高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.1.2简单组合体的结构特征 新人教A版必修2

合集下载

高中数学(教案 课内预习学案 课内探究学案 课后练习与提高)数学归纳法 新人教A版选修12

高中数学(教案 课内预习学案 课内探究学案 课后练习与提高)数学归纳法 新人教A版选修12

2. 3数学归纳法一、预习目标:理解数学归纳法原理及其本质,掌握它的基本步骤与方法.能较好地理解“归纳奠基”和“归纳递推”两者缺一不可。

二、预习内容:提出问题:问题1:前面学习归纳推理时,我们有一个问题没有彻底解决.即对于数列,已知,( n=1,2,3…),通过对n=1,2,3,4前4项的归纳,猜想出其通项公式,但却没有进一步的检验和证明.问题2:大家玩过多米诺骨牌游戏吗?这个游戏有怎样的规划?(多媒体演示多米诺骨牌游戏)这是一个码放骨牌游戏,码放时保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…最后,不论有多少块骨牌都能全部倒下.讨论问题:问题1、问题2有什么共同的特征?其结论成立的条件的共同特征是什么结论成立的条件:结论对第一个值成立;结论对前一个值成立,则对紧接着的下一个值也成立.上面两个条件分别起怎样的作用?它们之间有怎样的关系?我们能否去掉其中的一个?你能举反例说明吗?在上述两个条件中,第一个条件是归纳递推的前提和基础,没有它,后面的递推将无从谈起;第二个步骤是核心和关键,是实现无限问题向有限问题转化的桥梁与纽带.如在前面的问题1中,如果不是1,而是2,那么就不可能得出,因此第一步看似简单,但却是不可缺少的.而第二步显然更加不可缺少.这一点在多米诺骨牌游戏中也可清楚地看出.解决问题:由上,证明一个与自然数n有关的命题,可按下列步骤进行:(1)证明当n取第一个值()时命题成立;(2)假设n=k(k≥,)时命题成立,证明当n=k+1时命题也成立.由以上两个步骤,可以断定命题对从开始的所有正整数n都成立.这种证明方法叫做数学归纳法,它是证明与正整数n(n取无限多个值)有关、具有内在递推关系的数学命题的重要工具.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、 学习目标(1)了解由有限多个特殊事例得出的一般结论不一定正确。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)2.1.2空间中直线与直线之间的位置

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)2.1.2空间中直线与直线之间的位置

2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力; (3)理解并掌握公理4; (4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。

难点:异面直线所成角的计算。

【教学过程】(一)创设情景、导入课题问题1: 在平面几何中,两直线的位置关系如何? 问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗? 1、通过身边诸多实物,引导学生思考、举例和相互交流得出 异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题) (二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线AB 异面的有哪些? 2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考: 长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。

再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥b共面直线=>a ∥cc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

例1空间四边形 ABCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△ABD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何? 生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)3.1.1倾斜角与斜率 新人教A版必修2

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)3.1.1倾斜角与斜率 新人教A版必修2

3. 1.1 直线的倾斜角与斜率【学习目标】1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.【教学重难点】重点:倾斜角与斜率的概念难点:直线的斜率与倾斜角的关系【教学过程】一、课前准备(预习教材~ ,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭, 有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学探究点一:①倾斜角的概念当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角叫做直线的倾斜角(angle of inclination).发现:①直线向上方向;②x轴的正方向;③小于平角的正角.注意:当直线与轴平行或重合时,我们规定它的倾斜角为0 度..思考:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?②斜率与倾斜角的关系一条直线的倾斜角() 的正切值叫做这条直线的斜率(slope).记为k= tan .试试:已知各直线倾斜角,则其斜率的值为(1)=0°时,则(2)0°<< 90°,则(3)= 90°,,则(4)90 °<< 180°,则③已知直线上两点 (, ()的直线的斜率公式:.探究任务二:1.已知直线上两点运用上述公式计算直线的斜率时,与 A B 两点坐标的顺序有关吗?2.当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?三、典型例题分析例1 已知直线的倾斜角,求直线的斜率:⑴;⑵;⑶⑷解(略)变式:已知直线的斜率,求其倾斜角.(1)=0;(2) = 1 ;(3)= ;(4)不存在.解(略)例2 求经过两点 (2,3), (4,7) A B 的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.解(略)变式. 1 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角.(1) A(2,3),B ( 1,4) ;(2) A (5,0), B(4, 2) .解(略)2.画出斜率为0,1, -1 且经过点(1,0)的直线.3.判断 A( -2,12),B (1,3), C(4, -6) 三点的位置关系,并说明理由.解略四、总结提升1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180°).2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点 (,的坐标来求;(3)当直线的倾斜角= 90°时,直线的斜率是不存在的.3.直线倾斜角、斜率、斜率公式三者之间的关系:五、当堂检测1. 下列叙述中不正确的是().A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都惟一对应一个倾斜角C.与坐标轴垂直的直线的倾斜角为0 °或90°D.若直线的倾斜角为,则直线的斜率为tana2. 经过A ( 2,0), B( 5,3) 两点的直线的倾斜角().A.45°B.135° C.90 °D.60 °3. 过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m 的值为( ).A.1B.4C.1 或 3D.1 或 44.直线经过二、三、四象限,的倾斜角为,斜率为,则为角;的取值范围 .5、已知直线的倾斜角为,则关于轴对称的直线的倾斜角为________.【板书设计】一、直线的倾斜角二、直线的斜率三、直线的倾斜角与斜率的关系四、求直线的斜率【作业布置】课后巩固练习与提高3.1.1 直线的倾斜角与斜率课前预习学案一、预习目标(1)知道确定直线的要素(2)知道直线倾斜角的定义(3)知道直线的倾斜角与斜率的关系二、预习内容1、在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?要想确定一条直线,的给出什么条件呢?2、通过咱们的预习,什么是直线的倾斜角?倾斜角的范围是什么?3、什么是直线的斜率?它与直线的倾斜角的关系是什么?4、如果知道了直线上的两个点,直线已经确定了,那么如何求直线的斜率?5、练习:①倾斜角为,求斜率②倾斜角为,求斜率③直线过点(18, 8)(4, -4)求斜率④直线过点(0, 0)(-1,)求斜率课内探究学案一.学习目标1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.学习重点:倾斜角与斜率的概念学习难点:直线的斜率与倾斜角的关系二、学习过程1、探究一:直线的倾斜角的定义及范围(1)倾斜角的定义:(2)倾斜角的范围:(3)倾斜角与斜率的关系例1已知直线的倾斜角,求直线的斜率:(1) ;(2) ;(3) ; (4)变式:已知直线的斜率,求其倾斜角.(1)=0;(2)= 1 ;(3)= ;⑷不存在.2、探究二:由直线上的两点求直线的斜率(阅读课本的推导过程)思考:(1)已知直线上两点运用上述公式计算直线的斜率时,与 A B 两点坐标的顺序有关吗?(2)当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?例2:求经过两点 (2,3), (4,7) A B 的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.变式:1、求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角.(1) A(2,3),B ( 1,4) ;(2) A (5,0), B(4, 2) .2.画出斜率为0,1, -1 且经过点(1,0)的直线.3.判断 A( -2,12),B (1,3), C(4, -6) 三点的位置关系,并说明理由.3、当堂检测(1)下列叙述中不正确的是().A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都惟一对应一个倾斜角C.与坐标轴垂直的直线的倾斜角为0 °或90°D.若直线的倾斜角为,则直线的斜率为tana(2)经过A ( 2,0), B( 5,3) 两点的直线的倾斜角().A.45° B.135° C.90 °D.60 °(3)过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m 的值为( ).A.1B.4C.1 或 3D.1 或 4(4)直线经过二、三、四象限,的倾斜角为,斜率为,则为角;的取值范围 .(5)已知直线的倾斜角为,则关于轴对称的直线的倾斜角为________.课后巩固提升学案1.在平面直角坐标系中,正三角形ABC的边BC所在直线斜率是0,则AC、AB所在的直线斜率之和为()A. B.0 C. D.2.过点(0,)与点(7,0)的直线,过点(2,1)与点(3,)的直线,与两坐标轴围成四边形内接于一个圆,则实数k为()A. B.3 C. D.63.经过两点A(2,1),B(1,)的直线l的倾斜角为锐角,则m的取值范围是()A. B. C. D.或4.若三点A(2 , 2),B(),C(0,)()共线,则的值等于________。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)生活中的优化问题举例 新人教A版选修1-1

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)生活中的优化问题举例 新人教A版选修1-1

第三章第4节生活中的优化问题举例课前预习学案一、预习目标了解解决优化问题的思路和步骤二、预习内容1.概念:优化问题:_______________________________________________________(1)求曲线y=x2+2在点P(1,3)处的切线方程.(2)若曲线y=x3上某点切线的斜率为3,求此点的坐标。

3:生活中的优化问题,如何用导数来求函数的最小(大)值?4.解决优化问题的基本思路是什么?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答.重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去。

难点:在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。

二、学习过程1.汽油使用效率最高的问题阅读例1,回答以下问题:(1)是不是汽车速度越快,汽油消耗量越大?(2)“汽车的汽油使用效率最高”含义是什么?(3)如何根据图3.4-1中的数据信息,解决汽油的使用效率最高的问题?2.磁盘最大存储量问题阅读背景知识,思考下面的问题:问题:现有一张半径为的磁盘,它的存储区是半径介于r与R的环形区域。

(1)是不是r越小,磁盘的存储量越大?(2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?3饮料瓶大小对饮料公司利润的影响阅读背景知识,思考下面的问题:(1)请建立利润y与瓶子半径r的函数关系。

(2)分别求出瓶子半径多大时利润最小、最大。

(3)饮料瓶大小对饮料公司利润是如何影响的?三、反思总结通过上述例子,我们不难发现,解决优化问题的基本思路是:四、当堂检测已知某养猪场每年的固定成本是20000元,每年最大规模的养殖量是400头。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)4.1.1圆的标准方程 新人教A版必修2

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)4.1.1圆的标准方程 新人教A版必修2

4. 1.1 圆的标准方程【教学目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题.2.通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.【教学重难点】教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.教学难点:运用圆的标准方程解决一些简单的实际问题.【教学过程】(一)情景导入、展示目标前面,大家学习了圆的概念,哪一位同学来回答?1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.(二)检查预习、交流展示求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P (M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明.其中步骤(1)(3)(4)必不可少.(三)合作探究、精讲精练探究一:如何建立圆的标准方程呢?1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).2.写点集根据定义,圆就是集合P={M||MC|=r}.3.列方程由两点间的距离公式得:4.化简方程将上式两边平方得: (x-a)2+(y-b) 2=r2(1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.例1 写出下列各圆的方程:(请三位同学演板)(1)圆心在原点,半径是3;(3)经过点P (5,1),圆心在点C(8,-3);解析:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.解:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;点评:圆的标准方程与圆心坐标、半径长密切相关,应熟练掌握.变式训练1:说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(x+4)2+(y+3)2=7;(3)(x+2)2+ y2=4答案:(1) 圆心是(3,2),半径是5;(2) 圆心是(-4,-3),半径是7;(3) 圆心是(-2,0),半径是2.例2 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解析:分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决;分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决.解:(1) 解法一:(学生口答)设圆心C(a,b)、半径r,则由C为P1P2的中点得:又由两点间的距离公式得:∴所求圆的方程为:(x-5)2+(y-6)2=10 解法二:(给出板书)∵直径上的四周角是直角,∴对于圆上任一点P(x,y),有PP1⊥PP2.化简得:x2+y2-10x-12y+51=0.即(x-5)2+(y-6)2=10为所求圆的方程.解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内.点评:1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.变式训练2:求证:以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.证明:略.(四)反馈测试导学案当堂检测(五)总结反思、共同提高1.圆的方程的推导步骤;2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.【板书设计】探究一:圆的标准方程1.建系设点2.写点集3.列方程4.化简方程探究二:圆的方程形式特点例1变式训练1例2变式训练2课堂小结【作业布置】导学案课后练习与提高4.1.1 圆的标准方程课前预习学案一.预习目标回忆圆的定义,初步了解用方程建立圆的标准方程.二.预习内容1:圆的定义是怎样的?2:圆的特点是什么?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题.2.通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.学习重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.学习难点:运用圆的标准方程解决一些简单的实际问题.二.学习过程探究一:如何建立圆的标准方程呢?1.建系设点2.写点集3.列方程4.化简方程探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?例1 写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);变式训练1: 说出下列圆的圆心和半径:(学生回答) (1)(x-3)2+(y-2)2=5; (2)(x+4) 2+(y+3)2=7; (3)(x+2)2+ y 2=4例2 (1)已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?变式训练2:求证:以A(x 1,y 1)、B(x 2,y 2)为直径端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.三.反思总结1.圆(x +1)2+(y -2)2=4的圆心、半径是 ( )A .(1,-2),4B .(1,-2),2C .(-1,2),4D .(-1,2),22.过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 .3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.参考答案:1.D 2.22(3)2x y -+=课后练习与提高1.圆2)1()1(22=++-y x 的周长是( )A.π2 B.π2 C.2π2 D.π4 2.点P(5,2m )与圆2422=+y x 的位置关系是( )A.在圆外 B.在圆内 C.在圆上 D.不确定3.已知圆C与圆1)1(22=+-y x 关于直线x y -=对称,则圆C的方程为( ) A.1)1(22=++y x B.122=+y x C.1)1(22=++y x D.1)1(22=-+y x4.已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.1.2回归分析的基本思想及其初步

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.1.2回归分析的基本思想及其初步

1. 1.2 回归分析的基本思想及其初步应用课前预习学案一、预习目标:回归分析的基本思想、方法及初步应用. 二、预习内容:1.两个变量有线性相关关系且正相关,则回归直线方程中, 的系数 ( )A.B.C.D.2.两个变量有线性相关关系且残差的平方和等于0,则( )A.样本点都在回归直线上B.样本点都集中在回归直线附近C.样本点比较分散D.不存在规律课内探究学案一、学习要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.学习重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 学习难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、学习过程1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.3.教学总偏差平方和、残差平方和、回归平方和: (1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑.(2)学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()nnni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好. 4. 典型例题为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717=+,试比较哪一个模型拟合的效果更好.y x分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.5.小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.课后练习与提高假设美国10家最大的工业公司提供了以下数据:(1)作销售总额和利润的散点图,根据该图猜想它们之间的关系应是什么形式;(2)建立销售总额为解释变量,利润为预报变量的回归模型,并计算残差;(3)你认为这个模型能较好地刻画销售总额和利润之间的关系吗?请说明理由。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1

1. 3简单的逻辑联结词1.3.2或课前预习学案(一)学习目标(1)学习逻辑联结词“或”的含义(2)会正确应用逻辑联结词“或”解决问题(3)掌握真值表并会应用真值表解决问题(二)学习重点与难点重点:通过数学实例,了解逻辑联结词“或”的含义,使学生能正确地表述相关数学内容。

难点:1、正确理解命题“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∨q”.(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。

在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。

下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,…表示命题。

(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。

答:问题2:以前我们有没有学习过象这样用联结词“或”联结的命题呢?你能否举一些例子?举例:3、归纳定义定义:____________________________,记作___读作____。

命题“p∨q”即命题“p或q”中的“或”字与下面两个命题中的“或”字的含义相同吗?答:若 x∈A或x∈B,则x∈A∪B。

答:说明:符号“∨”与“∪”开口都是向上。

注意:“p或q”命题中的“p”、“q”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p”,“q”是一个命题的条件和结论两个部分.4、命题“p∨q”的真假的规定你能确定命题“p∨q ”的真假吗?命题“p∨q”的真假和命题p,q的真假之间有什么联系?根据前面所举例子中命题p,q以及命题p∨q的真假性,概括出这三个命题的真假之间的关系的一般规律。

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)2.3.1抛物线及其标准方程 新人教A版

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)2.3.1抛物线及其标准方程 新人教A版

高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)2.3.1抛物线及其标准方程 新人教A 版选修11一、学习目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进一步感受坐标法及数形结合的思想二、学习重点抛物线的定义及标准方程三、学习难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、学习过程 (一)复习旧知在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像) (二)学习新课 1.抛物线的定义探究1观察抛物线的作图过程,探究抛物线的定义:抛物线的定义: 思考:若F 在l 上呢?(学生思考、讨论、画图) 2.抛物线的标准方程要求抛物线的方程,必须先建立直角坐标系.探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.讨论:小组讨论建系方案及其对应的方程,你认为哪种建系方案使方程更简单? 推导过程:我们把方程22(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ⎛⎫⎪⎝⎭,准线方程是2p x =-。

在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程:(学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)图形 标准方程焦点坐标准线方程(三)例题例1(1)已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程, (2)已知抛物线的焦点是()0,2F -,求它的标准方程. 解: 变式训练1:(1) 已知抛物线的准线方程是x =—41,求它的标准方程. (2) 已知抛物线的标准方程是2y 2+5x =0,求它的焦点坐标和准线方程. 解:例2 点M 与点F (4,0)的距离比它到直线l :x +5=0的距离小1,求点M 的轨迹方程. 解: 变式训练2:在抛物线y 2=2x 上求一点P ,使P 到焦点F 与到点A (3,2)的距离之和最小. 解: (四)小结 1、抛物线的定义; 2、抛物线的四种标准方程;3、注意抛物线的标准方程中的字母P 的几何意义.(五)课后练习1.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a2.抛物线21x m y =(m ≠0)的焦点坐标是( )(A ) (0,4m )或(0,4m -);(B) (0,4m)(C) (0,m 41)或(0,m 41-);(D) (0,m41)3.根据下列条件写出抛物线的标准方程:(1)焦点是F (0,3),(2)焦点到准线的距离是2.4.求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)x 2+8y =0.5.点M 到点(0,8)的距离比它到直线y =-7的距离大1,求M 点的轨迹方程.2.3.1 抛物线及其标准方程一、教学目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2简单组合体的结构特征
【教学目标】
1、认识简单组合体的结构特征
2、能根据对简单组合体的结构特征的描述,说出几何体的名称
3、学会观察、分析图形,提高空间想象能力和几何直观能力.
【教学重难点】
描述简单组合体的结构特征.
【教学过程】
1、情景导入
在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师出示课题:简单几何体的结构特征.
2、展示目标、检查预
让学生说出本节课的学习目标及简单组合体的概念
3、合作探究、交流展示
(1)提出问题
①请指出下列组合体是由哪些简单几何体组合而成的.
图1
②观察图1,结合生活实际经验,说出简单组合体有几种组合形式?
③请总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?
(2)活动:让学生仔细观察图1,教师适时提示.
①略.
②图1中的三个组合体分别代表了不同形式.
③学生可以分组讨论,教师可以制作有关模型展示.
(3)讨论结果:
①图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.
②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.
③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.
4、典型例题
例1 请描述如图2所示的组合体的结构特征.
图2
解析 :将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;
图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;
图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.
点评:本题主要考查简单组合体的结构特征和空间想象能力.
变式训练1: (1) 如图3说出下列物体可以近似地看作由哪几种几何体组成?
图3
(2)如图4(1)、(2)所示的两个组合体有什么区别?
图4
答案:(1)图3(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.
(2)图4(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.
例2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图5
解析:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征
解:如图所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.
点评:本题主要考查空间想象能力以及旋转体、简单组合体.
变式训练2
(1)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图6
(2)如图所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,说出它形成的几何体的结构特征
图7
答案:(1)如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.
(2)一个大球内部挖去一个同球心且半径较小的球.
5、课堂检测:课本P8,习题1.1 A组第3题,B组第1、2题。

6.归纳整理由学生整理学习了哪些内容
【板书设计】
一、简单组合体的结构
二、例题
例1
变式1
例2
变式2
【作业布置】
导学案课后练习与提高
1.1.2 简单组合体的结构特征
课前预习学案
一、预习目标:认识简单组合体的结构特征
二、预习内容:阅读课本6 7页内容,完成7页练习第1、2、3题
思考:(1)简单组合体的定义:
(2)列举生活中简单组合体的实例。

(3)简单组合体的构成形式:
如课本图1.1-11中(1)(2)物体表示的几何体是由简单几何体而成;如课本图1.1-11中(3)(4)物体表示几何体是由简单几何体而成。

答案:拼接;截去或挖去一部分
三.提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
课内探究学案
一、学习目标
1、认识简单组合体的结构特征
2、能根据对几何体的结构特征的描述,说出几何体的名称
3、学会观察、分析图形,提高空间想象能力和几何直观能力.
学习重难点:描述简单组合体的结构特征.
二、学习过程
1、通过思考、交流回答下列问题
①请指出下列几何体是由哪些简单几何体组合而成的.
图1
②观察图1,结合生活实际经验,说出简单组合体有几种组合形式?
③请总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?
2、典型例题:
例1 请描述如图2所示的组合体的结构特征.
图2
解析 :将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:略
点评:本题主要考查简单组合体的结构特征和空间想象能力.
变式训练1:
(1) 如图3说出下列物体可以近似地看作由哪几种几何体组成?
图3
(2)如图4(1)、(2)所示的两个组合体有什么区别?
图4
例2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图5
解析:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征
解:略
点评:本题主要考查空间想象能力以及旋转体、简单组合体.
变式训练2:
(1)如图6所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图6
(2)如图7所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征
图7
3、课堂检测:课本P8,习题1.1 A组第3题,B组第1、2题
课后练习与提高
一、选择题
1、下面没有体对角线的一种几何体是
A 三棱柱
B 四棱柱
C 五棱柱
D 六棱柱
2、下列平面图形旋转后能得到下边几何体的是
(1) (2) (3) (4)
A (1)
B (2)
C (3) D(4)
3、下列说法中不正确的是
A 棱柱的侧面不可以是三角形
B 有六个大小一样的正方形所组成的图形是正方体的展开图
C 正方体的各条棱都相等
D 棱柱的各条侧棱都相等
二、填空题
4、指出下图分别包含的几何体
(1)(2)(3)
(1)(2)
(3)
5、用一个平面去截正方体,得到的截面可能是、、、
、边形。

三、解答题
6、连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
解析先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形,再作出判断.。

相关文档
最新文档