电感元件交流电路三三纯电容元件交流电路纯电容元件交流电路97vcr相量形式的统一阻抗和导纳的引入电压与电流相量式欧姆定律的相量形式欧姆定律的相量形式称为复数阻抗简称阻抗单位为欧姆
第八章 阻抗和导纳
& Um = Um & =I Im m
θ → u(t) = Um cos(ωt + θ)
θ → i(t) = Im cos(ωt + θ)
上 页 下 页
例1
写出下列正弦量对应的振幅相量 1) i1 = −3sin(ωt + 60o ) → 2) i2 = −3cos(ωt + 60 ) →
上 页
下 页
8-6 +
& Um
& Im
阻抗与导纳 +
& Im
+
1 jωC
& Im
R _
& Um
& Um
jωL
_
& Um =R & Im
_
& Um = jωL & Im
& Um 1 = & Im jωC
概括
& Um =Z & Im
+ 阻抗
& Um
& Im
Z
_
上 页 下 页
一、阻 抗 定义: 二端元件(网络) 电压相量与电流相量之比。
第三篇 动态电路的相量分析法 和s域分析法
上 页
下 页
相量分析法:正弦稳态电路 在单一频率正弦电压、电流激励下, 线性非时变渐近稳定电路中各支路电流 和电压,均为与激励同频率的正弦波。 s域分析法:线性非时变动态电路 激励不仅只是正弦波,研究的对象 可以是稳态,也可以是暂态。
上 页
下 页
第八章 阻 抗 与 导 纳
上 页 下 页
例 已知A=6+j8=10∠53.1o , B=-4.33+j2.5=5∠150o 计算A+B,A-B,A·B,A/B
节点导纳矩阵和节点阻抗矩阵的关系
节点导纳矩阵和节点阻抗矩阵的关系
节点导纳矩阵和节点阻抗矩阵是电力系统分析中常用的两个矩阵。
它们之间存在一定的关系和转换。
节点导纳矩阵是描述电力系统中各个节点之间互联关系的矩阵,它通过节点的导纳(含有电阻和电抗的复数形式)表示各个节点之间的互连关系。
节点导纳矩阵常用于节点潮流计算和电力系统的稳态分析。
节点阻抗矩阵则是描述电力系统中各个节点之间互联关系的矩阵,它通过节点的阻抗(含有电阻和电抗的复数形式)表示各个节点之间的互连关系。
节点阻抗矩阵通常用于节点间的短路计算和电力系统的故障分析。
节点导纳矩阵和节点阻抗矩阵之间可以通过以下关系进行转换:
1.对于一个电力系统,其节点导纳矩阵可以通过节点阻抗矩
阵进行求逆得到。
即可以通过节点阻抗矩阵来推导得到节
点导纳矩阵。
2.反之,节点导纳矩阵可以通过节点阻抗矩阵进行求逆得到。
即可以通过节点导纳矩阵来推导得到节点阻抗矩阵。
这种转换关系可以通过复数阻抗矩阵和复数导纳矩阵之间的关系而得到。
复数阻抗的求逆结果得到的是复数导纳。
总之,节点导纳矩阵和节点阻抗矩阵是描述电力系统中节点之间互联关系的两个矩阵,它们之间可以通过求逆操作相互转换。
电路分析基础_09阻抗与导纳
9.4 相量的线性性质和微分性质
正弦量的微分、积分运算
y(t) Y
微分运算
dy(t) dt
d dt
Re Yej
t
Re Y j ej t
积分运算
y(t)dt
Re Yej t dt
Re
Y
j
e
j
t
dy(t) jY
dt
idt
Y
j
9.4 相量的线性性质和微分性质
9.1 变换方法的概念 ①
问题的提出
(1 R2
1 R3
)un1
iS1
uS 2 R2
uS 3 R3
R1 is1
R2
+ us2
–
R3
+ us3
–
un1
R2 R3 R2 R3
iS1
R3 R2 R3
uS 2
R2 R2 R3
uS 3
is1(t) 6 2sin(314t 75 ) V us1(t) 6 2sin(314t 30 ) V us2 (t) 4 2sin(314t 60o ) V
Re(U 1
e jt
•
U
2
ejt )
•
•
Re[(U 1 U
2 )ejt ]
u(t)
u1
(t
)
u2
(t
)
•
Re[(U
1
•
U
2
)e
jt
]
相量关系为: U U1 U2
9.4 相量的线性性质和微分性质
u1(t) 6cos(314t 30 ) V u2 (t) 4cos(314t 60o ) V
节点导纳矩阵和节点阻抗矩阵的关系
节点导纳矩阵和节点阻抗矩阵的关系节点导纳矩阵和节点阻抗矩阵都是电力系统中常用的技术工具,在电力系统分析和计算中起着重要的作用。
节点导纳矩阵是描述电力系统节点之间互相连接的导纳关系的矩阵,而节点阻抗矩阵则是描述电力系统节点之间互相连接的阻抗关系的矩阵。
本文将分析节点导纳矩阵和节点阻抗矩阵的相关知识,并探讨它们之间的关系。
一、节点导纳矩阵的基本概念节点导纳矩阵是用来描述电力系统中各个节点之间的导纳关系的工具。
在电力系统中,节点是指电力系统中各个线路、变压器等元件的连接点,它们通过导线或者变压器等元件连接起来。
节点导纳矩阵可以用来描述电力系统中各个节点之间的导纳关系,从而可以用来分析和计算各个节点之间的电压、电流等电气参数。
节点导纳矩阵通常用Y矩阵来表示,它是一个N×N的方阵,其中N表示电力系统中节点的个数。
在节点导纳矩阵中,矩阵的每个元素Yij表示节点i和节点j之间的导纳关系,即节点i和节点j之间的导纳值。
节点导纳矩阵的元素Yij可以通过分析电力系统中各个节点之间的连接关系和元件的参数来确定。
节点导纳矩阵可以用来描述电力系统中各个节点之间的导纳关系,从而可以用来进行各种电力系统的分析和计算。
例如,可以利用节点导纳矩阵来进行节点电压的计算,或者进行节点电流的计算等。
因此,节点导纳矩阵是电力系统分析和计算中的重要工具。
二、节点阻抗矩阵的基本概念节点阻抗矩阵是用来描述电力系统中各个节点之间的阻抗关系的工具。
在电力系统中,各个节点之间连接着各种电气元件,例如导线、变压器等,这些电气元件都具有一定的阻抗。
节点阻抗矩阵可以用来描述电力系统中各个节点之间的阻抗关系,从而可以用来分析和计算各个节点之间的电压、电流等电气参数。
节点阻抗矩阵通常用Z矩阵来表示,它也是一个N×N的方阵,其中N表示电力系统中节点的个数。
在节点阻抗矩阵中,矩阵的每个元素Zij表示节点i和节点j之间的阻抗关系,即节点i和节点j之间的阻抗值。
最新高等院校电工学电子学课程第九章《阻抗和导纳》
U R 2
2 245
100
7.07
45 V
U L 2
U L
U
U C
U R
I
U
UX
UR
U
U
2 R
U
2 X
电压三角形
.
IR
+
.
+ U R-
U
-
U+X jX
-
Z R j X Z
|Z| X
R 阻抗三角形
U U R U X U
U
UX
UR
电压三角形
二、导纳
1、定义
Y
1 Z
I
U
I U
具体分析一下 R-L-C 串联电路
Z=R+j( L-1/ C)=|Z|∠ L > 1/ C ,X>0, >0,电压领先电流,电路呈感性; L<1/ C ,X<0, <0,电压落后电流,电路呈容性; L=1/ C ,X=0, =0,电压与电流同相,电路呈电阻性。
画相量图:选电流为参考向量( L > 1/ C )
jB
º
º
Z R jX Z φZ Y G jB Y φY
条件:Z ( jw)Y ( jw) 1 即 | Y ( jw) || Z ( jw) | 1 , φY φZ 0
Y
1 Z
1 R jX
R jX R2 X 2
G
jB
G
R R2X 2
,
B
阻抗和导纳
哈尔滨理工大学 王竹萍
PDF 文件使用 "pdfFactory Pro" 试 Graphs
哈尔滨理工大学 王竹萍
PDF 文件使用 "pdfFactory Pro" 试用版本创建
哈尔滨理工大学 王竹萍
PDF 文件使用 "pdfFactory Pro" 试用版本创建 Ì
ª Z1 Z2 I + + -+ U1 U 2 U (a)
Zn n+U
+ U -
ª I Z (b)
串联各阻抗上的电压相量为:
Zk U k = Zk I = U,k=1,2,…n ——电压分配公式 Z
2 2
Z =R+jX
一端口内仅含单一元件R、L或 C, 其对应阻抗为: 1 Z R = R, Z L = jωL, Z C = − j ωC
哈尔滨理工大学 王竹萍
PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿÿf
阻抗和导纳
二、一端口内为 R 、 、 C 串联 二、一端口内为 R 、L L 、 C 串联 1 U Iª = R + jω L + = Z + jω C I j ω L R 1 1 U = R + j ωL − jω C ωC = R + j ( X L + X C ) = R + jX 1 XC = − 其中 X=XL+XC , XL= ωL—感抗, —容抗 ωC Z = Z ∠ϕ Z 1 ωL − X 2 2 ωC Z = R + X ,ϕ Z = arctan = arctan R R 1 1 , Z呈感性, X < 0, ω L < , Z呈容性 当 X > 0, ω L > ωC ωC
4.9.4 阻抗和导纳关系
Z
Y 1=则L R ωj 1+=222222j j R L G B L R L R ωωω=-=+++R L R R G 1222≠+=ω2221L B L R L
ωωω=-≠+j Z R L ω=+若说明:Y 与 Z 等效是在某一频率下求出的,故等效的 Z 或 Y 与频率有关。
阻抗与导纳之间的关系
Y
Z 1=阻抗和导纳
解:GCL 并联电路的导纳为 j[1/()]Y G C L ωω=+-其等效阻抗
11j[1/()]Z Y G C L ωω==+-rad/s
π100π2==f ω361210S j[100π101/(100π1)]S Z --=⨯+⨯-⨯阻抗虚部为正,呈电感性质,等效电感
H 747.0s π)100(2351-≈Ω==ωL
X L (a)
Ω164H 747.0例 3 GCL 并联电路中G =2mS , L =1H , C =1μF 。
试在频率为50Hz 和 400Hz 两种情况下求其串联等效电路的参数。
(164j235)≈+Ω f =50Hz 时 阻抗和导纳 例题
f =400Hz 时 =ωrad/s
π800⨯+⨯-⨯=≈-Ω--Z 1)]
π101/(800π210S j[800(236j250)136阻抗虚部为负,呈电容性质,等效电容为
⨯Ω==≈ωX C C s 250π800F μ1.5911-1F μ1.59236Ω)b (一个实际电路在不同频率下的等效,不仅其电路参数不同,甚至连元件类型也可能发生改变。
这说明经过等效变换求得的等效电路只是在一定频率下才与变换前的电路等效。
阻抗和导纳 例题
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。
阻抗与导纳
Z12 Z 23 Z2 Z12 Z 23 Z 31
Z 23 Z 31 Z3 Z12 Z 23 Z 31
使用以上公式时注意以下几点:
熟记基本元件的阻抗和导纳。 同一元件或同一端口的阻抗和导纳互为倒数。
一般来讲,以上各公式中的阻抗和导纳用各 自的模表示时,各等式不成立。 例: Z Z1 Z 2 Z 3 Z n 和电阻电路中的分压、分流公式相同,在使 用时,要注意符号与参考方向的关系。
o
C
注意: U U U U R L C
例2 如图所示电路。已知R1=3、 R2=8, o u 220 2 sin( 314 t 10 )V XC=6 、XL=4 , 求:各支路电流及总电流的瞬时值表达式。 I i 解: U 22010 o V
Z1 R1 jX L 3 j4 Z 2 R2 jX c 8 j6
3
Z R j( X L X C ) 30 j(79.8 - 39.8)
(30 j40) 5053.1o
22020o U o I 4.4 33 . 1 A o Z 5053
u R – + u u L – + u – C –
R L C
+ i1 u
。
2 1 I I
R1
XL
i2
R2
Xc
+
U
R1
R2
22010o 22010o U – – 1 I Z1 3 j4 553o 44 43 o A 相量模型 o o U 220 10 220 10 o 2 I 22 47 A o Z2 8 j6 10 37 o i 44 2 sin( 314 t 43 )A 1 o o I 1 I 2 44 43 2247 A I o
5.4阻抗与导纳及其等效变换
5.4 阻抗与导纳及其等效变换一、阻抗1.阻抗的定义及表示形式如下图(a)所示的单口无源线性两端网络N 0,设端口电压为2sin()u u U t ωϕ=+,对应的相量.u U U ϕ=∠,端口电流为2sin()i i I t ωϕ=+,对应的相量.i I I ϕ=∠。
则其端口电压相量与电流相量之比定义为该网络的阻抗Z ,即..()u i U UZ Z I Iϕϕϕ==∠-=∠ 由上式可得 u i U Z Iϕϕϕ⎫=⎪⎬⎪=-⎭说明:(1)Z 是一个复数,所以又称为复阻抗,Z 是阻抗的模,ϕ为阻抗角,它是电压与电流的相位差。
复阻抗的图形符号与电阻的图形符号相似,如上图(b)所示。
复阻抗的单位为Ω。
(2)阻抗Z 用代数形式表示时,可写为:j Z R X =+R :Z 的实部,称为阻抗的电阻分量,单位:Ω,R 一般为正值;X :Z 的虚部,称为阻抗的电抗分量,单位:Ω,X 的值可能为正,亦可能为负。
阻抗的代数形式与极坐标形式之间的互换公式:22arctan Z R X X R ϕ⎫=+⎪⎬=⎪⎭cos sin R Z X Z ϕϕ=⎫⎪⎬=⎪⎭由阻抗Z 的代数形式可知,由于R 一般为正值,所以有π2ϕ≤,且R 、X 和Z 三者之间的关系可用一个直角三角形表示,如上图(c )所示。
2.阻抗的性质由于阻抗Z Z ϕ=∠而arctan XRϕ=,电路结构、参数或频率不同时,阻抗角ϕ可能会出现三种情况:(1)0ϕ>(即0X >)时,称阻抗的性质为感性,电路为感性电路; (2)0ϕ=(即0X =)时,称阻抗性质为电阻性,电路为阻性电路; (3)0ϕ<(即0X <)时,称阻抗性质为容性,电路为容性电路。
3.单口无源网络的串联等效电路由.......R X (j )j U Z I R X I R I XI U U ==+=+=+,可知.R U 与.I 同相位,.X U 与.I 相差π2。
阻抗和导纳-电路分析基础
i1 (t ) 10cos(t 60 ) A i2 (t ) 5 sin(t ) A
求i3 (t )
解:为了利用KCL的相量形式,应首先写出i1、i2的振幅相量
2019年2月23日星期六 信息学院
8-2 复数 一、表示形式 二、复数的四则运算 8-3 振幅相量 正弦激励下电路的稳定状态称为正弦稳态。 正弦波,以正弦电压为例,可表示为
u(t ) U m cos(t )
2 2f T
正弦波的三特征:振幅、角频率(频率、周期)和初相。
2019年2月23日星期六 信息学院
结束 结束
给定正弦波的标准形式,可根据振幅和初相直接写出其振幅相量
I 1m 560
2019年2月23日星期六 信息学院
结束 结束
6
第8章 阻抗和导纳
电路分析基础
2、i2 (t ) 10sin(314t 60 ) A
给定正弦波不是标准形式,按照三角函数的变换关系,化成
标准形式后再写其振幅相量。
2019年2月23日星期六 信息学院
结束 结束
1
第8章 阻抗和导纳
电路分析基础
第八章 阻抗和导纳
8-1 变换方法的概念 原来的问题 变换 变换域中较易 的问题 直接求解 原来问题的解答 反变换 变换域中较易 问题的解答
求解
2019年2月23日星期六 信息学院
结束 结束
2
第8章 阻抗和导纳
电路分析基础
2019年2月23日星期六 信息学院
I 3m 4240
结束 结束
7
第8章 阻抗和导纳
电路分析基础
例8-3,写出各振幅相量对应的正弦电压。已知f=50HZ
阻抗圆图和导纳圆图
匹配网络设计
01
匹配网络是用于将信号源与负载之间进行阻抗匹配的电路,阻 抗圆图和导纳圆图在匹配网络设计中具有关键作用。
02
通过调整元件的阻抗和导纳值,可以设计出性能良好的匹配网
络,提高信号传输效率。
阻抗圆图和导纳圆图可以帮助设计者快速找到合适的元件参数,
03
实现最佳的匹配效果,降低信号传输损失。
感谢您的观看
滤波器设计
利用阻抗圆图可以设计不 同频率响应的滤波器。
匹配网络设计
在射频和微波系统中,利 用阻抗圆图可以设计信号 源和负载之间的匹配网络, 提高传输效率。
03
导纳圆图
实部与虚部
实部
表示导纳的电阻分量,表示电导或电 阻的性质。
虚部
表示导纳的电抗分量,表示感抗或容 抗的性质。
导纳的等效电路
01
导纳的等效电路由电阻和电抗元 件组成,其中电阻元件表示导纳 的实部,电抗元件表示导纳的虚 部。
阻抗圆图和导纳圆图
目录
• 阻抗圆图和导纳圆图概述 • 阻抗圆图 • 导纳圆图 • 阻抗圆图和导纳圆图的转换 • 阻抗圆图和导纳圆图在电路分析中的应用
01
阻抗圆图和导纳圆图概述
定义与概念
阻抗圆图
阻抗圆图是一种用于表示电路元件或系统阻抗特性的图形工具,它以复平面上 的点来表示阻抗值,并通过阻抗圆图上的标记来读取对应的阻抗值。
02
阻抗圆图
实部与虚部
实部
表示电阻成分,表示能量消耗部分。
虚部
表示电感或电容成分,表示能量储存部分。
阻抗的等效电路
串联阻抗
由电阻、电感和电容串联组成,等效 于一个复阻抗。
并联阻抗
由电阻、电感和电容并联组成,等效 于一个复阻抗。
其阻抗和导纳为倒数关系
2.阻抗三角形
由 Z=R+jX=Z z
Z
可得 Z R2 X 2
X
Z
arctg
X R
Z
R
Z、R、X之间关系可用直角三角形表示,称 为阻抗三角形。
0.181 20
A
I3
R1
R1 j 1
C
I1
1000 1049.5 17.7
0.652.3
0.5770
A
I1
U Z
1000 166.99 52.3
0.652.3
② 阻抗Z的代数式:Z=R+jX,实部R=Zcos z称为电 阻,虚部X= Zsin z称为电抗;
③ 电抗X可正可负,当X0时,即z 0,称Z是感性的; 当X0,即z 0,称Z是容性的;当X=0时,即z=0,
称Z是阻性的; ④ 电阻R的阻抗ZR=R;电感L的阻抗ZL=jω L,其电抗
Z 58.8 31.8
L
电阻 : UR R 50 187 1.8
电感 : U L jL j62.8 235 88.2
u
电容 :
U C
j
C
j31.8
119
91.8
R C
例 3: 已知: R1 1000 , R2 10 , L 500mH , C 10F ,
318.47 103 90 1049.5 17.7
303.45 72.3 92.11 j289.13
电路第4章-2(阻抗与导纳)
& I
R1
i2
R2
Xc
+
& U
R1
& I1
R2
& I2
XL
–
jXL - jX C
相量模型
解:
& U = 220∠10o V
1 1 1 = = = 0.2∠ − 53o S Y1 = R1 + jX L 3 + j4 5∠53o
1 1 1 Y2 = = = = 0.1∠37 o S R2 − jX C 8 − j6 10∠ − 37 o
U Um | Z |= = I Im
ϕ z = θu − θi
电压滞后电流, ϕ z < 0 电压滞后电流,容性 电压电流同相, ϕ z = 0 电压电流同相,阻性
4.3.2 用阻抗法分析串联电路
相量模型将所有元件以相量形式表示: 相量模型
C → − jX C 的阻抗
R R的阻抗
i + uR - R L - uC C (a) RLC 串联电路
Z = R + j( X L − X C )
5
1 ) = 5 + j (2 × 10 × 6 × 10 − 5 −6 2 × 10 × 0.001× 10
−3
= 5 − j 3.8 = 6.28∠ − 37.2° kΩ
ϕ z < 0 ,电路呈容性。
如果几个理想元件相串联 几个理想元件相串联时,阻抗的模和幅角 几个理想元件相串联 可由以下三角形求出:
& & I1 = Y1U = 0.2∠ − 53o × 220∠10o = 44∠ − 43o A & & I 2 = Y2U = 0.1∠37o × 220∠10o = 22∠47o A
电路课件第8章阻抗与导纳
并联电路的阻抗
在并联电路中,总阻抗的 倒数等于各元件阻抗的倒 数之和。
复杂电路的阻抗
对于复杂电路,需要先进 行等效变换,将电路化简 为串联或并联形式,再利 用相应的方法计算阻抗。
03
导纳的计算
导纳的公式
总结词
导纳是阻抗的倒数,其计算公式为 Y=1/Z。
详细描述
导纳是电路中元件对电流的导纳能力 ,表示为Y,其计算公式为Y=1/Z, 其中Z是阻抗。导纳的单位是西门子 (S),阻抗的单位是欧姆(Ω)。
详细描述
阻抗(Z)和导纳(Y)之间的关系可以用 数学公式表示为Z=1/Y或Y=1/Z。这意味着 在复平面内,阻抗和导纳的实部和虚部互为 倒数,且共轭存在。这种关系在交流电路的 分析中尤为重要,特别是在分析正弦稳态电 路时。通过阻抗和导纳的关系,可以方便地
计算出电路的电压、电流、功率等参数。
2
阻抗的计算
需求进行选择和设计。
在设计滤波器时,阻抗和导纳的大小会影响滤波器的传递函数、截止频 率、通带和阻带的性能等。通过调整阻抗和导纳的大小,可以实现不同 性能指标的滤波器。
在放大器中的应用
在放大器的输入和输出端,阻抗和导纳的大小会影响 信号的传输和处理。通过合理选择阻抗和导纳的值, 可以优化放大器的增益、带宽、噪声等性能指标。
04
阻抗与导纳的应用
在交流电路中的应用
阻抗和导纳是交流电路中非常重要的概 念,它们决定了电路的工作状态和性能 。通过合理选择阻抗和导纳,可以优化
电路的功率传输和信号处理能力。
在交流电路中,阻抗表现为对交流电的 阻碍作用,而导纳则表现为对交流电的 导通作用。通过调整阻抗和导纳的大小 ,可以实现对交流电的滤波、整形、平
衡等处理。
高二物理竞赛课件电路的阻抗与导纳
Y Y e j( ) Y cos( ) j Y sin( )
G jB
G称为等效电导(equivalent conductance),虚部称为等效电 纳(equivalent susceptance)
导纳三角形
G
Y
B(B < 0)
I
+
U
G jB
_
U
IG
IB
I
电流三角形
I YU (G jB)U GU jBU
将Um和2代入(**)式得到
uC
(t)
Ke
1 RC
t
U m s in t
2
1t
Ke RC
1
U Sm (RC
)2
sint
1
arctan
RC
由uC(0+)=U0,代入上式求得待定常数K
K U0
U Sm 1 (RC )2
sin 1
arctan
RC
最后得到电容电压的表达式
uC (t ) [U 0
电路的阻抗与导纳
电路的阻抗与导纳
➢ 阻抗(impedance)
def U
U e j u
Z I I e j i
U e j( u i ) I
Z U I
u i
Z Z e j= Z cos j Z sin
R jX
R称为等效电阻 ,X称为等效电抗(equivalent reactance)
阻抗三角形
Z
X(X > 0)
R
通过电流放大器驱动TTL电路
返回
2. 用4000系列CMOS电路驱动74LS系列TTL电路
满足要求,但如果n>1,仍需要扩流.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻抗、导纳的概念 阻抗角、导纳角的概念 感性、容性的概念
1
§8.2 正弦稳态分析(阻抗和导纳)
在正弦稳态情况下,口电压相量与口电流相量之比称 策动点阻抗或驱动点阻抗(简称阻抗)
Z ( j)
Um Im
Um Im
e j(u i )
1/ jC
IS
I1
I2
R1
R2 U0
U 01
R2 I 2
R1R2 R1 R2
1 jC
IS
9083.16
u01
2[90sin(t 83.16 )]
11
§8.2 正弦稳态分析(相量法)
②当=10rad/s时
U 02
R2 I 2
R1
R1R2
R2
1 j10C
IS
57639.8
Y ( j)
Im Um
Im Um
e j(i u )
Im Um
i
u
I
Y Y Y cosY j Y sin Y
G jB
U
其中 Y 导纳的模 Y 导纳角,约定 90 剟Y
G 电导,B 电纳。 对同一端口,在同一频率下
90
Y1 Z
jB G
3
§8.2 正弦稳态分析(阻抗和导纳)
7
§8.2 正弦稳态分析(阻抗和导纳)
阻抗不同于正弦量的复数表示,它不是一个相量,而 是一个复数计算量。
• 对同一端口来说 R 1
G
X1 B
Y1 1
R jX
Z R jX (R jX )(R jX )
R2
R X2
j R2
X X2
G
jB
•
在串联情况下
n
Z Zk
10
§8.2 正弦稳态分析(相量法)
例 右示电路,求u0。已知R1=3K,
R2=1K,C=30F,
iS
iS 2(sint sin10t sin1000t)
C
i1
i2
R1
R2 u0
解:频率为的电流源 IS 激励下的符号电路如下
I2
R1
R1 R2
1 jC
IS
①当=1rad/s时, IS 10 mA
在并联情况下
n
Y Yk
k 1
k 1
• 测量方法:从电压表和电流表上可读得电压电流的有
效值,用相位计可测得阻抗角Z和导纳角Y
8
§8.2 正弦稳态分析(相量法)
• 相量分析法
基本要求:
运用相量法计算正弦稳态电路 耦合电感电路及其去耦方法 正弦稳态电路的相量图解法
9
§8.2 正弦稳态分析(相量法)
• 频率一经确定,即激励正弦信号频率一经确定,单口网络的阻
抗也就被确定,且仅由元件参数和网络拓扑所决定,并不随端 口电压或电流的变化而变化。当电路参数变化时,阻抗也随之 而变,那么
当激励是电流 IS ,根据 将随阻抗Z的变化而变化;
当激励是电压 US ,根据 也将随阻抗Z的变化而变化
U ZIS ,响应 U I US ,响应 I
XL
<
XC
L
<
1
C
ZΒιβλιοθήκη <0 u
< i
电压滞后电流,阻抗是容性的
XL
=
XC
L =
1
C
Z
=
0 u
= i
电压电流同相,阻抗是电阻性的
• 因此,在分析和计算交流电路时,必须时刻具有交流
的概念,其中首先要有相位概念,而相位关系又反映 在阻抗角上。它和阻抗的模一起被称为阻抗,阻抗反 映了电路本身的固有特性。
Um Im
u
i
Z
Z
I
Z cosZ j Z sinZ R j X
R
其中 Z 阻抗的模
U jX
Z 阻抗角,约定 90 剟Z 90 R 电阻,X 电抗
2
§8.2 正弦稳态分析(阻抗和导纳)
在正弦稳态情况下,口电流相量与口电压相量之比称 策动点导纳或驱动点导纳(简称导纳)。
相量分析法也称符号法,主要步骤为: • 将时域电路变换为相量模型即符号电路(有时可省略
相量电路模型图)
• 根据相量形式的基尔霍夫定律和支路关系,建立电路
方程,用复数运算法则求解方程。
• 将所得响应变量的相量,表示成时域中的实函数形式
在前面几章中提供的各种结论和方法,如节点法、网 孔法、电路定理等都可应用到相量分析法中。
根据基尔霍夫定律的相量形式
US
UR
UL
UC
RI
jLI
1
jC
I
[R j(L 1 )]I ZI C
I R jL
UR
UL
US
1/ jC UC
相量模型(符号电路)
欧姆定律的相量形式,称复数欧姆定律
输入阻抗
Z
US I
R
j(L
1)
C
R
j( X L
XC )
Z
5
§8.2 正弦稳态分析(阻抗和导纳)
这种变化,不仅有大小的变化(模的变化)
Um Z Im
或
Im
Um Z
也有相位的变化,u= Z-i 或 i = u-Z
• 阻抗角
L 1
Z u i tan1
C
R
大反小映是了由端电口路电参压数与和电网流络的拓相扑位所关决系定,,从在关同系一式频中率清楚下可,见电路Z的参
Z
R2 (L
1
L 1
)2 tan1
C
C
R
R2
(XL
XC )2 tan1
XL
XC R
Z
Z
Z
UmS Im
u
i
4
§8.2 正弦稳态分析(阻抗和导纳)
Z
R
j(L
1)
C
R
j( X L
XC
)
从关系式中可以看到,阻抗 Z(j)是一个复数,且是频率的函 数,即同一单口网络,对不同的频率有不同频率的阻抗。
12
§8.2 正弦稳态分析(相量法)
例题的两个重要结论
• 线性电路中电源若包含多种频率的正弦信号,则可应
数不同,电压和电流之间的相位差也就不同。
• 从阻抗角的关系式中也可看出,在频率一定时,不仅相位差的
大小决定于电路参数和电路拓扑,而且电流是滞后电压还是超 前电压也与电路参数和电路拓扑有关。
6
§8.2 正弦稳态分析(阻抗和导纳)
XL
>
XC
L
>
1
C
Z
>
0
u
> i
电压超前电流,阻抗是感性的
u02
③当=1000rad/s时
2[576sin(10t 89.8 )]
U 03
R2 I2
R1
R1R2
R2
1 j1000C
IS
7500
u03
根据叠加定理,总输出电压
2[750sin1000t]
u0 u01 u02 u03 2[90sin(t 83.16 ) 576sin(10t 39.8 ) 750sin1000t]