关于不定方程x~2+7=y~3

合集下载

不定方程的概念

不定方程的概念

不定方程的概念嘿,朋友!咱今天来聊聊不定方程这个有点神秘又挺有趣的家伙。

你想啊,咱们平常解的方程,比如说“x + 3 = 7”,解出来 x 就等于 4,这多简单直接,结果明明白白。

可不定方程就不一样啦,它就像个调皮的孩子,没那么听话,答案不是唯一确定的。

那到底啥是不定方程呢?简单说,不定方程就是未知数的个数多于方程的个数,而且解不是唯一确定的方程。

比如说“3x + 2y = 10”,这里有两个未知数 x 和 y,可方程就这一个,你说怎么能一下子就确定 x 和 y 到底是多少呢?这就好比你有一把钥匙,但不知道能开哪扇门,也许能开好几扇呢!不定方程在生活中也有不少影子。

就像你去买水果,苹果一个 3 块钱,香蕉一根 2 块钱,你一共花了 10 块钱,那你能一下子就知道买了几个苹果几根香蕉吗?不能吧,这就有点像不定方程的情况。

再举个例子,你要装修房间,已知每卷壁纸能贴 5 平方米,每桶油漆能刷 10 平方米,总共的墙面面积是 50 平方米,可你不知道到底用了几卷壁纸几桶油漆,这是不是也像个不定方程?解不定方程可不是件容易的事儿,得有点小技巧。

有时候可以通过整除的性质来判断,有时候要考虑余数,这就像走迷宫,得找对方向才能走出去。

咱来看看这个不定方程“5x + 7y = 31”,如果一个一个去试 x 和 y 的值,那得试到啥时候?这时候就得想想办法啦。

因为 31 除以 5 余 1,5x 肯定能被 5 整除,那 7y 除以 5 就得余 1,这样就能缩小 y 的取值范围啦。

总之啊,不定方程虽然有点让人头疼,但掌握了方法,也就没那么可怕。

就像爬山,看着高,一步步走,总能到山顶。

所以,别害怕不定方程,多练练,多琢磨琢磨,咱也能把它拿下!。

高中数学解题技巧之不定方程求解

高中数学解题技巧之不定方程求解

高中数学解题技巧之不定方程求解不定方程在高中数学中是一个重要的概念,涉及到求解方程中的未知数的取值范围。

本文将介绍不定方程的求解方法和一些解题技巧,帮助高中学生更好地应对这类题目。

一、不定方程的定义和基本概念不定方程是指含有未知数的方程,但未知数的取值范围不确定,需要通过一定的条件来求解。

常见的不定方程包括线性不定方程、二次不定方程等。

例如,求解线性不定方程3x + 4y = 7,其中x和y为未知数。

这个方程的解是指满足条件的x和y的取值,使得等式成立。

二、线性不定方程的求解方法1. 列举法:对于简单的线性不定方程,可以通过列举的方法来求解。

例如,解线性不定方程3x + 4y = 7,我们可以列举出一些满足条件的整数解,如(1, 1)、(3, 1)等。

通过观察这些解的规律,我们可以发现解的特点,进而得到一般解。

2. 欧几里得算法:对于形如ax + by = c的线性不定方程,可以利用欧几里得算法来求解。

首先,我们需要找到一个特殊解(x0, y0),然后利用欧几里得算法求出方程的通解。

例如,求解线性不定方程3x + 4y = 7。

我们可以先找到一个特殊解(3, -2),然后利用欧几里得算法求出方程的通解。

具体步骤如下:步骤一:利用欧几里得算法求出3和4的最大公约数d,同时求出一组整数解(u0, v0),使得3u0 + 4v0 = d。

步骤二:将方程两边同时除以d,得到(3/d)x + (4/d)y = 7/d。

步骤三:将特殊解(3, -2)代入上式,得到(3/d)x + (4/d)y = 7/d。

通过观察我们可以发现,方程的通解为x = 3 + 4k,y = -2 - 3k,其中k为整数。

三、二次不定方程的求解方法二次不定方程是指含有二次项的不定方程,例如x^2 + y^2 = 25。

对于这类方程,我们可以利用一些特定的方法来求解。

1. 分类讨论法:对于形如x^2 + y^2 = n的二次不定方程,我们可以通过分类讨论的方法来求解。

解不定方程

解不定方程

种形式。
解 (ⅰ) 由定理2,方程
ax by = n
(11)
的解具有
, tZ (12)
的形式,其中x0与y0满足方程(11)。
由假设条件n > ab a b及式(11)与式(12),有
ax = n by = n b(y0 at) > ab a b b(y0 at)。 (13)
取整数t,使得
0 y = y0 at a 1,
, tZ,
其中(x0, y0)是直线ax by = c上的坐标都是整数的点,由定理1,这样的点
是存在的。
对于任意的tZ,记Pt是以(xt, yt)为坐标的点,则Pt 1与Pt 之间的距离

这说明,两个“相邻的”坐标是整数的点的距离是,从而得出所求之结
论。
例5 将写成三个分数之和,它们的分母分别是2,3和5。
将式(9)与式(10)中的t消去,得到
, u, vZ。
注:本例在解方程时,首先将原方程化为等价方程(8),这使问题简
化。对例1也可以如此处理。
例3 设a与b是正整数,(a, b) = 1,则任何大于ab a b的整数n都可以表
示成n = ax by的形式,其中x与y是非负整数,但是n = ab a b不能表示成这
(x, y, z) = (0, 25, 75),(4, 18, 78),(8, 11, 81),(12, 4, 84)。
例7 求不定方程x 2y 3z = 7的所有正整数解。
解 依次解方程
t 3z = 7,
x 2y = t,
得到
, uZ,
, vZ。
从上式中消去t,得到
, u, vZ。
(19)
要使x 1,y 1,z 1,则应有

不定方程的求解方法汇总

不定方程的求解方法汇总

不定方程的求解方法汇总不定方程的求解方法汇总行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。

但是想要快速正确的求解出结果,还是需要一些技巧和方法的。

专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。

一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。

在这里解释一下独立方程。

看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。

二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数性质:奇偶奇7x为奇数,x也为奇数。

x可能的取值有1、3、5。

当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。

任何正整数与5的乘积尾数只有两种可能0或5。

性质:奇偶奇5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。

但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。

3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。

4、特值法当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。

不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。

同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。

第二十二讲 不定方程(含解答)-

第二十二讲  不定方程(含解答)-

第二十二讲 不定方程【趣题引路】有三对夫妻一同上商店买东西.男的分别姓孙、姓陈、姓金,女的分别姓李、•姓赵、姓尹。

他们每人只买一种商品,并且每人所买商品的件数正好等于那种商品的单价(元数).现在知道每一个丈夫都比他的妻子多花63元,并且孙先生所买的商品比赵女士多23件,金先生所买的商品比李女士多11件,问孙先生、陈先生、金先生的爱人各是谁? 解析 设丈夫买了x 件商品,妻子买了y 件商品,则得不定方程x 2-y 2=63. 即(x+y)(x-y)=63=63×1=21×3=9×7.可得方程组111163,1;x y x y +=⎧⎨-=⎩ 222221,3;x y x y +=⎧⎨-=⎩ 33339,7;x y x y +=⎧⎨-=⎩ 解得1132,31;x y =⎧⎨=⎩ 2212,9;x y =⎧⎨=⎩ 338,1.x y =⎧⎨=⎩ 根据条件“孙先生所买的商品比赵女士多23件”,可确定x 1•为孙先生买的商品数,y 2为赵女士买的商品件数;再根据条件“金先生所买的商品比李女士多11件”,•可确定x 2为金先生所买的商品件数,y 3为李女士买的商品件数.由此可判断出孙先生和尹女士为夫妻,金先生和赵女士是夫妻,陈先生和李女士是夫妻.【知识延伸】不定方程是整数论中最古老的一个分支,•古希腊数学家刀番图就研究过这样的方程. 不定方程(组)指未知数的个数多于方程的个数的方程(组).这类方程解法灵活,内涵丰富,综合性强.解决这类问题,需要根据方程的具体特点进行分析,•还要运用特殊的方法和技巧. 例1 已知a 是质数,b 是奇数,且a 2+b=2 003,求a+b 的值.解析 ∵a 2+b=2 003,∴a 2=2 003-b,又∵b 是奇数,则2 003-b 是偶数,∴a 2是偶数.故a 是偶数,而a 又是质数,∴a=2,∴b=1 999.∴a+b=2+1 999=2 001.点评此题应用了奇偶数分析法解决问题.例2 已知a,b,c满足方程组28,48.a b ab c +=⎧⎪⎨-+=⎪⎩,试求方程bx 2+c x-a=0的根. 解析 ∵a+b=8,ab -c 2+8 =48,∴ab=c 2-c+48.故a,b是方程y2-8y+c2-+48=0的两根.即(y-4)2-(c-)2=0.∴即.方程即为4x2x-4=0,即x2x-1=0.∴x1,2=.2在初中阶段涉及的不定方程问题,通常有两种基本的解题思路:(1)•运用整数的若干基本性质;(2)运用初中的基本知识与基本方法,如因式分解,配方,•根的判别式与根与系数之间的关系,不等关系等,一般具体操作时,•常综合运用两个基本方法解决有关不定方程的问题. 点评此题采用构造一元二次方程的方法求得解.【好题妙解】佳题新题品味例1已知)=2002,求x2-3xy-4y2-6x-6y+58的值.解析∵)=2002,∴=①+②,得x+y=-(x+y).∴x+y=0.∴x2-3xy-4y2-6x-6y+58=(x-4y)(x+y)-6(x+y)+58=58.点评把x+y看成一个整体代入原式求解,是整体求解的运用.例2 已知a、b、c、d均为正整数,且a5=b4,c3=d2,a-c=65,求b-d的值。

不定方程定义

不定方程定义

不定方程定义不定方程定义及相关定义1. 不定方程定义不定方程是指含有未知数的方程,其解可能是整数或有理数,并且方程的系数是已知的。

不定方程的一般形式为:A1x1 + A2x2 + … + Anxn = B其中,A1, A2, …, An 是方程中的系数,x1, x2, …, xn 是未知数,B 是已知的常数。

2. 二元一次不定方程二元一次不定方程是指只含有两个未知数的一次方程。

一般形式为:A1x + A2y = B其中,A1、A2 和 B 是已知的常数。

解二元一次不定方程可以用到数论的知识,如贝祖等式、扩展欧几里得算法等。

3. 举例及理由例1:解二元一次不定方程 3x + 5y = 7。

•理由:这是一个经典的二元一次不定方程,解之可以帮助我们理解贝祖等式的应用。

例2:解二元一次不定方程 2x + 4y = 10。

•理由:这是一个特殊的二元一次不定方程,通过求解该方程,我们可以讨论贝祖等式的无解情况。

例3:解二元一次不定方程 4x + 3y = 2。

•理由:这是另一个特殊的二元一次不定方程,解之可以为我们提供扩展欧几里得算法的实际应用。

4. 相关书籍推荐•“Elementary Number Theory” by David M.Burton: 这本书是数论的经典教材,涵盖了不定方程以及其他数论概念的详细内容。

适合对数论感兴趣的读者,提供了丰富的例题和练习题。

•“An Introduction to the Theory of Numbers”by Ivan Niven, Herbert S. Zuckerman, and Hugh L.Montgomery: 这是另一本优秀的数论教材,对不定方程及其解法进行了深入讲解。

书中提供了大量的例题和习题,适合进一步深入学习不定方程的读者。

以上是关于不定方程定义及相关定义的简要介绍和举例说明。

对于想要深入了解和研究不定方程的读者,推荐阅读上述书籍以获取更详细的知识。

3.2 不定方程的常用解法

3.2  不定方程的常用解法

3.2 不定方程的常用解法对于高次不定方程,求出其通解然后再讨论有时是不现实的,因为我们甚至还没有找到判别一个高次不定方程是否有解的统一方法,当然要求出通解就更难了.或许正是因为没有统一的方法来处理高次不定方程,对具体的问题往往有许多方法来处理,并且每一种方法都表现出一定的创造性,所以,高次不定方程的问题频繁在数学竞赛中出现.当然,结合整除与同余的一些理论,求解高次不定方程也有一些常见的处理思路和解决办法. 一、因式分解法将方程的一边变为常数,而含字母的一边可以进行因式分解,这样对常数进行素因数分解后,对比方程两边,考察各因式的每种取值情况就可将不定方程变为若干个方程组去求解.这就是因式分解法处理不定方程的基本思路.例1 求方程()101xy x y -+= ① 的整数解.解:利用十字相乘,可将①变形为()()1010101x y --= 而101为素数,故()1010x y -,-=(1,101),(101,1),(-1,-101),(-101,-1). 分别求解,得方程的整数解为()x y ,=(11,111),(111,11),(9,-91),(-91,9). 例2 是否存在整数x 、y 、z ,使得44422222222224x y z x y y z z x ++=+++?解:若存在整数x 、y 、z 满足条件,则()22222244424222x y y z z x x y z -=++-++ =()()22222242224x yx y z z x y-+++-+=()2222224x y zxy -+-+=()()22222222xy x y z xy x y z ++---+=()()()()2222x y z z x y +---=()()()()x y z x y z z x y y z x +++-+-+-,这要求-24能表示为4个整数x y z ++,x y z +-,z x y +-,y z x +-的乘积的形式,而这4个数中任意两个数之差都为偶数,故这4个数具有相同的奇偶性,由-24为偶数,知它们都是偶数,但这要求42|24,矛盾. 所以,不存在符合要求的整数.说明 熟悉海伦公式的读者可以一眼看穿问题的本质.事实上,ABC S ∆a 、b 、c 为△ABC的三边长,这就是海伦公式.根号里面的式子展开后就是222a b +222b c +222c a -4a -4b -4c .例3 求所有的正整数对(m ,n ),使得5471mn n +=-. ①解:将①移项后作因式分解,得()545433711m n n n n n n =++=++-- =()()()322111n n n n n n ++--++=()()3211n n n n -+++ ② 由①知n >1,而n =2时,可得m =2.下面考虑n >2的情形,我们先看②式右边两个式子的最大公因数.()()()()32322111111n n n n n n n n n n n -+,++=-+-+++-,+=()()()()22212123n n n n n n n n -+,++=-++++-+,+ =()27n -+,.故()3211|7n n n n -+,++.结合②式知31n n -+与21n n ++都是7的幂次,而它们在n ≥3时,都大于7,这导致 ()()2327|11n n n n -+++,与前所得矛盾.综上可知,只有(m ,n )=(2,2)符合要求.说明 对①式变形后,所得②式两边符合因式分解方法解不定方程的套路,但7m并不是一个常数,这里需要有另外的方法来处理才能继续下去.活学活用方能攻城拔寨.二、配方法配方是代数变形中的常见方法,在处理不定方程的问题时还可综合利用完全平方数的特性,因此配方法在求解不定方程时大有用武之地.例4 求不定方程2234335x xy y -+=的全部整数解. 解:对方程两边都乘以3,配方后即得()22325105x y y -+=. ①由①式得 25105y ≤, 所以 4y ≤.当4y =时,325x y -=,此时原方程的解为(x ,y )=(1,4),(―1,―4). 当1y =时,3210x y -=,此时原方程的解为(x ,y )=(4,1),(―4,―1).当023y =,,时,()232x y -分别为105,85,60 .此时,所得的方程组显然无整数解. 上面的讨论表明,原方程有4组解:(x ,y )=(4,1),(1,4),(―4,―1),(―1,―4). 例5 求方程2432x x y y y y +=+++的整数解.解:同上例,对方程两边同乘以4,并对左边进行配方,得()()24322141x y y y y +=++++. ①下面对①式右端进行估计.由于()43241y y y y ++++ ()222212y y y y =++-+ ()2222341y y y y =++++, 从而,当y >2或y <-1时,有()()()2222222121y y x y y +<+<++.由于22y y +与22y y ++1是两个连续的整数,它们的平方之间不会含有完全平方数,故上式不成立. 因此只需考虑当-1≤y ≤2时方程的解,这是平凡的,容易得到原方程的全部整数解是 (x ,y )=(0,-1),(-1,-1),(0,0)(-1,0),(-6,2),(5,2). 例6 求所有的正整数n ≥2,使得不定方程组22121222232322112211501612501612501612501612n nn n nn x x x x x x x x x x x xx x x x ⎧⎪⎪⎪⋯⎨⎪⎪⎪⎩--++=+++=+++=+++=+ 有整数解.解:移项后配方,方程组变形为()()()()()()()()122122223221221850850850850n n n n x x x x x x n x x ⎧⎪⎪⎪⎪⋯⎨⎪⎪⎪⎪⎩---+-6=, ①-+-6=, ②-+-6=, -+-6=.由于50表示为两个正整数的平方和只有两种:2222501755=+=+,所以,由①知261x -=、5或7,而由②知281x -=、5或7,从而21x =、7、13.进一步,可知对每个1≤i ≤n ,都有1i x =,7或13,依11x =、7、13 ,分三种情况讨论. 若11x =,则由①知27x =,再由②知313x =,依次往下递推,可知当()1mod3k ≡时,1k x =;当()2mod3k ≡时,7k x =;当()0mod3k ≡时,13k x =.所以,由第n 式,知当且仅当()11mod3n ≡+时,原方程组有整数解,即当且仅当3|n 时,n 符合要求.对另外两种情况17x =和113x =同样讨论,得到的条件是一样的. 综上可知,满足条件的n 是所有3的倍数.说明 进一步讨论可知,当3|n 时,方程组恰有3组整数解.三、不等式估计利用不等式的知识,先确定不定方程中的某个字母的范围,然后逐个枚举得到所有解,这个方法称为不等式估计,它也是我们处理不定方程的常见方法.当然,如果能够恰当地利用字母的对称性等,那么作不等式估计时会简洁很多.例7 求不定方程3361x y xy -=+的正整数解.解:设(x ,y )为方程的正整数解,则x >y .设x =y +d ,则d 为正整数,且()()3361y d y y d y ++=+-22333dy yd d =++,即有 ()()23313161d y d d y d -+-+=.故 361d <, 于是 3d ≤. 分别令1d =、2、3代入,得222161y y ++=, 2510861y y ++=, 28242761y y ++=.只有第一个方程有整数解,并由y 为正整数知y =5,进而x =6.所以,原方程只有一组正整数解(x ,y )=(6,5). 例8 求所有的正整数a 、b ,使得22444aa b ++=. ①解:若(a ,b )是满足①的正整数数对,则2b 为偶数,且24ab >,从而b 为偶数,且2ab >,故22ab ≥+.于是()22244422a aa b ++=≥+4a =+4·2a +4,知22aa ≥,可得4a ≤(对a 归纳可证:当5a ≥时,有22aa <).分别就a =1,2,3,4代入①式,可得方程的所有正整数解为(a ,b )=(2,6)或(4,18).例9 求所有的正整数数组(a ,b ,c ,x ,y ,z ),使得a b c xyz x y z abc ⎧⎨⎩++=,++=,这里a b c ≥≥,x y z ≥≥.解:由对称性,我们只需考虑x a ≥的情形.这时 33xyz a b c a x =++≤≤, 故 3yz ≤,于是 (y ,z )=(1,1),(2,1),(3,1).当(y ,z )=(1,1)时,a b c x ++=且2x abc +=,于是 2abc a b c =+++. 若2c ≥,则2324a b c a a abc +++≤+≤≤, 等号当且仅当2a b c ===时成立.若1c =,则3ab a b =++, 即 ()()114a b --=,得 (a ,b )=(5,2),(3,3).当(y ,z )=(2,1)时,2266abc x a b c =+=+++,与上述类似讨论可知c =1,进而()()212115a b --=,得 (a ,b )=(3,2). 当(y ,z )=(3,1)时,331212abc x a b c =+=+++,类似可知,此时无解.综上所述,可知(a ,b ,c ,x ,y ,z ) =(2,2,2,6,1,1),(5,2,1,8,1,1),(3,3,1,7,1,1), (3,2,1,3,2,1),(6,1,1,2,2,2),(8,1,1,5,2,1), (7,1,1,3,3,1).说明 此题中如果没有条件a ≥b ≥c 和x ≥y ≥z ,也需要利用对称性作出这样的假设后再处理,解题中利用对称性假设x ≥a 是巧妙的,这样问题就转化为只有3种情况而便于处理了.四、同余方法若不定方程()120n F x x x ,,…,=有整数解,则对任意的*m N ∈,其整数解(1x ,2x ,…,n x )均满足()()120mod n F x x x m ≡,,…,.运用这一条件,同余可以作为不定方程是否有整数解的一块试金石. 例10 证明:不定方程22386x y z +-= ①没有整数解.证明 若(x ,y ,z )是方程①的整数解,对①的两边模2,可知x 、y 同奇偶;再对①两边模4可知x 、y 都为奇数,于是()221mod8x y ≡≡,这要求6()22382mod8x y z ≡=+-,矛盾.故方程①没有整数解.说明 利用同余方法解不定方程问题时,选择恰当的数作为模是十分重要的,它不仅涉及问题解决的繁简程度,重要的是能否卡住字母的范围或导出矛盾. 例11 求所有的非负整数x 、y 、z ,使得223xyz +=. ①解:(1)当y =0时,有()()22111xz z z =-=-+,于是可设 2z α-1=,2z β+1=,0αβ≤≤,因此 222βα-=.此时,若2α≥,则4|22βα-,与42矛盾,故1α≤.而0α=导致23β=,矛盾,故1α=,2β=,所以 z =3,x =3,得 (x ,y ,z )=(3,0,3)(2)当y >0时,由于323xy+,故3z ,所以 ()21mod3z ≡.对①两边模3,知()()11mod3x≡-, 故x 为偶数,现在设x =2m ,则 ()()223mmyz z -+=,所以可设 23mz α-=,23m z β+=,0αβ≤≤,y αβ+=, 于是 1332m βα+-=,若α≥1,则3|33βα-,但132m +,矛盾,故α=0,因此1312m β+-=. 当m =0时,β=1,得(x ,y ,z )=(0,1,2); 当m >0时,()120mod4m +=,故 ()31mod4β=, 这要求β位偶数,设β=2n ,则()()122313131m n n n +=-=-+, 同y =0时的讨论,可知 312n-=,即n =1,进而m =2,得 (x ,y ,z )=(4,2,5). 所以(x ,y ,z )=(3,0,3),(0,1,2),(4,2,5).例12 设m 、n 为正整数,且n >1,求25m n -的最小值.解:由于25m n -为奇数,而m =7,n =3时,253m n -=,故若能证明n >1时,251m n -≠,则所求的最小值为3.若存在正整数m 、n ,使得n >1,且251m n -=,则251m n -=或251m n-=-. 如果251mn-=,那么m ≥3,两边模8,要求()57mod8n ≡, 但对任意正整数n ,51n≡或()5mod8,矛盾,故251mn-=不成立. 如果251m n-=-,那么由n >1,知m ≥3.两边模8,得 ()51mod8n≡,可知n 为偶数.设n =2x ,x 为正整数,则 ()()25151m x x =-+, 由于51x-与51x+是两个相邻偶数,这要求512x -=,514x+=, 不可能.所以,25mn-的最小值为3.说明 上面的两个例子都用到了一个结论:两个差为2的正整数之积为2的幂次,则这两个数只能为2和4.该结论在例11的前半段解答中已予以证明.五、构造法有些不定方程的问题只需证明该方程有解或有无穷多个解,这时经常采用构造法来处理. 例13 证明:方程253x y z +=有无穷多组满足0xyz ≠的整数解.证明 取15102k x +=,642k y +=,1072k z +=,k 为非负整数,则这样的x 、y 、z 满足253x y z +=,所以方程有无穷多组满足0xyz ≠的整数解.另证 先求方程的一组特解,易知x =10,y =3,z =7 是方程253x y z +=的一组解.因而1510k x a =,63k y a =,107k z a =(a ,k 为非负整数)是方程的解.例14 证明:对任意整数n ,方程222x y z n +-= ①证明 现有命题“当m 为奇数或4的倍数时,方程22a b m -=有整数解(a ,b )”,它对解决本题是有用的.这个命题基于下面2个恒等式:()22121k k k +-=+,()()2214k k k +--1=.对于方程①,只需取x ,使x 与n 的奇偶性相反(这样的x 有无穷多个),从而利用上述命题,方程 222y z n x -=- 有整数解,可知方程①有无穷多组整数解.例15 是否存在两两不同的正整数m 、n 、p 、q ,使得m n p q +=+2012都成立?解:存在满足条件的正整数.由方程的结构,我们寻找形如2m a =,3n b =,2p c =,3q d =的正整数.这里a 、b 、c 、d 为正整数. 此时,条件转化为2012a b c d +=+>,2323a b c d +=+,即 a c d b -=-,()()()()22a c a c d b d bd b -+=-++.令1d b -=,即1b d =-,且使2012b >,则b 、d 的奇偶性不同,现令2212b bd d a +++=,2212b bd dc ++-=,那么a 、c 为正整数,且由a 、b 、c 、d 确定的m 、n 、p 、q 满足条件.例16 证明:存在无穷多组正整数组()x y z ,,,使得x 、y 、z 两两不同,并且 33xx y z =+.证明 一个想法是:将x 取为3k +1形式的数,这时()3131k x x k +=+()()33131kk k =++ ()()3333131k kk k k =+++因此,如果使3k 为一个完全立方数,那么符合要求的正整数x 、y 、z 就找到了.为此,令323m k +=,这里m 为正整数,那么令31x k =+,()1331km x k +=+,()31kz k =+,则x 、y 、z 两两不同,且满足33xx y z =+.命题获证.说明 如果不要求x 、y 、z 两两不同,我们还可以这样来构造:取2m y z ==,2x α=,则当231m αα•=+时,就有33xx y z =+.容易看出满足231m αα•=+的正整数对()m α,有无穷多对.。

不定方程的整数解

不定方程的整数解

不定方程的整数解不定方程形如ax+by=c(a,b,c均为常数,且a,b均不为0),一般情况下,每一个x的值都有一个y值和它相对应,有无穷多组解。

如果方程(组)中,解的数值不能唯一确定,这样的方程(组)称为不定方程。

对于不定方程,我们常常限定于只求整数解,甚至只求正整数解,在加上这些限定条件后,解可能只有有限个或唯一确定。

不定方程有整数解的条件整系数二元不定方程ax+by=c中的系数a,b的最大公约数能整除c。

不定方程的基本解法解不定方程主要根据一个未知数的取值进行讨论,如果抓住方程自身的特点,可以大大减少讨论的次数,节省解题时间。

1、尾数法例、求方程4x+5y=76的所有正整数解。

分析:由题意知5y的尾数只能是0或5,因为4x、76是偶数,所以5y只能是偶数,故其尾数只能是0,那么4x的尾数就只能是6,因此x的尾是4或9,又4x<76,所以整数x<19,故x可取4,9,14。

当x=4时,y=12;当x=9时,y=8;当x=14时,y=4。

所以原方程的正整数解为:x=4,x=9,x=14,y=12;y=8;y=4。

2、枚举法例、求方程3x+11y=53的所有正整数解。

分析:因为y前面的系数较大,且x、y均为正整数,故11y≤53,所以y可取1、2、3、4,四个数值,分别将y=1,2,3,4代入原方程,可以发现y=2、3时方程无整数解。

当y=1时,x=14;当y=4时,x=3。

所以原方程的解为:x=3,x=14,y=4;y=1。

3、奇偶判断例、求方程5x+4y=43的所有正整数解。

分析:因为4y是偶数,43是奇数,所以5x应该是奇数,所以x可取1,3,5,7四个数值。

将x=1、3、5、7分别代入原方程,可以发现x=1、5时方程无整数解。

当x=3时,y=7;当x=7时,y=2。

所以原方程的解为:x=3,x=7,y=7;y=2。

4、余数分析余数的和等于和的余数。

例、求4x+5y=102的整数解。

不定方程和解不定方程应用题经典

不定方程和解不定方程应用题经典

不定方程———研究其解法方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。

然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。

一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。

二、不定方程的解法1、筛选试验法根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。

[如:方程x﹢y﹢z = 100共有几组正整数解解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)……(98,1)。

当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)……(97,1)。

……当x = 98时,y﹢z = 2,这时有一个解。

∵98﹢97﹢96﹢……﹢1= 29998= 4851∴方程x﹢y﹢z = 100共有4851个正整数解。

2、表格记数法如:方程式4x﹢7 y =55共有哪些正整数解。

—解:××××√√∴方程4x﹢7 y =55的正整数解有?x = 5 x = 12y = 5 y = 13、分离系数法如:求7x﹢2 y =38的整数解解: y =2738X -=19-3x-21x令 t=21xx=2 t则 y=22738t⨯-=19-7t2t >019-7t >0 (t 为整)→ 275>t >0 —t=2,1当 t=2时, x=2×2=4 x=4y=19-7×2=5 y =5当 t=1时, x=2×1=2 x=2y=19-7×1=12 y=12第四十周 不定方程专题简析:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

不定方程的求解技巧例题

不定方程的求解技巧例题

不定方程的求解技巧例题求解不定方程是数学中的重要内容之一,在数学的应用中经常会出现各种各样的不定方程,因此掌握不定方程的求解技巧是非常必要的。

下面以一些例题来介绍不定方程的求解技巧。

例题1:求解不定方程x + y = 10,其中x和y都是正整数。

解法:首先我们可以观察到,当x = 1时,y = 10 - 1 = 9;当x = 2时,y = 10 - 2 = 8;当x = 3时,y = 10 - 3 = 7……因此我们可以得到一组解:{1, 9},{2, 8},{3, 7},{4, 6},{5, 5}。

但这并不是唯一的解,我们可以继续观察,当x = 6时,y = 10 - 6 = 4;当x = 7时,y = 10 - 7 = 3;当x = 8时,y = 10 - 8 = 2;当x = 9时,y = 10 - 9 = 1。

因此我们可以得到另一组解:{6, 4},{7, 3},{8, 2},{9, 1}。

所以这个不定方程的解是:{1, 9},{2, 8},{3, 7},{4, 6},{5, 5},{6, 4},{7, 3},{8, 2},{9, 1}。

例题2:求解不定方程x^2 + y^2 = 25,其中x和y 都是正整数。

解法:对于这个问题,我们可以采用穷举法来求解。

我们可以从0开始往上穷举,看看哪些正整数满足方程。

当x = 0时,y = ±5;当x = 1时,y = ±√(25 - 1) = ±4;当x = 2时,y = ±√(25 - 4) = ±3;当x = 3时,y = ±√(25 - 9) = ±√16 = ±4;当x = 4时,y = ±√(25 - 16) = ±√9 = ±3;当x = 5时,y = ±√(25 - 25) = 0。

综上所述,满足条件的正整数解有:{(0,5),(0,-5),(1,4),(1,-4),(2,3),(2,-3),(3,4),(3,-4),(4,3),(4,-3),(5,0)}。

不定方程的解法

不定方程的解法

数论的方法和技巧之一不定方程的解法一. 几种特殊的不定方程1. 二元一次不定方程c by ax =+ ,形如c by ax =+(b a Z c b a ,,,,∈不同时为零)的方程称为二元一次不定方程.有以下结论:(1)不定方程c by ax =+有整数解的充要条件是.|),(c b a(2)若,1),(=b a 设),(00y x 是方程c by ax =+的一组整数解,则此方程的一切整数解可表示为⎩⎨⎧-=+=,,00at y y bt x x .Z t ∈例l 将属于[0,1]之间分母不超过99的最简分数从小到大排列,求与7617相邻的两个数.解:设,1),(*,,=∈y x N y x 且y x 是上述排列中7617左边的数,则 .07676177617>-=-yxy y x 注意到x y 1617-为整数,所以.17617≥-x y 下面先求不定方程 17617=-x y ① 满足991≤≤y 的正整数解(x ,y).,17184Z x x y ∈++= 试算可知)9,2(),(=y x 是一个特解.所以①的全部整数解为⎩⎨⎧∈+=+=.,,769172Z t t y t x满足①的正整数解中)85,19(),(=y x 是符合991≤≤y 且y 最大的解,而此时,29985>=y 所以,与7617相邻的两个数中左边那个是⋅8519 类似可知,所求的右边那个数为⋅6715评注:对一次不定方程求解可以用辗转相除法、同余及试验等方法来寻找其特解.2. 勾股方程222z y x =+设勾股方程222z y x =+ ①的一组正整数解是(x ,y ,z),如果,),(d y x =则,|22z d 即.|z d 这样仅需在1),(=y x 时讨论,此时x ,y ,z 实际上是两两互质的.这种两两互质的勾股数(x ,y ,z),称为①的本原解或本原勾股数.定理 不定方程①满足 y z y x z x |2,0,0,0,1),(>>>= ② 的全部整数解(x ,y ,z )可表示成 ,,2,2222b a z ab y b a x +==-= ③ 其中a ,b 为满足b a b a ,,0>>一奇一偶,且(a ,b )=1的任意整数.例2 证明方程 222221y x x x n =+++ 有无穷多组整数解。

初一不等式经典例题

初一不等式经典例题

初中不等式经典例题例1 解方程组(1)⎪⎩⎪⎨⎧=-+==(2) 5434(1)432z y x z y x (2)⎪⎩⎪⎨⎧=++=++=++(3) 201633(2)143163(1) 103316z y x z y x z y x 分析:第一个方程组的(1)式是一个连比式,对于连比式常用连比设k 法来解决。

第二个方程组的各式系数较大,直接用代入消元或加减消元比较繁,观察这个方程组的特点,将三式相加可得x+y+z ,然后再用三式去分别减可得x 、y 、z 的值。

解:(1)设k z k y k x k zy x 4,3,2432======,则,代入(2)得k=5∴x=10,y=15,z=20 ∴原方程组的解为⎪⎩⎪⎨⎧===201510z y x(2) (1)+(2)+(3)得22 (x+y+z)=44,所以x+y+z=2 所以3 (x+y+z)=6 (4)(1)-(4)得13x=4,则x=134 (2)-(4)得13y=8,则y=138 (3)-(4)得13z=14,则z=1314 所以原方程组的解为⎪⎪⎪⎩⎪⎪⎪⎨⎧===1314138134z y x评注:解方程组时,应对方程组的整体结构进行分析,从整体上把握解题方向。

例2 已知关于x ,y 的二元一次方程 (a-1) x+(a+2) y+5-2a=0,当a 每取一个值时就有一个方程,而这些方程有一个公共解。

你能求出这个公共解,并证明对任何a 值它都能使方程成立吗?分析1:将已知方程按a 整理得(x+y-2)a=x-2y-5,要使这些方程有一个公共解,说明这个解与a 的取值无关,所以只须a 的系数x+y-2=0即可。

解法1:将方程按a 整理得:(x+y-2)a=x-2y-5,∵这个关于a 的方程有无穷多个解,所以有由于x 、y 的值与a 的取值无关,所以对于任何的a 值,方程组有公共解⎩⎨⎧-==13y x分析2:分别取a=1和-2得方程3y+3=0和-3x+9=0,因a 取不同的值,所得方程有一个公共解,所以这个公共解就是方程组⎩⎨⎧=+-=+093033x y 的解。

不定方程及整数解

不定方程及整数解

我们曾经学过一元一次方程,例如个或更多个,就变成为二元一次方程或多元一次方程,0⎩0⎩满足上式的整数解.这表明,满足方程的整数解有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 为相应的为负(正)数.这个结论可以通过把这组解直接代入已知方程进行证明.由这个定理,只要能够观察出二元一次方程的一组整数解,就可以得到它的全部整数解.例如,方程4521x y +=的一组解为41x y =⎧⎨=⎩,则此方程的所有整数解可表示为:4514x ky k =+⎧⎨=-⎩.板块一 不定方程的整数解中考要求不定方程及整数解【巩固】求3710725x y+=的整数解.【巩固】求方程的整数解:⑴721571x y+=;⑵103905x y-=.【例2】求719213x y+=的所有正整数解.【巩固】求方程5322x y+=的所有正整数解.【巩固】求62290x y+=的非负整数解.【例3】求23734x y z++=的整数解.【巩固】求92451000x y z+-=的整数解.【例4】求方程组5795235736x y zx y z++=⎧⎨++=⎩的正整数解.【例5】求不定方程2()7x y xy+=+的整数解. 【例6】求方程22x y x xy y+=-+的整数解.【例7】 第35届美国中学数学竞赛题)满足联立方程4423ab bc ac bc +=⎧⎨+=⎩ 的正整数(,,)a b c 的组数是( ).(A )0 (B )1 (C )2 (D )3 (E )4【例8】 (第33届美国数学竞赛题)满足方程223x y x +=的正整数对(,)x y 的个数是( ).(A )0 (B )1(C )2(D )无限个(E )上述结论都不对【例9】 求不定方程()2mn nr mr m n r ++=++的正整数解(),,m n r 的组数.【例10】 求方程2245169x xy y -+=的整数解.【例11】 (原民主德国1982年中学生竞赛题)已知两个自然数b 和c 及素数a 满足方程222a b c +=.证明:这时有a b <及1b c +=.板块二 证明不定方程无整数解【例12】 下列不定方程(组)中,没有整数解的是( )A.3150x y +=B.9111x y -=C.23423x y y z -=⎧⎨+=⎩D.231223x y z x y z ++=⎧⎨-+=⎩【例13】证明方程22x y-=无整数解.257【例14】(第14届美国数学邀请赛题)不存在整数,x y使方程22+-=成立。

不定方程的整数解问题及其方法简介(含答案)

不定方程的整数解问题及其方法简介(含答案)

专题三:不定方程的整数解问题所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些条件限制(如要求是有理数、整数或正整数等等)的方程或方程组。

数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性地解决问题。

在本专题中我们一起来学习不定方程整数解的一些解法技巧。

【基础知识】1.不定方程整数解的常见类型:(1)求不定方程的整数解;(2)判定不定方程是否有整数解;(3)判定不定方程整数解的个数(有限个还是无限个)。

2.解不定方程整数解问题常用的解法:(1)代数恒等变形:如因式分解法、配方法、分离整数法、换元法(参数法)等;(2)奇偶分析法:缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(3)构造法:如构造一元二次方程,利用根的判别式和韦达定理等性质;(4)枚举法:列举出所有可能的情况;(5)不等式分析法:通过不等式估算法,确定出方程中某些变量的范围,进而求解;(6)无穷递推法。

【典型例题分析】一、代数恒等变形1、因式分解法【例1】已知,x y 都是整数,且满足22()xy x y +=+,求22x y +的最大值.分析:由22()xy x y +=+,得(2)(2)2x y --=因为(2),(2)x y --都是整数,所以2221x y -=⎧⎨-=⎩,或2122x y -=⎧⎨-=⎩,或2221x y -=-⎧⎨-=-⎩,或2122x y -=-⎧⎨-=-⎩ 解得43x y =⎧⎨=⎩,或34x y =⎧⎨=⎩,或01x y =⎧⎨=⎩,或10x y =⎧⎨=⎩ 故22x y +的最大值为25注:一般地,整系数,,,a b c d 的二次方程0axy bx cy d +++=,可变形为:20a xy abx acy ad +++=分解,得 ()()ax c ay b bc ad ++=-.求整数解时,只需把整数()bc ad -分解成两个整数的积,转化为解几个方程组#ax c ay b +=∆⎧⎨+=⎩,(这#bc ad ∆⨯=-)来解,通过取舍求出符合题意的整数解。

不定式方程(六年级)

不定式方程(六年级)

不定式方程(六年级)一:不定方程知识精讲一.不定方程的定义1.一次不定方程:含有两个未知数的一个方程.叫做二元一次方程.由于它的解不唯一.所以也叫做二元一次不定方程.2.多元不定方程:含有三个未知数的方程叫三元一次方程.它的解也不唯一.二.不定方程的解法及步骤1.常规方法:观察法、试验法、枚举法.2.多元不定方程解法:根据已知条件确定一个未知数的值.或者消去一个未知数.这样就把三元一次方程变成二元一次不定方程.按照二元一次不定方程解即可.3.涉及知识点:列方程、数的整除、大小比较.三.解不定方程的步骤1.列方程.2.消元.3.写出表达式.4.确定范围.5.确定特征.6.确定答案.四.技巧总结1.写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数.同时考虑用范围小的未知数表示范围大的未知数.2.消元技巧:消掉范围大的未知数.三点剖析重难点:不定方程的解法以及应用.题模精讲题模一不定方程的计算例1.1.1、判断下列不定方程是否有正整数解.若有.求出所有正整数解.【1】;【2】;【3】;【4】.【1】【2】【3】【4】无整数解解析:【1】..所以.即得.【2】..所以..【3】..所以..【4】..所以.无整数解.例1.1.2、已知△和☆分别表示两个自然数.并且.则△+☆=__________.答案:5解析:依题意得11△+5☆=37.易知其自然数解为△=2.☆=3.所以△+☆=5.例1.1.3、有三个分子相同的最简假分数.化成带分数后为.已知a.b.c都小于10.a.b.c依次为__________.__________. __________.答案:7.3.2由题意有.解这个不定方程.得.例1.1.4、已知代表两位整数.求方程的解.题模二不定方程的应用例1.2.1、有150个乒乓球分装在大、小两种盒子里.大盒每盒装12个.小盒每盒装7个.问:需要大盒子__________个、小盒子__________个.才能恰好把这些球装完.答案:大盒9个.小盒6个或者大盒2个.小盒18个解析:设需要x个大盒子.y个小盒子.依题意得:.解得..所以需要大盒9个.小盒6个或者大盒2个.小盒18个.例1.2.2、某单位的职工到郊外植树.其中有男职工.也有女职工.并且有的职工各带一个孩子参加.男职工每人种13棵树.女职工每人种10棵树.每个孩子种6棵树.他们一共种了216棵树.请问:其中有__________名男职工.答案:12名解析:设有x名男职工.y名女职工.则孩子有名.依题意得:.整理得:.化简得.解得...其中只有时才是整数.所以有12名男职工.例1.2.3、有甲、乙、丙、丁四种货物.若购买甲1件、乙5件、丙1件、丁3件共需195元;若购买甲2件、乙1件、丙4件、丁2件共需183元;若购买甲2件、乙6件、丙6件、丁5件共需375元.现在购买甲、乙、丙、丁各一件共需多少元?答案:81元解析:设购买甲一件要x元.乙一件要y元.丙一件要z元.丁一件要w元.依题意得:注意到题目要求的是.所以完全可以不求x、y、z、w分别是多少.想办法整体求出.观察发现要直接凑出或它的倍数并不容易.一个比较明显的是可以求出.可以用来调整x和z的系数.接着可以让y和w的系数变的一样.得.得.所以.故现在购买甲、乙、丙、丁各一件共需81元.【当然本题可以直接看出得到】例1.2.4、将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管.加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?答案:8厘米解析:设已经截出了根长36厘米的管子和根长24厘米的管子.那么被截出的管子一共长厘米.由.得:一定是12的倍数.而380不是12的倍数.所以是没有自然数解的!管子不可能刚好被用尽.那么最少会剩下多少厘米呢?由于一定是12的倍数.小于380且能被12整除的最大自然数是372.而的自然数解是存在的.如.也就是截出1根长36厘米的管子和14根长24厘米的管子.能够使得截出的管子总长度达到最大值372厘米.所以剩余部分最少是厘米.例1.2.5、有纸币60张.其中1分、1角、1元和10元各有若干张.请你判断:这些纸币的总面值能否恰好是100元?答案:不能解析:设1分的有x张.1角的有y张.1元的有z张.10元的有w张.依题意得.得.很明显等号左边是9的倍数.而等号右边不是9的倍数.所以无自然数解.故这些纸币的总面值不能恰好是100元.例1.2.6、现有一架天平和很多个13克和17克的砝码.用这些砝码.不能称出的最大整数克重量是多少?【砝码只能放在天平的一边】答案:191解析:设用了x个13克的砝码.y个17克的砝码.要称的重量为c克.依题意.就是求使无自然数解的c的最大值.利用拓展14解法二中提到的结论.c最大取时.无自然数解.所以不能称出的最大整数克重量是191克.例1.2.7、现有1.7升和4升的两个空桶和一个大桶里的100升汽油.用这两个空桶要倒出1升汽油.至少需要倒多少次?26次解析:依题意.模拟的倒几次后会发现.本题和不定方程:和的解有关系.先解出这两个不定方程:的解为:的解为:其中.这个解明显要小.下面解释一下它的含义.先看它对应的过程:1、倒满1.7升;2、1.7升倒入4升;3、倒满1.7升;4、1.7升倒入4升;5、倒满1.7升;6、1.7升倒入4升中.还剩1.1升;7、4升的倒入大桶里;8、1.1升倒入4升;9、倒满1.7升;10、1.7升倒入4升;11、倒满1.7升;12、1.7升倒入4升.还剩0.5升;13、4升的倒入大桶里;14、0.5升倒入4升;15、倒满1.7升;16、1.7升倒入4升;17、倒满1.7升;18、1.7升倒入4升;19、倒满1.7升;20、倒入4升.还剩1.6升.21、4升的倒入大桶里;22、1.6升倒入4升;23、倒满1.7升;24、倒入4升;25、倒满1.7升;26、倒入4升.还剩1升.可以看出.每次从大桶中倒入两个小桶的都是1.7升.每次从两个小桶中倒回大桶的都是4升.所以两个小桶中量出的1升可以看做是.倒进的1.7x减去倒出的4y的差.那么就得到了上面的不定方程.另一个不定方程同理也很容易想明白.例1.2.8、某校开学时.七年级新生人数在500~1000范围内.男、女生的比例为.到八年级时.由于收40名转学生.男、女生的比例变为.请问.该年级入学时.男、女生各有多少人?答案:男生320人.女生280人设开始时共人.后来变为人.则..易知a为8的倍数.b为5的倍数.故可设..方程化简为.且.解得..入学时总人数为人.男生320人.女生280人.例1.2.9、在新年联欢会上.某班组织了一场飞镖比赛.如图.飞镖的靶子分为三块区域.分别对应17分、11分和4分.每人可以扔若干次飞镖.脱靶不得分.投中靶子就可以得到相应的分数.试问:如果比赛规定恰好投中100分才能获奖.要想获奖至少需要投中几个飞镖?如果规定恰好投中120分才能获奖.要想获奖至少需要投中几个飞镖?随堂练习随练1.1、下列方程的自然数解:【1】.则;【2】.则;【3】.则;【4】.则.答案:【1】【2】【3】无解【4】解析:枚举法.随练1.2、小高有若干张8分的邮票.墨莫有若干张15分的邮票.两人的邮票总面值是99分.那么小高的8分邮票有__________张.答案:3张解析:设小高有8分邮票x张.15分邮票y张.依题意得:.解得.所以小高有3张8分邮票.随练1.3、将426个乒乓球装在三种盒子里.大盒每盒装25个.中盒每盒装20个.小盒每盒装16个.现共装了24盒.则用了__________个大盒.随练1.4、新发行的一套珍贵的纪念邮票共三种不同的面值:20分、40分和50分.其中面值20分的邮票售价5元.面值40分的邮票售价8元.面值50分的邮票售价9元.小明花了156元买回了总面值为8.3元的邮票.那么三种面值的邮票分别买了____________________张.答案:20分的邮票3张.40分的邮票3张.50分的邮票13张解析:设买了x张20分的邮票.y张40分的邮票.z张50分的邮票.依题意得:.消y得.解得..…….同时还要满足y为整数.经验证当时.符合题意.所以买了20分的邮票3张.40分的邮票3张.50分的邮票13张.课后作业作业1、方程有________组自然数解.答案:11解析:易知y可为0至的所有自然数.即方程有11组自然数解.作业2、求的所有整数解.答案:为任意整数】解析:先找出一组基本的解.然后写出所有解即可.作业3、求不定方程2x+3y+5z=15的正整数解.答案:解析:先确定z的值.把三元一次不定方程转化为二元一次不定方程.再进行计算.正整数解如下:.作业4、设A和B都是自然数.并且满足.那么__________.答案:3解析:.又因为A、B为自然数得..作业5、有两种不同规格的油桶若干个.大油桶能装8千克油.小油桶能装5千克油.44千克油恰好装满这些油桶.问:大油桶__________个.小油桶__________个.答案:大油桶3个.小油桶4个解析:设有x个大油桶.y个小邮桶.依题意得.解得.所以有3个大油桶.4个小邮桶.作业6、新学期开始了.几个老师带着一些学生去搬全班的100本教科书.已知老师和学生共14人.每名老师能搬12本.每名男生能搬8本.每名女生能搬5本.恰好一次搬完.问:搬书的老师__________名、男生__________名、女生__________名.答案:老师3名.男生2名.女生8名解析:设搬书的老师有x名.男生有y名.女生有z名.依题意得:.消去z得.解得.所以.所以搬书的老师有3名.男生2名.女生8名.作业7、小李去文具店买圆珠笔、铅笔和钢笔.每种笔都只能整盒买.不能单买.钢笔4支一盒.每盒5元;圆珠笔6支一盒.每盒6元;铅笔10支一盒.每盒7元.小李总共花了97元.买了90支笔.请问:三种笔分别买了多少盒?答案:圆珠笔3盒.铅笔2盒.钢笔13盒解析:设圆珠笔买了x盒.铅笔买了y盒.钢笔买了z盒.依题意得:.消去x得.解得..……将y、z代入原方程组.发现只有时.x有自然数解.所以买了圆珠笔3盒.铅笔2盒.钢笔13盒.作业8、卡莉娅到商店买糖.巧克力糖13元一包.奶糖17元一包.水果糖7.8元一包.酥糖10.4元一包.最后他共花了360元.且每种糖都买了.请问:卡莉娅共买了多少包奶糖?答案:12包解析:不妨设巧克力糖、奶糖、水果糖和酥糖分别有包、包、包和包.则.把系数都化成整数.得:.由于我们只关心奶糖的数量.我们将未知数分为一组.其余未知数分为另一组:.也就是.令.则.它的自然数解只有.所以卡莉娅共买了12包奶糖.作业9、雨轩图书馆内有两人桌、三人桌和四人桌共五十多张.其中两人桌的数量为四人桌数量的2倍.这天除了某张桌子坐满外.其它两人桌每桌都只坐1人.三人桌每桌都只坐2人.四人桌每桌都只坐3人.且恰好平均每11人占用17个座位.请问:图书馆两人桌、三人桌、四人桌分别有多少张?答案:二人桌24张;三人桌19张;四人桌12张解析:设图书馆有三人桌x张.四人桌y张.则两人桌有2y张.依题意得:.化简得.解得..……为符合三种桌子共五十多张.发现只有这组解符合.图书馆两人桌有24张.三人桌19张.四人桌12张.。

初等数论多元一次不定方程的解法

初等数论多元一次不定方程的解法
具体到这个例子,我们先找到 3 和 4 的最大公约数。通过辗转相除法可以知道是 1。然后我们对等式进行变换,让一边只含有一个未知数。比如可以把等式变成 3x = 5 - 4y,那么 x = (5 - 4y) / 3。
这时候我们就可以通过给 y 赋值,来求出对应的 x 值。比如当 y = 1 时,x = (5 - 4) / 3 = 1 / 3,这不是整数解。当 y = 2 时,x = (5 - 8) / 3 = -1,这就是一组整数解了。
再来看一个稍微复杂点的例子,2x + 3y + 5z = 10。这种三个未知数的不定方程,我们同样可以通过类似的方法来求解。
我们可以先固定其中一个未知数的值,比如让 z = 0,那方程就变成 2x + 3y = 10。然后按照前面说的方法求出 x 和 y 的一些解。接着再让 z = 1 等等,依次求出不同情况下的解。
在实际应用中,这种不定方程也很常见。比如说,在分配资源的问题中。假设我们有一些苹果和香蕉要分给小朋友,已知一个苹果 2 块钱,一个香蕉 3 块钱,我们一共有 10 块钱,问有几种分配方法。这其实就可以转化成刚才说的不定方程来求解。
同学们,对于初等数论多元一次不定方程的解法,关键就是要找到合适的方法去求解。通过不断尝试和探索,一定能掌握其中的窍门。大家要多做练习,在实践中加深理解。相信大家都能学好这部分知识!
初等数论多元一Leabharlann 不定方程的解法“嘿,同学们,今天咱们来好好讲讲初等数论多元一次不定方程的解法。”
多元一次不定方程,简单来说,就是有多个未知数,且未知数的次数都是一次的方程。那怎么解呢?
咱们先来看一个例子,比如 3x + 4y = 5。这种情况下,我们可以用辗转相除法来求解。辗转相除法就是不断用较大数除以较小数,再用出现的余数来代替较大数,直到余数为 0 为止。

初一数学不定式方程的解法精华

初一数学不定式方程的解法精华

初一数学不定式方程的解法精华一次不定方程的整数解⑴设整系数方程0=++c by ax (a >0,b ≠0) ①中(a,b )=1,则它必有整数解⑵设①中,(a,b )=d >1,则当d c ,时,方程①中无整数解;当d |c 时,,方程①有整数解⑶设x =x0,y =y0,是①的一组整数解(称为一个特解),则它的一切整数解(称为通解)可以表示为⎩⎨⎧-=+=kb y y kb x x 00(k 为任意整数) ②求不定方程3x +7y +16z =40的整数解分析:这是一个三元一次不定方程,把其中一个未知数暂时看做常数,这样就把原方程化为二元一次不定方程了。

解法1、把z 看做常数,则3x +7y =40-16z利用观察法(或连分数法)易知:x =-2,y =1是方程3x +7y =1的一个特解于是⎩⎨⎧-=+-=z y z x 16403280是方程3x +7y =40-16z 的一个特解,于是⎪⎩⎪⎨⎧=--=++-=z z tz y t z x 3164073280(z,t 取一切整数)是原方程3x +7y +16z =40的通解解法2、将原方程变形为315213316740z y z y z y x --+--=--=令t z y =--31 则y =1-z -3t ,于是x =11-3z +7t ,从而,原方程的通解是 ⎪⎩⎪⎨⎧=+-=+-=z z tz y t z x 317311(z,t 取一切整数)例2、(百鸡问题)鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母、鸡雏各几何?分析:本题是我国古代数学家张丘建《算经》中的名题,基本解法是消元,化为二元一次不定方程求解解:用x,y,z 分别表示鸡翁,鸡母,鸡雏的数目,依题意得方程组⎪⎩⎪⎨⎧=++=++ ②①100100335z y x z y x3×①-②得 7x +4y =100=7×20-4×10也即7(x -20)+4(y +10)=07(x -20)+4(y +10)=0∴x0=20 y0=-10,从而得⎩⎨⎧--=-=+=+=k k y y k k x x 7107420400∵x,y 均为非负,故有⎩⎨⎧≥≥+07100420k k --10从而知-5≤k≤-7由此可得整数k与非负整数x,y,z的取值如下:。

不定方程的基本解法 - 成长博客博客教育博客教师博客

不定方程的基本解法 - 成长博客博客教育博客教师博客

不定方程的基本解法湖北省仙桃一中(433000) 林明祥不定方程是指末知数的个数多于方程的个数的方程,它形式多样,应用广泛,解法灵活,通常只求它的整数解。

下面介绍不定方程的基本解法,以期从中找到解不定方程的钥匙。

一、运用公式和辗转相除法例1 求方程15x+52y=6的所有整数解。

解一 观察得x 0=42,y 0=-12,原方程的整数解为X=42-52t,Y=-12+15t. (t 为整数 )解二 原方程变为x=-4y +1586y + , 令1586y +=t 1 得y=2t 1-86-t , 令86+t =t 2 得 t 1=8t 2-6, 故 X=42-52t 2Y=-12+15 t 2 (t 2为整数 )【注】上述两种解法是求不定方程通解的一般方法。

二、运用配方法例2 求方程x 2 +y 2+2x-4y+4=0的整数解解:把原方程配方,得(x+1)2+(y-2)2=1由x 、y 是整数,得 (x+1)2=0, 或 (x+1)2=1,(y-2)2=1; (y-2)2=0. 解得 x=-1 , x=-1, x=0 , x=2 , Y=3 ; y=1 ; y=2 ;y=2 . 【注】解此类不定方程的依据是整数的性质。

例3 已知a+b-21-a -42-b = 33-c -21c - 5,求a+b+c. (2000年武汉市选拔赛试题)解:把原方程配方,得 (1-a -1)2 +(2-b -2)2 +(3-c -3)2= 0 ⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧∴1-a -1=0 ,2-b -2 =0 ,3-c -3 =0解得 a =2 ,b =6 , c =12。

∴a+b+c =20。

【注】解此类方程的依据是非负数的性质。

三、运用奇偶性分析法例4 若质数m 、n 满足5m +7n=129,则m +n= .(河北省竞赛题)解:若m 、n 都是奇数,则和必为偶数,故m 、n 中必有一个为偶质数。

不定方程综合题

不定方程综合题

不定方程专题解析:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

如5x-3y=9就是不定方程。

这种方程的解是不确定的。

如果不加限制的话,它的解有无数个;如果附加一些限制的条件,那么它的解的个数就是有限的了。

如上面列的5x-3y=9的解有:x=2.4 x=2.7 x=3 x=3.06 x=3.6 ……y=1 y= 1.5 y=2 y=2.1 y=3 ……这样的解有无数个,但是如果限定x,y的解是小于5的正整数,那么解就只有x=3,y=2这一组了。

因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。

解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后在一定范围内试验求解。

解题时要注意观察未知数前面系数的特点,尽量未知数的取值范围,减少试验的次数。

对于有三个未知数的不定方程组,可用消去法把它转化为二元一次不定方程后再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)去适当的值。

例1、求3x+5y=50的整数解。

跟踪练习:1、求x+2y=10的整数解。

2、求不定方程 2x+3y=17 的所有自然数解。

3、求4x+5y=48的非0整数解。

4.求不定方程 8x+9y=100 的所有自然数解。

例2、求方程x+2y+4z=10的整数解。

1、求方程2x+y+5z=12的整数解。

2、求3x+4y+5z=20的所有非零整数解。

3、求方程6x+5y+3z=30的所有非零整数解。

例3、求方程组的非零整数解。

消元化简:在处理多元的不定方程当中,一般通过联立各个方程,消去那些暂时不用或者限制条件较少的未知数,将多元方程组转化成二元的整系数不定方程进行处理。

跟踪练习:1、求方程组的整数解。

2、求方程组的非零整数解。

例4、明明带了 5 元钱去买橡皮和圆珠笔,橡皮每块 4 角,圆珠笔每支 1 元 1 角,问 5 元钱刚好买几块橡皮和几支圆珠笔?1、六年级一班全体团员坐在凳子和椅子上开会,每个凳子有 3 条腿,每把椅子有 4 条腿,共有 35 条腿(包括人腿在内).问六年级一班共有几名团员?2、工程队要铺设 78 米长的地下排水管道,仓库中有 3 米和 5 米长的两种管子。

不定方程解得个数

不定方程解得个数

不定方程解得个数不定方程是数学中的一个重要概念,它描述了一个方程中未知数的个数及其之间的关系。

解不定方程是求出所有满足方程的整数解的过程。

本文将探讨不定方程解得个数的相关问题。

我们来了解一下什么是不定方程。

不定方程是指方程中包含了未知数的个数大于方程中的方程数的方程。

例如,2x + 3y = 5就是一个不定方程。

在这个方程中,有两个未知数x和y,但只有一个方程,因此它是一个不定方程。

解不定方程的个数取决于方程中的未知数个数和方程的形式。

对于一元一次不定方程,即只含有一个未知数的一次方程,解得个数只有一个。

例如,方程3x + 2 = 5就是一个一元一次不定方程,其解为x = 1。

在这个方程中,只有一个未知数x,因此解得个数只有一个。

对于二元一次不定方程,即含有两个未知数的一次方程,解得个数则有无穷多个。

例如,方程2x + 3y = 5就是一个二元一次不定方程。

在这个方程中,有两个未知数x和y,但只有一个方程,因此解得个数有无穷多个。

我们可以通过穷举的方法来求解这个方程的所有整数解,即找出所有满足方程的x和y的整数值。

对于多元一次不定方程,即含有多个未知数的一次方程,解得个数也有可能是无穷多个。

解不定方程的方法可以是穷举法、代数法或图解法。

穷举法是通过试探各种可能的整数解来求解方程。

代数法是通过代数运算和方程变形来求解方程。

图解法是通过在坐标系中绘制方程的图像来求解方程。

不定方程解得个数的确定性与方程的形式和未知数的个数密切相关。

在某些特殊情况下,方程可能无解或只有部分解。

在求解不定方程时,我们需要考虑方程的性质和特点,选择合适的方法进行求解。

总结起来,不定方程解得个数取决于方程中的未知数个数和方程的形式。

一元一次不定方程只有一个解,二元一次不定方程有无穷多个解,而多元一次不定方程的解得个数也有可能是无穷多个。

解不定方程的方法可以是穷举法、代数法或图解法。

在求解不定方程时,我们需要考虑方程的性质和特点,选择合适的方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= E1 / . t , 占2 , , E M
其中 O J 。 , 0 9 是 中的单 位元 素 , 且 1 2 = , 为单 位元 素.
定理 1 不 定方 程
+7:Y , , Y∈Z ( 1 )
无 整 数解.
证明 可以在 ( 了) 中来讨论不定方程( 1 ) , 可以把不定方程 ( 1 ) 化解为 ( + ̄ / 一7 ) ( 一√一7 ) = Y 因为 Q ( v / L - - f)  ̄ z E u c l i d 域, 由定义 1 和引理 l 得, 在二次域 Q( = 了) 中仅有单位± l , 1 和 ( 2 ) 是一组整
J u 1 . 2 0 1 5
d o i I 1 0 . 1 6 0 5 5 / j . i s s n . 1 6 7 2 — 0 5 8 X. 2 0 1 5 . 0 0 0 7 . 0 1 5
关 于 不 定 方 程 2 +7=Y 3
张 静
( 重庆师范大学 数学学 院, 重庆 4 0 1 3 3 1 )
( i i )当 d = 一 1时 , 有± 1 , ± i ;
( i i i )当d : 一 3时, 有± 1 , ± 生

( i v )当 d > 1 , 时d ;2 , 3 ( m o d 4 ) 时, 有

4 - ( m 0 +n o o ) ) =± ( m o +n 0 √ d) , k=0 ,±1 ,± 2 , …
则称 W 。 , W : 是Q ( √ ) 的一组基 , 它也称为是 ( √ ) 的一组基.
定义 2 【 1 整数 称 为单 位数 , 如果 它 的倒 数 也是 整数.
引理 1 ¨ 二次域 Q ( ) 中的单位数是
( i )当 d =一 2或 d ≤- 5时 , 仅有 ± 1 ;
第7期
张 静: 关于不定方程 X 2 + 7 = y 3
6 3
其中 :
, 2 m 。 一 凡 。 , n 。 是P 。 l l 方程 x 2 - d y z : ± 4 的最小整解 , m 。 + n 。 ∞称为是实二次域 Q ( √ ) 的基本单位.
引理 2 ¨ 设 是唯一分解环 , 正整数 | j } ≥ 2 , 以及 , 卢∈ M, ( , 卢 ) =l , 那么 , 若 = , y∈ M, 则有
E u c l i d 域: d = 2 , 3 , 5 , 6 , 7 , 1 l , 1 3 , 1 7 , 1 9 , 2 1 , 2 9 , 3 3 ,3 7 , 4 1 , 5 7 , 7 3 . 当d 一2 , 3 ( m o d 4 ) 时, 1 , √ 是Q ( √ ) 的一组
整基 ; 当d 兰1 ( m 。 d 4 ) 时, 1 , 是 Q( 4 r d ) I  ̄一 组整基 .
定义 1
设 ( √ ) 是Q ( √ ) 的一组基 , 如果任意的 0 ∈ ( √ ) , 则0 必可表示为
0 U W 1+ V W2 , U, ' / 3 ∈ Z
其中∞ = √ , m 0 , 0 是P e l l 方程 x 2 - d y 。 = ± 1 的最小整解 ;
( v )当 d > 1 , d 1 ( m o d 4 ) 时, 有
±( m。+ ) =±( ( m 。一 )+ ) , :o ,±1 ,±2 , …
收稿 日期 : 2 0 1 4 - 1 0 - 2 5 ; 修 回 日期 : 2 0 1 4 - 1 2 - 2 0 . 作者简 介 : 张静 ( 1 9 9 0 一 ) , 男, 重庆万州人 , 硕士研究生 , 从事数论研究.
文献 标识 码 : A
文章 编号 : 1 6 7 2 - 0 5 8 X( 2 0 1 5 ) 0 7 - 0 0 6 2 - 0 2
有 些不定 方 程 的求 解是 非常 困难 的 , 为 了解决 这些 不 定方 程 , 人们 创 立 了很 多 数学 方 法 如初 等 方 法 、 代 数 数论 方法 和丢 番 图逼 近方 法等 ¨ , 这些 方 法 对数 论 的研 究 带来 了很 大 的便 利. 而 所谓 的代 数 数 论方 法 , 就是 把所 给 的不定 方程 放在 代数 数域 中考 虑 , 通 过代 数整数 环性 质 的研究 , 使 问题得 到简 化 . 对 于二 次域 Q( ) , 在 虚二次 域 中共有 5个 E u c l i d域 : d =一 1 , 一 2 , 一 3 , - 7 , 一 1 1 ; 在 实二 次域 中共有 1 6个
基, 下面证明 +  ̄ / 一 7 和 一 一 7 互素.
令d = ( + 、 / , 了 , 一 了 ) , 则_
, 因为 了是 Q ( 了) 中的素数 , 所 以 d可能为 1 或 了 , 但d =
( , √一 7 )
、 / / 一 7 不可能 , 因为这时必然有 , 而这样的 显然不是解 , 所以 d = 1 , 即( + 了 , 一  ̄ / = 了) =1 . 由引理 2 及单
第3 2卷 第 7期
Vo l _ 3 2 N0. 7
重 庆 工商大 学 学报 (自然科 学版 )
J C h o n g q i n g T e c h n o l B u s i n e s s U n i v . ( N a t S c i E d )
2 0 1 5年 7月

要: 对 于某 些 d , 若 Q( d )是 E u c l i d域 , 则对应 的 E u c l i d整环 中算 术基本 定理 成 立 , 利 用此 来证 明不
定 方程 +7=Y 。 没有整 数 解.
关键 词 : 不 定方程 ; 整数 解 ; E u c l i d整 环
中图分 类号 : 0 1 5 6 . 2
相关文档
最新文档