Asymmetric addition of n-butyllithium to aldehydes
2021 年度诺贝尔化学奖:大道至简
大 学 化 学Univ. Chem. 2022, 37 (1), 2112014 (1 of 5)收稿:2021-12-07;录用:2021-12-17;网络发表:2021-12-22*通讯作者,Email:******************.cn基金资助:国家自然科学基金(21825108)•今日化学• doi: 10.3866/PKU.DXHX202112014 2021年度诺贝尔化学奖:大道至简冯向青1,2,杜海峰1,2,*1中国科学院化学研究所分子识别与功能院重点实验室,北京 1001902中国科学院大学,北京 100049摘要:有机小分子成为继酶和金属催化剂之后发展的一类新型催化剂,被称为第三类催化。
有机小分子催化作为一种精确的分子构建新工具,对手性新药研发产生了巨大影响,在药物、农药、化工、材料等领域都得到了广泛的应用。
2021年的诺贝尔化学奖授予了德国化学家本杰明·利斯特和美国化学家大卫·迈克米伦,以表彰他们在这一领域做出的开创性重要贡献。
本文简述了手性现象和不对称催化,有机小分子催化的发展历程及其催化优势和未来前景。
关键词:手性;不对称催化;有机小分子催化;诺贝尔化学奖中图分类号:G64;O6The 2021 Nobel Prize in Chemistry: The Simpler the BetterXiangqing Feng 1,2, Haifeng Du 1,2,*1 CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.2 University of Chinese Academy of Sciences, Beijing 100049, China.Abstract: Organic molecules have become one novel type of catalysts developed after enzymes and metal catalysts, which are named as organocalysis, the third type of catalysis. As a new tool toward the precise construction of molecules, organocatalysis has a huge impact on the development of chiral new drugs, which has been used in the fields of pharmacy, pesticides, chemicals, materials, and so on. The 2021 Nobel Prize in Chemistry was awarded to German chemist Benjamin List and American chemist David W. C. MacMillan for their pioneering and important contributions to this field. This article will briefly describe chirality and asymmetric catalysis, especially, the history of organocatalysis development, its advantages and future prospects.Key Words: Chirality; Asymmetric catalysis; Organic small molecule catalysis; Nobel prize in chemistry1 2021年诺贝尔化学奖获得者简介2021年10月6日,长期被戏称为“理综奖”的诺贝尔化学奖被授予“对于有机小分子不对称催化[1]的重要贡献”的两位化学家,分别是德国化学家本杰明∙利斯特(Benjamin List)和美国化学家戴维∙麦克米伦(David W. C. MacMillan)。
苯乙烯丁二烯异戊二烯新型嵌段聚合物的研究
大连理工大学硕士学位论文苯乙烯/丁二烯/异戊二烯新型嵌段聚合物的研究姓名:***申请学位级别:硕士专业:材料学指导教师:***20060601苯乙烯I丁二烯,异戊二烯新型嵌段聚合物的研究幽2.4IcBlc(45%isoprene)的TEM电镜照片Fig.2,4TheTEMimageofIcIj,1c145%isoprene)上述三类是最基本的I、B共聚结}勾。
当采用多臂偶联或多官能团催化刘时,就能得到结构复杂的I、B星型共聚,如果再采用多步进料其结构就会更复杂。
以上的讨论从聚合方法上来说,都是单体一次或分批次加入,这是阴离子催化聚合的特点所决定的,采用其它的方法,如稀土催化体系时,也可以将异戊二烯单体随机加入BR主链【3”。
Mohajer|32】考察了l与B嵌段共聚物氢化物的物性后发现,半结晶HPB和橡胶态HPI处于相分离态,HBIB的行为类似于热塑性弹性体,而HBIB则类似于未硫化的填充橡胶。
由于氢化是改善聚共轭二烯烃老化性能的一个有效途径,Coolbaughl33】将嵌段IBI进行选择性氢化,两端的PI嵌段不被氢化,硫化就发生在PI嵌段。
对于I与B的共聚研究,国外多集中于Goodyear公司的Halasa课题组及MobilOil公司的Coolbaugh课题组,两个课题组采用的均是阴离子催化体系。
前苏联在这一领域也进行了大量研究【3舢,国内长春应化所也进行了许多的研究I"j,后两者采用的催化体系是稀土体系。
总的看来,国内在这一领域的研究还很不多,而且多偏重于理论研究。
1.2.5苯乙烯~丁二烯一异戊二烯三元嵌段共聚物传统的苯乙烯类热塑性弹性体,由于其独特的结构,决定了其高强度、高弹性和耐低温的特点,非常适合于非金属材料和难粘塑料的粘接,尤其是作为热熔压敏胶,效果极佳。
但是,SIS作为热熔胶使用时,其链段中的不饱和结构使得其在高温熔化和长期应用时,很容易氧化降解,熔体的粘度随时问明显下降,致使粘合剂的粘接性能劣化。
注射用泮托拉唑钠中依地酸二钠含量分析方法的建立
注射用泮托拉唑钠中依地酸二钠含量分析方法的建立雷小平杨明亮姚吉勰陈青连(杭州澳亚生物技术股份有限公司杭州 310018)摘要目的:建立高效液相色谱法测定注射用泮托拉唑钠中依地酸二钠的含量。
方法:采用十八烷基硅烷键合硅胶为填充剂的C18色谱柱(4.6 mm×250 mm,5 m m),以磷酸盐缓冲液-乙腈(90∶10)、乙腈进行梯度洗脱,流速为1.0 mL/min,检测波长为254 nm,柱温为35 ℃,进样体积为20 m L。
结果:依地酸二钠的检测不受其他成分干扰,不同浓度依地酸二钠的回收率均在98.0%~102.0%之间,回收率RSD为0.39%,浓度在27.52~64.20 m g/mL范围内线性良好(r=1.000 0)。
结论:本方法简便、迅速、专属性及重现性好,可用于注射用泮托拉唑钠中依地酸二钠含量的测定。
关键词依地酸二钠注射用泮托拉唑钠含量高效液相色谱法中图分类号:O657.72; R975.2 文献标志码:A 文章编号:1006-1533(2022)05-0077-04引用本文雷小平, 杨明亮, 姚吉勰, 等. 注射用泮托拉唑钠中依地酸二钠含量分析方法的建立[J]. 上海医药, 2022, 43(5): 77-80.Establishment of method for disodium edetate in pantoprazole sodium for injectionLEI Xiaoping, YANG Mingliang, YAO Jixie, CHEN Qinglian(Hangzhou Ausia Biological Tech. Co., Ltd., Hangzhou 310018, China)ABSTRACT Objective: To establish a high performance liquid chromatography (HPLC) method for the determination of disodium edetate in pantoprazole sodium for injection. Methods: HPLC was performed using C18 column (4.6 mm×250 mm, 5 μm) with gradient elution containing phosphate buffer-acetonitrile (90:10) (A) and acetonitrile (B) at a flow rate of 1.0 mL/min, detection wavelength 254 nm, column temperature 35 ℃ and sample volume 20 m L. Results: The determination of disodium edetate was not interfered by other components in the injection. The recovery rates of different concentrations of disodium edetate were between 98.0%-102.0% with RSD 0.39%. Standard curve of disodium edetate showed good linearity over the range of27.52-64.20 m g/mL with r=1.000 0. Conclusion: This method is simple, rapid, specific and reproduceable and can be used for thedetermination of disodium edetate in pantoprazole sodium for injection.KEy WORDS disodium edetate; pantoprazole sodium for injection; assay; HPLC依地酸和依地酸盐在药物制剂、化妆品和食品中被用作螯合剂,它们与碱土金属和重金属离子形成稳定的水溶性络合物(螯合剂)。
微晶纤维素羧甲纤维素钠共处理物 英文名
微晶纤维素羧甲纤维素钠共处理物英文名1. 简介微晶纤维素羧甲纤维素钠共处理物是一种常用的医药辅料,其英文名为"Microcrystalline cellulose carboxymethyl sodium"。
它具有较高的稳定性和粘合性,适用于制备片剂、胶囊和颗粒等制剂,并广泛应用于制药、食品等领域。
2. 物理性质微晶纤维素羧甲纤维素钠共处理物为白色至微黄色细粉末,无味、无臭,可溶于水。
其粒径较小,表面积大,具有良好的吸附性能和成型性,能够改善制剂的流动性和均匀性。
3. 化学结构微晶纤维素羧甲纤维素钠共处理物是以纤维素为原料,在微晶纤维素的基础上进行羧甲化改性,再与羧甲纤维素钠进行复合处理而得。
其结构复杂而稳定,具有一定的分子量和分子量分布。
4. 主要用途微晶纤维素羧甲纤维素钠共处理物可作为制药辅料,用于制备片剂、胶囊、颗粒等固体制剂,有助于提高制剂的稳定性和口服溶解度,并降低药物对胃肠道的刺激作用。
它还可用于食品工业中,作为增稠剂、乳化剂等,在制备食品中发挥着重要作用。
5. 制备工艺微晶纤维素羧甲纤维素钠共处理物通常采用湿法制备工艺,先对纤维素进行预处理,然后进行羧甲化改性,最后与羧甲纤维素钠进行共处理而得。
其制备工艺稳定可靠,产品质量易控制。
6. 应用前景随着医药和食品工业的快速发展,微晶纤维素羧甲纤维素钠共处理物作为一种理想的医药辅料和食品添加剂,具有广阔的应用前景。
未来,随着技术的不断进步,其在新药开发和食品改良领域将发挥更为重要的作用。
通过以上介绍,我们对微晶纤维素羧甲纤维素钠共处理物有了更深入的了解,它作为一种重要的医药辅料和食品添加剂,为医药和食品工业的发展做出着重要贡献。
希望未来能有更多的研究和开发,为其应用和推广提供更有力的支持。
微晶纤维素羧甲纤维素钠共处理物的结构特点以及在医药和食品工业中的应用微晶纤维素羧甲纤维素钠共处理物是一种常用的医药辅料和食品添加剂,其特点是在微晶纤维素的基础上进行羧甲化改性,并与羧甲纤维素钠进行复合处理而得。
氨基亚甲基膦酸
氨基亚甲基膦酸氨基亚甲基膦酸,又称为Ampa,是一种重要的有机磷酸盐。
它是一种白色结晶粉末,在化学和生物领域中具有广泛的应用。
本文将介绍氨基亚甲基膦酸的性质、合成方法、应用和前景。
氨基亚甲基膦酸的化学性质非常稳定,不易被氧化或还原。
它具有良好的水溶性和热稳定性,可以在高温下使用。
此外,氨基亚甲基膦酸还具有良好的生物相容性和生物降解性,不会对环境造成污染。
氨基亚甲基膦酸的合成方法主要有两种:一种是通过磷酸二乙酯与甲胺反应生成中间体,再经过脱水缩合反应得到氨基亚甲基膦酸;另一种是通过对甲酰胺和磷酸三甲酯进行缩合反应得到氨基亚甲基膦酸。
这些合成方法简单、高效,适用于工业规模生产。
氨基亚甲基膦酸在生物医学领域有着广泛的应用。
首先,它可以作为一种药物载体,用于传递药物分子到特定的组织或细胞。
其次,氨基亚甲基膦酸还可以用作生物传感器的基础材料,用于检测生物分子或环境中的污染物。
此外,氨基亚甲基膦酸还可用于制备高效的催化剂,用于有机合成反应。
除了在生物医学领域,氨基亚甲基膦酸在材料科学和化学工程领域也有着广泛的应用。
例如,它可以用于制备高性能的聚合物材料,用于制备阻燃剂和抗静电材料。
此外,氨基亚甲基膦酸还可以作为表面活性剂,用于调节液体的表面张力和粘度。
未来,随着科学技术的不断进步,氨基亚甲基膦酸的应用前景将更加广阔。
科学家们将进一步研究氨基亚甲基膦酸的性质和合成方法,以寻找更多的应用领域。
同时,还将努力改进氨基亚甲基膦酸的性能,提高其在各个领域中的应用效果。
氨基亚甲基膦酸作为一种重要的有机磷酸盐,在化学和生物领域中具有广泛的应用。
它具有稳定性好、水溶性高、热稳定性强等特点,适用于生物医学、材料科学和化学工程等领域。
随着科学技术的进步,氨基亚甲基膦酸的应用前景将更加广阔,对人类社会的发展具有重要意义。
semi-syntheticar...
Semi-synthetic aristolactams—inhibitors of CDK2enzymeVinod R.Hegde *,Scott Borges,Haiyan Pu,Mahesh Patel,Vincent P.Gullo,Bonnie Wu,Paul Kirschmeier,Michael J.Williams,Vincent Madison,Thierry Fischmann,Tze-Ming ChanSchering Plough Research Institute,2015Galloping Hill Road,Kenilworth,NJ 07033,USAa r t i c l e i n f o Article history:Received 7August 2009Revised 23December 2009Accepted 4January 2010Available online 7January 2010Keywords:Semi-synthetic analogs Aristolactams IC 50SARa b s t r a c tSeveral analogs of aristolochic acids were isolated and derivatized into their lactam derivatives to study their inhibition in CDK2assay.The study helped to derive some conclusions about the structure–activity relation around the phenanthrin moiety.Semi-synthetic aristolactam 21showed good activity with inhi-bition IC 50of 35nM in CDK2assay.The activity of this compound was comparable to some of the most potent synthetic compounds reported in the literature.Ó2010Elsevier Ltd.All rights reserved.In the preceding Letter we have reported on the isolation of a potent CDK2enzyme inhibitor SCH 546909,a natural product aris-tolactam analog with an inhibition IC 50of 140nM.This prompted us to undertake a semi-synthetic study of different analogs from this class.Many total syntheses of aristolactam analogs have been reported in the literature,1,2however sub-structure literature searches revealed that these compounds could be easily prepared from naturally occurring,aristolochic acids.HO H 3CONHOHOSCH 546909Several publications and reviews have been published on the occurrence,synthesis and biological activities of aristolochic acids.Aristolochic acids and aristolactams are classified as aporphinoids because of their basic skeleton which bears a distinct similarity to that of aporphins.Aristolochic acids exhibit tumor inhibitory activ-ity against the adenocarcinoma 755test system but in mice they induced papiloma.3They are also known to form covalent DNA adducts by enzymatic reductive activation of aristolochic acids in the presence of DNA.4They are also shown to induce mutagenicity in mice.5Aristolochic acid is commercially available from SigmaChemical Co.and ACROS.The commercially available aristolochic acid is a complex mixture of several analogs,with the major com-ponents being aristolochic acids II &I in 1:4ratio.We have sepa-rated commercial aristolochic acid mixtures on a preparative HPLC using YMC ODS-A C-18,10l m,5Â50cm HPLC column,eluting with 0.05%trifluoroacetic acid and acetonitrile (60:40)to obtain compounds 1–8.A typical 600mg of commercial aristolo-chic acid afforded 27.7,4.6,7.8,71.6,5.4,6.8,315.8,and 3.2mg of aristolochic acid C (5),6aristolochic D (7),77-hydroxy aristolo-chic A(6),8aristolochic acid II (1),aristolochic acid IV (4),97-meth-oxy aristolochic acid A (3),10aristolochic acid I (2),2and aristolochic acid III (8).11In our semi-synthetic modifications to prepare aristolactam analogs,the aristolochic acids were first converted to their lactams.The purified aristolochic acids were hydrogenated in ethanolic solution under 40psi hydrogen in presence of Pd/C catalyst,over-night at room temperature.The amino compound produced on reduction of nitro group,on further ring closure results in lactam.After separation and derivatization to the resulting lactam,the aromatic phenol ether derivatives were deprotected with BBr 3in methylene chloride solution.A typical demethylation 12involved stirring the aristolochic methyl ethers (15mg)in CH 2Cl 2(50ml)at 0°C with the dropwise addition of BBr 3(7.5ml,1M)in CH 2Cl 2at 0°C and then continue stirring overnight at room temperature.The reaction mixture was quenched in ice,extracted with ethyl acetate,and dried.The demethylated product was purified by HPLC.The Methylenedioxy group was removed by stirring aristolac-tams in CH 2Cl 2at 0°C and dropwise addition of a solution of PCl 5(1:1ratio).The reaction mixture was slowly allowed to attain room0960-894X/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.bmcl.2010.01.007*Corresponding author.Tel.:+19088203871;fax:+19088206166.E-mail address:**********************(V.R.Hegde).Bioorganic &Medicinal Chemistry Letters 20(2010)1384–1387Contents lists available at ScienceDirectBioorganic &Medicinal Chemistry Lettersj o ur na l h om e pa ge :w w w.e lse v ie r.c om /lo c at e/bm c ltemperature during2h and then quenched with ice,extracted with CH2Cl2and dried.The O-dihydroxy compound formed was purified by HPLC.3,4-Dihydroxy-12-chloro aristolactams were prepared from methylenedioxy containing derivatives via treatment with the dropwise addition of PCl5(1:2.5ratio)in CH2Cl2at0°C and slowly allowing the reaction mixture to attain room temperature during 3h.The reaction mixture was quenched in ice,extracted with CH2Cl2and dried.The halogenated product was further purified by HPLC.O OCOOHNO2OONR1R2R31. R1 = R2 = R3 = -H2. R1 = -OCH3, R2 = R3 = -H3. R1 = R2 = -OCH3, R3 = -H4. R1 = R3 = -OCH3, R2 = -H5.R1 = R2 = -H, R3 = -OH6. R1 = -OCH3, R2 = -OH, R3 = -H7. R1 = -OCH3, R2 = -H, R3 = -OH8. R1 = -OH,R2 = R3 = -H9. R1 = R2 = -OCH3, R3 = -HOR1R2R3R4R515. R1 = R2 = R3 = R4 = R5 =-H16. R1 = -OCH3, R2 = R3 = R4 =R5 = -H17. R1 = R2 =-OCH3 ,R3 =R4 = R5 = -H18. R1 = R3 = -OCH3, R2 = R4 = R5 = -H19. R1 = -OCH3, R2 = -OH, R3 = R4 =R5 = -H20. R1 = -OCH3, R3 = -OH, R2 = R4 = R5 = -H21. R1 = -OH, R2 = R3 = R4 = R5 = -H22. R1 = R2 = -OH, R3 = R4 = R5 = -H23. R1 = R3 = -OH, R2 = R4 = R5 = -H24. R1 = R2 = R4 = R5 = -H, R3 = -OH,25. R1 = -OCH3, R2 = R3 = R4 = -H, R5 = -CH326. R1 = -OH, R2 = R3 = R4 = -H, R5 = -CH3ARISTOLOCHIC ACID ANALOGSHO HOCOOHNO2R4R1R2R310. R1 = R2 = R3 = R4 = -H11. R1 = R2 = R3 = -H, R4 = -Cl12. R1 = -OCH3, R2 = R3 = R4 = -H13. R1 = -OH, R2 = R3 = R4 = -H14. R1 = -OCH3, R2 = R3 = -H, R4 = -Cl 27. R1 = R2 = R3 = R4 = -H28. R1 = R2 = R3 = -H, R4 = -Cl29. R1 = -OCH3, R2 = R3 = R4 = -H30. R1 = -OH, R2 = R3 = R4 = -H31. R1 = -OCH3,R2 =R3 = -H, R4 = -ClHOHONHOR4R1R2R3The aristolochic acid analogs prepared were tested in CDK2as-say13with the resulting inhibition IC50s are tabulated in Table1. Many analogs showed CDK2activity>10l M,however compounds 13,16,19,21,and24exhibited CDK2inhibition under10l M. Compound21showed a CDK2inhibition IC50of35nM,potency similar to the most potent CDK2inhibitor reported in the litera-ture14Compound13,having a hydroxyl group at C-9also showed activity in the l M range.Several natural products,like aporphinoids,morphine,and fused berberine classes of compounds,were also tested to evaluate importance of the lactam ring in the CDK2activity.All these com-pounds excepting sinomenine,sinoacutine,and tetrahydroberber-ine,have tetrahydro pyridine ring attached to phenanthrine moiety.Sinomenine and sinoacutine have morphine like ring sys-tem but tetrahydroberberine has two tetrahydro-isoquinoline ring system.All these compounds failed to show inhibition in CDK2as-say at50l M.Only compound21,displayed strong CDK2inhibition,about threefold better than the natural product SCH546909.Based on the activity profile of the different aristolochic acid and aristolactam analogs,it appears the lactam ring is essential for potent CDK2inhibition.This has been shown to be true for sev-eral potent inhibitors reported in literature.31,32Hydroxyl groups at C-7or C-9positions also appear to enhance CDK2inhibition. Additionally,theprotection of the dihydroxy groups atthe C-4 and C-5positions contributes toward the potency.However,pro-tection of amide–NH by a methyl group or substitution by a halo-gen at C-10results in reduced activity.The observations are only empirical and a detailed study would be necessary to evaluate a complete structure–activity relationship.Protection increasesthe potency in CDK2assay-CH3 in this positiondecreases activityhalogen in this positiondecrease in potencyincreases the potencyAristolochic acids and aristolactams have phenanthrin aromatic moiety similar to another class of natural product that includes staurosporine,isolated from fungus.Staurosporins are also potent kinase inhibitors and have been extensively studied as antitumor compounds.Like staurosporine,these compounds are also planar molecules and are sparingly soluble in various solvents including water.Increasing the solubility properties by salt formation or by Table1CDK2inhibition IC50s of aristolochic acids and aristolactam analogs Compound CDK2IC50(l M)1>202>203>204>205306257258159>201013.4111812>3013 5.71416.51516151616 1.217>151815>1519 2.92018>3521180.03522>302318>502420,21 2.152519,21>352617>35274>3528>2529>353016>353110Dicentrine22>50Crebanine23>50Roemerine-HBr24>50Isocorydine25>50Corydine26>50Corytuberine27>50Sinoacutine28>50Sinomenine29>50Stephanine,25>50Tetrahydro-berberine30>50V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–13871385forming inclusion compounds with b -cyclodextrin appear to improve cellular activity.Aristolactam 21was further tested in a kinase counter screen assays,along with the natural product SCH 546909and 3233,as shown in Table 2.The results indicate that the inhibitors share a similar activity in the CDC2(cyclin-A dependent kinase,$90%homology)assay,and a lesser selectivity in other kinases assays like CDK4,AUR2(Aurora kinase),MAPK (mitogen-activated protein kinase),and AKT (ATP kinase).Cellular activities:Compound 21,the most potent and selective CDK2inhibitor from this series,was evaluated in two cellular pro-liferation assays:a colony forming assay and a soft agar growth as-say.In the soft agar growth assay compound 21showed comparable activity to 32,although compound 32appeared to lose some potency in this assay format compared to the clonogenicity assay (Table 2).In the clonogenicity assay using MCF-7cells,all three compounds inhibited growth at similar micromolar pound 21inhibited proliferation of tumor cells,with IC 50values consistent with CDK2inhibitors that are competitive with respect to ATP.The anti-proliferative activity of the com-pounds was up to eightfold selective for the tumor cells relative to the HFF normal cell line.The anti-proliferative activity of 21ar-rests the tumor cells and protects the normal cells from chemo-therapy-induced toxicity.32These data are consistent with an anti-proliferative mechanism expected for inhibition of CDK2and revealed that the aristolactam class of compounds have potential for treating proliferative disorders,including chemotherapy-in-duced alopecia.NN HNORPyrazoloquinolines32. R = -OCH 3 (SCH47089)Computer based interaction design of 21with CDK2enzyme:Thedocking experiments on CDK2enzyme with 21(SCH535270)and staurosporine were performed and are shown in Figure 1A and B.The computer docking model suggests the lactam of 21(SCH 535270)interacts with CDK2enzyme active sites in a manner anal-ogous to that observed for compounds of staurosporine class of inhibitors bound to fibroblast growth factor receptor kinase.34Two hydrogen bonds were formed between the c -lactam moi-ety of 21and CDK2.Specifically,the amide nitrogen was hydrogen bonded to the backbone carbonyl of glu-81of the CDK2enzyme and the lactam carbonyl oxygen was hydrogen bonded with the backbone NH of leu-83amide.Staurosporin also binds to the CDK2enzyme in a similar fashion.The C-9hydroxy group also ap-pears to stabilize the binding at some other sight of enzyme core.35SCH 535270,like staurosporin,is a planar molecule and exhibits similar biological properties.X-ray crystallography:Our attempts to determine the X-ray structure of inhibitor SCH 535270bound to CDK2have failed.The crystals were prepared by soaking the compound in presence of CDK2enzyme and cyclin A.The parameters like compound concentration and duration of soak were screened.Examination of the electronic density maps did not reveal the binding mode of the compound.In some cases,X-ray crystallogra-phy has failed to determine the co-structures of a compound bound to the CDK2protein even in the case of potent inhibitors.A possible explanation is that inhibitor binding requires the com-plete CDK2-cyclin-A complex,which is protocol in our screening assay.CDK2is activated by complexing with cyclin-A that induces conformational changes in the protein that affect the ATP binding site to some degree.The most significant effect involves a rotation of the C-helix,which alters the active-site geometry in the region of the triad of catalytic active-site residues Lys-33,Glu-51,and Asp-145.The amino group of Lys-33can be potential interaction site for inhibitors.The amino nitrogen appears to hydrogen bond with the oxygen of methylenedioxy group.Efforts to grow crystalsTable 2Inhibition (IC 50)of SCH 546909,21and 32in different kinases CompoundActivity IC 50(nM)Selectivity (nM)Cellular activity (l M)CDC2CDK4AUR2MAPK AKT SAG MCF7Clonogenicity SCH5469091402141420214035,335———32(SCH47089)2020020005000>50,000—>10 3.021(SCH535270)352009000350012,00011,4002–2.53.5Figure puter modeling of binding of 21(SCH 535270)and staurosporin with CDK2enzyme.1386V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–1387of the activated CDK2-cyclin-A protein complex are in progress and will be reported in future publications.The aristolactam class of compounds represents a novel class of CDK2inhibitors.Exploration into semi-synthetic analogs provided a potent CDK2inhibitor from this class.Binding interactions by docking experiments suggested carbonyl of glu-81and NH of leu-83amide of the CDK2enzyme are involved in hydrogen bond-ing with the lactam functionality of aristolactams.CDK2inhibition causes an arrest of the cell cycle and exhibits a selective killing effect on several tumor cell lines.36AcknowledgmentsAuthors gracefully acknowledge Dr.E.Lees and Dr.R.Doll for their helpful discussion on CDK2inhibitors.References and notes1.Mix,D.B.;Guinaudeau,H.;Shamma,M.J.Nat.Prod.1982,45,657.2.Shamma,M.;Monit,J.C.Isoquinoline Alkaloids Research1972–1977;PlenumPress:New York,1978.3.(a)Kupchan,S.M.;Wormser,.Chem.1965,30,3792;(b)Kupchan,S.M.;Merianos,.Chem.1968,33,3735.4.(a)Stiborova,M.;Frei,E.;Breuer,C.A.;Schmeiser,H.H.Cancer Res.1990,50,5464;(b)Cinca,S.;Voiculetz,N.;Schmeiser,H.;Wiessler,M.J.Med.Biochem.1997,1,3.5.Pistelli,L.;Nieri,E.;Bilia,A.R.;Marsili,A.;Scarpato,R.J.Nat.Prod.1993,56,1605.6.Hong,L.;Sakagami,Y.;Marumo,S.;Xinmin,C.Phytochemistry1994,37,237.7.Nakanishi,T.;Iwasaki,K.;Nasu,M.;Miura,I.;Yoneda,K.Phytochemistry1982,21,1759.8.Wu,T.-S.;Leu,Y.-L.;Chan,Y.-Y.Chem.Pham.Bull.1999,47,571.9.De Pascual,T.J.;Urones,J.G.;Fernandez,A.Phytochemistry1983,22,2745.10.Wu,T.-S.;Chan,Y.-Y.;Leu,Y.-L.Chem.Pharm.Bull.2000,48.11.Urzua,A.;Salgado,G.;Cassels,B.K.;Eckhardt,G.Planta Med.1982,45,51.12.Gerecke,M.;Borer,R.;Brossi,A.Helv.Chim.Acta1976,59,2551.13.Guzi,T.J.;Paruch,K.;Dwyer,M.P.;Doll,R.J.;Girijavallabhan,V.M.;Mallams,A.;Alvarez, C.S.;Keertikar,K.M.;Rivera,J.;Chan,T.-Y.;Madison,V.S.;Fischmann,T.O.;Dillard,L.W.;Tran,V.D.;He,Z.;James,R.A.;Park,H.;Paradkar,V.M.;Hobbs,D.W.;Kirschmeier,P.;Bannerji,R.U.S.Patent Appl.Publ.2008,pp.387.14.(a)Babu,P.A.;Narasu,M.L.;Srinivas,K.ARKIVOC2007,2,247(Gainesville,FL,USA);(b)Ruetz,S.;Fabbro,D.;Zimmermann,J.;Meyer,T.;Gray,N.Curr.Med.Chem.:Anti-Cancer Agents2003,3,1;(c)Dumas,J.Exp.Opin.Ther.Patents2001, 11,405.15.Priestap,H.Phytochemistry1985,24,849.16.Coutts,R.T.;Stenlake,J.B.;Williams,W.D.J.Chem.Soc.1957,4120.17.Chakraborty,S.;Nandi,R.;Maiti,M.;Achari,B.;Bandyopadhyay,S.Photochem.Photobiol.1989,50,685.18.Eckhardt,G.;Urzua,A.;Cassels,B.K.J.Nat.Prod.1983,46,92–97.19.Achari,B.;Bandyopadhyay,S.;Chakravarty,A.K.;Pakrashi,.Magn.Reson.1984,22,741.20.Mizuno,M.;Oka,M.;Tanaka,T.;Yamamoto,H.;Iinuma,M.;Murata,H.Chem.Pharm.Bull.1991,39,1310.21.(a)Chakraborty,S.;Nandi,R.;Maiti,M.;Sur,P.Indian J.Phys.B.1991,65B,587;(b)Priestap,H.A.Magn.Reson.Chem.1989,27,460.22.Chen,C.C.;Huang,Y.L.;Ou,J.C.;Su,M.J.;Yu,S.M.;Teng,C.M.Planta Med.1991,57,406.23.Shamma,M.;Slusarchyk,W.A.Chem.Rev.1964,64,59.24.You,M.;Wickramaratne, D. B.;Silva,G.L.;Chai,H.;Chagwedera,T. E.;Farnsworth,N.R.;Cordell,G.A.;Kinghorn,A.D.;Pezzuto,J.M.J.Nat.Prod.1995,58,598.25.Roblot,F.;Hocquemiller,R.;Cave,A.;Moretti,C.J.Nat.Prod.1983,46,862.26.Manske,R.H.F.Can.J.Res.1932,7,258.27.Wang,C.-C.;Kuoh,C.-S.;Wu,T.-S.J.Nat.Prod.1996,59,409.28.Kunitomo,J.;Ju-Ichi,M.;Yoshikawa,Y.;Chikamatsu,H.J.Pharm.Soc.Jpn.1974,94,97.29.Terui,Y.;Tori,K.;Maeda,S.;Sawa,Y.K.Tetrahedron Lett.1975,33,2853.30.Chen,C.Y.;MacLean,D.B.Can.J.Chem.1968,46,2501.31.Dumas,J.Exp.Opin.Ther.Patents2000,11,405.32.Davis,S.T.;Benson,B.G.;Bramson,H.N.;Chapman,D.E.;Dickerson,S.H.Science2001,291,134.33.Afonso,A.;Kelly,J.M.;Chackalamannil,S.U.S.Patent5459146,1995,pp13.34.Mohammadi,M.;McMahon,G.;Sun,L.;Tang,C.;Hirth,P.Science1997,276,955.35.Bramson,H.N.;Corona,J.;Davis,S.T.;Dickerson,S.H.;Edelstein,M.;Frye,S.V.,;Gampe,R.T.,Jr.;Harris,P.A.;Hassell,A.;Holmes,W.D.;Hunter,R.N.;Lackey,K.E.;Lovejoy,B.;Luzzio,M.J.;Montana,V.;Rocque,W.J.;Rusnak,R.D.;Shewchuk,L.;Veal,J.M.;Walker,D.H.;Kuyper,L.F.J.Med.Chem.2001,44, 4339.36.Walker,D.H.;Luzzio,M.;Veal,J.;Dold,K.;Edelstein,M.Proc.Am.Assoc.CancerRes.1999,40,A4783Physico-chemical properties:Aristolochic acid C(5):UV k max:225,256,308,410nm;FABMS328(M+H)+,350 (M+Na)+,366(M+K)+,1H NMR(DMSO-d6)d:10.63(COO H),8.48(9-H),8.46(d, J=4Hz,5-H),8.10(d,J=17Hz,8-H),7.75(s,2H),7.29(dd,J=17,4Hz,7-H),6.48(s,12-H2).13C NMR(DMSO-d6)ppm:168.0(11-C),159.8(6-C),145.8(3-C),145.5(4-C),143.1(10-C),132.5(8-C),131.0(4b-C),126.4(9-C),123.7(1-C),121.5(8a-C),118.8(7-C),117.2(10a-C),116.2(4a-C),111.9(2-C),111.1(5-C), 102.8(12-C).7-Hydroxy aristolochic acid A(6):UV k max:224,271,318,384nm;ESMSÀve mode,m/z356(MÀH)À.Aristolochic acid D(7):UV k max:224,243,333,408nm;ESMS m/z358(M+H)+.Compound(21)18:UV k max:214,242,258,294,328,398nm;ESMS:m/z280 (M+H)+;1H NMR(DMSO-d6)d:10.72(s,NH),10.2(s,–OH),8.03(d,J=15Hz,5-H),7.63(s,2-H),7.37(t,J=15Hz,6-H),7.36(s,9-H),7.06(d,J=15Hz,7-H),6.46(s,12-H2).13C NMR(DMSO-d6)ppm:168.1(11-C),153.8(8-C),148.8(3-C),147.1(4-C),134.0(10-C),125.8(6-C),125.3(4b-C),125.3(10a-C),123.2(8a-C),119.3(1-C),117.5(5-C),112.3(7-C),111.3(4a-C),105.4(2-C),103.2 (12-C),98.7(9-C).Compound(16)16:UV k max:225,239,258,295,329,394nm;ESMS:m/z294 (M+H)+;1H NMR(DMSO-d6)d:10.67(s,NH),8.22(d,J=16Hz,5-H),7.70(s,2-H),7.50(t,J=16Hz,6-H),7.35(s,9-H),7.20(d,J=16Hz,7-H),6.48(s,12-H2),4.0(s,13-H3).13C NMR(DMSO-d6)ppm:168.1(11-C),155.3(8-C),148.8(3-C),147.1(4-C),134.7(10-C),125.7(6-C),125.0(11a-C),124.8(4b-C),124.0(10a-C),119.3(1-C),118.7(5-C),111.0(4a-C),108.3(7-C),105.7(2-H),103.3(12-C),97.9(9-C)add–OCH3value.Compound(29):ESMS:m/z316(M+H)+;1H NMR(DMSO-d6)d:9.12(d, J=16Hz,5-H),7.52(t,J=16Hz,6-H),7.50(s,2-H),7.22(d,J=16Hz,7-H),3.92 (s,–OCH3),13C NMR(DMSO-d6)ppm:NOE from–OCH3to proton doublet at d7.22due to7-H and no NOE from–OCH3.All the new compounds were purified by HPLC and identified by MS.V.R.Hegde et al./Bioorg.Med.Chem.Lett.20(2010)1384–13871387。
Highly Enantioselective 1,3-Dipolar Cycloaddition Reactions
Highly Enantioselective1,3-Dipolar Cycloaddition Reactions of 2-Benzopyrylium-4-olate Catalyzed by Chiral Lewis AcidsHiroyuki Suga,*Kei Inoue,Shuichi Inoue,and Akikazu KakehiDepartment of Chemistry and Material Engineering,Faculty of Engineering,Shinshu Uni V ersity,Wakasato,Nagano380-8553,JapanReceived September24,2002Intramolecular carbenoid-carbonyl cyclization of diazocarbonylcompounds catalyzed by rhodium(II)catalysts is one of the mostconvenient methods for generating carbonyl ylides.1Although thisprocedure has been efficiently applied in the syntheses of biologi-cally active natural products and their skeletons,such as brevi-comin,2zaragozic acids,3epoxysorbicillinol,4and illudins,5theprocedure could only be applied in the production of racemates,and therefore development of an enantioselective version is desirablefor the synthesis of medicinally important compounds.Recently,Hodgson6and Hashimoto7have separately reported on enantiose-lective carbonyl ylide cycloadditions that were catalyzed by chiralrhodium complexes,in which the chiral rhodium(II)-associatedcarbonyl ylides were proposed as participating in the transition state.However,this method still has limitations in terms of utility witha variety of dipolarophiles,chemical yields,and requirements forspecific conditions.On the other hand,previous to our first reportin1998,8the attempt to use Lewis acids in the cycloaddition ofcarbonyl ylides for controlling enantio-,or even diastereo-or regio-selectivity has not been studied,probably due to the lability andthe Lewis-basic character of carbonyl ylides.Herein,we report onthe first example of significant levels of enantioselectivity obtainedin the1,3-dipolar cycloadditions of2-benzopyrylium-4-olate withdipolarophiles,which are capable of coordinating in a bidentatefashion,using rare earth metal triflate complexes of chiral2,6-bis(oxazolinyl)pyridine(Pybox)as the chiral Lewis acid catalyst.9Initially,a mixture of(S,S)-Pybox-i-Pr(see Chart1)(10mol%)and Sc(OTf)3(10mol%)in CH2Cl2was stirred at roomtemperature for2h.To this catalyst solution were added Rh2(OAc)4(2mol%),powdered4Åmolecular sieves(MS4A),andbenzyloxyacetaldehyde(3).Addition of o-methoxycarbonyl-R-diazoacetophenone(1)over a period of1h at-10°C(Table1,entry1)afforded endo-and exo-cycloadducts(55:45ratio)in91%total yield(Scheme1).The enantiomeric excesses of the adductswere determined as85%ee(endo)and16%ee(exo)using HPLCanalysis.Surprisingly,on the basis of investigations using variousconditions in the preparation of the Sc(III)catalysts(Table1,entries2-4),the presence of MS4A during the catalyst preparation wasshown to greatly improve endo-selectivity(endo:exo)88:12)10and to increase the level of enantioselectivity(91%ee)of the endo-cycloadduct(entry4).11The Sc(III)complex of(S,S)-Pybox-Ph(seeChart1)was similarly effective in preferably yielding the endo-isomer,with high enantioselectivity of the endo-cycloadduct(entry7).In contrast,the use of Yb(OTf)3instead of Sc(OTf)3for the preparation of the catalyst resulted in high exo-selectivity with modest enantioselectivity of both adducts(entries8-10). Although substituents on the benzene ring of the arylmethyl group showed minor effects on the diastereoselectivities,Sc(III)-catalyzed reactions of benzyloxyacetaldehyde derivatives4-8 (Scheme1)proceeded smoothly without significant loss of enan-tioselectivities of the endo-cycloadducts(Table2,entries2-6). Interestingly,in contrast to aldehydes3-8,reactions using alkyl pyruvate9and10,which were catalyzed by Sc(III)complexes, showed high exo-selectivity;this can be attributable to unfavorable dipolar interactions between the carbonyl groups of ylide2and*To whom correspondence should be addressed.E-mail:sugahio@gipwc. shinshu-u.ac.jp.Chart1Table1.Enantioselective Cycloadditions of Carbonyl Ylide2with Benzyloxyacetaldehyde(3)Catalyzed by(S,S)-Pybox-Rare Earth Metal Triflate Complexes atime b yield%ee c entry M Pybox MS4Åb temp b h%endo:exo endo exo 1Sc i-Pr no rt29155:458516 2Sc i-Pr no rt69476:248634 3Sc i-Pr no reflux28777:238816 4Sc i-Pr yes rt29688:129118 5d Sc i-Pr yes rt29385:158715 6Sc TBSm no rt29271:297518 7Sc Ph yes rt25786:149214 8Yb i-Pr no rt2999:914040 9Yb i-Pr yes rt2989:913536 10Yb Ph yes rt2quant14:86387a The reaction was carried out at-10°C in the presence of the Sc or Yb catalyst(10mol%)and Rh2(OAc)4(2mol)in CH2Cl2.b The conditions for the preparation of the catalyst.c Determined by HPLC analysis(Daicel Chiralpak AS).Absolute configuration of the product was not determined.d The reaction was carried out at-25°C.Scheme1Published on Web11/19/2002148369J.AM.CHEM.SOC.2002,124,14836-1483710.1021/ja028676c CCC:$22.00©2002American Chemical Societythe ester in the endo approach(Scheme2,Table2,entries7-10). In the case of methyl pyruvate(9),maximum enantioselectivity was78%ee,which was observed when the reaction was carried out in the presence of pyruvic acid(10mol%).Satisfactory results were obtained in terms of enantioselectivity(87%ee)when benzyl pyruvate(10)was used in the presence of the additive(entry10). From examinations using several ketones and carboxylic acids as additives and5-50mol%of pyruvic acid,10-20mol%of pyruvic acid produced the best results in terms of diastereo-and enantioselectivity.This implies that the complex of Sc(III)-Pybox-i-Pr and pyruvic acid is probably an active catalyst for high enantioselectivity in the reaction with pyruvates.Although the reaction with3-acryloyl-2-oxazolidinone(11)in the presence of(S,S)-Pybox-i-Pr-Sc(OTf)3complex(10mol%) proceeded to give cycloadducts with high regio-and endo-selectivities(Table3,entry1),asymmetric induction was only weakly observed for cycloadducts(endo,8%ee;exo,1%ee). However,in this reaction,we have found that the combination of (S,S)-Pybox-Ph and Yb(OTf)3was extremely effective in affording a high level of enantioselectivity.Under Yb(III)complex-catalyzed conditions,the exo-and endo-cycloadducts were obtained with a ratio of54:46,with89%ee of the exo-adduct(entry4).By optimizing the reaction conditions(lowering the temperature to-25°C,and slowing the addition to6h),diastereoselectivity was improved to exo:endo)88:12,12and the enantioselectivity of exo-cycloadduct was increased to98%ee(entry6).In conclusion,we were successful in carrying out highly enantiselective cycloaddition reactions of2-benzopyrylium-4-olate (2)catalyzed by chiral Pybox-rare earth metal triflate complexes. Further studies to extend this enantioselective cycloaddition meth-odology,not only for other carbonyl ylides but also for other1,3-dipoles generated from diazo compounds,are currently underway.Supporting Information Available:Representative experimental procedures and spectroscopic data of the reaction products(PDF).This material is available free of charge via the Internet at . References(1)(a)Padwa,A.;Weigarten,M.D.Chem.Re V.1996,223.(b)Padwa,A.;Hornbuckle,S.F.Chem.Re V.1991,91,263.(2)(a)Padwa,A.;Fryxell,G.E.;Zhi,.Chem.1988,53,2875.(b)Padwa,A.;Fryxell,G.E.;Zhi,L.J.Am.Chem.Soc.1990,112,3100.(3)(a)Hodgson,D.M.;Bailey,J.M.;Harrison,T.Tetrahedron Lett.1996,37,4623.(b)Hodgson,D.M.;Bailey,J.M.;Villalonga-Barber,C.;Drew,M.G.B.;Harrison,T.J.Chem.Soc.,Perkin Trans.12000,3432.(c)Kataoka,O.;Kitagaki,S.;Watanabe,N.;Kobayashi,J.;Nakamura,S.;Shiro,M.;Hashimoto,S.Tetrahedron Lett.1998,39,2371.(4)Wood,J.L.;Thompson,B.D.;Yusuff,N.;Pflum,D.A.;Mattha¨us,M.S.P.J.Am.Chem.Soc.2001,123,2097.(5)(a)Kinder,F.R.,Jr.;Bair,.Chem.1994,59,6965.(b)Padwa,A.;Sandanayaka,V.P.;Curtis,E.A.J.Am.Chem.Soc.1994,116,2667.(6)(a)Hodgson,D.M.;Stupple,P.A.;Johnstone,C.Tetrahedron Lett.1997,38,6471.(b)Hodgson,D.M.;Stupple,P.A.;Johnstone,C.Chem.Commun.1999,2185.(7)(a)Kitagaki,S.;Anada,M.;Kataoka,O.;Matsuno,K.;Umeda,C.;Watanabe,N.;Hashimoto,S.J.Am.Chem.Soc.1999,121,1417.(b)Kitagaki,S.;Yasugahira,M.,Anada,M.;Nakajima,M.;Hashimoto,S.Tetrahedron Lett.2000,41,5931.(8)(a)Suga,H.;Ishida,H.;Ibata,T.Tetrahedron Lett.1998,39,3165.(b)Suga,H.;Kakehi,A.;Ito,S.;Inoue,K.;Ishida,H.;Ibata,.Lett.2000,2,3145.(c)Suga,H.;Kakehi,A.;Ito,S.;Inoue,K.;Ishida,H.;Ibata,T.Bull.Chem.Soc.Jpn.2001,74,1115.(9)We have previously reported that asymmetric induction was observedin a ytterbium tris(S)-1,1′-binaphthyl-2,2′-diyl phosphonate-catalyzedcycloaddition of a carbonyl ylide with moderate enantioselectivity(up to52%ee).See ref8b.(10)It is noteworthy that in the presence of Sc(OTf)3or Yb(OTf)3(10mol%)without Pybox ligands,the reactions proceeded with high exo-selectivity(exo:endo)94:6or93:7).(11)Enantioselectivities in the reaction with benzaldehyde under the sameconditions were only3%ee(endo)and14%ee(exo)(28%yield,endo:exo)40:60).The reaction with benzyloxyacetaldehyde in the absenceof Sc(OTf)3did not exhibit asymmetric induction.These results indicatethat bidentate coordination of a dipolarophile to the catalyst,as a Lewisacid,is important for this reaction.(12)Although the reason is not clear at this point,only Pybox-Ph-Yb(OTf)3complex specifically exhibited exo-selectivity in contrast to the othercomplexes(Table3,entries1-3,Pybox-TBSm-Yb(OTf)3;endo:exo)77:23,Pybox-TBSm-Sc(OTf)3;endo:exo)85:15).JA028676CTable2.Enantioselective Cycloadditions of Carbonyl Ylide2withAldehydes3-8,Pyruvates9and10Catalyzed by(S,S)-Pybox-Sc(OTf)3Complexesentry dipolarophile additive atemp,°Cyield,%endo:exo%ee b13no-109688:1291(endo)24no-108285:1582(endo)35no-105391:989(endo)46no-109782:1893(endo)57no-258473:2786(endo)68no-257767:3783(endo)79no-108412:8845(exo)89yes(10mol%)c-10884:9678(exo)910no-108218:8211(exo)1010yes(20mol%)d-10887:9387(exo)a The reaction was carried out in the presence of pyruvic acid.b Determined by HPLC analysis.Absolute configuration of the product wasnot determined.c20mol%,endo:exo)6:94,72%ee(exo).d10mol%,endo:exo)7:93,82%ee(exo).Scheme2Table3.Enantioselective Cycloadditions of Carbonyl Ylide2with3-Acryloyl-2-oxazolidinone(11)Catalyzed by(S,S)-Pybox-RareEarth Metal Triflate Complexesentry M Pybox temp,°C time,a h yield,%exo:endo b%ee,exo c1Sc i-Pr-1016510:901(8)d2Sc Ph-1018611:8914(7)d3Yb i-Pr-1019012:8822(13)d4Yb Ph-1019454:46895Yb Ph-1039770:30916Yb Ph-2568988:1298a Addition time of1.b Determined by1H NMR(400MHz).c Determinedby HPLC analysis(Daicel Chiralpak AS).Absolute configuration of theproduct was not determined.d%ee of endo product.C O M M U N I C A T I O N SJ.AM.CHEM.SOC.9VOL.124,NO.50,200214837。
补充高频有机化学词汇-无重复,带音标,字母排序
精编高频有机化学词汇-无重复,带音标,字母排序Acetal ['æsitæl]【缩醛】acetic [ə'sitik] acid 【乙酸】acetic anhydride[æn`haidraid] 【乙酸酐】Acetone ['æsitəun]【丙酮】acetonitrile [ə,siːtə(ʊ)'naɪtraɪl; ,æsɪtəʊ-] 【乙腈】Acetylene [ə'setili:n]【乙炔】acid chloride【酰氯】acidify [ə'sidifai]【酸化】acidolysis [ˏæsi`dɔlisis] 【酸解(作用)】acrylic [ə'krilik] acid 【丙烯酸】acylation[ˏæsi'leiʃ(ə)n] 【酰化作用】Addition [ə'diʃən]【添加、加成】adduct [ə'dʌkt]【加合物】Aldehyde['ældihaid]【醛】aliphatic carboxylic acid 【脂肪族羧酸】Alkaline ['ælkəlain]【碱】alkane['ælkein]【烷烃】alkene['ælki:n]【烯烃】alkylation [ˏælki'leiʃ(ə)n]【烷基化】alkyne['ælkain]【炔烃】aluminum [ˏælju:'minjəm] 【铝】amide ['æmaid]【酰胺】Amidine ['æmiˏdi:n]【脒】amine[ə`min] 【胺】ammonia ['æməunjə]【氨(水)】Analogous [ə'næləgəs]【类似物】anhydrous[æn`haidrɔs]【无水的】aniline [`ænili:n]【苯胺】Anisole ['æniˏsəul]【苯甲醚】Anomeric ['ænəˏmerik] Effect 【端基异构效应】anthranilic [ænθ'rənilik] acid【邻氨基苯甲酸】Aprotic[ə'prəutik] 【非质子的】Aqueous ['eikwiəs]【水相(的)】aromatic carboxylic acid 【芳香羧酸】Asymmetric ['eisi'metrik]【不对称】Axial ['æksiəl]【直立(键)的】Azeotropic [əˏzi:ə'trɔpik]【共沸的】Aziridine【氮杂环丙烷】azomethane [ˏæzəu'meθein]【偶氮甲烷】Barbituric [ˏbɑrbi`tjurik] acid【巴比妥酸】Bench [bentʃ] 【实验台】benzoic [ben'zəuik] acid 【苯甲酸】benzoyl ['benzəuil] peroxide [pə'rɔksaid]【过氧化苯甲酰】benzyl ['benzil] 【苄基】Benzylic[ˏben'zilik]【苄基】benzyloxy [ˏbenzi'lɔksi]【苄氧基的】borane ['bəurein] 【硼烷】Brine [brain]【盐水】bromination ['brəumineiʃən]【溴代】bromine['brəumi:n]【溴】Bulky['bʌlki]【体积较大的】cadmium ['kædmiəm] oxide氧化镉calcium ['kælsiəm] chloride【氯化钙】Carbamate ['kɑ:bəmeit]【氨基甲酸酯(或盐)】Carbanion ['kɑ:bənaiən]【碳负离子】carbazole ['kɑ:bəzəul]【咔唑】Carbocation [ˏkɑ:bə'keiʃən]【碳正离子】Carbonic [kɑ:'bɔnik] acid 【碳酸】Carbonyl ['kɑ:bənil]【羰基】Carboxylic [ˏkɑ:bɔk'silik] 【羧基的】Carobohydrate['kɑ:bəu'haidreit]【碳水化合物】catalysis [kə'tælɪsɪs] n.【催化(作用)】catalyst ['kætəlɪst] n.【催化剂】Catalytical [kætə`litikəl] adj.【催化的】cesium ['sizɪəm] carbonate【碳酸铯】Chamber ['tʃeimbə]【(薄层用)展缸】chemical shift 【化学位移】Chemoselectivity 【化学选择性】chiral [`kairəl] 【手性的】chlorination[ˏklɔ:ri'neiʃən]【氯代】chlorine['klɔ:ri:n]【氯】chloroform ['klɔ(:)rəfɔ:m]【氯仿】Chloroformate[ˏklɔ:rə'fɔ:meit]【氯甲酸脂】chloromethylation[klɔ:rəˏmeθi'leiʃən【氯甲基化】chlorosulfonation [ˏkləurəˏsʌlfə'neiʃən]【氯磺化】Cleavage【分离,脱除】Cocaine[kə'kein]【可卡因】column chromatography【柱层析】Component [kəm'pəunənt]【组分】Concentrate ['kɔnsentreit]【浓缩】condensed sulfuric [sʌl'fjuərik] acid【浓硫酸】Condenser [kən'densə]【冷凝管】Confirmation [ˏkɔnfɔ:'meiʃən] 【构型】conjugate ['kɑndʒəɡet] addition【共轭加成】conjugation [ˏkɔndʒu'geiʃən]【偶和】conversion [kən'və:ʃən] ratio ['reiʃiəu] 【转化率】copper cyanide ['saɪə,naɪd] 【氰化亚铜】coupling constant 【偶合常数】Crystalline ['kristəlain]【晶体】cuprous ['kju:prəs] cyanide['saiənaid]【氰化亚铜】cycloaddition [,saikləuə'diʃən] 【环加成】Decarboxylation [ˏdikɑ:ˏbɔksə'leiʃən]【脱羧】Decompose [ˏdi:kəm'pəuz]【分解】degradation [ˏdegrə'deiʃən]【降解】dehydrate [di:'haidreit]【脱水】Deprotection【脱保护】Derivative [di'rivətiv]【衍生物】Dessicator ['desikeitə:]【干燥剂】DI (de-ion) water【去离子水】diastereomer ['daiə,steriəu'aisəmə, ,daiə'steriəumə] 【非对映异构体】Diastereotopic [ˏdaiəstiəriə'tɔpik] 【非对映的】diazo compound 【重氮化合物】diazonium [ˏdaiə'zəuniəm]salt【重氮盐】dichloromethane [daiˏklɔ:rə'meθein]【二氯甲烷】Diethyl [daɪ'ɛθəl] ether 【乙醚】dilation [dai'leiʃən]【膨胀】dilute [dai'lju:t] 【稀释】Dimethyl sulfide['sʌlfaid]【二甲硫醚】Dioxane [dai'ɔksein]【二噁烷】Dipole['daipəul]【偶极】displacement [dis'pleismənt] 【取代】dissolve [di'zɔlv]【溶解】Distillation [ˏdisti'leiʃən]【蒸馏】Dry ice trap【干冰冷阱】Eclipse [i'klips] 【使失色】Electron deficency【缺电子】Electron donating group【供电基】Electron rich【富电子】Electron withdrawing group【吸电基】electronegativity [ɪ'lektrəʊ,neɡə'tɪvətɪ] 【电负性】electrophile [i`lektrəfail] 【亲电试剂】electrophilic [i,lektrəu'filik] substitution 【亲电取代】Elimination [iˏlimi'neiʃən]【消除】Eluent ['eljuənt]【淋洗液】emulsification [iˏmʌlsifi'keiʃən] 【乳化】Enamine [i'næmin]【烯胺】Enantiomer [ɪ'næntiəmɚ] 【对映异构体】Enantioselective [eˏnæntiəsi'lektiv] 【对映选择性的】enol['i:nɔl]【烯醇】Enone ['i:nɔn]【烯酮】Enzyme ['enzaim]【酶】epimerization [,ɛpɪmərɪ'zeʃən] 【差向异构】Epoxide [e'pɔksaid]【环氧化物】epoxyethane [e'pɔksiθein]【环氧乙烷】Equatorial [ˏekwə'tɔ:riəl]【平伏(键)的】Equilibrium [ˏi:kwi'libriəm]【平衡】equivalent [i'kwivələnt]【当量的】ester amide exchange 【胺酯交换】Ester['estə]【酯】Esterification[esˏterifi'keiʃən]【酯化】Ethanol ['eθənɔl]【乙醇】Ether ['i:θə]【醚】Ethyl ['eθil]【乙基】Ethyl acetate ['æsiˏteit]【乙酸乙酯】ethylene ['ɛθɪlin] 【乙烯】Evaporation [iˏvæpə'reiʃən] 【蒸发】Filter ['filtə]【过滤器】Filter Cake【滤饼】Filtrate ['filtreit]【滤液】Filtration [fil'treiʃən]【过滤】fluorination[ˏflu:əri'neiʃən]【氟代】fluorine['fluəri:n]【氟】formalin ['fɔ:məlin] 【甲醛溶液】Formic['fɔmik] acid 【甲酸】fuming nitric ['naitrik] acid【发烟硝酸】Functional ['fʌŋkʃənl] group【官能团】Furan ['fjuəræn]【呋喃】Gauche [gəuʃ] 【构象】Glovebox [glʌvə'bɔks]【手套箱】glycerol['glisəˏrɔl]; glycerin ['glisərin] 【甘油,丙三醇】Glycine ['glaisi:n]【氨基乙酸】glycol['glaikɔl] 【乙二醇】Glycoside ['glaikəˏsaid]【糖苷】Guanidine ['gwænədi:n]【胍】Guanine ['gwɑ:ni:n]【鸟嘌呤】halide['hælaid]【卤化物】halogen['hælədʒən]【卤素】harsh [hɑ:ʃ] 【(反应)苛刻的】heating mental ['mentl]【加热套】hemiacetal [,hemi'æsitæl] 【半缩醛】heterogeneous [ˏhetərəu'dʒi:niəs] 【非均相的】heterolysis [ˏhetə'rɔlisis] 【异裂】homogeneous [ˏhɔməu'dʒi:njəs]【均相的】homolysis [hɔ'mɔlisis] 【均裂】Hood [hud] 【通风橱】HPLC【高效液相色谱】hydrazide [`haidrəˏzi:n]【酰肼】hydrazine [`haidrəˏzi:n]【肼】hydrazone [`haidrəˏzəun]【腙】hydrochloric [,haɪdrə'klorɪk] acid 【盐酸】Hydrogen ['haidrəudʒən] 【氢】Hydrogenolysis [ˏhaidrəudʒə'nɔləsis]【氢化】Hydrogenous [hai'drɔdʒinəs] 【含氢的】hydrolysis [hai`drɔlisis] 【水解(作用)】hydroxyl[hai`drɔksil] groups 【羟基】Hygroscopic [ˏhaigrəu'skɔpik] 【吸湿的】Hypochlorite [ˏhaipəu'klɔ:rait] 【次氯酸盐】Imidazole [ˏimi'dæzəul]【咪唑】Imide['imaid]【酰亚胺】Imine['imi:n]【亚胺】Impuritiy [im'pjuəriti]【杂质】in large scale【大量】indazole ['indəzəul]【吲唑】indole [' indəul]【吲哚】Infrared ['infrə'red]【红外】Intermolecular [ˏintə:mə'lekjulə]【分子间的】Intramolecular [ˏintrəmə'lekjulə]【分子内的】Introduction【引入】iodination['aiədineiʃən]【碘代】iodine['aiədain]【碘】i-Propanol['prəupænəl]【异丙醇】Irradiation [iˏreidi'eiʃən]【光照】Isocynate [aisəu'saiəneit]【异氰酸酯(或盐)】isomer ['aisɔmə] 【同分异构体】Isomerization [aiˏsɔmərai'zeiʃən]【异构化】isoquinoline【异喹啉】Isothiocynate [aisəuˏθaiəu'saiəneit]【异硫氰酸酯】isotope ['aisəutəup] 【同位素】ketal 【缩酮】Ketone['ki:təun]【酮】Kinetic [kai'netik]【动力学的】Labile ['leibail]【不稳定的】Lachrymator ['lækriˏmeitə]【催泪剂】Lactam['læktæm]【内酰胺】Lactone['læktəun]【内酯】LC-MS【液质联用仪】Lead[li:d] acetate['æsiˏteit]【醋酸铅】Ligand ['laigənd]【配体】linear['liniə]【直链的】Lipophilic [ˏlipə`filik] 【亲脂性的】lithiu m ['liθiəm] 【锂】lyophilization [lai,ɔfilai'zeiʃən, -li'z-] 【冻干法】magnesium[mæg'ni:zjəm] sulfate['sʌlfeit]【硫酸镁】Mechanical [mi'kænikl] stirring apparatus [ˏæpə'reitəs]【机械搅拌装置】Mechanism ['mekənizəm]【机理】Meta-['metə]【间-, 偏-,次-】Methanol ['meθənɔl]【甲醇】Method ology [meθə'dɔlədʒi]【方法学】Methoxyl [me'θɔksil]【甲氧基】Methyl ['meθil]【甲基】Microwave ['maikrəuweiv]【微波】Migration [mai'greiʃən]【迁移】mild [maild]【(反应)温和的】miscible ['misibl]【混溶的】Molecular [məu'lekjulə]sieve[siv]【分子筛】Morphine['mɔ:fi:n]【吗啡】Morpholine['mɔ:fɔˏli:n]【吗啡啉】natural product 【天然产物】n-Butanol['bjutənəul]【正丁醇】N-butyllithium 【正丁基锂】neutralize ['nju:trəlaiz] 【中和】n-hexane [hek'sein]【正己烷】Nickel ['nikl] 镍nitration[nai'treiʃən]【硝化】nitrile [`naitrail]【腈】Nitrogen ['naitrədʒən] 【氮】Nitromethane[ˏnaitrə'meθein]【硝基甲烷】Nitrosation [naitrə'seiʃə:n] 【亚硝化】nucleophilic [,nju:kliəu'filik] substitution【亲核取代】nucleophilic [ˏnju:kliəu'filik] 【亲核的】Olefin ['əuləfin]【烯烃】Oligosaccharide[ˏɔligəu'sækəraid]【寡糖】Organometallic[ˏɔ:gənəumi'tælik]【有机金属的】Ortho-['ɔθə]【邻-,正-,原-】Orthoformate[ˏɔθə'fɔmeit] 【原甲酸脂】Oxalic acid [ɔk'sælik]【草酸】Oxazole 【恶唑】oxidation[ɔksi'deiʃən] 【氧化】oxime ['ɔksi:m]【肟】Oxygen ['ɔksidʒən] 【氧】ozonolysis [ ,əuzəu'nɔlisis ] 【臭氧分解】Palladium [pə'leidiəm]【钯】Para-['pærə]【对-,仲-,副-】Peptide ['peptaid]【肽】pericyclic [peri'saiklik] reaction【周环反应】Petroleum [pi'trəuliəm] ether【石油醚】Phenol ['fi:nəl]【苯酚】phenyl ['fenəl]【苯基】Phosgene['fɔzdʒi:n]【光气】phosphorous ['fɔsfərəs] tribromide[trai'brəumaid]【三溴化磷】phosphorus ['fɔsfərəs] 【磷】phosphorus oxychloride [ˏɔksi'klɔ:raid]【三氯氧磷】Phthalimide['θælimaid]【邻苯二甲酰亚胺】piperazine [pi'perəzi:n]【哌嗪】piperidine [pi'peridi:n]【哌啶】Poisoned ['pɔiznd]【中毒的】poly phosphoric [fɔs'fɔrik] acid 【多聚磷酸】Polymerization[ˏpɔlimərai'zeiʃən]【聚合】potassium[pə'tæsiəm] hydroxide [hai`drɔksaid]【氢氧化钾】Precursor [pri(:)'kə:sə] 【前体】Preparative [pri'pærətiv] TLC【制备薄层色谱】Primary ['praiməri]【伯-】protease ['prəutieis]【蛋白酶】Protic ['prəutik]【质子的】Proton ['prəutɔn]【质子】Purging ['pə:dʒiŋ]【鼓气】Purification [ˏpjuərifi'keiʃən]【纯化】pyridine ['piridi:n]【吡啶】pyrimidine[piri'midi:n]【嘧啶】pyrolidine[pi'rəuliˏdi:n] 【四氢吡咯】pyrolysis [ˏpaiə'rɔlisis] 【热解】pyrrole ['piərəul]【吡咯】Quaternisation[kwɔtənai'seiʃən]【季铵盐化】Quench [kwentʃ]【淬灭】quinoline ['kwinəli:n]【喹啉】quinoxaline [kwi'nɔksəli:n]【喹喔啉】racemic [rə'si:mik]【消旋的】Radical ['rædikəl] initiator [i'niʃieitə]【自由基引发剂】reactant [ri:'æktənt]【反应物】Rearrangement [ˏri:ə'reindʒmənt]【重排】Recrystallization ['rikristəlai'zeiʃən]【重结晶】Reduced [ri'dju:st] pressure 【减压】reduction[ridʌkʃən] 【还原】Regioselective ['ri:dʒəu si'lektiv] 【区域选择性的】Removal [ri'mu:vəl]【除去】Rotavapor [ˏrəutə'veipə]【旋蒸】Route [`raut]【路线】Run column【用柱层析分离】salicylate [sæ'lisileit]【水杨酸酯(或盐)】saponification [səpɔnifi'keiʃən]【皂化】saturated ['sætʃəreitid]【饱和的】Scheme [ski:m]【图示】Secondary ['sekəndəri]【仲-】Selenium[si'li:niəm]【硒】Separation [sepə'reiʃən]【分离】Separatory/ addition/ Büchner funnel ['fʌnəl]【分液/加料/布什】side chain【侧链】silicon ['silikən] oil bath 【(硅)油浴】sink [siŋk]【水槽】sodium azide [`eizaid]【叠氮化钠】sodium bicarbonate [bai'kɑ:bənit]【碳酸氢钠】sodium borohydride [ˏbɔ:rə'haidraid]【硼氢化钠】sodium carbonate【碳酸钠】Sodium Citrate ['sitrit]【柠檬酸钠】sodium hydride [haidraid] 【氢化钠】Sodium Hydrosulfite [ˏhaidrəu'sʌlfait]【连二亚硫酸钠、保险粉】sodium nitrite ['naitrait]【亚硝酸钠】sodium sulfate 【硫酸钠】sodium thiosulfate [ˏθaiəu'sʌlfeit]【硫代硫酸钠】spatula ['spætjulə] 【刮刀】Stability [stə'biliti]【稳定性】Stereoselectivity [ˏstiəriəˏsilek'tiviti]【立体选择性】Steric ['sterik] hindrance[`hindrəns] 【立体位阻】Steroid['stirɔid]【甾族化合物】stirbar 【搅拌子】Stoichiometric [ˏstɔikiəuˋmєtrik] 【化学量的】Stopcock ['stɔpkɔk] 【旋塞阀】Stopper ['stɔpə]【塞子】Strategy ['strætidʒi]【策略】Sublimation [ˏsʌbli'meiʃən] 【升华】substituent [sʌb'stitjuənt]【取代基】Substrate ['sʌbstreit]【底物、培养基】Sulfonamide【sʌl'fɔnəmaid】【磺酰胺】sulfonation[ˏsʌlfə'neiʃən]【磺化】sulfone ['sʌlfəun] 【砜】Sulfonyl['sʌlfənil]chloride【磺酰氯】sulfoxide [sʌl'fɔksaid]【亚砜】Sulfur['sʌlfə]【硫】susceptible [sə'septəbl]【易受影响的】Synthesis ['sinθisis]【合成】Synthon ['sinθɔn]【合成子】Syringe ['sirindʒ]【注射器】Tare [tєə]【去皮】Tautomer ['tɔ:təmə]【(互变)异构体】Tertiary ['tə:ʃəri]【叔-】theoretical yield [,θiə'rɛtɪkəl]【理论产率】Thermodynamic ['θə:məudai'næmik]【热力学的】Thiazole [θaɪ'eɪzəʊl] 【噻唑】Thin-layer-chromatography [ˏkrəumə'tɔgrəfi] TLC【薄层色谱】Thiocyanate[θaiəu'saiəneit]【硫氰酸酯】Thiolate ['θaiəuleit]【硫醇脂(或盐)】thionyl['θaiənil] chloride【氯化亚砜】thiophene ['θaiəˏfi:n] 【噻吩】Thiourea [ˏθaiəujuə'riə]【硫脲】Tin(II) chloride【二氯化锡】Titration [tai'treiʃən]【滴定】toluene ['tɔljui:n] 【甲苯】Transesterification [trænsəsˏterəfi'keiʃən]【酯交换】Transformation [ˏtrænsfə'meiʃən]【转化】transition [træn'ziʒən] state 【过渡态】Triethylamine [traiˏeθələ'mi:n]【三乙胺】triflate[trifleit]【三氟甲磺酸酯(或盐)】trifluoroacetate [traifluərə'æsiteit]【三氟乙酸酯(或盐)】Triphenylphosphine [traiˏfenəl'fɔsfi:n] oxide ['ɔksaid] 【三苯氧磷】Triphosgene【三光气】Trituration [tritju'reiʃən]【研磨】Ultrasonication[ˏʌltrəˏsɔni'keiʃən]【超声作用】ultraviolet ['ʌltrə'vaiəlit] active【紫外显色】Urea ['juəriə]【尿素】Vacuum ['vækjuəm] 【真空】vacuum hose [həuz]【真空管】vacuum pump [pʌmp]【真空泵】volatile ['vɔlətail]【易挥发的】Volumetric [vɔlju'metrik] 【测体积的】Weighing ['weiiŋ] paper【称量纸】xylene ['zaili:n]【二甲苯】Zinc[ziŋk] 【锌】。
吩噻嗪类衍生物
1. Introduction Phenothiazines are important psychotropic compounds, but they also have further biological activities.1–3 For example, phenothiazines have recently been considered as potential drugs in the management of CreutzfeldtJacob disease.4 Metabolism of phenothiazine-based drugs often results in the formation of 7-hydroxylated derivatives or 5-sulfoxides.5–7 Because oxidation of asymmetrically substituted phenothiazines at the S(5) position introduces a new stereogenic center, these 5-sulfoxides are chiral. Although chiral 5-sulfoxide metabolites of the phenothiazine drug thioridazine in human plasma were separated by HPLC,8 to date optically active phenothiazine 5-oxides have not been obtained on preparative scale. Hence, stereoselective methods for the synthesis of optically active phenothiazine-5-oxides would extend the possibilities for investigation of the S -oxide metabolites of phenothiazine-based drugs.
二氟尼柳美国药典
Diflunisal Tablets» Diflunisal Tablets contain not less than 90.0 percent and not more than 110.0 percent of the labeled amount of C13H8F2O3.Packaging and storage— Preserve in well-closed containers.USP Reference standards 11—USP Diflunisal RS.Identification—A: The retention time of the major peak in the chromatogram of the Assay preparation corresponds to that of the Standard preparation, obtained as directed in the Assay.B: Transfer a quantity of finely ground Tablets, equivalent to about 100 mg of diflunisal, to a 10-mL volumetric flask, add 2 mL of water, and sonicate for 5 minutes. Dilute with methanol to volume, sonicate for an additional 5 minutes, mix, and filter. Separately apply 10 µL each of the filtrate and a Standard solution of USP Diflunisal RS in methanol solution (4 in 5) containing 10 mg per mL to a thin-layer chromatographic plate (see Chromatography 62) coated with a 0.25-mm layer of chromatographic silica gel mixture.Develop the chromatogram in a solvent system consisting of n-hexane, glacial acetic acid, and chloroform (17:3:2) until the solvent front has moved aboutthree-fourths of the length of the plate. Remove the plate from the chamber, air-dry, and examine under long-wavelength UV light: the RF value of the principal spot in the chromatogram of the test solution corresponds to that obtained from the Standard solution.Dissolution 71—pH 7.20, 0.1 M Tris buffer— Dissolve 121 g of tris (hydroxymethyl) aminome thane (THAM) in 9 liters of water. Adjust the solution with a 7 in 100 solution of anhydrous citric acid in water to a pH of 7.45, at 25. Dliters, equilibrate to 37, a H of 7.20, if necessary.Medium: pH 7.20, 0.1 M Tris buffer; 900 mL.Apparatus 2: 50 rpm.Time: 30 minutes.Procedure— Determine the amount of C13H8F2O3 dissolved from UV absorbances at the wavelength of maximum absorbance at about 306 nm of filtered portions of the solution under test, suitably diluted with pH 7.20, 0.1 M Tris buffer, in comparison with a Standard solution having a known concentration of USP Diflunisal RS in the same Medium.Tolerances— Not less than 80% (Q) of the labeled amount of C13H8F2O3 is dissolved in 30 minutes.Uniformity of dosage units 90: mProcedure for content uniformity—Transfer 1 finely powdered Tablet to a200-mL volumetric flask, add 50 mL of water, shake by mechanical means for 30 minutes, and sonicate for 2 minutes. Add 100 mL of alcohol to the flask, shake by mechanical means for 15 minutes, and sonicate for 2 minutes. Dilute with alcohol to volume, mix, and centrifuge a portion of the solution. Quantitatively dilute an accurately measured volume of the resultant clear supernatant with alcohol, if necessary, to obtain a test solution containing about 1.25 mg per mL. Transfer about 125 mg of USP Diflunisal RS, accurately weighed, to a 100-mL volumetric flask, add 75 mL of alcohol to dissolve, dilute with water to volume, and mix to obtain the Standard solution. Transfer 3.0 mL each of the Standard solution and the test solution to separate 50-mL volumetric flasks. To each flask add 5.0 mL of a solution containing 1 g of ferric nitrate in 100 mL of 0.08 N nitric acid, dilute with water to volume, and mix. Concomitantly determine the absorbances of the solutions at the wavelength of maximum absorbance at about 550 nm, with a suitable spectrophotometer, using water as the blank. Calculate the quantity, in mg, of C13H8F2O3 in the Tablet by the formula:(TC / D)(AU / AS)in which T is the labeled quantity, in mg, of diflunisal in the Tablet; C is the concentration, in µg per mL, of USP Diflunisal RS in the Standard solution; D is the concentration, in µg per mL, of diflunisal in the test solution, based uponthe labeled quantity per Tablet and the extent of dilution; and AU and AS are the absorbances of the solutions from the test solution and the Standard solution, respectively.Assay—Mobile phase—Prepare a suitable degassed mixture of water, methanol, acetonitrile, and glacial acetic acid (45:40:17:6) such that the retention time of diflunisal is about 8 minutes.Standard preparation— Dissolve a suitable quantity of USP Diflunisal RS in a mixture of acetonitrile and water (60:40) to obtain a solution having a known concentration of about 1.0 mg per mL.Assay preparation—Weigh and finely powder not fewer than 20 Tablets. Transfer an accurately weighed portion of the powder, equivalent to about 100 mg of diflunisal, to a 100-mL volumetric flask containing about 5 mL of water. Sonicate for 5 minutes, add 60.0 mL of acetonitrile, sonicate for an additional 5 minutes, dilute with water to volume, mix, and filter.Chromatographic system (see Chromatography 62)—The liquid chromatograph is equipped with a 254-nm detector and a 3.9-mm × 30-cm column that contains packing L1.The flow rate is about 2.0 mL per minute. Chromatograph the Standard preparation, and record the peak responses as directed for Procedure: the tailing factor for the analyte peak is not more than 2.0, and the relative standard deviation for replicate injections is not more than 2.0%.Procedure— Separately inject equal volumes (about 20 µL) of the Standard preparation and the Assay preparation into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of diflunisal (C13H8F2O3) in the portion of Tablets taken by the formula:100C(rU / rS)in which C is the concentration, in mg per mL, of USP Diflunisal RS in the Standard preparation; and rU and rS are the peak responses obtained from the Assay preparation and the Standard preparation, respectively.。
ICH术语表
ICH领域专业术语表(质量、安全性)序号英文中文1"relevant" viruses and "model" viruses“相关”病毒和“模型”病毒225-fold AUC radio25倍的AUC比值3 a single 2 generation study单项包括两代(生殖毒性)的研究4abbreviated or abridged application简略申请5abnormal karyology异常核形6abortions流产7absorbed moisture吸附水8absorption吸收9acceptable daily intake可接受的日摄入量10acceptable test加速试验11acceptance criteia认可标准12accuracy准确性13accuracy准确度14acelerated/stress stability studies加速/强力破坏稳定性研究15acentric fragment无着丝点片段16acetylation 乙酰化作用17achiral assay非手性测定18achlorhydric eldderly老年性胃酸缺乏症19acridine orange吖啶橙20action limits内控限值21active components/compound/moiety活性成分22active ingredient活性组分23active metabolite活性代谢产物24adaption to specific culture conditions特定培养条件的适应25additional test 附加实验26additions添加剂27adduct加合物28adequate exposure充分暴露29adjuvant 佐剂30ADME吸收、分布、代谢、排泄31administration period给药期32adventitious agents外源性因子33adventitious contaminants外来污染物34adventitious viral or mycoplasma contamination外源性病毒或支原体污染35adventitious viruses外源病毒36advers effect不良反应37adverse reaction不良反应38aerobic microorganisms需氧微生物39affinity亲和力40affinity chromatography亲和层析41affinity column亲和柱42against humanised proteins serum antibodies抗人源蛋白血清抗体 43agar and broth琼脂和肉汤44aggregates 聚合体45aggregation聚集46aginal smear阴道涂片 47air ighting reflex空中翻正反射48alkylating electrophilic center烷化亲电子中心49allele基因突变产生的遗传因子50allergenic/allergic extracts过敏原抽提物51allergic reactions过敏性反应(变应性反应)52altenative validated test有效替代试验53altered conjugated forms改变的结合物形式54altered growth 生长改变55ambient condition自然条件56amino acid composition氨基酸组成57amino acid sequence氨基酸顺序58amino acids氨基酸59amino sugars氨基糖60amino-terminal amino acids氨基端氨基酸61ammonia production Rates产氨率62ammoniun sulphide staining of the uterus子宫硫化胺染色 63analogue类似物(同系物)64analogue series of substances同系物65analyte 被测物66analytical method 分析方法67analytical procedure分析方法68anaphase分裂后期69aneuploidy非整倍体70aneuploidy inducer非整倍体诱导剂71animal cell lines动物细胞系72animal tissues or organs动物组织或器官73antennary profile 触角形状74antibiotic resistance genes抗生素耐药基因75antibiotics抗生素76antibody抗体77antibody production tests抗体产生试验78antigenic specificity抗原特异性79antisera抗血清80apoptosis凋亡81applicant申报者82art and ethical standards技术和伦理标准83ascites腹水84assay含量测定85assay procedure定量方法86assessment of genotoxicity遗传毒性评价87attainment of full sexual function达到性成熟 88AUC曲线下面积89auditory startle relex惊愕反射(听觉惊跳反射)90autoimmune自身免疫91autoradiographic assessment放射自显影评价92autoradiography放射自显影93avian鸟类94avidity亲和性95background 背景96bacteria细菌97bacterial mutagenicity test细菌致变突试验98bacterial reverse mutation test细菌回复突变试验99bacterial strains菌株100bacterial test organisms微生物试验菌101base pairs碱基对102base set of strains基本菌株103base substitution碱基置换104batches批次105batch-to-batch逐批106between-assay variation试验间变异107binary fission双数分裂108binding assays结合试验109bioanalytical method生物学分析方法110bioavaiability生物利用度111bioburden生长量/生物负荷112biochemical methods生化方法113bioequivalency生物等效性114biohazard enformation生物有害信息115biological activity生物活性116biological products生物制品117biological relevance生物学意义118bioreactor生物反应器119biotechnological products生物技术产品120biotechnological/biological products生物技术/生物制品121biotechnology-derived pharmaceuticals生物技术药物122biphasic curve双相曲线123birth出生124blood plasma factors血浆因子125body burden机体负担126body fluids体液127bone marrow cell骨髓细胞128bouin's fixation包氏液固定129bovine牛130bovine spongiform encephalopathy(BSE)疯牛病131bracketing括号法132breakage of chromatid染色单体断裂133breakage of chromosome染色体断裂134breeding conditions饲养条件135bridging character桥梁作用136by-products副产物137C(time)一定剂量、某一时间的浓度138calibrate标化139canine犬140cap liner瓶帽内垫141capillary electrophoresis毛细管电泳142carbohydrate碳水化合物143carboxy-terminal amino acids羧基端氨基酸144carcinogen致癌物质145carcinogenesis致癌性146carcinogenic hazard致癌性危害147carcinogenicity bioassay致癌性生物检测148carcinogenicity potential of chemical化合物的潜在致癌性149carcinoginicity(oncogenicity)致癌(致瘤)150cardiovascular心血管151carrier载体/担体152case-by-case个例153catalysts催化剂154cell bank 细胞库155cell bank system细胞库系统156cell banking procedures细胞建库过程157cell banking system细胞库系统158cell culture-derived impurities来源于细胞培养基的杂质159cell cultures 细胞培养物160cell cultures 细胞培养161cell expansion细胞扩增162cell fusion细胞融合163cell line细胞系164cell lines 细胞系165cell membrane lipid细胞膜脂质层166cell metabolites细胞代谢物167cell pooling细胞混合168cell proliferation细胞增植169cell replication system细胞复制系统170cell substrate-derived impurities 来源于细胞基质的杂质171cell substrates细胞基质172cell suspension细胞悬液173cell viability细胞活力174cell-derived biological products细胞来源的生物制品175cell-mediated immunity细胞介导的免疫176cellular blood components血细胞成分177cellular therapy细胞治疗178cemadsorbing viruses红细胞吸附病毒179central nervous systems中枢神经系统180cerbral spinal fluid脑脊液181characterization and testing of cell banks细胞库鉴定及检测182charcoal活性炭183charge电荷184chemical actionmertric system化学光化线强度系统185chemical nature化学性质186chemical reactivity 化学反应性187chemical syntheses化学合成188chemically inert化学惰性189chewable tablets咀嚼片190childbeering potential生育可能性191chinese hamster V79 cell中国仓鼠V79细胞192chiral impurities手性杂质193CHL cell中国仓鼠肺细胞194CHO cell中国仓鼠卵巢细胞195chromatide染色单体196chromatograms色谱图197chromatographic behavior色谱行为198chromatographic procedures色谱方法199chromatography columns色谱分离柱200chromosomal aberration染色体畸变201chromosomal damage染色体损伤202chromosomal integrity染色体完整性203chronic toxicity testing 慢性毒性试验204circular dichroism圆二色性205classfical biotransformation studies经典的生物转化试验206clastogen染色体断裂剂207clastogenic致染色体断裂的208clearance studies清除研究209cleavage of the balanopreputial gland 龟头包皮腺裂开210climatic zones气候带211clinical indication临床适应证212clinical research临床研究213clinical trial application 临床试验申请214clisure闭塞物215cloning 克隆216cloning efficiency克隆形成率217closure of hard palate硬腭闭合218C max峰浓度219coat growth毛发生长220code number编号221coding sequence编码序列222coefficient of variance变异系数223collaborative studies协作实验研究224colony isolation菌落分离225colony sizing集落大小226colony-stimulating factors集落刺激因子227combination product复方制剂228comparative trial对比试验229complement binding补体结合230completely novel compound全新化合物231components成分232compound bearing stuctural alerts结构可疑化合物233concentration threshold阈浓度234conception受孕235concomitant toxicokinetics相伴毒代动力学236confidence interval置信区间237confidence limits可信限238confirmatory studies确认研究239conformance to specifcations符合规范240conformation构型241conjugated product连接产物242conjugation连接243consistency一致性244container容器245container/closure容器/闭塞物246container/closure integrity testing 容器/密封完整性试验247contaminants污染物248contaminated cell substrate污染的细胞基质249content uniformity含量均匀度250continuous treatment 连续接触251control methodology控制方法学252controlled released product控释制剂253conventional live virus vaccines传统的活病毒疫苗254conventional vaccines传统疫苗255cool white fluorescent冷白荧光灯256corpora lutea黄体257corpora lutea count黄体数258correction factor校正因子259correlation coefficient相关系数260covalent or noncovalent共价或非共价261creams霜剂262cross-contamination交叉污染263cross-linking agent交联剂264cross-reactivity交叉反应265cryopreservation冷冻保存266cryoprotectants防冻剂267crystals晶体268culture components 培养基成分269culture condiction培养条件270culture confluency培养克隆率271culture confluenty培养融合272culture media/medium培养基273culture medium培养基274cyanogen bromide溴化氰275cytogenetic细胞遗传学的276cytogenetic change细胞遗传学改变277cytogenetic evaluation细胞遗传学评价278cytokines细胞因子279cytopathic细胞病的280cytoplasmic A-and R-type particles细胞浆a型和r型颗粒281cytotoxicity细胞毒282dark control暗度控制283dead offspring at birth 出生时死亡的子代284deamidation去氨基285deaminated去酰胺化的286deamination脱氨基287decision flow chart/tree判断图288definable and measurable biological activity明确和可测定的生物学活性289degradant降解产物290degradation降解291degradation pathway降解途径292degradation product降解产物293degradation profile降解概况294degree of aggregation 凝集度295degree of scatter离散程度296delay of parturition分娩延迟297delayed-release延迟释放298deleterious有害的299deletion缺失300delivery systems给药体系301derivatives衍生物302description 性状303descriptive statistics描述性统计304detection limit检测限度305detection of bacterial mutagen细菌诱变剂检测306detection of clastogen染色体断裂剂检测307determination of metabolites测定代谢产物308development of the offspring 子代发育309developmental toxicity发育毒性310dilivery systems释放系统311dilution ratio释放倍数312dimers二聚体313diminution of the background lawn背景减少314diode array二极管阵列315diploid cells二倍体细胞316direct genetic damage 直接遗传损伤317dissociation解离318dissolution testing溶出试验319dissolution time溶出时间320distribution分布321DNA adduct DNA加合物322DNA damage DNA损伤323DNA repair DNA修复324DNA strand breaks DNA链断裂325dosage form剂型326dose dependence剂量依赖关系327dose escalation剂量递增328dose level剂量水平329dose -liming toxicity剂量限制性毒性330dose-ranging studies剂量范围研究331dose-related剂量相关 332dose-relatived cytotoxicity剂量相关性细胞毒性333dose-relatived genotoxic activity剂量相关性遗传毒性334dose-relatived mutagenicity剂量相关性诱变性335dose-response curve剂量-反应曲线336dosing route给药途径337downstream purification下游纯化338drug product制剂339drug product components制剂组方340drug substances原料药341duration周期342duration of pregnancy妊娠周期343eaning断奶344earlier physical malformation早期身体畸形345early embryonic development早期胚胎发育346early embryonic development to implantation着床早期的胚胎发育347ectromelia virus脱脚病病毒348elastomeric closures橡皮塞349electro ejaculation电射精350electron microscopy(EM)电镜351electrophoresis电泳352electrophoretic pattern电泳图谱353elimination消除354elution profile洗脱方案355embryofetal deaths胚胎和胎仔死亡356embryo-fetal development 胚胎-胎仔发育357embryo-fetal toxicity胚胎-胎仔毒性358embryonated eggs鸡胚359embryonic death胚胎死亡360embryonic development胚胎发育361embryonic period胚胎期362embryos胚胎 363embryotoxicity胚胎毒性364enantiomer对映体365enantiomer对映异构体366enantiomeric镜像异构体367enantioselective对映体选择性368encephalomyocarditis virus(EMC)脑心肌炎病毒369end of pregnancy怀孕终止370endocytic 内吞噬(胞饮)371endocytic activity内吞噬活性372endogenous agents内源性因子373endogenous components内源性物质374endogenous gene内源性基因375endogenous proteins内源性蛋白376endogenous retrovirus内源性逆转录病毒377endonuclease核酸内切酶378endonuclease release form lysosomes溶酶体释放核酸内切酶379endotoxins内毒素380end-point终点381end-product sterility test-ing最终产品的无菌试验382enhancers增强子383enveloped RNA viruses包膜RNA病毒384environmental factors环境因素385enzymatic reaction rates酶反应速率386enzyme酶387epididymal sperm maturation附睾精子成熟性388epitope表位389epitope抗原决定部位390Epstein-Barr virus (EBV)EB病毒391equine马392error prone repair易错性修复393erythropoietins促红细胞生成素394escalation递增395escherichia coli starn大肠杆菌菌株396esscherichia coli 大肠杆菌397ethnic origin种族起源398eukaryotic cell真核细胞399evaluation of test result试验结果评价400ex vivo体外401exaggerated pharmacological response超常增强的药理作用402excipient赋形剂403excipient specifications赋形剂规范404excretion排泄(消除)405expiration date/dating失效日期406exposure assessment 接触剂量评价407exposure level暴露程度408exposure period光照时间409exposure period接触期410expression constract表达构建体411expression system表达系统412expression vector表达载体413extended-release延时释放414extent of the virus test病毒测试的程度415external metabolising system体外代谢系统416extinction coefficient消光系数417extrachromosomal染色体外418extraneous contaminants外源性污染物419extrapolation 外推法420F1-animals子一代动物421false negative result假阴性结果422false positive result假阳性结果423fecundity多产424feed-back反馈425fermentation发酵426fermentation products发酵产品427fertilisation受精428fertility生育力429fertility studies生育力研究430fetal abnormalities胎仔异常431fetal and neonatal parameters胎仔和仔鼠的生长发育参数432fetal development and growth胎仔发育和生长433fetal period 胎仔期434fetotoxicity胎仔毒性435fill volume装量436filter aids 过滤介质437final manufacturing最终生产438finished product成品439first pass testing 一期试验440flanking region侧翼区441fluorescence in situ hybridisation (FISH)原位荧光分子杂文442foetuses胎仔443forced degradation testing强制降解试验444foreign matter异质性物质445formal labeling正式标签446formal stability studies正式的稳定性研究447formulation 处方/配方448formulation 制剂449fragmentation片段化450frameshift mutation移码突变451frameshift point mutation移码点突变452free-standing独立453freeze-dried product冻干产品454fresh dissection technique新鲜切片技术455friability脆碎度456functional deficits功能试验457functional test功能性指标458funetional indices融合蛋白459fungi真菌460fusion partners融合伴侣461fusion protein融合蛋白462fusion proteins配子463gametes动物性别464gel filtration 凝胶过滤465gender of animals性别专一性药物466gender-specific drug基因剔除467gene amplification基因扩增468gene knockout基因治疗469gene mutation基因突变470gene therapy基因疗法471generation of the cell substrate细胞基质的产生472genetic遗传473genetic change 遗传学改变474genetic damage遗传学损伤475genetic endpoint遗传终点476genetic manipulation基因操作477genetic toxicity遗传毒性478genomic dinucleotide repeats基因组双核苷酸重复数479genomic DNA基因组DNA480genomic polymorphism pattern基因组形态类型481genotoxic activity遗传毒性作用482genotoxic carcinogen遗传毒性致癌剂483genotoxic effect 遗传毒性效应484genotoxic hazard遗传毒性危害485genotoxic potential潜在遗传毒性486genotoxic rodent carcinogen啮齿类动物遗传毒性致癌剂487genotoxicity 遗传毒性488genotoxicity evaluation遗传毒性评价489genotoxicity test遗传毒性试验490genotoxicity test battery遗传毒性试验组合491genotypic 基因型492germ cell mutagen生殖细胞诱变剂493germ line mutation生殖系统突变494GLP临床前研究质量管理规范495glucose consumption rates耗糖率496glycoforms糖化形式497glycosylation糖基化498goegrapgical origin 地理起源499gross chromosomal damage 染色体大损伤500gross evaluation of placenta 胎盘的大体评价501growth factors生长因子502growth hormones 生长激素503guanidine胍504haematoxylin staining苏木素染色505half-life半衰期506hamster antibody production(HAP) test仓鼠抗体产生实验507Hantaan virus汉坦病毒508hardness硬度509heavy metals重金属510hematopoietic cells造血细胞511heparins肝素512heptachlor七氯化合物513herbal products草药514heritable遗传515heritable defect遗传缺陷516heritable disease遗传性疾病517heritable effect 遗传效应518herpes virus 疱疹病毒519heterogeneities异质性520heterohybrid cell lines异种杂交细胞系521high concentration高浓度522high-resolution chromatography高分辨色谱523histologic appearance of reproductive organ生殖器官的组织学表现524histopathological chang组织病理学改变525homogeneity均一性526homologous proteins同系蛋白527homologous series同系528host cell 宿主细胞529host cell banks宿主细胞库530host cell DNA宿主细胞DNA531host cell proteins宿主细胞蛋白质532hot-stage microscopy热价显微镜533human carcinogen人类致癌剂534human cell lines人细胞系535human diploid fibroblasts人二倍体成纤维细胞536human lymphoblastoid TK6 cell 人成淋巴TK6细胞537human mutagen人类致突变剂538human polio virus人脊髓灰质炎病毒539human subjects人体540human tropism人向性541humidity湿度542humidity-protecting containers防湿容器543humoral immunity 体液免疫544hybridization techniques杂交技术545hybridoma cell杂交瘤细胞546hybridomas杂交瘤547hydrolysates水解物548hydrolytic enzymes水解酶549hydrophobicity疏水性550hygroscopic吸湿性551identification/identity鉴别552immature erythrocyte未成熟红细胞553immediate and latent effect速发和迟发效应554immediate container/closure直接接触的容器/密闭物555immediate pack内包装556immediate release立即释放557immortalization激活558immune spleen cells免疫脾细胞559immunoassay免疫检测560immunochemical methods免疫化学方法561immunochemical properties免疫化学性质562immunoelectrophoresis免疫电泳563immunogenicity免疫原性564immunological interations免疫相互作用565immunopathological effects免疫病理反应566immunoreactivity免疫反应性567immunotoxicity免疫毒性568implantation着床569implantation sites着床部位570impurity profile杂质概况571in vitro体外572in vitro and in vivo inoculation tests体内和体外接种试验573in vitro assay体外检测574in vitro cell age体外细胞传代期575in vitro lifespan体外生命周期576in vitro test体外试验577in vitro tests体外试验578in vitro/in vivo correlation体内体外相关性579in vivo体内580in vivo assays体内检测581in vivo test体内试验582inactivated vaccine 灭活疫苗583incidence of polyploid cell 多倍体细胞发生率584incisor eruption门齿萌出585independent test独立试验586indicator cell指示细胞587indicator organisms指示菌588individual fetal body weight单个胎仔体重589indoor indirect daylight室内间接日光590induced and spontaneous models of disease诱发或自发的疾病模型591inducer of micronuclei微核诱导剂592inducers 诱导剂593inedntification test鉴别试验594infectious agents感染性因子595influenza virus流感病毒596inhalation吸入597inhalation dosage forms 吸入剂型598inhibitor of DNA metabolism DNA代谢抑制剂599in-house内部的600in-house criterea内控标准601in-house primary reference material内部一级参比物质602in-house reference materials内部参比物质603in-house working reference material内部工作参比物质604initial filing原始文件605initial submission最初申报606initial text最初文本607inoculation接种608inorganic impurities无机杂质609inorganic mineral无机矿物质610inorganic salts无机盐611in-process acceptance criteia生产过程认可标准612in-process controls生产过程中控制613in-process testing生产过程中检测614insect昆虫615insulins胰岛素616intact animals完整动物(整体动物)617intake摄入618intended effect预期效果619intended storage period 预期的贮藏期620intentional degradation人为降解621interactions相互作用622interferon干扰素623interleukins白细胞介素624intermediate中间体625intermediate precision中间精密度626intermediates半成品627internal control内对照628international reference standards国际参比标准品629interphase muclei分裂间期细胞核630intra-and inter-individual个体与个体间631intra-assay precision间隙含量精密度632intracytoplasmic细胞浆内633introduction of virus病毒介入634inverted or horizontal position倒立或水平位置635ion-exchange离子交换636ionic content离子含量637isoelectric focusing/isoelectrofocusing等电聚焦638isoenzyme analysis同工酶分析639isoform pattern异构体类型640isolated organs离体器官641isomerized 异构化的642Jp/Ph.Eur./Usp.日本药局方/欧洲药典/美国药典643juvenile animal studies未成年动物研究644K virus K病毒645karyology胞核学646Kinetic profile动力学特点647Kinetics 动力学648laboratory scale实验室规模649lactate production rates乳糖产生速率650Lactating授乳、哺乳651lactic dehydrogenase virus (LDM)乳酸脱氢酶病毒652Large deletion event大缺失事件653Late embryo loss后期胚胎丢失654leachables沥出物655Level of safety安全水平656Libido性欲657Life threatering危及生命658ligand 配位体/配体659light光照660light resistant packaging避光包装661limit for in vitro cell age 细胞体外传代限度662limit of acceptance可接受的限度663limit of in vitro cell age 体外细胞代次664limit test限度试验665limulus amoebocyte lysate鲎试剂666linear relation ship 线性关系667linearity线性668Lipophilic compound亲脂性化合物669liquid nitrogen 液氮670liquid oral dosage forms 液体口服制剂671Litter size每窝胎仔数目672Live and dead conceptuese活胎和死胎673Live offspring at birth出生时存活的子代674live vaccine 活疫苗675living cells活细胞676Local toxicity局部毒性677Lockl tolerance studies 局部耐受性研究678Locu位点679logarithmic scale:对数级680long term test长期试验681Long-term carcinogenicity study长期致癌性试验682long-time and accelerated stability长期和加速稳定性试验683Loss of the tk gene tk 基因丢失684losses of activity活性丧失685lot release 批签发686low molecular weight subsances低分子量物质687lower-observed effect level (LOEL)能观察到反应的最低量688lymphocytic choriomeningitis virus (LCM)淋巴细胞性脉络丛脑膜炎病毒689lyophilised cakes冻干粉饼690lysate of cells 细胞溶解物691Major organ fomeation主要器官形成692Male fertility雄性生育力693Male fertility assessment雄性生育力评价694mammalian哺乳类695Mammalian cell mutation test哺乳动物细胞致突变试验696Mammalian cells哺乳动物细胞697Mammalian species哺乳类动物698manufacturing scale生产规模699marieting pack 上市包装700marker chromosome 标志染色体701marketing approval批准上市702Marketing approval上市许可703mass 重量704mass balance质量平衡705mass spectrometry质谱706master cell bank (MCB)主细胞库707Matemal animal亲代动物708material balance物质平衡709Mating behaviour交配行为710Mating period交配期711Mating ratio交配比例712Matrices基质713matrix基质、矩阵714matrix system矩阵化设计715matrixing每日最大剂量716maximum daily dose平均动力学温度717Maximum tolerated dese(MTD)最大耐受剂量718mean kinetic temperature后生动物细胞培养719Mechanism of genotoxicity遗传毒性机制720Mechanistic activation代谢活化721Mechanistic activation pathway代谢活化途径722Mechanistic activation system代谢活化系统723Mechanistic investigation机制研究724Metabolism代谢725Metabolites profile代谢物的概况726Metaphase中期727Metaphase analysis分裂中期相分析728Metaphase cell分裂中期细胞729metazoan cell culture微生物细胞培养730microbial cells微生物细胞731microbial contamunation 微生物污染732microbial expression system微生物表达系统733microbial limits微生物限度734microbial metabolites微生物代谢物735microbial proteases微生物蛋白酶736microbial vaccine antigens微生物疫苗抗原737microbiological testing 微生物学试验738Micronucleus微核739Micronucleus formation微核形成740Microtitre微滴定741Microtitre method微滴定法742Mimicking模拟743minimum exposure time最低作用时间744minimum of pilot plant试产规模745minute virus of mice小鼠小病毒746mirror image 镜像747mismached S-S linked错连的S-S键748Mitotic index有丝分裂指数749modified-/modifying release修饰释放750modifying factor修正因子751moisture level水分752molar absorptivity克分子吸收753Molecular characterisation分子特性754molecular characteristics分子特性755molecular confirmation分子构型756molecular entities/entity分子实体757molecular size分子大小758Molecular technique分子技术759Monitor监测760Monoclonal antibodies单克隆抗体761monoclonal antibody单克隆抗体762mork run空白对照试验763morphological analysis形态学分析764mouse antibody production (MAP) test小鼠抗体产生试验765mouse cytomegalovirus (MCMV)小鼠巨细胞病毒766mouse encephalomyelitis virus (GDVII)小鼠脑脊髓炎病毒767mouse hepatitis virus (MHV)小鼠肝炎病毒768Mouse lymphoma tk assay小鼠淋巴瘤tk检测769Mouse lymphoma L5178Y cell小鼠淋巴瘤L5178Y细胞770mouse rotavirus (EDIM)小鼠小轮状病毒771MuLV murine leukemia virus鼠白血病病毒772murine hybridoma cell lines鼠杂交瘤细胞系773Mutagen诱变原774Mutagen carcinogen诱变性致癌剂775Mutagen potential of chemical化合物的潜在致突变性776Mutant colony突变体集落777Mutation突变778Mutation induction in transgenes转基因诱导突变779mutations 突变780mycoplasma支原体781myeloma cell line骨髓瘤细胞系782Naked eye肉眼783national or international reference material国家或国际参比物质784national reference standards国家参比标准品785near ultraviolet lamp近紫外灯786Necropsy(macroscopic examination)解剖(大体检查)787Negative control阴性对照788Negative result阴性结果789Neonate adaptation to extrautenrine life新生仔宫外生活的适应性790neural sugars中性糖791new chemical entity新化学体792new dosage form新剂型793new drug products/produce新药制剂794new drug substance新原料药795new molecular entities新分子体796Newbom新生仔797Newcleated有核798no effect level不产生反应的量799Non rodent非啮齿类800Non-clinical非临床801noncovalent/convalent forces非共价/共价键802non-enveloped viruses非包膜病毒803Non-genotoxic carcinogen非遗传毒性致癌剂804Non-genotoxic mechanism非遗传毒性机制805Non-human primate非人灵长类806Non-linear非线性807non-mammalian animal cell lines非哺乳动物细胞系808non-recombinant cell-cul-ture expression systems非重组细胞培养表达系统809non-recombinant products/vaccines非重组制品/疫苗810non-specific model virus非特异模型病毒811Non-toxic compound无毒化合物812Non-toxic-effect dose level无毒性反应剂量水平813no-observed effect level不能观察到反应的量814N-terminal sequencing N端测序815nuclear magnetic resonance 核磁共振816Nucleated bone marrow cell有核骨髓细胞817nucleic acid核酸818Nucleoside analogue核苷酸同系物819nucleotide sequences 核苷酸序列820Number of live and dead implantation宫内活胎和死胎数821Numerical chromosmal aberration染色体数目畸变822Numerical chromosome changes染色体数目改变823Oestrous cycle动情周期824official procedure正式方法825ointments软膏826oligonucleotide低聚核苷酸827Oligonucleotide grugs寡核苷酸药物828oligosaccharide pattern寡糖类型829One,two,three generation studies一、二、三子代研究830opacity浊度831Organ development器官发育832organic impurities有机杂质833origins of replication复制起点834osmolality摩尔渗透压浓度835outdoor daylight室外日光836Ovulation rate排卵率837oxidation氧化838oxygen consumption rates耗氧量839package包装840Paraffine embedding石蜡包埋841parainfluenza virus副流感病毒842parallel control assays 平行对照分析843Parameter参数844Parent compound母体化合物845parent stability Guideline稳定性试验总指导原则846parental cell line母细胞系847Parenteral非肠道848parenterals非肠道制剂849particle size粒度850Particulate material颗粒物851particulate matter微粒852Parturition分娩延迟853parvoviruses细小病毒854passage history of the cell line细胞系的传代史855pathogenic agents致病因子856pathogenicity致病性857patterns of degradation降解方式858Pediatric populations小儿人群859peptide肽860peptide map 肽图861percent recovery回收率862periodic/skip testing定期检验/抽验863Peripheral blood erythrocyte外周血红细胞864permitted daily exposure允许的日接触量865Perpoductive competence生殖能力866phage typing噬菌体分型867pharcodynamic studies药效学研究868Pharmacodinetic药代动力学869Pharmacodynamic effects药效作用870Pharmacodynamics药效学(药效动力学)871pharmacopoeial药典872pharmacopoeial pharmacoppeial specifications药典规范873pharmacopoeial standards药典标准874phenotypic 表型875Phenylene diamine苯二胺876phosphorylation磷酸化作用877photostability testing光稳定性试验878Physical development身体发育879physicochemical changes理化改变880physicochemical methods物理化学方法881physico-chemical properties物理化学特性882Physiological stress生理应激883Pilot studies 前期研究884pilot-plant scale试生产规模/中试规模885Pinna unfolding耳廓张开886piston release force活塞释放力887piston travel force活塞移动力888pivotal stability studies关键的稳定性研究889plaque assays菌斑测定890plasmid质粒891Plasmid质粒892plasmid banks质粒库893plasminogen activators纤溶酶原激活素894Plasminogen activators纤维蛋白溶解酶原激活因子895Ploidy整倍体896pneumonia virus of mice小鼠肺炎病毒897Point mutation点突变898poisson distribution泊松分布899Polychromatic erythrocyte嗜多染红细胞900polyclonal antibody多克隆抗体901Polycyclic hydrocarbon多环芳烃902Polymer聚合物903polymerase chain reaction (PCR)聚合酶链式反应904polymorphic form多晶性型905polymorphs多晶型906polyoma virus多瘤病毒907polypeptides多肽908Polyploid cell多倍体细胞909Polyploidy多倍体910Polyploidy induction多倍体诱导911pooled havest集中回收912Poorly soluble compound难溶化合物913population doubling细胞数倍增/群体倍增914porcine猪915Positive control阳性对照916Positive result阳性结果917Post meiotic stages减数分裂后期918Post-approval批准后919Postcoital time frame交配后日期920Postimplantation deaths着床后死亡921Postnatal deaths出生后死亡922post-translational modifications批准后923post-translationally modified forms翻译后修饰924Postweaning development and growth断奶后发育和生长925potency效价926potent功效927Potential 潜在性928potential adverse consequences潜在的不良后果929potential excipients准赋形剂930Potential immunogenecity潜在免疫原性931potential impurity潜在杂质932potential new drug products准新药制剂933potential new drug substances准新药原料934Potentialtarget organs for toxicity潜在毒性靶器官935potentiometric titrimetry电位滴定936powders粉剂937power outages and human error断电和人为错误938preamble引言939Pre-and post-natal development study围产期的发育研究940Pre-and postweaning survival and growth断奶前后的存活和生长941pre-approval or pre-liscense stage批准前或发证前阶段942Precipitate沉淀物943precision精密度944preclinical and clinical studies临床前和临床研究945Preclinical safety evaluation临床前安全性评价946precursors前体947Predetermined criteria预定标准948Prediction of carcinogenicity致癌性预测949Pregnant怀孕950Pregnant and lactating animals怀孕与哺乳期动物951Preimplantation development着床前发育952Preimplantation stages of the embryo胚胎着床前期953preliminary assessment初步评估954preliminary cell bank初级细胞库955Preliminary studies预试验956Premating交配前957Premating treatment交配前给药958preparation制剂959Pre-screening预筛选960preservative防腐剂961Prevalence of abnormalities异常情况的普遍程度962Preweaning断奶前963Primary active entity主要活性实体964primary cells原代细胞965primary stability data主要稳定性数据966primary stability study/formal study/formal stability study主要稳定性研究/正式研究/正式稳定性研究967primary structure一级结构968primer引物969priming regimen接种方案970Priority selection优先选择971probability概率972process characterisation studies工艺鉴定研究973process controls工艺控制974process optimisation工艺优化975process parameters工艺参数976process validation工艺确证977process-related impurities工艺相关杂质978Pro-drug前体药物979product-related imputies产品相关杂质980progenitor祖细胞981prokaryotic cell原核细胞982Prolongation of parturition产程延长983promoters启动子984proposed commercial process模拟上市985protected samples避光样品。
lab 月桂酰胺丙基甜菜碱 分子式
lab 月桂酰胺丙基甜菜碱分子式
月桂酰胺丙基甜菜碱,是一种常用的表面活性剂,也被称为甜菜碱月桂酰胺丙基盐。
它的化学结构式为C18H37NO3。
作为一种表面活性剂,月桂酰胺丙基甜菜碱在许多领域都有广泛的应用。
它可以在洗涤剂中起到增稠剂和乳化剂的作用,使洗涤剂具有更好的清洁能力和稳定性。
同时,它还可以在个人护理产品中被用作起泡剂,使产品能够产生丰富的泡沫,并增加其使用的舒适感。
除了在洗涤剂和个人护理产品中的应用外,月桂酰胺丙基甜菜碱还可以用作农药的乳化剂,帮助农药更好地分散在水中,提高农药的利用效率。
此外,它还可以用作纸张的润湿剂,帮助纸张更好地吸水和保持平整。
月桂酰胺丙基甜菜碱作为一种表面活性剂,具有良好的表面活性和乳化能力。
它的分子结构中含有长链烷基,这使得它在水中能够形成胶束结构,从而起到乳化的作用。
同时,它的疏水部分和亲水部分的平衡使得它能够在不同界面上发挥作用,从而实现良好的表面活性。
这使得月桂酰胺丙基甜菜碱成为了一种非常重要的化学品。
月桂酰胺丙基甜菜碱作为一种表面活性剂,在洗涤剂、个人护理产品、农药和纸张等领域都有广泛的应用。
它的独特结构和良好的表面活性使得它能够发挥出优良的乳化和清洁作用。
随着科技的发展和人们对环境友好型产品的需求增加,我们相信月桂酰胺丙基甜菜
碱在未来会有更广阔的应用前景。
阿维菌素废水处理
-56-科技论坛简述阿维菌素废水处理现状姚瑶1田文艳2(1、黑龙江省环境工程评估中心,黑龙江哈尔滨1500012、哈尔滨市洁净煤技术管理办公室,黑龙江哈尔滨150001)1阿维菌素简介生物农药是指用来防治农业病虫草鼠害和卫生害虫等有害生物的生物活体及其生理活性物质,并可以制成商品上市流通的生物源制剂,包括微生物源(细菌、病毒、真菌及其次级代谢产物等)、植物源、动物源和抗病虫草害的转基因植物等。
我国农业在获得大力发展的同时,生物农药生产能力与产量迅速增长,开发出高效、低毒、低残留及与环境友好的生物农药,以替代高毒、高残留且易产生抗性的传统农药,已是大势所趋。
当今生物农药界的优秀品种之一阿维菌素已得到生物农药界的高度重视和积极开发。
阿维菌素英文通用名Avermectin ;Abamectine ;Affirm ,阿维菌素的有效成分为Avermectin B1,其由Avermectin B1a 和Aver-mectin B1b 组成是一组由十六元环内酯与一个二糖(齐墩果糖)所生成的苷,在十六元环内酯周围还有一个含2个六元环的螺缩酮系及六氢苯并呋喃环系。
阿维菌素纯品为白色或浅黄色结晶,可溶于甲苯、乙酸乙酯、乙醇等溶剂,在水中溶解度极低。
阿维菌素对酸敏感,用稀酸处理,引起糖基德断开。
此外,该类化合物对光敏感,如用紫外线照射,则可导致异构化。
阿维菌素的产生菌是阿佛曼链霉菌(Streptomyces avermitilis ),该菌株是1975年日本北里研究所(Kitasato Institute )从日本静岗县地区的一个土壤样品中分离得到的。
研究的初期即发现该菌株的发酵液具有很高的驱肠道寄生虫活性,1976年美国默克公司分离出这组具有驱虫活性的物质。
阿维菌素是一种大环内酯抗生素类杀虫杀螨剂,对螨类和昆虫具有胃毒和触杀作用。
阿维菌素具有高效、广谱、有效期长、不易产生抗药性、易降解、残留量低等特性。
阿维菌素在环境中能被光解,在土壤中能被微生物快速代谢分解,不能被植物根系吸收进入植物体内,对水生生物没有生物富集作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Asymmetric addition of n -butyllithium to aldehydes:new insights into the reactivity and enantioselectivityof the chiral amino ether accelerated reactionJohan Granander,Richard Sott and GoÈran Hilmersson p Organic Chemistry,Department of Chemistry,GoÈteborg University,S-41296Go Èteborg,Sweden Received 20December 2001;accepted 5March 2002Abstract ÐEnantioselective butylation of benzaldehyde with n -butyllithium was mediated by a series of chiral lithium amide analogues togive 1-phenylpentanol in good to moderate enantioselectivities.In order to achieve high enantiomeric excess in the reaction,the lithium amide must have a substituent larger than methyl on both the carbon at the stereogenic center and the putational studies,using semi-empirical (PM3)and density functional (B3LYP)methods,show that the stabilities of the transition states for the chiral lithium amide accelerated butylation of isobutyraldehyde are in agreement with experiments.q 2002Elsevier Science Ltd.All rights reserved.1.IntroductionAsymmetric carbon±carbon bond forming reactions between n -butyllithium (n -BuLi)and aldehydes can be a particularly versatile reaction in the construction of enantio-pure alcohols.1The enantioselectivity is obtained using chiral lithium amides as chiral auxiliaries and catalysts,non-covalently bonded to the reagent n -BuLi.Our interest in this ®eld began in 1993when we initiated NMR spectro-scopic studies of a chiral lithium amide reported by Hogeveen and Eleveld to induce asymmetry in the addition of n -BuLi to benzaldehyde.2,3So far,the enantioselectivities obtained with organolithium compounds in the alkylation reaction of aldehydes have not been as high as those with dialkyl zinc reagents.4However,the readily available alkyl-lithium reagents and their high reactivity are properties that motivate more effort to ®nd conditions in which organo-lithium compounds also can become useful nucleophilic reagents in asymmetric synthesis.By low temperature NMR spectroscopic studies we haveobserved an equilibrium between homo complexed chiral lithium amide dimers,tetrameric n -BuLi and a mixed dimer consisting of one lithium amide and one n -BuLi (Scheme 1).5Most of the NMR spectroscopic studies were carried out in diethyl ether (DEE)ter,the effect of different solvents and substituents on the equilibrium and enantio-selectivity of addition to an aldehyde were investigated.6At that time,our results indicated the importance of a high complexation constant in order to observe high enantioselectivity.Since then,we have remained in this ®eld with the aim of better understanding the factors governing the enantioselectivity.This work includes the search for new mixed complexes between n -BuLi and chiral inducers.We hope that details regarding this issue could be helpful in the design of new and more ef®cient chiral inducers for this important class of reaction.Herein,we report our continued studies of chiral lithium amides and their use in the asymmetric addition reaction to prochiral aldehydes.Based on quantum chemical calculations we alsoPergamon0040±4020/02/$-see front matter q 2002Elsevier Science Ltd.All rights reserved.PII:S0040-4020(02)00378-2Keywords:lithium;amides;alkylation;asymmetric.pCorresponding author.Tel./fax:146-31-7722904;e-mail:hilmers@organic.gu.se Scheme 1.J.Granander et al./Tetrahedron58(2002)4717±4725 4718propose transition state structures that explain the observed enantioselectivity.2.Results and discussion2.1.Enantioselectivity and steric requirementsOften in organolithium chemistry small changes in ligand structure or reaction conditions result in large effects on organolithium structure and/or enantioselectivity.However, the amino ether catalyzed system for addition of n-BuLi to aldehydes is a particularly robust and reliable system allowing a large number of modi®cations to be studied.The amino ethers were prepared in high yield from readily available amino acids.The amino acids were®rst reduced using lithium aluminum hydride.Alkylation of the amine in two steps via the imine yielded the secondary amino alcohols,which were then converted into the respective amino ethers.We have focused our modi®cations to three positions of the amino ether:the alkyl group(R0)on the nitrogen,the alkyl group on the oxygen(R00)and the bulky group attached to the stereogenic center(R)(Scheme2).The results of the stereoselective alkylation of benzaldehyde employing lithium amides1±4are given in Table1.The reactions have mainly been performed in three different ethereal or coordinating solvents, e.g.DEE,a50:50mixture of dimethoxy methane(DMM)and DEE and a50:50mixture of DEE and tetrahydrofuran(THF).In addition,a few of the reactions were also performed in a50:50mixture of pentane and toluene(pent/tol),a non-coordinating solvent mixture.All chiral lithium amides catalyzed the formation of the alcohol with the opposite con®guration compared to that of the amide.This indicates that the reaction is robust in nature even though it requires the formation of a hetero-complex.Previous studies only involved phenylsubstituted lithium amides while this work also includes aliphatic R groups. The enantioselectivity obtained with the various lithium amides indicates that the phenyl group is not crucial to obtain high enantioselectivity.Replacing the phenyl ring with an isopropyl group results in similar enantioselectivity in the asymmetric alkylation reaction.This shows that it is the steric requirements of the R group and not the stereo-electronic effects of having the phenyl substituent that are crucial for high enantioselectivity.From the results of Table1it is clear that a methyl group,as in the alanine derivative1a,is not large enough to induce asymmetry in the alkylation reaction.We believe that the asymmetry in the reaction comes from the steric require-ments of the alkyl group on the nitrogen.The chirality of the nitrogen is transferred from the carbon to the lithium amide nitrogen.Based on this,it is evident that a methyl group on the lithium amide nitrogen yields very low enantioselec-tivity.However,with a secondary carbon on the amide nitrogen,a much higher enantioselectivity was achieved. Among these larger substituents there are small differences, i.e.isopropyl,3-pentyl or cyclohexyl on the nitrogen result in approximately the same enantioselectivity.In DEE,the highest enantioselectivity was found with theisopropyl Scheme2.Table1.Asymmetric alkylation of benzaldehyde(0.10equiv.)with n-BuLi(0.45equiv.)in the presence of chiral lithium amides1a,2a±j,3a±c and4a±e (1.0equiv.),resulting in alcohols with con®guration opposite to that of the lithium amide.The reactions were performed in four different solvents or solvent mixtures at21168C.All reactions proceeded in quantitative yield according to the chiral stationary phase GC analysisLi-amide R R0R00ee(%)DEE DEE/DMM DEE/THF Pentane/toluene (S)-1a Me i-Pr Me36±±±(R)-2a Ph Me Me2a±±±(S)-2b Ph i-Pr Me82a91a85±(S)-2c Ph i-Pr Et607679±(S)-2d Ph i-Pr i-Pr507377±(S)-2e Ph3-Pentyl Me486372±(S)-2f Ph3-Pentyl Et296370±(S)-2g Ph Cyclohexyl Me75878617 (S)-2h Ph Cyclohexyl Et668689±(R)-2i Ph2-Methoxybenzyl Me62747±(R)-2j Ph2-Methoxybenzyl Et232458 (S)-3a Benzyl i-Pr Me60686738 (S)-3b Benzyl i-Pr Et417469±(S)-3c Benzyl i-Pr i-Pr527472±(S)-4a i-Pr i-Pr Me6178788 (S)-4b i-Pr i-Pr Et447674±(S)-4c i-Pr i-Pr i-Pr487771±(S)-4d i-Pr2-Methoxybenzyl Me152942±(S)-4e i-Pr2-Methoxybenzyl Et17324820a Ref.6.J.Granander et al./Tetrahedron58(2002)4717±47254719group.But in the DMM/DEE and THF/DEE mixtures we found that cyclohexyl gave similar values of enantio-selectivity compared to isopropyl.There is a very small dependence on the enantioselectivity versus the size of the alkyl group of the ether.Methyl-, ethyl-,and isopropyl ethers yield about the same chiral induction.Although,generally the methyl is the better followed by ethyl and isopropyl.We also investigated some tridentate lithium amides as chiral inducers.Similar chiral tridentate amines have been reported to achieve high enantioselectivity in the asym-metric addition of methyllithium to imines.7Our tridentate amines were formed by condensing2-methoxybenz-aldehyde with chiral amino alcohols followed by reduction and alkylation of the alcohol.However,the enantio-selectivities of the butylation of benzaldehyde were dis-appointing with ees up to48%at most.Only low enantioselectivities were observed for all lithium amides employed in the non-coordinating solvents.The solvent dependence of the enantioselectivity was larger for the tridentate lithium amides than for the bidentate,despite their additional coordinating group.Interestingly,the enan-tioselectivities are similar for these amides in DEE and in the non-coordinating solvent mixture.This indicates that the transition state structures could be similar.Possibly there are mixed dimers in both DEE and the non-coordinating solvent mixture and DEE is not capable of solvating the mixed dimer while THF is.Altogether,the enantioselec-tivity appears to be signi®cantly in¯uenced by the solvent, indicating that coordinating solvent molecule(s)are involved in the rate determining activated complex.To test the versatility of the asymmetric alkylation reactions we also added methyllithium to benzaldehyde with the bidentate chiral lithium amide4a as chiral inducer. However,the results were not promising,an enantioselec-tivity of45%was observed in THF/DEE.Surprisingly,the tridentate amide4e that we believed would be more success-ful generated only racemic mixtures of the methyl adduct. The butylation of tri¯uoroacetophenone mediated by4e was found to proceed with58%ee in THF/DEE.This promising result shows that the lithium amides may also be used for asymmetric alkylation of prochiral ketones.2.2.Enantioselectivity versus mixed complex formationOur preliminary results indicated that the high degree of complexation between the chiral lithium amide and the nucleophile n-BuLi is prerequisite for success in the asym-metric reaction.This was supported by the low enantio-selectivities obtained with diamines,which generally gave lower amounts of mixed complexes.However,it is impor-tant to take into account the concentrations used in these asymmetric reactions.Even if the apparent equilibrium constants differ by®ve orders of magnitude,the actual concentration of reactive n-BuLi/Li-amide differ by less than a factor of2([n-BuLi/Li-amide]<0.03±0.05M). Although the concentration of free tetrameric n-BuLi varies at the same time from0.005M to an in®nitely small number (,1025M).Thus there is only a weak correlation between the equi-librium constant and the observed enantioselectivity,due to the fact that the amount of uncomplexed n-BuLi at the studied concentrations is low compared to the amount complexed.Below,we have based the calculations on the actual equilibrium constants and the total concentrations calculated from the theoretical concentrations of free tetrameric n-BuLi and lithium amide/n-BuLi complexes. Li-amide tot 0:116M; n-BuLi tot0:052M 0:45equiv:K 0.1M)[Li-amide/n-BuLi] 0.032M;[(n-BuLi)4] 0.0051M K 4M)[Li-amide/n-BuLi] 0.048M;[n-BuLi)4] 0.0011MK 10,000M)[Li-amide/n-BuLi] 0.052M;[(n-BuLi)4] ,1025MIt is also found that most of the n-BuLi is present in the mixed complex even when the equilibrium constant is as small as4.The[(n-BuLi)4]concentration is less than25%of the concentration[Li-amide/n-BuLi].Since the asymmetric alkylation reactions are performed with only0.25equiv.or less of the aldehyde and the mixed complex is much more reactive than tetrameric n-BuLi,9we conclude that the amount of aldehyde that reacts via tetrameric n-BuLi is consequently only a fraction even when the equilibrium constant is unfavorable.2.3.NMR spectroscopyWe have previously reported on the solution structures of the lithium amides2b and4a and have now studied3a and the tridentate1j by NMR spectroscopy.6There is only a small solvent dependence between different coordinating solvents.However,there is a pronounced change upon going from an ether solvent to a non-coordinating solvent. All investigated lithium amides in this series form mixed dimers with n-BuLi in coordinating solvents.The equi-librium constants vary signi®cantly,but the fundamental equilibrium is the same.However,innon-coordinating Scheme3.J.Granander et al./Tetrahedron 58(2002)4717±47254720solvents mixed trimers,containing two lithium amides and one n -BuLi,of the type found by Williard dominate.8Two lithium amides,3a and 4a form this sort of complex as found by NMR spectroscopy.These trimers are C 2-sym-metric and should have potential as chiral nucleophiles.2.4.Reactivity studiesHow important are the steric requirements of the R-group of the aldehyde for the reaction rate?The alkylation reactions are irreversible and if several aldehydes are added simul-taneously there are as many concurrent independent modes of reaction (Scheme 3).However,the product compositions in such parallel reactions are directly related to their indi-vidual rate constants.In separate experiments,a mixture of two different aldehydes,both in excess (each in 5equiv.),were added to n -BuLi (1equiv.)and to the mixture of n -BuLi/lithium amide (1equiv.),respectively.With no lithium amide present,benzaldehyde was found to react 13times faster than cyclohexanecarboxaldehyde with n -BuLi in DEE at 21168C.However,in the presence of the lithium amide 2b ,the reaction rate was only 1.4times higher.The reaction of isobutyraldehyde was 3.2times faster than cyclohexanecarboxaldehyde without catalyst present but 1.6times slower in the presence of 2b .Appar-ently,2b catalyzes the alkylation of cyclohexanecarbox-aldehyde more ef®ciently than benzaldehyde and iso-butyraldehyde.The alkylation reactions of isobutyraldehyde and cyclohexanecarboxaldehyde mediated by 2b resulted in ees of .8.5%higher than that of benzaldehyde.9Therefore,it is surprising to ®nd a large difference in accelerating not only between benzaldehyde and cyclohexancarboxaldehyde but also between isobutyraldehyde and cyclohexanecarbox-aldehyde.What is the reactivity of n -BuLi vs aldehyde and methanol,respectively?Methanol is usually used to quench these types of reactions and has previously been used in an attempt to measure the reaction rate of the alkylation of aldehydes.9Alkylation experiments in the presence of 1,10and 50equiv.of methanol show that the rate of the alkylation reaction of benzaldehyde and the quenchingreaction with methanol are about the same.The presence of the lithium amides 2b and 3a did not make any consider-able difference.Thus addition of 1mL methanol to quench the reaction is suf®cient to remove all available n -BuLi instantaneously.putational studiesThe asymmetric alkylation reaction must proceed through a transition state consisting of a complex between a chiral lithium amide,n -BuLi and the aldehyde in order to observe enantioselectivity.We have studied this reaction using the semi-empirical PM3method with Anders parameters for lithium to obtain geometries of high quality and then single point DFT calculations of the energies were performed.10This method has previously been employed with good results by several groups in the ®eld.11The lithium amide 4a was chosen as chiral lithium amide in the calculations since this lithium amide is the smallest amongst the investigated amides that still results in good selectivity.We used dimethyl ether as the solvent.There are several possible conformers of the ground state structure according to the PM3calculations,considering the coordi-nation of the prochiral aldehyde.The interconversion among the different conformers is assumed to follow the Curtin±Hammett principle.Thus,the dD G between the favored transition states leading to the (R )-and the (S )-alco-hols should be responsible for the enantioselectivity observed experimentally.The favored transition states for the transfer of the butyl group to the carbonyl are shown in Fig.1.We observed a large gain in enthalpy of solvation by adding one ether to the lithium coordinated by isobutyraldehyde.However,there was no gain of solvation upon adding a second ether to the tri-coordinated lithiums.Apparently,the steric hindrance at the tri-coordinated lithiums is too large to accommodate a coordinating ether.At the B3LYP(6-311G(d))//PM3level of theory it appears that transition state (R )-TS is 3.4kcal mol 21less stablethanFigure 1.Schematic drawings of the calculated transition state structures (R )-TS and (S )-TS for the alkylation with the mixed dimer lithium amide 4a /n -BuLi yielding (R )-alcohol and (S )-alcohol.The DFT calculations were performed at the B3LYP/6-31G 1(d)//PM3level of theory.Distances are given in Angstrom (AÊ)and the relative energies are given in kcal mol 21.J.Granander et al./Tetrahedron 58(2002)4717±47254721(S )-TS ,qualitatively in agreement with the experimental results which give the (S )-alcohol.Interestingly,themethoxy coordinated lithium is located 4AÊaway from the a -carbon of n -BuLi in (R )-TS .This transition state is an open dimer transition state.Such structures have been suggested previously to be important in the reaction between an aldehyde and methyllithium.12This appears to be due to a larger steric hindrance in (R )-TS than in (S )-TS .The structure of transition state (S )-TS resembles a ladder structure of a lithium amide (i.e.a trimer).At the B3LYP-(6-311G(d))//PM3,a second transition state with a shorter methoxy-lithium distance leading to the (R )-alcohol was also found,but at slightly higher energy (14.0kcal mol 21).The central core of the respective transition states are planar or nearly planar,i.e.the two lithiums,the amide nitrogen,the a -carbon of n -BuLi and the carbonyl group form a plane.It is dif®cult to rationalize how the enantioselectivity could be induced in these transition states.There is only one stereogenic center in the chiral lithium amide,but in the complex,the nitrogen and the tetracoordinated lithium also become additional stereogenic centers.The chirality of the carbon is thus being transferred from carbon to both the nitrogen and the tetracoordinated lithium.If either the alkyl group on the carbon or the nitrogen is too small,this transfer of chirality will not be as effective resulting in a lowering in enantioselectivity.Furthermore,the solvent ether is also important for the enantioselectivity as can be expected for the transition states shown in Fig.1.It must however be added that the error in PM3calculations might exceed the energy difference observed experi-mentally corresponding to a selectivity of 98%.Since thecalculations are performed in vacuum,the addition of solvent continuum could lead the calculations closer to the experimentally observed values.2.6.Temperature dependence of the asymmetric alkylation reactionThe asymmetric alkylation reaction was also studied as a function of temperature to obtain the absolute difference in free energies,dD G ³,of the two diastereomeric transition states leading to the enantiomers of the product and its temperature dependence.Is the selectivity between the R and S transition states due to entropy or enthalpy of acti-vation?The dD S ³and dD H ³terms for the asymmetric alkyl-ation,employing 3a as chiral auxiliary,were determined from the temperature dependence of dD G ³in both DEE/THF and pentane/toluene mixtures (Table 2).The alkylation reactions are irreversible,hence the rates of formation of R and S alcohols are described by k R and k S ,with the ratio k R /k S corresponding to the molar free energy difference,dD G ³,of the two reactions (Fig.2).The enthalpic terms were determined to be 23.9and 21.4kJ mol 21in DEE/THF and pentane/toluene,respec-tively.The entropy terms were 11.6and 2.7J K 21mol 21.As expected,the selectivity is largely governed by entropy in the DEE/THF mixture,since the transition states are most likely solvated by THF.However,in a pentane/toluene mixture the transition states are most likely unsolvated and there is consequently less entropic differences between the two diastereomeric transition states.3.ConclusionNo major electronic effects are operating since phenyl groups on either the aldehyde or lithium amide have no effect on the enantioselectivity compared to bulky aliphatic substituents.Isopropyl groups on the lithium amide appear to yield the highest enantioselectivity.Chiral lithium amides can be useful reagents for asymmetric synthesis but we still know too little about this class of compounds for truly rational design of new and better chiral lithium amides.The surprisingly large effect that a seemingly small change on the lithium amide or solvent does not have to be a disadvantage,it can possibly also turn out to be a greatTable 2.Enantiomeric excesses obtained from the addition of n -BuLi to benzaldehyde with 3a as chiral auxiliary at various temperatures T (8C)ee (%)DEE/THFPentane/toluene 211667.338.227847.625.924631.618.122123.917.9018.917.92010.313.4Figure 2.Eyring plot of the temperature dependence of the free energy difference between the two diastereomeric transition states,in DEE/THF (V )and pentane/toluene (B )mixtures,respectively,for the addition of n -BuLi to benzaldehyde mediated by 3a .J.Granander et al./Tetrahedron58(2002)4717±4725 4722advantage.Among several reaction pathways of similar free energy,there is a possibility to®ne tune reactions to proceed in a certain wanted direction.The solvent molecules have a large effect on the enantioselectivity of the alkylation reac-tions.The bidentate lithium amides only show a small difference in selectivity using different ethers,however in the case of the tridentate lithium amides we see a much stronger variation among DEE and THF,which indicates that the transition states are speci®cally solvated by THF but not with DEE.4.Experimental4.1.GeneralNMR spectra were recorded on a Varian400MHz spectro-meter using CDCl3as solvent.Optical rotations were measured using a Perkin±Elmer341LC polarimeter.IR spectra were recorded on a Perkin±Elmer1600Series FTIR spectrometer.HRMS(FAB)spectra were recorded on a VG ZabSpec using a beam of Cs atoms as ionization source and glycerol to dissolve the sample.GC analysis were carried out using a Varian Star3400CX gas chro-matograph equipped with a chiral stationary phase column (CP-Chirasil-DEX CB,25m,0.32mm)from Chrompack.9 Analyses were done using He(1.5mL min21)as carrier gas (injector2258C,detector2508C).Dried solvents were distilled from sodium/benzophenone.4.2.Alkylation reactionsInside a glove box containing a nitrogen atmosphere,the chiral amine(0.22mmol,1.00equiv.)was dissolved in the dry solvent/solvent mixture(2.0mL)in a dry reaction vessel,equipped with a septum and a magnetic stirrer bar. The vessel was sealed and taken out of the glove box and put under an inert atmosphere(argon or nitrogen).n-BuLi (129m L,2.5M in hexanes,0.32mmol,1.45equiv.)was added and the mixture kept at room temperature for 15min.The reaction mixture was cooled to21168C in a liquid nitrogen/DEE cooling bath and its temperature allowed to equilibrate for15min before a solution of benzaldehyde(18.5m L, 1.23M in DEE,0.022mmol, 0.10equiv.)was added dropwise.After15min,the reaction was quenched with methanol(1.00mL)and allowed to reach room temperature before it was acidi®ed using aqueous hydrochloric acid(0.60mL,5%)and diluted with DEE(3.00mL).The crude mixture containing the1-phenyl pentanol was analyzed on the chiral stationary phase GC. All reactions proceeded in quantitative yields according to the GC analysis.putational methodsGeometries were optimized at PM3level of theory.In Spartan,the option HHon,13was used to eliminate the too positive HH attraction of the PM3method.All structures were characterized as either minimum or transition states by frequency calculations.All energies were calculated at the B3LYP/6-311G(d)//PM3.The calculations were per-formed either using the Spartan program package14or the Gaussian98W.154.4.Reduction of amino acids,general procedureThe amino acid(1.0equiv.)was added slowly,in small portions,to an ice cooled solution of lithium aluminum hydride(2.0equiv.)in dry THF(40mL g21LiAlH4).The mixture was allowed to react at08C for1h followed by re¯ux overnight.The solution was cooled to08C and the excess of LiAlH4quenched with aqueous sodium hydroxide (2.0M).The precipitate was®ltered off and extracted with boiling THF for an hour.The combined ethereal extract was concentrated under reduced pressure and the remaining mixture extracted with dichloromethane.The combined organic extract was washed with brine,dried over sodium sulfate and the solvent evaporated under reduced pressure to give the known amino alcohols.4.4.1.(S)-Phenylalaninol.White solid(100%);spectral data consistent with literature.164.4.2.(S)-Phenylglycinol.White solid(95%);spectral data consistent with literature.17±194.4.3.(S)-Valinol.Colorless oil(85%);spectral data con-sistent with literature.16,184.5.N-Alkylation of the amino alcohol,general procedureThe amino alcohol(1.0equiv.)and the carbonyl compound (acetone; 2.0equiv.,3-pentanone and cyclohexanone;1.5equiv.or2-methoxybenzaldehyde 1.1equiv.)were dissolved in dry benzene(30mL g21amino alcohol)and re¯uxed overnight with a Dean±Stark trap to collect water.The mixture was allowed to cool and the solvent evaporated under reduced pressure.The residue was dissolved in dry ethanol(30mL g21of amino alcohol) and sodium borohydride(1.5equiv.)added in small portions.The mixture was allowed to react at room tempera-ture until no more gas evolved,usually after only a few hours.Water was added and most of the ethanol evaporated. The residue was extracted with DEE and the combined organic extract washed with brine,dried over sodium sulfate and the solvent evaporated under reduced pressure.4.5.1.(S)-N-Isopropylalaninol.Pale yellow oil(60%); spectral data consistent with literature.204.5.2.(S)-N-Isopropylphenylglycinol.White crystals (90%);spectral data consistent with literature.204.5.3.(S)-N-(3-Pentyl)phenylglycinol.Slightly yellow crystals(84%);1H NMR(400MHz,CDCl3)d0.81(t, J 7.4Hz,3H,(C H3CH2)2CHN),0.87(t,J 7.6Hz,3H,(C H3CH2)2CHN), 1.28±1.39(m,1H,(CH3C H2)2CHN),1.39±1.49(m,3H,(CH3C H2)2CHN),2.38(quint.,J5.8Hz,1H,(Et)2C H N),3.48(dd,J 8.8,10.4Hz,1H,C H2OH),3.68(dd,J 4.6,10.4Hz,1H,C H2OH),3.86 (dd,J 4.6,8.8Hz,1H,PhC H CH2),7.27±7.31(m,3H, Ph),7.33±7.38(m,2H,Ph);[a]D20 181.8(c2.9,ethanol); n max(KBr)3155(br),1146,1066,1041,1029cm21;HRMS (FAB):MH1,found208.1663.C13H22NO requires 208.1701.J.Granander et al./Tetrahedron58(2002)4717±472547234.5.4.(S)-N-Cyclohexylphenylglycinol.Colorless needle-shaped crystals,recrystallized from ethyl acetate/hexane 25:75(70%);1H NMR(400MHz,CDCl3)d1.04±1.22 (m,5H,(C H2)5CHN),1.57(m,1H,(C H2)5CHN),1.66±1.72(m,3H,(C H2)5CHN),1.97(m,1H,(C H2)5CHN),2.42(m,1H,(CH2)5C H N),3.47(dd,J 9.4,10.4Hz,1H,C H2OH),3.67(dd,J 4.4,10.4Hz,1H,C H2OH),3.94(dd, J 4.4,9.4Hz,1H,PhC H CH2),7.27±7.32(m,3H,Ph), 7.34±7.39(m,2H,Ph);[a]D20 175.2(c2.5,ethanol); n max(KBr)3270,3132(br),1500,1451,1040cm21; HRMS(FAB):MH1,found220.1659.C14H22NO requires 220.1701.4.5.5.(R)-N-(2-Methoxybenzyl)phenylglycinol.Colorless rhombic crystals,recrystallized from ethyl acetate/hexane 20:80(70%);1H NMR(400MHz,CDCl3)d3.58(m,2H, ArC H2N), 3.73(m,1H,PhC H CH2), 3.81(m,2H, PhCHC H2),3.82(s,3H,C H3O),6.84±6.94(m,2H,Ar), 7.19(m,1H,Ar),7.24(m,1H,Ar),7.27±7.39(m,5H, Ph);[a]D20 291.6(c4.4,ethanol);n max(KBr)3315, 3164(br)1239,1124,1045cm21;HRMS(FAB):MH1, found258.1456.C16H20NO2requires258.1494.4.5.6.(S)-N-Isopropylphenylalaninol.White solid(95%); spectral data consistent with literature.204.5.7.(S)-N-Isopropylvalinol.Colorless oil(80%);spectral data consistent with literature.204.5.8.(S)-N-(2-Methoxybenzyl)valinol.White crystals (50%);1H NMR(400MHz,CDCl3)d1.0(d,J 6.8Hz, 3H,(C H3)2CHC),1.02(d,J 6.8Hz,3H,(C H3)2CHC),2.14(m,1H,(CH3)2C H C),2.70(s(broad),1H,i-PrC H CH2),3.82(s(broad),2H,CHC H2OH),3.94(s,3H,C H3O),4.22 (d,J 13.2Hz,1H,ArC H2N),4.30(d,J 13.2Hz,1H, ArC H2N),6.91±7.00(m,2H,Ar),7.35±7.40(m,1H,Ar), 7.43±7.47(m,1H,Ar);[a]D20 17.0(c1.7,ethanol);n max (KBr)3348(br)1245,1026cm21;HRMS(FAB):MH1, found224.1617.C13H22NO2requires224.1651.4.6.p-Toluenesulfonic acid isopropyl esterA solution of2-propanol(6.00g,7.64mL,100mmol,1.0equiv.)in dry pyridine(200mL)was cooled to08C and p-toluenesulfonic acid chloride(28.60g,150mmol, 1.5equiv.)was added in small portions over15min.The mixture was allowed to react overnight while warming to room temperature.The mixture was then poured onto crushed ice(200g).The resulting mixture was extracted with7£50mL DEE.The combined organic extract was washed with4£50mL aqueous hydrochloric acid(6.0M), 4£50mL aqueous sodium bicarbonate(saturated), 4£50mL brine,dried over sodium sulfate and the solvent removed under reduced pressure yielding the product as a clear,slightly yellowish oil(17.94g,85%).Spectral data consistent with literature.214.7.O-Alkylation,general procedureThe amino alcohol(1.0equiv.),dissolved in dry THF (15mL g21of amino alcohol),was added to a suspension of sodium hydride(1.5equiv.,60%dispersion in mineral oil)in dry THF(100mL g21of sodium hydride).The mixture was allowed to react at room temperature for2h before the alkylating reagent(methyl iodide1.0equiv., ethyl iodide1.5equiv.,p-toluenesulfonic acid isopropyl ester2.0equiv.)was added.The mixture was then left to react at room temperature overnight(when p-toluenesul-fonic acid isopropyl ester was used the mixture was re¯uxed overnight).Distilled water was added and the ethereal solvent removed under reduced pressure.The residue was extracted with dichloromethane and the combined extract washed with brine,dried over sodium sulfate and the solvent removed under reduced pressure.KuÈgelrohr distillation under reduced pressure afforded the respective amines as colorless oils.4.7.1.(S)-N-Isopropyl-O-methylalaninol(1a).Colorless oil(40%);spectral data consistent with literature.204.7.2.(R)-N-Methyl-O-methylphenylglycinol(2a).This compound was prepared according to literature methods.54.7.3.(S)-N-Isopropyl-O-methylphenylglycinol(2b).Color-less oil(90%);spectral data consistent with literature.20,22,234.7.4.(S)-N-Isopropyl-O-ethylphenylglycinol(2c).Color-less oil(80%);1H NMR(400MHz,CDCl3)d0.99(d, J 6.4Hz,3H,(C H3)2CHN), 1.05(d,J 6.4Hz,3H, (C H3)2CHN),1.20(t,J 7.0Hz,3H,C H3CH2O),2.65 (sept.,J 6.3Hz,1H,(Me)2C H N),3.40(t,J 9.2Hz,1H, PhCHC H2),3.46±3.55(m,3H,PhCHC H2and CH3C H2O), 4.02(dd,J 4.0,8.8Hz,1H,PhC H CH2),7.25±7.28(m,1H, Ph),7.31±7.35(m,2H,Ph),7.36±7.39(m,2H,Ph);[a]D20 168.4(c3.6,ethanol);n max(liquid®lm)3327, 1107cm21;HRMS(FAB):MH1,found208.1708. C13H22NO requires208.1701.4.7.5.(S)-N-Isopropyl-O-isopropylphenylglycinol(2d). Colorless oil(40%);1H NMR(400MHz,CDCl3)d0.98 (d,J6.4Hz,3H,(C H3)2CHN),1.05(d,J 6.4Hz,3H, (C H3)2CHN),1.15(t,J 6.0Hz,6H,(C H3)2CHO),2.65 (sept.,J 6.4Hz,1H,(CH3)2C H N),3.35(t,J 9.2Hz,1H, PhCHC H2),3.52(dd,J 4.0,9.2Hz,1H,PhCHC H2),3.58 (sept.,J 6.0Hz,1H,(CH3)2C H O),3.97(dd,J 4.0,9.2Hz, 1H,PhC H CH2),7.25±7.28(m,1H,Ph),7.30±7.35(m,2H, Ph),7.37±7.40(m,2H,Ph);[a]D20 163.7(c3.0,ethanol); n max(liquid®lm)3327,1127,1074cm21;HRMS(FAB): MH1,found222.1851.C14H24NO requires222.1858.4.7.6.(S)-N-(3-Pentyl)-O-methylphenylglycinol(2e). Colorless oil(40%);1H NMR(400MHz,CDCl3)d0.83 (t,J 7.4Hz,6H,(C H3CH2)2CHN),1.24±1.39(m,2H, (CH3C H2)2CHN), 1.41±1.48(m,2H,(CH3C H2)2CHN), 2.25(m,1H,(Et)2C H N),3.36(s,3H,OC H3),3.41(m, 2H,PhCHC H2),4.01(dd,J 4.8,8.0Hz,1H,PhC H CH2), 7.23±7.28(m,2H,Ph),7.30±7.35(m,2H,Ph),7.37±7.41 (m,1H,Ph);[a]D20 171.1(c2.8,ethanol);n max(liquid ®lm)3338,1120cm21;HRMS(FAB):MH1,found 222.1829.C14H24NO requires222.1858.4.7.7.(S)-N-(3-Pentyl)-O-ethylphenylglycinol(2f).Color-less oil(60%);1H NMR(400MHz,CDCl3)d0.83(m, 6H,(C H3CH2)2CHN),1.20(t,J 7.2Hz,3H,C H3CH2O), 1.22±1.36(m,2H,(CH3C H2)2CHN), 1.45(m,2H, (CH3C H2)2CHN),2.26(m,1H,(Et)2C H N),3.40(t,J。