高二数学备课精选学案 第三章《不等式》复习 新人教B版必修5

合集下载

高中数学 不等式的性质教案 新人教B版必修5

高中数学 不等式的性质教案 新人教B版必修5

不等式的性质教材分析这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质.这部分内容是不等式变形、化简、证明的理论依据及基础.教材通过具体实例,让学生感受现实生活中存在大量的不等关系.在不等式与实数运算的关系基础上,系统归纳和论证了不等式的一系列性质.教学重点是比较两个实数大小的方法和不等式的性质,教学难点是不等式性质的证明及其应用.教学目标1. 通过具体情境,让学生感受现实世界和日常生活中存在着大量的不等关系,理解不等关系与不等式的联系,会用不等式表示不等关系.2. 理解并掌握比较两个实数大小的方法.3. 引导学生归纳和总结不等式的性质,并利用比较实数大小的方法论证这些性质,培养学生的合情推理和逻辑论证能力.任务分析这节内容从实际问题引入不等关系,进而用不等式来表示不等关系,自然引出不等式的基本性质.为了研究不等式的性质,首先学习比较两实数大小的方法,这是论证不等式性质的基本出发点,故必须让学生明确.在教师的引导下学生基本上可以归纳总结出不等式的一系列性质,但对于这些性质的证明有些学生认为没有必要或对论证过程感到困惑,为此,必须明确论证性质的方法和要点,同时引导学生认识到数学中的定理、法则等,通常要通过论证才予以认可,培养学生的数学理性精神.教学设计一、问题情境教师通过下列三个现实问题创设不等式的情境,并引导学生思考.1. 公路上限速40km/h的路标,指示司机在前方行驶时,应使汽车的速度v不超过40km /h,用不等式表达即为v≤40km/h.2. 某种杂志以每本2.5元的价格销售,可以售出8万本.据市场调查,若杂志的单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价改为x元,怎样用不等式表示销售的总收入的不低于20万元?x·[80000-2000(x-25)]≥200000.3. 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm的3倍,试写出满足上述所有不等关系的不等式.设600mm钢管的数量为x,500mm的数量为y,则通过上述实例,说明现实世界中,不等关系是十分丰富的,为了解决这些问题,须要我们学习不等式及基本性质.二、建立模型1. 教师精讲,分析我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大,用不等式表示为a>b,即a减去b所得的差是一个大于0的数.一般地,设a,b∈R,则a>ba-b>0,a=ba-b=0,a<ba-b<0.由此可见,要比较两个实数的大小,只要考查它们的差就可以了.例如,比较(a+3)(a-5)与(a+2)(a-4)的大小就可以作差变形,然后判断符号.2. 通过问题或复习,引导学生归纳和总结不等式的性质(1)对于“甲的年龄大于乙的年龄”,你能换一种不同的叙述方式吗?(2)如果甲的身高比乙高,乙的身高比丙高,你能得出甲与丙哪个高吗?(3)回忆初中已学过的不等式的性质,试用字母把它们表示出来.用数学符号表示出上面的问题,便可得出不等式的一些性质:定理1 如果a>b,那么b<a;如果b<a,那么a>b.定理2 如果a>b,且b>c,那么a>c.定理3 如果a>b,那么a+c>b+c.定理4 如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.3. 定理1~4的证明关于定理1~4的证明要注意:(1)定理为什么要证明?(2)证明定理的主要依据或出发点是什么?(3)定理的证明要规范,每步推理要有根据.(4)关于定理3的推论,定理4的推论1,可由学生独立完成证明.4. 考虑定理4的推论2:“如果a>b>0,那么an>bn(n∈N,且n>0)”的逆命题,得出定理5定理5 如果a>b>0,那么(n∈N,且n>1).由于直接证明定理5较困难,故可考虑运用反证法.三、解释应用[例题]1. 已知a>b,c<d,求证:a-c>b-d.证法1:∵a>b,∴a-b>0.又c<d,∴d-c>0.∴(a-c)-(b-d)=(a-b)+(d-c)>0,∴a-c>b-d.证法2:∵c<d,∴-c>-d.又a>b,∴a-c>b-d.[练习]1. 判断下列命题的真假,并说明理由.(1)如果ac2>bc2,那么a>b.(2)如果a>b,c>d,那么a-d>b-c.四、拓展延伸1. 如果30<x<42,16<y<24,求x+y,x-2y及的取值范围.2. 如果a1>b1,a2>b2,a3>b3,…,an>bn,那么a1+a2+a3+…+an>b1+b2+b3+…+bn吗?为什么?3. 如果a>b>0,那么吗?(其中为正有理数)点评这篇案例从实际问题引入不等关系,由如何求非不等关系引入不等式的求法,进而点出教学的主题———不等式性质,由学生熟悉的实数性质,及现实生活中的常识,将语言表达转化为数学符号的一般表示,进而得出不等式的常见性质.通过对不等式的证明,使学生理解对数学定理证明的必要性,增强学生的逻辑推理能力.就整个教学设计的效果看,这种设计是成功的,尤其是由定理的应用,达到了对性质的理解和升华,巩固了教学的重点,效果比较理想.此外,这篇案例也十分关注由学生自主探究去开发其潜在能力,培养其发散思维能力.总之,这是一篇成功的教学设计案例,美中不足的是,对文初创设的现实情景利用的力度稍欠缺.。

高中数学 第三章 不等式 3.2 均值不等式教案 新人教B版必修5-新人教B版高二必修5数学教案

高中数学 第三章 不等式 3.2 均值不等式教案 新人教B版必修5-新人教B版高二必修5数学教案

均值不等式1.不等式m 2+1≥2m 中等号成立的条件是( ) A .m =1 B .m =±1 C.m =-1 D .m =0 答案 A2.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b2>ab >b B .b >ab >a +b2>aC .b >a +b2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2.∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .3.如果0<a <b <1,P =log 12a +b2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P答案 B 解析 P =log 12a +b2,Q =12(log 12a +log 12b )=log 12ab , M =12log 12(a +b )=log 12a +b ,∴只需比较a +b2,ab ,a +b 的大小,显然a +b2>ab ,又因为a +b2<a +b (由a +b >a +b24,也就是a +b4<1),∴a +b >a +b2>ab .而y =log 12x 为减函数,故Q >P >M ,选B.4.已知0<a <1,0<b <1,则a +b,2ab ,a 2+b 2,2ab 中最大的是________. 答案 a +b解析 方法一 ∵a >0,b >0, ∴a +b ≥2ab ,a 2+b 2≥2ab , ∴四个数中最大数应为a +b 或a 2+b 2. 又∵0<a <1,0<b <1, ∴a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0, ∴a 2+b 2<a +b ,∴a +b 最大. 方法二 令a =b =12,则a +b =1,2ab =1,a 2+b 2=12,2ab =2×12×12=12,再令a =12,b =18,a +b =12+18=58,2ab =212·18=12,∴a +b 最大.1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.由均值不等式变形得到的常见的结论: (1)ab ≤(a +b2)2≤a 2+b 22;(2)ab ≤a +b2≤a 2+b 22(a ,b ∈R +);(3)b a +a b≥2(a ,b 同号);(4)(a +b )(1a +1b)≥4(a ,b ∈R +);(5)a 2+b 2+c 2≥ab +bc +ca .。

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
A.5x+4y<200 B.5x+4y≥200 C.5x+4y=200 D.5x+4y≤200
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.

高中数学 第3章 不等式 3.2 均值不等式课件 新人教B版必修5

高中数学 第3章 不等式 3.2 均值不等式课件 新人教B版必修5

解析:A 中xy<0 时,不满足题意;B 中等号不能成立;D
中 tanθ<0 时,不符合题意;C 中12ex+2e-x≥2,当 ex=2,即
x=ln 2 时等号成立.故选 C. 答案:C
3.已知 x,y 都是正数,若 xy=4,则 x+y 的最小值是 ________.
解析:∵x>0,y>0, ∴x+y≥2 xy=4, 当且仅当 x=y=2 时,等号成立. 答案:4
解析:若x2+3xx+1≤a(x>0)恒成立, 则x2+3xx+1max≤a,
令 y=x2+3xx+1=x+11x+3≤2+1 3=15,
当且仅当 x=1 时,等号成立,
∴ymax=15,
∴a
的取值范围为15,+∞
.
答案:15,+∞
基础知识达标
即学即练 稳操胜券
1.已知实数 a>0,则 a+4a的最小值为( )
=n+1n-+112+8=
n+12-2n+1+9 n+1
=n+1+n+9 1-2≥2 n+1·n+9 1-2=4,
当且仅当 n+1=n+9 1,即 n=2 时,符号成立,故选 A.
答案:A
5.(2019·河南中原名校联考)已知等差数列{an}的前 n 项和 为 Sn,且 S3=15,a7+a9=34,数列ana1n+1的前 n 项和为 Tn, 且对于任意的 n∈N*,Tn<an+t 11,则实数 t 的取值范围为 ________.
课堂互动探究
典例精析 规律总结
设 a,b∈(0,+∞),试比较a+2 b, ab,
a2+b2, 2
1a+2 1b的大小. 【解】 ∵a,b∈(0,+∞),
∴1a+1b≥2 a1b,
即2≤ 1a+1b

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计一、教学目标本节课主要教授高中数学必修课5(B版)第三章——不等式。

通过本次课程的教学,学生应该能够:•理解不等式的基本概念,掌握不等式的基本性质和解不等式的方法;•能够运用已掌握的知识,解决简单的等式和不等式的应用问题;•能够培养学生的数学思维能力和解决问题的能力。

二、教学重点•不等式的基本概念和性质;•不等式解法;•一元一次不等式和二元一次不等式的解法。

三、教学难点•不等式解法的灵活运用;•二元一次不等式的解法。

四、教学过程4.1 导入1.通过白板或幻灯片展示一组简单的不等式,比如x+4<10,让学生回顾并思考之前学过的等式。

2.引导学生讲述等式和不等式的联系和区别,并引导学生从生活实际中思考不等式的应用。

4.2 讲授1.教师讲解不等式的基本概念和性质,以及不等式解法,引导学生深入理解学习内容。

2.引导学生先从一元一次不等式入手,讲解一元一次不等式的解法,并让学生进行多组练习。

3.引导学生学习二元一次不等式的解法,引导学生重点思考如何用图示法求解。

4.让学生通过练习,掌握不等式解法的具体技巧和应用方法。

4.3 拓展本节课结束后,学生可以自行探索如何用不等式来解决实际问题,例如分部门开支问题、生产效益提升问题等。

4.4 总结1.教师对本节课所学内容进行总结,并提醒学生留意其中易误解的点,引导学生归纳总结学习体会。

2.对于存在误解的同学,教师要及时纠正并逐一解决疑问。

五、课堂互动1.在讲解过程中穿插抛出简单问题,引导学生积极参与答题,加深对知识点的记忆和理解。

对于答对或答错的同学,教师进行不同程度的点评。

2.在教学中多与学生互动交流,让课堂变得更加生动有趣。

例如请学生发表自己的观点、听取学生分享自己的解题心得、讨论解题思路等。

六、板书设计1.不等式的基本概念和性质;2.不等式解法;3.一元一次不等式和二元一次不等式的解法。

七、教学评价本次课程的教学效果通过考试和家庭作业来进行评价,同时可以通过学生反馈、课堂测验和讨论等方式来了解教学效果。

版高中数学第三章不等式32均值不等式二学案新人教B版必修5

版高中数学第三章不等式32均值不等式二学案新人教B版必修5

3.2 均值不等式(二)学习目标 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问题.3.能够运用均值不等式解决生活中的应用问题.知识点一 均值不等式及变形 思考 使用均值不等式证明:21a +1b≤ab (a >0,b >0),并说明什么时候等号成立.梳理 以下是均值不等式的常见变形,试用不等号连接,并说明等号成立的条件. 当a >0,b >0时,有21a +1b________ab ________a +b 2________a 2+b 22;当且仅当________时,以上三个等号同时成立.知识点二 用均值不等式求最值思考 因为x 2+1≥2x ,当且仅当x =1时取等号.所以当x =1时,(x 2+1)min =2. 以上说法对吗?为什么?梳理 均值不等式求最值的条件: (1)x ,y 必须是________;(2)求积xy 的最大值时,应看和x +y 是否为________;求和x +y 的最小值时,应看积xy 是否为________;(3)等号成立的条件是否满足.类型一 均值不等式与最值例1 (1)若x >0,求函数y =x +4x的最小值,并求此时x 的值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值; (4)已知x >0,y >0,且 1x +9y=1,求x +y 的最小值.反思与感悟 在利用均值不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备. 跟踪训练1 (1)已知x >0,求f (x )=12x+3x 的最小值;(2)已知x <3,求f (x )=4x -3+x 的最大值; (3)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值.类型二 均值不等式在实际问题中的应用命题角度1 几何问题的最值例2 (1)用篱笆围一个面积为100 m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36 m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?反思与感悟利用均值不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用均值不等式求解目标函数的最大(小)值及取最大(小)值的条件.跟踪训练2 某工厂要建造一个长方体无盖贮水池,其容积为4 800 m3,深为3 m,如果池底每1 m2的造价为150元,池壁每1 m2的造价为120元,问怎样设计水池才能使总造价最低?最低总造价是多少?命题角度2 生活中的最优化问题例3 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? 引申探究若受车辆限制,该厂至少15天才能去购买一次面粉,则该厂应多少天购买一次面粉,才能使平均每天所支付的费用最少?反思与感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用均值不等式求最值,要注意验证等号是否成立,若等号不成立,可考虑利用函数单调性求解.跟踪训练3 一批货物随17列货车从A 市以v 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.1.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-22.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52B .最小值54C .最大值1D .最小值13.将一根铁丝切割成三段做一个面积为 2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m4.已知0<x <1,则f (x )=2+log 2x +5log 2x的最大值是________.1.用均值不等式求最值(1)利用均值不等式,通过恒等变形,以及配凑,造就“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用均值不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用均值不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用均值不等式求最值,但由于其中的等号取不到,所以运用均值不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px(p >0)的单调性求得函数的最值. 2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.答案精析问题导学 知识点一思考 ∵a >0,b >0, ∴1a +1b≥21ab >0,∴11a +1b≤ab2, 即21a +1b≤ab (a >0,b >0), 当且仅当1a =1b,即a =b 时,等号成立.梳理 ≤ ≤ ≤ a =b 知识点二思考 错.显然(x 2+1)min =1.x 2+1≥2x ,当且仅当x =1时取等号.仅说明抛物线y =x 2+1恒在直线y =2x 上方,仅在x=1时有公共点.使用均值不等式求最值,不等式两端必须有一端是定值.如果都不是定值,可能出错. 梳理 (1)正数 (2)定值 定值 题型探究 类型一例1 解 (1)当x >0时,x +4x≥2 x ·4x =4, 当且仅当x =4x,即x 2=4,x =2时取等号.∴函数y =x +4x(x >0)在x =2时取得最小值4.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +-2x 22=92.当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32, ∴函数y =4x (3-2x )(0<x <32)的最大值为92.(3)∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2 ≥2x -4x -2+2=6, 当且仅当x -2=4x -2, 即x =4时,等号成立. ∴x +4x -2的最小值为6. (4)方法一 ∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x+9xy+10 ≥6+10=16,当且仅当y x=9x y,又1x +9y=1,即x =4,y =12时,不等式取等号. 故当x =4,y =12时,(x +y )min =16. 方法二 由1x +9y=1,得(x -1)(y -9)=9(定值). 由1x +9y=1可知x >1,y >9,∴x +y =(x -1)+(y -9)+10 ≥2x -y -+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时不等式取等号,故当x =4,y =12时,(x +y )min =16. 跟踪训练1 解 (1)∵x >0, ∴f (x )=12x+3x ≥212x·3x =12,当且仅当3x =12x,即x =2时取等号,∴f (x )的最小值为12. (2)∵x <3,∴x -3<0, ∴f (x )=4x -3+x =4x -3+x -3+3 =-⎣⎢⎡⎦⎥⎤43-x +3-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号. ∴f (x )的最大值为-1.(3)由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +x -+16x -8=(x -8)+16x -8+10 ≥2x -16x -8+10=18. 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18. 类型二 命题角度1例2 解 (1)设矩形菜园的长为x m ,宽为y m , 则xy =100,篱笆的长为2(x +y ) m. 由x +y2≥xy ,可得x +y ≥2100,2(x +y )≥40.当且仅当x =y =10时等号成立.所以这个矩形的长、宽都为10 m 时,所用篱笆最短,最短篱笆为40 m.(2)设矩形菜园的长为x m ,宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2. 由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y =9时,等号成立.所以这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2. 跟踪训练2 解 设水池底面一边的长度为x m ,则另一边的长度为4 8003x m.又设水池总造价为y 元,根据题意,得y =150×4 8003+120×(2×3x +2×3×4 8003x) =240 000+720×⎝⎛⎭⎪⎫x +1 600x≥240 000+720×2 x ·1 600x=297 600(元),当且仅当x =1 600x,即x =40时,y 取得最小值297 600.所以水池底面为正方形且边长为40 m 时总造价最低,最低总造价为297 600元. 命题角度2例3 解 设该厂每隔x 天购买一次面粉,其购买量为6x 吨. 由题意可知,面粉的保管及其他费用为3×[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1). 设平均每天所支付的总费用为y 元, 则y =1x[9x (x +1)+900]+6×1 800=9x +900x+10 809≥29x ·900x+10 809=10 989(元),当且仅当9x =900x,即x =10时,等号成立.所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.引申探究解 设x 1,x 2∈[15,+∞),且x 1<x 2. 则(9x 1+900x 1+10 809)-(9x 2+900x 2+10 809)=9(x 1-x 2)+900(1x 1-1x 2)=(x 1-x 2)⎝⎛⎭⎪⎫9-900x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫9x 1x 2-900x 1x 2.∵15≤x 1<x 2,∴x 1-x 2<0,x 1x 2>225, ∴(x 1-x 2)⎝⎛⎭⎪⎫9x 1x 2-900x 1x 2<0,即y =9x +900x+10 809在[15,+∞)上为增函数.∴当x =15,即15天购买一次面粉,每天支付的平均费用最少. 跟踪训练3 8 当堂训练1.C 2.D 3.C 4.2-2 5。

高中数学第三章不等式3.2均值不等式课堂探究学案新人教B版必修5(new)

高中数学第三章不等式3.2均值不等式课堂探究学案新人教B版必修5(new)

3。

2 均值不等式课堂探究一、使用均值不等式求最值的注意事项剖析:(1)a,b都是正实数,即所求最值的代数式中的各项必须都是正数,否则就会得出错误答案.例如,当x〈0时,函数f(x)=x+错误!≥2错误!=2,所以函数f(x)的最小值是2.由于f(-2)=-2+错误!=-错误!<2,很明显这是一个错误的答案.其原因是当x〈0时,不能直接用均值不等式求f(x)=x+错误!的最值.因此,利用均值不等式求最值时,首先确定所求最值的代数式中的各项是否都是正数.其实,当x〈0时,-x>0,则f(-x)=-x+错误!≥2错误!=2,此时有f(x)≤-2.因此,当所求最值的代数式中的各项不都是正数时,应利用变形,转化为各项都是正数的代数式.(2)ab与a+b有一个是定值,即当ab是定值时,可以求a+b的最值;当a+b是定值时,可以求ab的最值.如果ab和a+b都不是定值,那么就会得出错误答案.例如,当x〉1时,函数f(x)=x+1x-1≥2错误!,所以函数f(x)的最小值是2错误!.由于2错误!是一个与x有关的代数式,很明显这是一个错误的答案.其原因是没有掌握均值不等式求最值的条件:ab与a+b有一个是定值.其实,当x〉1时,有x-1>0,则函数f(x)=x+错误!=错误!+1≥2错误!+1=3.因此,当ab与a+b没有一个是定值时,通常把所求最值的代数式采用配凑的方法化为和或积为定值的形式.(3)等号能够成立,即存在正数a,b使均值不等式两边相等,也就是存在正数a,b使得ab=错误!.如果忽视这一点,就会得出错误答案.例如,当x≥2时,函数f(x)=x+错误!≥2错误!=2,所以函数f(x)的最小值是2.很明显x+错误!中的各项都是正数,积也是定值,但是等号成立的条件是当且仅当x=错误!,即x=1,而函数的定义域是x≥2,所以这是一个错误的答案.其原因是均值不等式中的等号不成立.其实,根据解题经验,遇到这种情况时,一般就不再用均值不等式求最值了,此时该函数的单调性是确定的,可以利用函数的单调性求得最值.利用函数单调性的定义可以证明,当x≥2时,函数f(x)=x+错误!是增函数,函数f(x)的最小值是f(2)=2+错误!=错误!.因此在使用均值不等式求最值时,上面三个条件缺一不可,通常将这三个条件总结成口诀:一正、二定、三相等.二、教材中的“思考与讨论"均值不等式与不等式a 2+b 2≥2ab 的关系如何?请对此进行讨论.剖析:(1)在a 2+b 2≥2ab 中,a ,b ∈R ;在a +b ≥2错误!中,a ,b >0.(2)两者都带有等号,等号成立的条件从形式上看是一样的,但实质不同(范围不同).(3)证明的方法都是作差比较法.(4)都可以用来求最值.题型一 利用均值不等式求最值【例1】 (1)已知x ,y ∈(0,+∞),且2x +y =1,求错误!+错误!的最小值;(2)已知x 〈2,求函数f (x )=x +错误!的最大值.分析:(1)利用“1”的代换,即将1x+错误!等价转化为错误!×1或错误!+错误!即可;(2)将x +错误!等价转化为-错误!+2即可.解:(1)错误!+错误!=错误!(2x +y )=2+错误!+错误!+1=3+错误!+错误!≥3+2错误!=3+2错误!,当且仅当错误!=错误!,即错误!⇒错误!时等号成立.∴1x+错误!的最小值为3+2错误!. (2)∵x <2,∴2-x >0,∴f (x )=x +错误!=-错误!+2≤-2错误!+2=-2,当且仅当2-x =错误!,得x =0或x =4(舍去),即x =0时,等号成立.∴x +错误!取得最大值-2.反思:求最值问题第一步就是“找”定值,观察、分析、构造定值是问题突破口.定值找到还要看“="是否成立,不管题目是否要求指出等号成立的条件,都要验证“="是否成立.题型二 利用均值不等式比较大小【例2】 若a ≥b ≥0,试比较a ,错误!,错误!,错误!,错误!,b 的大小.分析:这是一个有趣的不等式链,取特殊值可判断其大小关系.借助不等式和重要不等式变形可寻求判断和证明的方法.解:∵a ≥b ≥0,∴错误!≤错误!=a .∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥(a +b )2,∴a2+b22≥错误!2.又a>0,b>0,则错误!≥错误!=错误!.∵错误!≥错误!,∴错误!≥错误!.∵错误!-b=错误!≥0,∴错误!≥b.∴a≥错误!≥错误!≥错误!≥错误!≥b.反思:均值不等式a+b≥2错误!(a,b∈R+)是综合证明不等式和利用重要不等式求最值的工具,要注意不等式成立的条件,它与两个正数的算术平均数不小于它们的几何平均数是等价命题.有趣的不等式链错误!≥错误!≥错误!≥错误!(a,b∈R+),揭示了两正数倒数和、积、和平方、平方和之间的不等关系,当某一部分为定值时,其余三部分都能取到最值,且都在两数相等时取等号,利用这个不等式链往往使复杂问题简单化,要在理解的基础上记忆和应用.题型三利用均值不等式证明不等式【例3】已知a,b,c都是正实数,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc.分析:注意到a+b+c=1,故可运用“常数代换”的策略将所证不等式的左边的“1”代换成字母形式.证明:∵a+b+c=1,∴(1-a)(1-b)(1-c)=(b+c)(a+c)(a+b).又∵a,b,c都是正实数,∴错误!≥错误!>0,错误!≥错误!>0,错误!≥错误!〉0.∴错误!≥abc.∴(1-a)(1-b)(1-c)≥8abc.当且仅当a=b=c=错误!时,等号成立.反思:这是一道条件不等式的证明题,充分利用条件是证题的关键,此题要注意“1”的整体代换及三个“="必须同时取到.题型四利用均值不等式解恒成立问题【例4】已知不等式(x+y)错误!≥9对任意正实数x,y恒成立,求正实数a的最小值.分析:→→解:∵(x+y)错误!=1+a+错误!+错误!,又x>0,y>0,a>0,∴错误!+错误!≥2错误!=2错误!,∴1+a+错误!+错误!≥1+a+2错误!,∴要使(x+y)错误!≥9对任意正实数x,y恒成立,只需1+a+2错误!≥9恒成立即可.∴(错误!+1)2≥9,即错误!+1≥3,∴a≥4,∴正实数a的最小值为4.反思:恒成立问题是数学问题中非常重要的问题,在此类问题的解法中,利用均值不等式和不等式的传递性求解是最重要的一种方法,在高考中经常考查.题型五易错辨析【例5】已知0<x<1,求f(x)=2+log5x+错误!的最值.错解:f(x)=2+log5x+错误!≥2+2错误!=2+2错误!,∴f(x)的最小值为2+2错误!.错因分析:a+b≥2错误!的前提条件是a,b>0,∵0<x<1,∴log5x<0.∴错误!<0.∴不能直接使用均值不等式.正解:∵0<x<1,∴log5x<0.∴(-log5x)+错误!≥2错误!=2错误!.∴log5x+5log5x≤-25.∴f(x)≤2-25.当且仅当log5x=错误!,即x=5-错误!时,等号成立,此时f(x)有最大值2-2错误!.【例6】求f(x)=错误!+1的最小值.错解:因为f(x)=错误!+1=错误!+1=错误!+错误!+1≥2+1=3,所以f(x)=错误!+1的最小值为3.错因分析:忽视了等号成立的条件,事实上方程错误!=错误!无解,所以等号不成立,正确的处理方法是:利用函数的单调性求最值.正解:f(x)=错误!+1=错误!+1=错误!+错误!+1.令t=x2+3(t≥3),则原函数变为f(x)=t+错误!+1,在区间[错误!,+∞)上是增函数.所以当t=错误!时,f(x)=t+错误!+1取得最小值错误!+1.所以当t=错误!,即x=0时,f(x)=错误!+1取得最小值错误!+1.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

高中数学 第三章 不等式与不等关系1学案 新人教版必修5 学案

高中数学 第三章 不等式与不等关系1学案 新人教版必修5 学案

§3.1不等式与不等关系(1)一、学习目标:通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景,并能将这些不等关系用不等式表示出来。

二、学习重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

三、学习难点:用不等式(组)准确地表示出不等关系。

四、学习过程:学习导引:在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。

如两点之间线段最短,三角形两边之和大于第三边,等等。

人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。

在数学中,我们用不等式来表示不等关系。

(一)表示不等关系的常用符号,请你填一填文字语言数学符号文字语言数学符号大于至多小于至少大于或等于不少于小于或等于不多于(二)日常生活中,既有相等关系,又存在着大量的不等关系。

如以下标志,请用不等式表示出来请你列举生活中的不等关系1._______________________________________2.__________________________________3.______________________________________4.__________________________________(三)实例感知用不等式表示下列问题中的不等关系1.点与线、点与面的距离问题设点A 与平面a 的距离为d,B 为平面a 上的任意一点,则其中不等关系有______________2.杂志的销售问题某种杂志原以每本 2.5 元的价格销售,可以售出 8 万本. 据市场调查,若单价每提高 0.1 元,销售量就可能相应减少 2000 本. 若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于 20 万元呢?3.钢材的截取问题某钢铁厂要把长度为 4000mm 的钢管截成500mm 和 600mm 两种.按照生产的要求,600mm的数量不能超过 500mm 钢管的 3 倍.怎样写出满足所有上述不等关系的不等式呢?(四)实战演练1.用不等式表示,某地规定本地最低生活保障金x 不低于 400 元______________________2.限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过 40km/h,写成不等式就是_______________3.某品牌酸奶的质量检查规定,酸奶中脂肪的含量p应不少于 2.5%,蛋白质的含量q 应不少于 2.3%,写成不等式组就是_________________4.(1)如图(见课本 74 页),在一个面积为 350 的矩形地基上建造一个仓库,四周是绿地,仓库的长L 大于宽 W 的 4 倍(2)有一个两位数大于 50 而小于 60,其个位数字比十位数大 2.试用不等式表示上述关系,并求出这个两位数(用a 和b 分别表示这个两位数的十位数字和个位数字)(五)实践训练(时量:5 分钟 满分:10 分) 1. 下列不等式中不成立的是( ).A . -1≤2B . -1< 2C . -1≤-1D . -1≥22. 用不等式表示,某厂最低月生活费 a 不低于 300元 ( ). A . a ≤ 300 B . a ≥300 C . a > 300 D . a < 3003. 已知 a + b > 0 , b < 0 ,那么 a ,b ,-a , - b 的大小关系是( ). A .a > b > -b > - a B .a > -b > -a > b C .a > -b > b > - a D .a > b > -a > - b4. 用不等式表示:a 与b 的积是非正数___________5. 用不等式表示:某学校规定学生离校时间 t 在 16点到 18 点之间______________________(六)课堂小结: 1.会用不等式(组)表示实际问题的不等关系;2.会用不等式(组)研究含有不等关系的问题.(六)课后实践 1.用不等式表示下面的不等关系:(1)a 与 b 的和是非负数_________________(2)某公路立交桥对通过车辆的高度h “限高4m ”________________(3)坐火车时,儿童身高1.2米以上需要买票,需买票汇的范围是_______________2. 某夏令营有 48 人,出发前要从 A 、B 两种型号的帐篷中选择一种.A 型号的帐篷比 B 型号的少 5顶.若只选 A 型号的,每顶帐篷住 4 人,则帐篷不够;每顶帐篷住 5 人,则有一顶帐篷没有住满.若只选 B 型号的,每顶帐篷住 3 人,则帐篷不够;每顶帐篷住 4 人,则有帐篷多余.设 A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.3.某用户计划购买单价分别为60元,70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒。

人教版高中必修5(B版)第三章不等式教学设计 (2)

人教版高中必修5(B版)第三章不等式教学设计 (2)

人教版高中必修5(B版)第三章不等式教学设计教学背景本次教学设计针对高中必修课程《数学B》中的第三章不等式进行,此章内容为不等式的化简、比较大小以及解不等式等内容,是一门基础而又重要的数学知识。

在本教学设计中,我们通过引入实际生活中的问题,加深学生对不等式的理解和应用,从而提高学习效果。

教学目标本次教学的主要目标是帮助学生:1.掌握不等式的基本概念、性质和解法。

2.了解不等式在实际生活中的应用,提高学生对数学的兴趣。

3.通过分组与合作,培养学生团队合作能力与口头表达能力。

教学内容1. 引入首先,我们可以通过题目来引入不等式的基本概念,例如:“小明和小红参加一个射箭比赛,小明射出20只,小红射出25只。

请问,小红比小明多射了几只箭呢?”通过这个例子,引出不等式的基本概念:小红射箭的数量比小明多。

然后,引导学生将“小红射箭的数量”记为x,将“小明射箭的数量”记为y,则有不等式x>y。

2. 基本概念接着,我们需要讲解不等式的基本概念与性质。

具体来说,讲解的内容应包括:1.不等式的符号及其含义。

2.不等式的加减乘除性质。

3.不等式的移项、合并和消去绝对值等基本方法。

为了方便学生理解,我们可以通过练习题来进行演示和讲解。

3. 实际应用为了加深学生对不等式的理解,我们可以引入实际生活中的问题,让学生通过解决实际问题来理解不等式的应用。

例如:“一家工厂每天生产3000件产品,如果员工的平均生产量不低于50件/天,那么至少需要多少员工才能完成生产任务?”通过这个问题,我们可以引导学生列出不等式$3000\\leq50x$,其中x表示员工的数量。

然后,通过移项和求商,得出$x\\geq60$,也就是需要至少60名员工才能完成生产任务。

4. 合作探究为了提高学生的团队合作能力与口头表达能力,我们可以将学生分为小组,让他们合作完成一道相应的不等式问题。

例如:“现在有1000元钱,要买3种物品,第一种物品每件150元,第二种物品每件100元,第三种物品每件50元。

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域课件 新人教B版必修5

界),且 A(1,1),B(0,4),C0,43,直线 y=a(x+1)恒过点 P(-1,0),且斜率为 a,
由斜率公式可知 kAP=12,
kBP=4. 若直线 y=a(x+1)与区域 D 有公共点,
数形结合可得12≤a≤4. 【答案】 (1)(-∞,2)∪(5,+∞)
(2)12,4
1.若点 P(a2,a)不在不等式 x+2y+1≤0 表示的 平面区域内,则 a 的取值范围是________. 解析:因为点 P(a2,a)不在不等式 x+2y+1≤0 表示的平面区 域内, 所以 a2+2a+1>0,即(a+1)2>0,解得 a≠-1. 所以 a 的取值范围是{a∈R|a≠-1}. 答案:{a∈R|a≠-1}
2.不等式(x-y)(x+2y-2)≥0 表示的平面区域的大致图形是 ()
解析:选 B.原不等式等价于xx- +y2≥y-0, 2≥0 或xx- +y2≤y-0, 2≤0. 故原不等式表示的区域由这两个不等式组表示的区域组成.
3.平面直角坐标系中,不等式组23xx+ -23yy- +14≥ ≥00, ,表示的平面区 x≤2
(1)画二元一次不等式组表示平面区域的一般步骤
(2)求平面区域面积的方法 求平面区域的面积,先画出不等式组表示的平面区域,然后根 据区域的形状求面积. ①若画出的平面区域是规则的,则直接利用面积公式求解. ②若平面区域是不规则的,可采用分割的方法,将平面区域分 成几个规则图形求解.
1.不等式组xx- +yy≤ ≤00,表示的平面区域是(
1.二元一次不等式的概念 (1)二元一次不等式是指含有_两__个___未知数,且未知数的最高次 数为一次的不等式. (2)一般形式为 Ax+By+C>0 或 Ax+By+C<0.其中 A2+B2≠ 0.

高中数学 第三章 不等式复习教案 新人教B版必修5

高中数学 第三章 不等式复习教案 新人教B版必修5

第三章 不等式整体设计教学分析本章知识网络本章复习建议本章为高中5个必修中的最后一章,我们在这一章中重点探究了三种不等式模型,即一元二次不等式、二元一次不等式(组)及均值不等式,在了解了这三种不等式的实际背景的前提下,重点探究了不等式的应用,那么如何复习好不等式这一章的内容呢?总纲是复习不等式要结合函数思想,数形结合思想,等价变换思想,以及分类讨论思想,类比思想,换元思想等.1.充分认识不等式的地位与作用.不等式是中学数学的重要内容,是求解数学问题的主要工具,它贯穿于整个高中数学的始终,诸如集合问题、方程(组)的解的讨论、函数性质的确定、三角、数列、立体几何中的最值问题等内容,无一不与不等式有着密切联系,它所涉及内容的深度与广度是其他章节无法相比的.因此,不等式是永不衰退的高考热点,必须加强对不等式的综合复习与所学全章知识的整合.2.加深对不等式性质的理解.不等式的基本性质在证明不等式和解不等式中有着广泛的应用,它又是高等数学的基础知识之一,因此,它是高考试题的热点,有时通过客观题直接考查不等式的某个性质,有时在解答题中的证明不等式或解不等式中,间接地考查不等式的性质,高考试题也直接或间接考查均值不等式及其他重要不等式的应用,不等式的性质更是求函数定义域、值域、求参数的取值范围等内容的重要手段.在解不等式中往往与函数概念,特别是二次函数、指数函数、对数函数等密切联系,因此在复习中对不等式性质的条件与结论要彻底弄清.解题时由于忽略某些条件而造成的错误屡见不鲜,如a >b ,>bc(忘了c >0), ⎭⎪⎬⎪⎫a>b c>d ⇒ac >bd(忘了a 、b 、c 、d∈R +)等等.3.加强等价变换在解不等式中的运用.解不等式是通过等价变形转化为简单不等式,从而得到解集.一定要注意变形是同解变形,即每一步变换必须既充分又必要.含参数的不等式或超越不等式必须进行讨论.在讨论时常要用到逻辑划分的思想进行分类,然后对划分的每一类分别进行求解,再综合得出答案.在确定划分标准时应本着“互斥、无漏、最简”的原则,有的问题还可能进行二次分类.另外一定要区分是“分类问题”的解集还是“分段问题”的解集.4.注重在证明不等式中推理论证能力的提高.不等式的证明非常活跃,它可以和很多内容结合,是高中数学的一个难点,又是历届高考中的热点问题.证明时不仅要用到不等式的性质,还要用到不等式证明的技能、技巧,其中,均值不等式是证明不等式的主要依据.证明不等式的方法有很多,比如常用的有比较法(归0、归1)、分析法、综合法等.5.解不等式是高考中的常见题型,尤其是含参数的指、对数不等式解法及绝对值不等式.一是绝对值不等式因与数、式、方程、集合、函数、数列等发生联系,在高考中频繁出现.这类题目思考性强,灵活新颖,对分析能力要求较高,解题的基本思路是等价转换,基本方法是化归化简.二是加强“三个二次结合”的深刻理解.一元二次方程、一元二次不等式及二次函数简称“三个二次”,它们互相联系,互相渗透,使这个“知识块”的内容异常丰富,是历年高考命题的重点.求解时,常用到的基本知识有二次方程的实根分布、韦达定理、二次函数图象及函数性质等.很多学生往往因为这个知识块的薄弱而阻碍了数学能力的提高.6.不等式的应用是本章的重点.不等式的应用主要表现在三个方面:一是研究函数的性质,如求函数定义域、值域、最大值、最小值、函数单调性等;二是方程与不等式解的讨论;三是用线性规划或均值不等式解决实际问题.对于第一个方面,要求学生运算准确.第二个方面,我们知道方程和不等式在一定条件下可以互相转化,函数与不等式在一定条件下也可以相互转化.这种对立统一的观点是我们进一步提高分析问题和解决问题的基础,使我们了解研究对象在运动过程中哪些是保持不变的规律和性质,哪些是变化的规律和性质.第三个方面,可以说在数学各章节中都存在着大量的数学模型,只要我们揭示这些模型的本质规律,就一定能培养出学生的创新能力,真正做到以不变应万变.本章复习分为两课时完成,第一课时侧重三种不等式模型的复习,第二课时侧重线性规划的复习.三维目标1.通过本章的综合复习,理解并掌握不等式的性质,理解不等关系、感受在日常生活中存在着大量的不等关系、了解不等式(组)的实际背景,能用不等式的基本性质比较代数式的大小;掌握用二元一次不等式表示平面区域的方法,会用线性规划解决实际生活中的常见问题;理解并掌握均值不等式a +b 2≥ab(a >0,b >0)的应用方法与技巧. 2.通过对一元二次不等式解法的复习,设计求解的程序框图,深刻理解三个二次之间的关系.以二次函数为中心,运用二次函数的图象、性质把其余两个联系起来,构成知识系统的网络结构;通过线性规划的最优解,培养学生的观察、联想、画图能力,渗透数形结合等多种数学思想,提高学生建模能力和分析问题、解决问题的能力.3.通过对全章内容的复习,培养学生严谨的思维习惯,主动积极的学习品质,通过富有挑战性问题的解决,激发学生的探究精神和严肃认真的科学态度;同时感受数学的应用性,体会数学的奥妙,感受数学的美丽生动,从而激发学生的学习兴趣并树立辩证的科学世界观.重点难点教学重点:1.进一步掌握三种不等式模型〔一元二次不等式、二元一次不等式(组)、均值不等式〕的概念、方法及应用.2.深化平面区域和线性规划的意义及约束条件、目标函数、可行域、最优解等概念的理解,加深对线性规划解决实际问题的认识.3.掌握构建均值不等式解决函数的最值问题,利用均值不等式解决实际问题.教学难点:三个二次的灵活运用;用线性规划解决实际问题的建模问题;均值不等式解函数最值的正确运用.课时安排2课时教学过程第1课时导入新课思路 1.(直接导入)通过我们的共同努力,我们学到了有关不等式更多的知识与方法,提高了我们解决实际问题的能力,认识了数学的魅力;通过上节的课后作业——阅读本章小结,你是怎样对本章的知识方法进行整合的?由此展开新课.思路 2.(问题导入)先让学生结合本章小结,回忆我们是怎样探究本章知识的?经历了怎样的探究活动?你能尝试着自己画出本章的知识网络结构图吗?根据学生回答和所画的知识网络结构图,自然地引入新课.推进新课新知探究提出问题本章共研究了几种不等式模型?不等式有哪些性质?怎样求解一元二次不等式的解集?怎样画一元二次不等式的程序框图?均值不等式a+b2≥ab 的应用条件是什么?主要用它来解决哪些问题?三个二次”是指哪三个?它们之间具有怎样的关系?活动:教师让学生充分回忆思考,并结合以上问题用多媒体课件与学生一起探究.本章共研究了三种不等式模型,它们分别是一元二次不等式、二元一次不等式(组)、均值不等式a+b2≥ab(a>0,b>0).由实数的基本性质,我们推出了常用的不等式的4条性质5个推论,教师可结合多媒体课件给出这些性质.在这些基本性质的基础上,我们接着探究了均值不等式a+b2≥ab(a>0,b>0)的代数及几何意义,以及均值不等式在求最值、证明不等式方面的应用.在温故知新的基础上,我们又探究了一元二次不等式的解法和明确了“三个二次”之间的关系,并用一个程序框图把求解一元二次不等式的过程表示了出来,为前面学过的算法找到了用武之地.对一元二次不等式的求解集问题,老师可借助多媒体给出以下表格让学生填写,加深对“三个二次”关系的理解.x1,2=-b±Δ2ax1=x2=-b2a由于本章是高中必修内容的最后一章,通过对以上内容的归纳整合,我们对不等式有了全面系统的认识,也因此对高中必修内容有了整体的理解.应用示例例1已知集合A ={x|x 2+2x -8<0},B ={x|| x +2|>3},C ={x|x 2-2mx +m 2-1<0,m∈R }.若(1)A∩C=Ø,(2)A∩B ⊆C ,分别求出m 的取值范围.活动:本例可让学生自己探究解决,或可让两名学生到黑板板演,教师针对出现的问题作点评.解:(1)∵A={x|-4<x <2},B ={x|x >1或x <-5},C ={x|m -1<x <m +1}, 欲使A∩C=Ø,只需m -1≥2或m +1≤-4.∴m≥3或m≤-5.(2)欲使A∩B ⊆C ,∵A∩B={x|1<x <2},只需⎩⎪⎨⎪⎧ m -1≤1,m +1≥2,即⎩⎪⎨⎪⎧ m≤2,m≥1,即1≤m≤2.点评:本例体现了一元二次不等式与集合的交汇.变式训练设集合A ={x|(x -1)2<3x +7,x∈R },则集合A∩Z 中有__________个元素. 答案:6解析:由(x -1)2<3x +7可得-1<x <6,结合题意可得A =(-1,6).例2若正数x 、y 满足6x +5y =36,求xy 的最大值.活动:均值不等式的功能就是“和积互化”.通过此例,教师引导学生回忆如何用均值不等式求最值.本例中把积化为和而和恰好为定值,应联想均值不等式.解:∵x、y 为正数,则6x 、5y 也是正数,∴6x +5y 2≥6x·5y=30xy , 当且仅当6x =5y 时,取“=”.∵6x+5y =36,则30xy ≤362,即xy≤545.∴xy 的最大值为545. 点评:本例旨在说明均值不等式的应用.事实上,∵6x+5y =36,∴y=36-6x 5.代入xy ,得xy =x·15(36-6x)=-65x 2+365x(x >0),利用二次函数的图象和性质也很容易解出来,教师可在活动前向学生说明.学生用均值不等式解完此题后,结合学生的板书,对出现的漏洞或错误进行一一点拨.变式训练已知2x +3y=2(x >0,y >0),则xy 的最小值是__________. 解法一:由x >0,y >0,得2=2x +3y ≥22x ·3y. ∴xy≥6,当且仅当2x =3y=1,即x =2,y =3时,xy 取得最小值为6. 解法二:令2x =2cos 2θ,3y =2sin 2θ,θ∈(0,π2),∴x=22cos 2θ,y =32sin 2θ. ∴x·y=64sin 2θcos 2θ=6sin 22θ. ∵sin 22θ≤1,当且仅当θ=π4时等号成立,这时x =2,y =3.∴xy 的最小值是6. 解法三:由2x +3y =2,得y =3x 2x -2.∴xy=3x 2-(x >1). 令x -1=t ,t >0,x =t +1.∴3x 2-=+22t =32(t +1t +2)≥32(2t·1t+2)=6.当且仅当t =1时等号成立,即x -1=1,x =2.∴xy 有最小值6.答案:6例3不等式ax x -1<1的解集为{x|x <1或x >2},求a. 活动:本例不是一元二次不等式,但可转化为一元二次不等式的形式来思考.训练学生的等价转化能力.解法一:将ax x -1<1化为-+1x -1<0,即[(a -1)x +1](x -1)<0. 由已知,解集为{x|x <1或x >2}可知a -1<0,∴[(1-a)x -1](x -1)>0.∴(1-a)x -1<0,x >11-a .于是有11-a =2.解得a =12. 解法二:原不等式转化为[(a -1)x +1](x -1)<0,即(a -1)x 2+(2-a)x -1<0. 依题意,方程(1-a)x 2+(a -2)x +1=0的两根为1和2,∴⎩⎪⎨⎪⎧ 11-a =2,a -2a -1=3,解得a =12. 点评:本例是一道经典题目,学生完成后,可让他们互相交流一下解法,体会等价转化的意义.变式训练若关于x 的不等式x -a x +1>0的解集为(-∞,-1)∪(4,+∞),则实数a =__________. 答案:4例4为了保护环境,造福人类,某县环保部门拟建一座底面积为200 m2的长方体二级净水处理池(如图),池深度一定,池的外壁建造单价为每平方米400元,中间一条隔墙建造单价为每平方米100元,池底建造单价为每平方米60元.一般情形下,净水处理池的长设计为多少米时,可使总造价最低?活动:教师引导学生观察题目的条件,可以先建立目标函数,再求解.可让学生独立探究,必要时教师给予适当的点拨.解:设净水池长为x m ,则宽为200xm ,高为h m ,则总造价 f(x)=400(2x +2·200x )·h+100·200x ·h+60×200=800h(x +225x)+12 000(x >0), 当且仅当x =225x(x >0),即x =15时上述不等式取到等号.故当净水池的长设计为15 m 时总造价最低.点评:对应用问题的处理,关键是把实际问题转化成数学问题,列好函数关系式是求最值的基本保证.用均值不等式创设不等量关系,也是经常采用的方式方法,让学生以后在解决有关最值问题时注意这条解题思路的灵活应用.知能训练1.已知集合A ={x||2x +1|>3},B ={x|x 2+x -6≤0},则A∩B 等于( )A .[-3,-2)∪(1,2]B .(-3,-2]∪(1,+∞)C .(-3,-2]∪[1,2) D.(-∞,-3)∪(1,2]2.已知a∈R ,二次函数f(x)=ax 2-2x -2a ,设不等式f(x)>0的解集为A ,又知集合B ={x|1<x <3},若,求a 的取值范围. 3.已知关于x 的不等式x >ax 2+32的解集是{x|2<x <m},求不等式ax 2-(5a +1)x+ma >0的解集.4.解关于x 的不等式(x -2)(ax -2)>0.5.已知a 、b 、c 、d∈R ,求证:ac +bd≤2+b 22+d 2.答案:1.A 解析:易得A ={x|x >1或x <-2},B ={x|-3≤x≤2}.则A∩B={x|1<x≤2或-3≤x<-2}.2.解:由f(x)为二次函数,知a≠0.令f(x)=0,解得其两根为x 1=1a -2+1a 2,x 2=1a +2+1a 2.由此可知x 1<0,x 2>0. (1)当a >0时,A ={x|x <x 1}∪{x|x>x 2}.的充要条件是x 2<3,即1a +2+1a 2<3,解得a >67. (2)当a <0时,A ={x|x 1<x <x 2}.的充要条件是x 2>1,即1a +2+1a 2>1,解得a <-2. 综上,使成立的a 的取值范围为(-∞,-2)∪(67,+∞). 3.解:x >ax 2+322-x +32<0,2<x <m -2)(x -m)<2-(2+m)x +2m <0.对照不等号方向及x 2的系数可知a >0且a 1=12+m =322m ,解得a =18,m =36. ∴ax 2-(5a +1)x +ma >18x 2-(5×18+1)x +36×18>2-13x +36>-4)(x-9)><4或x >9. 点评:条件中的不等式含参数a ,而其解集中又含有参数m ,似乎有较大难度.策略之一,求出原不等式的解集,与{x|2<x <m}比较;策略之二,抓住解集,即写出解集为{x|2<x <m}的一元二次不等式,再与原不等式比较,若只求原不等式的解集,需讨论.4.解:(1)当a =0时,原不等式化为x -2<0,解集为{x|x <2}.(2)当a <0时,原不等式化为(x -2)(x -2a )<0,这时两根的大小顺序为2>2a,所以解集为{x|2a<x <2}. (3)当a >0时,原不等式化为(x -2)(x -2a)>0,①当0<a <1时,两根的大小顺序为2<2a ,所以原不等式的解集为{x|x >2a或x <2};②当a =1时,2=2a,所以原不等式的解集为{x|x≠2且x∈R }; ③当a >1时,两根的大小顺序为2>2a ,解集为{x|x >2或x <2a}. 综上所述,不等式的解集为a =0时,{x|x <2},a =1时,{x|x≠2},a <0时,{x|2a<x <2},0<a <1时,{x|x >2a 或x <2},a >1时,{x|x >2或x <2a}. 点评:本例应对字母a 分类讨论,分类的原则是不重、不漏.解完后教师引导学生思考本例的解法并注意书写的规范性.5.证明:∵(a 2+b 2)(c 2+d 2)=a 2c 2+b 2c 2+a 2d 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)=(ac +bd)2+(bc -ad)2≥(ac+bd)2, ∴2+b 22+d 2≥|ac+bd|≥ac+bd. 点评:能否联想到均值不等式ab ≤a +b 2或其变形形式上来?关键是探究根号里面的(a 2+b 2)(c 2+d 2)的变形问题. 课堂小节1.由学生回顾本节课我们复习了哪些知识、方法?解决了哪些问题?通过本节复习,你有哪些收获?2.通过本节复习,深化了“三个二次”之间的关系,加深了不等式基本性质的理解,进一步熟悉了数形结合、方程等数学思想方法;熟悉了简单不等式的证明思路,沟通了各知识点之间的关系.从更高的角度理解了相等和不等的关系,体会了数学来源于生活的道理,也认识到了数学的系统美、严谨美与简洁美.作业本章巩固与提高A 组3、4、7、8、9;B 组6、7、8、9.设计感想1.本课时设计体现了复习课的特点,从更高的角度对本章知识方法进行整合.复习不是简单的重复或阅读课本,把“发展为本”作为教学设计的中心,使各层次的学生在各个方面都有所提高,达到“温故而知新”的目的.2.本课时设计重视了学生的探究活动,让学生在教师的引导下自主探究,避免了学生只当观众、听众.设计中体现把复习的机会还给学生,充分让学生在知识整合的基础上,再发展、再创造.3.本课时设计体现了复习中前后知识的联系.注重了复习应涉及哪些内容?重难点是什么?与其前沿知识和后继知识有哪些联系?在复习过程中应该注意什么等.针对这些情况,教师应该做到心中有数,这样,在复习过程中,才能够做到步步到位,使学生在复习中不至于盲目无从.(设计者:郑吉星)第2课时导入新课思路 1.(复习导入)上节课我们重点复习了不等式的基本性质,一元二次不等式的解法及均值不等式的应用.本节将重点对平面区域和线性规划问题做一归纳整合,由此展开复习.思路 2.(直接引入)我们曾对平面区域,线性规划问题进行了探究,解决了我们日常生活中有关资源的分配,人力、物力的合理利用等最优问题.本节课我们将对这些内容做进一步的回顾与提高,进一步提高线性规划这一数学工具的应用.推进新课新知探究提出问题在直角坐标系中,怎样用二元一次不等式组的解集表示平面上的区域?确定二元一次不等式表示的区域的方法是什么?利用线性规划可解决哪些实际问题?渗透了哪些数学思想方法?解线性规划实际问题的方法步骤是什么?活动:教师引导学生回忆并思考以上问题.我们知道二元一次方程ax+by+c=0表示平面坐标系中的一条直线.这条直线把直角坐标系内的点分成了三部分:在直线ax+by+c =0上或两侧.在直线上的点的坐标满足ax+by+c=0,两侧点的坐标则满足ax+by+c>0或ax+by+c<0.这样,二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax +by+c=0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界直线;若画不等式ax+by+c≥0表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.由于对在直线ax+by+c=0同一侧的所有点(x,y),把它的坐标(x,y)代入ax+by+c,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点(x0,y0),以a0x+b0y+c的正负情况便可判断ax+by+c>0表示这一直线哪一侧的平面区域,特殊地,当c≠0时,常把原点作为此特殊点.(此时,教师用投影仪给出下面的图形归纳)用二元一次不等式表示平面区域可分为如下四种情形:Ax+By+C≥0 (A>0,B>0,C<0)Ax+By+C≤0(A>0,B>0,C<0)Ax+By+C≥0(A>0,B<0,Ax+By+C≤0(A>0,B<0,本节课内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.通过本节课的复习,让学生进一步了解到线性规划是利用数学为工具,来研究一定的人、财、物等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经济管理等许多方面的实际问题.这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)阅读题意,寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域(即画出不等式组所表示的公共区域);(3)在可行域内求目标函数的最优解(设t=0,画出直线l0,观察、分析,平移直线l0,从而找到最优解);(4)由实际问题的实际意义作答.讨论结果:(1)~(4)略.应用示例例1画出不等式组⎩⎪⎨⎪⎧x +y -6≥0,x -y≥0,y≤3,x <5表示的平面区域.活动:为了让全体学生都能准确地画出平面区域,教师可请两名学生上黑板板演,然后对出现的问题作点评.解:不等式x +y -6≥0表示在直线x +y -6=0上及右上方的点的集合,x -y≥0表示在直线x -y =0上及右下方的点的集合,y≤3表示在直线y =3上及其下方的点的集合,x <5表示直线x =5左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x +y -6≥0,x -y≥0,y≤3,x <5表示的平面区域如图所示.点评:画平面区域是学生易错的地方,也是用线性规划解决实际问题的关键步骤,一定让学生准确掌握.变式训练已知实数x ,y 满足⎩⎪⎨⎪⎧x≥1,y≤2x-1,x +y≤m,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A .7B .5C .4D .3 答案:B解析:画出x ,y 满足的可行域,可得直线y =2x -1与直线x +y =m 的交点使目标函数z =x -y 取得最小值.故由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,解得x =m +13,y =2m -13.代入x -y =-1,得m +13-2m -13=-1,解得m =5.例2某机械厂的车工分Ⅰ、Ⅱ两个等级,各级车工每人每天加工能力、成品合格率及日工资数如下表所示:工厂要求每天至少加工配件2 400个,车工每出一个废品,工厂要损失2元,现有Ⅰ级车工8人,Ⅱ级车工12人,且工厂要求至少安排6名Ⅱ级车工,试问如何安排工作,使工厂每天支出的费用最少.活动:学生对求解简单线性规划实际应用问题的步骤已经是很熟悉,让学生独立解决问题,有助于学生解题能力的锻炼与培养.本例的关键是列出约束条件和目标函数,再就是画平面区域.解:根据题意列出线性约束条件和目标函数.设需Ⅰ、Ⅱ级车工分别为x 、y 人. 线性约束条件:⎩⎪⎨⎪⎧97%·240x+95.5%·160y≥2 400,0≤x≤8,6≤y≤12,化简即为⎩⎪⎨⎪⎧29.1x +19.1y≥300,0≤x≤8,6≤y≤12.目标函数为z =[(1-97%)·240x+(1-95.5%)·160y]×2+5.6x +3.6y , 化简即为z =20x +18y.根据题意知即求目标函数z 的最小值.画出约束条件的可行域,如图,根据图知,点A(6,6.3)应为既满足题意,又使目标函数最小.然而A 点非整数点.故在点A 上侧作平行直线经过可行域内的整点,且与原点距离最近,可知(6,7)为满足题意的整数解.此时zmin=20×6+18×7=246(元),即每天安排Ⅰ级车工6人,Ⅱ级车工7人时,工厂每天支出费用最少.答:每天安排Ⅰ级车工6人,Ⅱ级车工7人,工厂每天支出费用最少.点评:通过本例的求解我们可以看出,处理简单的线性规划的实际问题,关键之处在于从题意中建立目标函数和相应的约束条件,实际上就是建立数学模型.这样解题时,将所有的约束条件罗列出来,弄清目标函数与约束条件的区别,得到目标函数的最优解.例3A、B两个产地分别生产同一规格产品12千吨、8千吨,而D、E、F三地分别需要8千吨、6千吨、6千吨,每千吨的运费如下表所示:怎样确定调运方案,使总的运费最少?点评:本例表中的数据较多.可设从A运到D为x,从A运到E为y,则从A运到F就可用x、y表示,即12-x-y,则B运到D、E、F分别为8-x,6-y,x+y-6.目标函数为f=-3x+y+100.解:设从A运到D为x,从A运到E为y,则从A运到F为12-x-y,B运到D、E、F 分别为8-x,6-y,x+y-6.约束条件为⎩⎪⎨⎪⎧x≥0,y≥0,12-x -y≥0,8-x≥0,6-y≥0,x +y -6≥0.目标函数为f =-3x +y +100.可行域为如图所示的阴影部分(包括边界).易知,当x =8,y =0时,f 最小,即运费最省.故当从A 运到D8千吨、从A 运到F4千吨、从B 运到E6千吨、从B 运到F2千吨时,总的运费最少.点评:通过本例的训练,让学生学会对多个数据的处理,进一步明确线性规划的应用性. 变式训练行驶中的汽车在刹车时,由于惯性作用,要继续向前滑行一段距离才能停下来,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y =nx 100+x 2400(n 为常数,n∈N ).做两次刹车试验,有数据如图,其中5<y 1<7,13<y 2<15.(1)求出n 的值;(2)要求刹车距离不超过18.4 m ,则行驶的最大速度应为多少?解:(1)将x 1=40,x 2=70分别代入y =nx 100+x 2400,有y 1=25n +4,y 2=710n +494.依题意,有⎩⎪⎨⎪⎧5<25n +4<7,13<710n +494<15(n∈N ).解得n =3.(2)y =3x 100+x2400≤18.4,解得x≤80,即最大行驶速度为80 km/h.知能训练1.实数x ,y 满足不等式组⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是( )A .[-1,13]B .[-12,13]C .[-12,+∞) D.[-12,1)2.如图所示,在约束条件⎩⎪⎨⎪⎧x≥0,y≥0,y +x≤s,y +2x≤4下,当3≤s≤5时,目标函数z =3x +2y的最大值的变化范围是()A .[7,8]B .[7,15]C .[6,8]D .[6,15] 3.购买8角和2元的邮票若干张,并要求每种邮票至少要两张,如果小明带有10元钱,问有多少种买法?答案:1.D 解析:设点D(x ,y)在图中阴影部分内,如图.ω=y -1x +1,即动点(x ,y)与定点A(-1,1)连线的斜率.当动点为B 点时,ω取得最小值,由⎩⎪⎨⎪⎧y =0,2x -y -2=0,得B 点坐标为(1,0).∴ω=-12.当动点在x -y =0上,且x→+∞时,ω趋向于最大值,即经过A 点,斜率为ω的直线与x -y =0平行.∴ω∈[-12,1).2.A 解析:由题意知要求在约束条件⎩⎪⎨⎪⎧x≥0,y≥0,y +x≤s,y +2x≤4下,目标函数z =3x +2y 的取值范围,作出如图所示目标函数取最大值时的可行域.由z =3x +2y 得y =-32x +z2,∴当x +y =3时,在B 点处z 取最大值;随着x +y =3的上移,z 的最大值也随着增大.当平移经过C 点时,z 的最大值达到最大,且B(1,2),C(0,4).∴当3≤s≤5时,目标函数z =3x +2y 的最大值的变化范围是[7,8]. 3.解:设8角邮票可买x 张,2元邮票可买y 张,根据题意有⎩⎪⎨⎪⎧8x +20y≤100,x≥2,y≥2,x 、y∈N .不等式表示的平面区域如图所示,而在该区域内,x 、y 都是不小于2的整数,这样的点的个数为11,所以小明有11种购买方法,分别是(2,2),(2,3),(2,4),(3,2),(3,3),(4,2),(4,3),(5,2),(5,3),(6,2),(7,2).课堂小节1.由学生回顾本节课复习了哪些内容?通过对这些内容的复习,你有什么新的发现? 2.本节课重点复习了平面区域和线性规划问题,明确了用线性规划的方法解决的两种重要问题.线性规划实质上是数形结合的一种体现,即将最值问题直观、简便地寻找出来,是一种较为简捷地求最值的方法.进一步熟悉了利用线性规划解决问题的步骤.还结合一道线性规划题目,探究了利用新视角解决问题的方法,打破了思维定式,今后要注意这方面的思维训练,以培养学生思维的灵活性.作业1.本章巩固与提高A 组14、15;B 组14、15. 2.本章自测与评估.设计感想1.本课时设计注重了教师的灵活操作.在复习时,采取提问、讨论、练习等方式,引导学生再现知识点、知识的形成过程及内在联系.用表格、图示、文字的方法串成线、连成片,建立起合理的认知结构,便于学生记忆,而不是简单的重复.2.本课时设计关注了学生的层次,关注了学习要求上的分层.让学习较差层次的学生多回答一些概念识记性提问,要求学会做一些基础题目.让学习中等层次的学生,多回答一些需认真思索的提问,会做一些难度适中的综合练习.让学习较好层次的学生,多回答一些智力运用性的提问,会运用知识解决一些难度较大的综合性题目.3.本课时设计注意了数学思想方法的教学.学生的能力最终体现在数学思想方法的应用上.在讲授数学知识的同时,更加注重数学思想方法的渗透和培养,把数学思维方法和数学知识、技能融为一体,不断提高学生的思维能力、解题能力及联系实际的能力.(设计者:郑吉星)备课资料一、备用例题【例1】 已知0<x <13,求函数y =x(1-3x)的最大值.活动一:原函数式可化为y =-3x 2+x ,利用二次函数求某一区间的最值. 解法一:(利用二次函数法可获得求解)(解略)。

人教B版高中数学必修五备课精选学案第三章不等式复习

人教B版高中数学必修五备课精选学案第三章不等式复习

《不等式》复习小结 学案一、学习目标1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。

二、重点,难点不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。

利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。

三、掌握的知识点 1.本章知识结构2、知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小;作差法 3、应用不等式性质证明 (二)一元二次不等式及其解法 一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解2a b+≤ 1、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba22a b+≤几何意义是“半径不小于半弦”五、知识运用1. 已知正数c b a ,,满足3242-=+++bc ac ab a ,则c b a ++2的最小值为 .2. 已知,0,0>>y x 且191=+yx 则y x +的最小值为 . (2)已知y x m y x y x +=+=+4,lg lg )lg(则m 的取值范围是 . 3.已知函数c bx ax x x f +++=23)(在点))1(,1(f P 的切线方程为13+=x y ,若函数在)1,2(-上单调递增,求b 的取值范围.4.对于任意[]4,0∈a ,不等式342-+≥+a x ax x 恒成立,求实数x 的取值范围. 5.已知二次函数c bx ax x f ++=2)(和一次函数bx x g -=)(,其中c b a ,,满足 ),,(0,R c b a c b a c b a ∈=++>>.(1) 求证:两函数的图象交于不同的两点B A ,; (2) 求线段AB 在x 轴上的射影11B A 的长的取值范围.参考答案: 1.法一:因为*∈R c b a ,,324))(()()(2-=++=+++=+++c a b a b a c b a a bc ac ab a , 所以 )13(23242))((2)()(2-=-=++≥+++=++c a b a c a b a c b a . 法二:结论向条件靠,将次数升上去,方便使用条件,bc ac ab c b a c b a 2444)2(2222+++++=++=2222)(4c b bc bc ac ab a ++-+++=4(4-2)3+ ()324(4)2-≥-c b . 又*∈R c b a ,,,故)13(22-≥++c b a 2.(1)解:169210910)91)((=+≥++=++=+yx x y y x y x y x 当且仅当4,12==x y 时等号成立.或解:由191=+y x 得9-=y y x ,则1699919≥-+-+=+-=+y y y y y y x ,后略.(2)解:由题意xy y x y x =+>>,0,0, 故111=+y x ,945)11)(4(4≥++=++=+yx x y y x y x y x , 当且仅当3,23==y x 时等号成立,9≥m . 3.解:由b ax x x f ++='23)(2及3)1(='f 得到b a -=2,则b bx x x f +-='23)(. 由题设可得032≥+-b bx x 对∈x )1,2(-恒成立.即23)1(x b x -≥-对∈x )1,2(-恒成立xx b --≥⇔132对∈x )1,2(-恒成立只需xx b --≥132在)1,2(-上的最大值.对于这个最大值的计算方法可以是平均值定理法,也可以是导数法,下面我选择其中一种.06613)1(3613)1((3132=-≤----=--+=--xx x x x x (当0=x 时等号成立) 故0≥b .4.令34)1()(2+-+-=x x a x a f ,则问题转化为对于任意[]4,0∈a ,0)(≥a f 恒成立,则问题⇔1010340)4(0)0(22-≤⇔⎪⎩⎪⎨⎧⎩⎨⎧≥-≥+-⇔≥≥x x x x f f 或3≥x 或1=x . 5.解: (1)由⎩⎨⎧-=++=bx y c bx ax y 2消y 得022=++c bx ax ,由题意,0≠a 且)(44422ac b ac b -=-=∆.由条件不难得到0,0<>c a ,故02>-ac b 即0>∆.可得两函数图象有两个不同的交点.(2)设上述方程的两个根分别为21,x x ,则212212214)(x x x x x x -+=-=a cac a a c a b 4)(44)2(222-+=-- 令a c u =,则原式=4(13)21(4)22++=++u u u . 由,,c a b c b a --=>>有c c a a >-->,又0>a ,0≠b , 因此2->a c 且21-<a c ,且1-≠a c .即()⎪⎭⎫ ⎝⎛----∈21,11,2Y u . 所以∈-221x x ()()4,312,4Y ,()()32,22,321Y ∈-x x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式》复习小结 学案
一、学习目标
1.会用不等式(组)表示不等关系;
2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。

二、重点,难点
不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。

利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。

三、掌握的知识点 1.本章知识结构
2、知识梳理
(一)不等式与不等关系
1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,
(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0
(5)倒数法则:b
a a
b b a 110,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小;作差法 3、应用不等式性质证明 (二)一元二次不等式及其解法 一元二次不等式的解法
一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,
ac b 42-=∆,则不等式的解的各种情况如下表:
有两相等实根
(三)线性规划
1、用二元一次不等式(组)表示平面区域
二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
2、二元一次不等式表示哪个平面区域的判断方法
由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)
3、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解
2a b
+≤ 1、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b
a
22
a b
+≤几何意义是“半径不小于半弦”
五、知识运用
1. 已知正数c b a ,,满足3242-=+++bc ac ab a ,则c b a ++2的最小值为 .
2. 已知,0,0>>y x 且
19
1=+y
x 则y x +的最小值为 . (2)已知y x m y x y x +=+=+4,lg lg )lg(则m 的取值范围是 . 3.已知函数c bx ax x x f +++=23)(在点))1(,1(f P 的切线方程为13+=x y ,若函数在)1,2(-上单调递增,求b 的取值范围.
4.对于任意[]4,0∈a ,不等式342-+≥+a x ax x 恒成立,求实数x 的取值范围. 5.已知二次函数c bx ax x f ++=2)(和一次函数bx x g -=)(,其中c b a ,,满足 ),,(0
,R c b a c b a c b a ∈=++>>.
(1) 求证:两函数的图象交于不同的两点B A ,; (2) 求线段AB 在x 轴上的射影11B A 的长的取值范围.
参考答案: 1.法一:
因为*∈R c b a ,,324))(()()(2-=++=+++=+++c a b a b a c b a a bc ac ab a , 所以 )13(23242))((2)()(2-=-=++≥+++=++c a b a c a b a c b a . 法二:结论向条件靠,将次数升上去,方便使用条件,
bc ac ab c b a c b a 2444)2(2222+++++=++=2222)(4c b bc bc ac ab a ++-+++
=4(4-2)3+ ()324(4)2-≥-c b . 又*∈R c b a ,,,故)13(22-≥++c b a 2.(1)解:169210910)91)((=+≥++=+
+=+y
x x y y x y x y x 当且仅当4,12==x y 时等号成立.
或解:由
191=+y x 得9-=y y x ,则1699
919≥-+-+=+-=+y y y y y y x ,后略.
(2)解:由题意xy y x y x =+>>,0,0, 故
111=+y x ,945)11)(4(4≥++=++=+y
x x y y x y x y x , 当且仅当3,2
3
==
y x 时等号成立,9≥m . 3.解:由b ax x x f ++='23)(2及3)1(='f 得到b a -=2,则b bx x x f +-='23)(. 由题设可得032≥+-b bx x 对∈x )1,2(-恒成立.
即2
3)1(x b x -≥-对∈x )1,2(-恒成立x
x b --≥⇔132
对∈x )1,2(-恒成立
只需x
x b --≥132
在)1,2(-上的最大值.对于这个最大值的计算方法可以是平均值定理
法,也可以是导数法,下面我选择其中一种.
06613)1(3613)1((3132=-≤----=--+=--x
x x x x x (当0=x 时等号成立) 故0≥b .
4.令34)1()(2+-+-=x x a x a f ,则问题转化为对于任意[]4,0∈a ,0)(≥a f 恒成立,则问题⇔
1010340)4(0)0(2
2-≤⇔⎪⎩
⎪⎨⎧⎩⎨⎧≥-≥+-⇔≥≥x x x x f f 或3≥x 或1=x . 5.解: (1)由⎩⎨⎧-=++=bx y c bx ax y 2消y 得022=++c bx ax ,由题意,0≠a 且
)(44422ac b ac b -=-=∆.由条件不难得到0,0<>c a ,故02>-ac b 即0>∆.可得
两函数图象有两个不同的交点.
(2)设上述方程的两个根分别为21,x x ,则212212
2
14)(x x x x x x -+=-
=a c
a
c a a c a b 4)(44)2(2
22-+=-- 令a c u =
,则原式=4(13)2
1
(4)22++=++u u u . 由,,c a b c b a --=>>有c c a a >-->,又0>a ,0≠b , 因此
2->a c 且21-<a c ,且1-≠a c .即()⎪⎭⎫ ⎝

----∈21,11,2 u . 所以∈-2
21x x ()()4,312,4 ,(
)()
32,22,321 ∈
-x x .。

相关文档
最新文档