2017年中考数学复习第5单元三角形第21课时等腰三角形与直角三角形教案

合集下载

中考数学复习指导:双等腰直角三角形问题前解法分析

中考数学复习指导:双等腰直角三角形问题前解法分析

中考数学复习指导:双等腰直角三角形问题前解法分析双等腰直角三角形问题前解法分析一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.一、共直角顶点的两个等腰直角三角形例1.如图1,已知ACB ?和ECD ?都是等腰直角三角形,90,ACB ECD D ∠=∠=°为AB 边上一点.(1)求证: ACE BCD ;(2)求证: 2222CD AD DB =+.分析当两等腰直角三角形绕着公共的直角顶点进行旋转时,必会出现全等三角形,此题第(1)问运用“通性”直接证明全等.第(2)问借助第(1)问的结论,利用等腰直角三角形两锐角互余,以及勾股定理,证明等式成立.注意到等腰三角形中的两腰相等,则旋转使两腰重合往往是解题中常用的途径之一.例2.如图2,在四边形ABCD 中,点,E F 分别是,AB CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结,,,AG BG CG DG ,且AGD BGC ∠=∠.(1)求证: AD BC =;(2)求证: AGD EGF ??:;(3)如图3,若,AD BC 所在直线互相垂直,求AD EF的值.分析初看此题是一组对边相等的四边形问题,可仔细分析条件可以发现,DGC ?和AGB ?均为等腰三角形,当四边形ABCD 中AD BC ⊥时,两等腰三角形即变为等腰直角三角形,题中三个问题层次分明,逐级递进.第(1)问利用垂直平分线性质直接证全等;第(2)问利用顶用相等的两等腰三角形相似得到对应边成比例,再借用夹角相等证相似;第(3)问通过对四边形中相等的一组对边特殊化,形成两等腰直角三角形,把两条线段的比转化为等腰直角三角形中斜边与直角边的比.虽然通过中点,转化的方法较多(相似、中位线、中位倍长构全等),但本质上均需要构造等腰直角三角形.二、共底角顶点的两个等腰直角三角形例3.如图4, ,A B 分别在射线,OM ON 上,且MON ∠为钝角,现以线段,OA OB 为斜边向MON ∠外侧作等腰直角三角形,分别是,OAP OBQ ??,点,,C D E 分别是,,OA OB AB 的中点.(1)求证: PCE EDQ ;(2)延长,PC QD 交于点R .①如图5,若150MON ∠=°,求证:ABR ?为等边三角形;②如图6,若ARB PEQ ??:,求MON ∠的大小和AB PQ的值.分析本题中两等腰直角三角形OAP ?与OBQ ?中的一底角顶点O 重合,通过OAP ?绕点O 旋转来设计相关问题.第(1)问利用三角形中位线定理和直角三角形斜边上的中线结合平行四边形性质证明全等(边角边).第(2)①问从对称的角度,通过添加辅助线(连结OC )过度,利用线段中垂线证线段相等;第(2)②问,需要对(2)①问逆向思考,通过证PE EQ ⊥这一中间环节,得出PEQ ?与ARB ?为等腰直角三角形,利用直角三角形斜边上的中线性质与等腰直角三角形三边关系求出两线段的比值.值得注意的是,此题与例2图形相近,解法相近,考查的核心知识点相近.例4.已知两个共顶点的等腰三角形Rt ABC ?和Rt CEF ?,90ABC CEF ∠=∠=°,连结,AF M 是AF 的中点,连结,MB ME .(1)如图7,当CB 与CE 在同一直线上时,求证: //MB CF ;(2)如图7,若,2CB a CE a ==,求BM ,ME 的长;(3)如图8,当45BCE ∠=°时,求证: BM ME =.分析两个共底角顶点的双等腰直角三角形中,当两腰在一条直线上时,另两腰必平行.第(1)问利用这个性质结合M 点为中点直接证全等;(2)问在(1)问的基础上,证明BEM ?为等腰直角三角形;第(3)问研究在CEF ?绕点C 旋转45°时,BME ?的形状问题.图形形状发生了改变,但结论不变,方法不变,仍可借助中点构造等腰直角三角形,利用中位线性质进行转化证明.三、一直角顶点和一底角顶点重合的两个等腰直角三角形例5.如图9,在Rt ABC ?中,90,BAC AB AD ∠=°=,点D 是AC 的中点,将一块等腰直角三角板如图放置,使三角板斜边的两个端点分别与,A D 重合,连结,BE EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.分析等腰直角ADE ?的底角顶点A 与等腰直角ABD ?的直角顶点A 重合,借助BAE EDC 证明BEC ?为等腰直角三角形.相当于共直角顶点等腰三角形ADE ?与BEC ?旋转问题的逆问题.例6 如图10 , ABC ?和ACD ?是两个等腰直角三角形,90ACB ADC ∠=∠=°,延长DA 至点E ,使AE AD =,连结,,EB EC BD .(1)求证: BDA BEA ;(2)若BC =BE 的长.分析本题中一等腰直角三角形的直角边与另一等腰直角三角形的斜边重合,此种情况下一等腰直角三角形的斜边必与另一等腰直角三角形一直角边垂直.第(1)问即在此基础上通过“三线合一”构造等腰三角形;第(2)问是根据等腰直角三角形的边角特征,借助勾股定理求线段长.四、一直角顶点和一底边中点重合的两个等腰直角三角形例7如图11,在等腰直角ABC ?中,90,ACB CO AB ∠=°⊥于点O ,点,D E 分别在边,AC BC 上,且AD CE =,连结DE 交CO 于点P ,给出以上结论:①DOE ?是等腰直角三角形;②CDE COE ∠=∠;③1AC =,则四边形CEOD 的面积为14; ④22222AD BE OP DP PE +?=?. 其中所有正确结论正确的序号是 .分析本题表面上看,是一个等腰直角三角形通过作出斜边上的高探究相关结论的问题,实质上是等腰直角DOE ?的直角顶点O 在等腰直角ABC ?斜边中点O 处的结论探究问题.对于选项④利用“四点共圆”,并借助“共角共边的母子”相似三角形,能起到事半攻倍的效果,五、一底角顶点和一底边中点重合的两个等腰直角三角形例8 如图12,等腰直角三角形ABC ?和ODE ?,点O 为BC 中点,90,BAC ODE OD ∠=∠=°交BA 于,M OE 交AC 于N ,试求,,BM NM NA 的关系,并说明理由.分析 DOE ?绕等腰直角ABC ?的底边中点O 旋转,在图12~图14三种情况中,对应的线段和差关系分别是,BM MN NA MN BM NA =+=+.此时DOE ?为等腰直角三角形并不是必备条件,本质上45MON ∠=°才是这一模型的必备条件,其基本的解题途径是,构造共直角顶点的两个等腰直角三角形,通过截长补短解决线段的和差问题.等腰直角三角形底边中点具有独特的性质,以双等腰直角三角形为背景的几何图形,常常具有中点(隐含中点)这一条件,并且图形中常常包含全等三角形,发现其中的全等三角形往往是解题的突破口,而基本的辅助线便是借助中点构造新的等腰直角三角形.。

最新中考数学专题复习—第21讲 等腰三角形与直角三角形

最新中考数学专题复习—第21讲 等腰三角形与直角三角形

第21讲等腰三角形与直角三角形目录:考点知识梳理中考典例精析基础巩固训练考点训练考点知识梳理考点一等腰三角形的概念及分类1.有两边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形.2.等腰三角形分为:底和腰不相等的等腰三角形和等边三角形.温馨提示1.若题目中没有明确边是底还是腰,角没有明确是顶角还是底角,就需要分类讨论.2.等腰三角形的两腰必须满足两腰之和大于底,底角α满足0°<α<90°,顶角β满足0°<β<180°.考点二等腰三角形的性质和判定1.性质(1)等腰三角形的两个底角相等(简称:等边对等角);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(3)等腰三角形是轴对称图形,有一条对称轴,顶角的平分线(底边上的中线、底边上的高线)所在的直线是它的对称轴.温馨提示这个性质简称“三线合一”,但不能简单地说成“等腰三角形的高线、中线、角平分线三线合一”.2.判定:(1)定义法;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).温馨提示等腰三角形的判定定理,是证明两条线段相等的重要定理,是把三角形中的角的相等关系转化为边的相等关系的重要依据.考点三等边三角形的性质和判定1.性质:等边三角形的三个内角都相等,并且每一个内角都等于60°.2.判定(1) 三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.温馨提示由判定(2)可知,在等腰三角形中,只要有一个角是60°,不论这个角是顶角还是底角,这个三角形就是等边三角形.也可以根据定义判定.考点四线段垂直平分线的性质1.经过线段的中点并且垂直于这条线段的直线,叫做线段的垂直平分线.2.性质(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)与一条线段两个端点的距离相等的点,在这条线段的垂直平分线上.温馨提示1.三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.2.锐角三角形三边垂直平分线的交点在三角形内部,直角三角形三边垂直平分线的交点恰是斜边的中点,钝角三角形三边垂直平分线的交点在三角形的外部.考点五直角三角形的性质和判定1.性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)直角三角形斜边上的中线等于斜边的一半;(4)勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.温馨提示勾股定理的使用范围是在直角三角形中,因此可作高来构造直角三角形.2.判定(1)有一个角是直角的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.温馨提示1.勾股定理的逆定理是识别一个三角形是否是直角三角形的一种理论依据,在运用时,一定要用两短边的平方和与长边的平方作比较.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.若a,b,c为一直角三角形的三边长,则以ma,mb,mc(m>0)为三边的三角形也是直角三角形.4.如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.中考典例精析考点一等腰三角形的性质例1 如图,AC,BD相交于点O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD=_______.【点拨】∵AB=BC,∠ACB=35°,∴∠A=∠ACB=35°.∵AB∥DC,∴∠OCD=∠A =35°.∵∠D=40°,∠AOD是△OCD的外角,∴∠AOD=∠OCD+∠D=35°+40°=75°.【答案】75°考点二等腰三角形的判定例2 如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.【点拨】本题考查圆内接四边形的性质与等腰三角形的判定.证明:∵A,B,C,D四点共圆,∴∠A=∠BCE.∵BC=BE,∴∠BCE=∠E,∴∠A=∠E.∴AD=DE,即△ADE是等腰三角形.考点三线段垂直平分线的性质例3 如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC【点拨】∵AC垂直平分BD,∴AB=AD,BC=DC.∴△ABD,△BCD是等腰三角形.∴AC平分∠BCD.再应用“SAS”判定△BEC≌△DEC,∴选项A,B,D正确.故选C.【答案】C方法总结线段垂直平分线上的点到线段两个端点的距离相等.利用这个性质可以证明两条线段相等,进而由等腰三角形的性质解决相关问题.考点四直角三角形的性质与判定例4 在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为_________.【点拨】在△ABC中,∵∠C=90°,AB=7,BC=5,∴AC=AB2-BC2=72-52=2 6.【答案】26方法总结若已知三角形中的一个角为90°,解这个三角形首先应考虑用勾股定理;证明一个三角形为直角三角形,可证明一个内角等于90°,也可利用勾股定理的逆定理.考点五等边三角形的性质与判定例5 已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是_________.【点拨】由题意等边△ABC的高为4,点P到AB的距离是1,点P到AC的距离是2,①若点P在等边△ABC的内部,则可得到点P到BC边的距离PD为1;②若点P′在等边△ABC的外部,则由对称性可以得到点P′到B′C′边的距离P′E为1;这时点P′到BC的距离P′F=EF-P′E=2×4-1=7.所以点P到BC的最小距离和最大距离分别是1和7.【答案】1和7方法总结等边三角形是特殊的三角形,三条边都相等,三个角都等于60°,中线、高线、角平分线为同一条线段,三线合一.根据以上性质可以进行相关的计算与证明.基础巩固训练1.如果等腰三角形的两边长是6 cm和3 cm,那么它的周长是(D)A.9 cm B.12 cmC.15 cm或12 cm D.15 cm解析:分两种情况:(1)等腰三角形的腰长为6 cm,则它的周长为6×2+3=15(cm);(2)等腰三角形的腰长为3 cm,三角形的三边长分别6 cm,3 cm,3 cm,不可能.故选D.2.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为(C)A.40°B.100°C.40°或100°D.70°或50°解析:分两种情况:(1)这个等腰三角形的顶角为40°,则底角为(180°-40°)÷2=70°;(2)这个等腰三角形的底角为40°,则顶角为180°-2×40°=100°.故选C.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为(D)A.60°B.120°C.60°或150°D.60°或120°解析:分两种情况:(1)当这条高在三角形内部时,顶角的度数为90°-30°=60°;(2)当这条高在三角形外部时,顶角的度数为90°+30°=120°.故选D.4.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( C )A .2B .23 C.3 D .3解析:∵△ABC 是等边三角形,BD 平分∠ABC ,∴∠DBA =∠DBC =30°.∵QF 垂直平分BP ,∴BP =2BQ ,且∠BQF =90°.在Rt △BFQ 中,FQ =12BF =1,BQ =BF 2-FQ 2=22-12= 3.于是BP =2 3.在Rt △BPE 中,PE =12BP = 3.故选C. 5.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于点M ,交AC 于点N ,若BM +CN =9,则线段MN 的长为( D )A .6B .7C .8D .9解析:∵∠ABC ,∠ACB 的平分线相交于点E ,∴∠MBE =∠EBC ,∠ECN =∠ECB .∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB .∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN ,∴MN =ME +EN ,即MN =BM +CN =9.故选D.6.已知a ,b ,c 是△ABC 的三边长,且满足关系式c 2-a 2-b 2+|a -b |=0,则△ABC 是 等腰直角三角形.解析:∵c 2-a 2-b 2+|a -b |=0,c 2-a 2-b 2≥0,|a -b |≥0,∴c 2=a 2+b 2,a =b ,∴△ABC 是等腰直角三角形.7.如图,在等腰△ABC 中,AB =AC ,AD 平分∠BAC ,点C 在AE 的垂直平分线上,若DE=10 cm,则AB+BD=10cm.解析:∵AB=AC,AD平分∠BAC,∴BD=CD,又∵点C在AE的垂直平分线上,∴AB+BD=AC+CD=EC+CD=DE=10(cm).8.如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.解:△ABC是等边三角形.理由:∵EB=ED,∴∠EBD=∠D.∵CE=CD,∴∠CED=∠D.又∵∠BCE=∠D+∠CED,∴∠BCE=2∠D=2∠EBD.∵BE⊥CE,∴∠BCE=60°,∠EBC=30°.∴BC=2CE.∵EA=EC,∴BC=AC.∴△ABC是等边三角形.考点训练一、选择题(每小题4分,共40分)1.等腰三角形的顶角为80°,则它的底角是(B)A.20°B.50°C.60°D.80°2.等腰三角形的一边长为6,另一边长为13,则它的周长为(C)A.25 B.25或32C.32 D.19解析:若腰长是6,则三边长分别为6,6,13,∵6+6<13,∴假设不成立;若腰长是13,则三边长分别为13,13,6,∴周长为13+13+6=32.故选C.3. 如图,点E 在正方形ABCD 内,满足∠A EB =90°.AE =6,BE =8,则阴影部分的面积是( C )A .48B .60C .76D .80解析:∵∠A EB =90°,AE =6,BE =8,∴AB =AE 2+BE 2=62+82=10.∴S 阴影=102-12×6×8=100-24=76.故选C. 4. 一直角三角形的两边长分别为3和4.则第三边的长为( D )A .5 B.7 C. 5 D .5或7解析:当4是直角边时,第三边的长为32+42=5;当4是斜边时,第三边的长为42-32=7.故选D.5. 如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( C )A .20B .12C .14D .13解析:∵△ABC 是等腰三角形,AD 平分∠B AC ,∴CD =BD =4.又∵点E 为AC 的中点,∴CE =AE =5,且DE 是△ABC 的中位线,∴DE =12AB =5, ∴△CDE 的周长=CD +CE +DE =4+5+5=14.故选C.6. 如图,在△ABC 中,AB =AC ,点D ,E 在BC 上,连接AD ,AE .如果只添加一个条件使∠DAB =∠EAC ,则添加的条件不能为( C )A .BD =CEB .AD =AEC .DA =DED .BE =CD解析:∵AB =AC ,∴∠B =∠C .A 中,添加BD =CE ,可根据“SAS ”证明△ABD ≌△ACE ,∴∠DAB =∠EAC ;B 中,添加AD =AE ,则∠A DE =∠A ED ,再由外角的性质可得∠DAB =∠EAC ;C 中,添加DA =DE 不能得出∠DAB =∠EAC ;D 中,添加BE =CD ,由等式的性质可得BD =CE ,同A 可得∠DAB =∠EAC .故选C.7.如图,等腰△ABC 的周长为21,底边BC =5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,连接BE ,则△BEC 的周长为( A )A .13B .14C .15D .16解析:因为△ABC 为等腰三角形,所以AB =AC .因为BC =5,所以2AB =2AC =21-5=16,即AB =AC =8.因为DE 是线段AB 的垂直平分线,所以AE =BE ,所以△BEC 的周长=BE +EC +BC =AE +EC +BC =AC +BC =8+5=13.故选A.8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的有( D )A .②B .①②C .①③D .②③解析:①∵22+32=13≠42,∴以这三个数为三角形的三边长不能构成直角三角形,故不符合题意;②∵32+42=52,∴以这三个数为三角形的三边长能构成直角三角形,故符合题意;③∵12+(3)2=22,∴以这三个数为三角形的三边长能构成直角三角形,故符合题意.故能构成直角三角形的有②③.故选D.9. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( B)A .8米 B.10米 C.12米 D.14米解析:如图,设大树高AB =10米,小树高CD =4米,过C 点作CE ⊥AB 于点E ,连接AC ,则四边形EBDC 是矩形.∴EB =4米,EC =8米,AE =AB -EB =10-4=6(米).∴在Rt △AEC 中,AC =AE 2+EC 2=10(米).故选B.10.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED =E C.若△ABC 的边长为4,AE =2,则BD 的长为( A )A .2B .3 C. 3 D.3+1解析:如图,延长BC至F点,使得C F=BD,连接E F,∵ED=EC,∴∠EDC=∠ECD,∴∠EDB=∠EC F.∴△EBD≌△EFC.∴EB=EF,∠B=∠F.∵△ABC是等边三角形,∴∠B =60°,∴△BEF是等边三角形,∴AE=CF=2.∴BD=CF=2.故选A.二、填空题(每小题4分,共20分)11.如图所示,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠B AC,∠EBC =∠E=60°,若BE=6 cm,DE=2 cm,则BC=8 cm.解析:如图所示,延长AD交BC于点M,由AB=AC,AD是∠B AC的平分线可得A M⊥BC,B M=MC=12BC.延长ED交BC于点N,则△BEN是等边三角形.故EN=BN=BE=6 cm,∴DN=6-2=4(cm).在Rt△DMN中,∵∠MDN=30°,∴MN=12DN=2(cm).∴BM=6-2=4(cm),∴BC=2BM=8(cm).12.如图,四边形ABCD中,∠B AD=∠B CD=90°,AB=AD,若四边形ABCD的面积是24 cm2,则AC长是43cm.解析:如图,将△ADC 旋转至△ABE 处,则△AEC 的面积和四边形ABCD 的面积相等,为24 cm 2,这时△AEC 为等腰直角三角形,作边EC 上的高AF ,则A F =12EC =FC ,∴S △AEC =12AF ·EC =AF 2=24,∴AC 2=2AF 2=48,AC =43(c m).13. 如图,在Rt △ABC 中,∠A CB =90°,AB 的垂直平分线DE 交AC 于点E ,交BC 的延长线于点F ,若∠F =30°,DE =1,则BE 的长是 2 .解析:在Rt △F DB 中,∵∠F =30° ∴∠DBF =60°.在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°,∴∠A =30°. 在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.∵DE 垂直平分AB ,∴BE =AE =2.14. 如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠A BC 的平分线交AD 于点O ,连接OC ,若∠A OC =125°,则∠A BC = 70°.解析:∵AD ⊥BC 于点D ,D 为BC 的中点,∴AD 是线段BC 的垂直平分线,∴OB =OC ,∴∠OBC =∠C .∵∠A OC =125°,∴∠C OD =55°.∵∠ODC =90°,∴∠C =35°,∠OBC =35°.∵BO 平分∠A BC ,∴∠A BC =2∠OBC =70°.15.如图,在等腰△ABC 中,AB =AC ,∠B AC =50°,∠B AC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是 100°.解析:如图,由AB =AC ,AO 平分∠B AC ,得AO 是线段BC 的垂直平分线,连接OB ,则OB =OA=OC ,所以∠OAB =∠OBA =12×50°=25°,∠OBC =∠OCB =180°-50°2-25°=40°.由折叠可知EO =EC ,故∠OEC =180°-2×40°=100°.三、解答题(共40分)16.(8分) 将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F .(1)求证:CF ∥AB ;(2)求∠DFC 的度数.解:(1)证明:∵∠DCE =90°,CF 平分∠DCE ,∴∠DCF =45°.∵△ABC 是等腰直角三角形,∴∠B AC =45°.∴∠B AC =∠DCF .∴CF ∥AB .(2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.17.(8分) 如图①,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)若BE的延长线交AC于点F,且BF⊥AC,垂足为F,如图②,∠B AC=45°,原题设其他条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,∴AD是BC的垂直平分线,∴BE=CE.(2)∵∠B AC=45°,BF⊥AC,∴△ABF为等腰直角三角形,∴AF=BF.由(1)知AD⊥BC,∴∠EAF=∠C BF.在△AEF和△BCF中,AF=BF,∠A FE=∠B FC=90°,∠EAF=∠C BF,∴△AEF≌△BCF.18.(12分) 如图,Rt△ABC中,∠C=90°,AD平分∠C AB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积解:(1)在Rt△ABC中,∠C=90°,∴AC⊥CD.又∵AD平分∠C AB,DE⊥AB,∴DE =CD,又∵CD=3,∴DE=3.(2)在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=AC2+BC2=62+82=10.∴S△ADB=12AB·DE=12×10×3=15.19.(12分) (1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D,E.证明:DE=BD+CE.图①(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠B DA=∠A EC=∠B AC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.图②(3)拓展与应用:如图③,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠B AC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠B DA=∠A EC=∠B AC,试判断△DEF的形状.解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠B DA=∠C EA=90°.∵∠B AC=90°,∴∠B AD+∠C AE=90°.∵∠B AD+∠A BD=90°,∴∠C AE=∠A BD.又∵AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(2)结论DE=BD+CE成立.证明:∵∠B DA=∠B AC=α,∴∠DBA+∠B AD=∠B AD+∠C AE=180°-α,∴∠DBA=∠C AE.∵∠B DA=∠A EC=α,AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)由(2)知,△ADB≌△CEA,∴∠DBA=∠EAC.∵△ABF和△ACF均为等边三角形,∴∠A BF=∠C AF=60°.∴∠DBA+∠A BF=∠EAC+∠C AF.∴∠DBF=∠EAF.又∵BF=AF,BD=AE,∴△DBF≌△EAF.∴DF=EF,∠B FD=∠A FE.∴∠DFE=∠DFA+∠A FE=∠DFA+∠B FD=60°. ∴△DEF为等边三角形.。

第18讲等腰三角形与直角三角形(讲练)2017年中考一轮复习数学(附解析)

第18讲等腰三角形与直角三角形(讲练)2017年中考一轮复习数学(附解析)

一、目标要求:1、掌握等腰三角形、等边三角形的概念和性质;2、掌握直角三角形的概念和性质,掌握两个直角三角形全等的条件;3、会用勾股定理解决与直角三角形有关的问题.二、课前热身1.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是() A.18°B.24°C.30°D.36°2. 如图20-2,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=9,则线段MN的长为()A .6B .7C .8D .93. 已知等腰三角形ABC 中,AD ⊥BC 于点D ,且AD=12BC ,则△ABC 底角的度数为( ) A .45° B .75°C .45°或75°D .60°【解析】首先根据题意画出图形,注意分别从∠BAC 是顶角与∠BAC 是底角去分析. 如图(1),AB =AC .∵AD ⊥BC ,∴BD =CD =12BC ,∠ADB =90°. ∵AD =12BC ,∴AD =BD ,∴∠B =45°, 即此时△ABC 底角的度数为45°.如图(2),AC =B C.∵AD ⊥BC ,∴∠ADC =90°.∵AD =12BC ,∴AD =12AC ,∴∠C =30°, ∴∠CAB =∠B =180°-∠C 2=75°, 即此时△ABC 底角的度数为75°.综上,△ABC 底角的度数为45°或75°.故选C.4.如图17-2,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m.则旗杆的高度(滑轮上方的部分忽略不计)为()图17-2A.12 m B.13 m C.16 m D.17 m5. 已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为________________.【解析】由关系式c2-a2-b2+|a-b|=0得到三边之间的数量关系,然后通过数量关系判断三角形的形状.∵c2-a2-b2+|a-b|=0,∴c2-a2-b2=0,|a-b|=0,∴c2=a2+b2,a=b,∴△ABC是等腰直角三角形.三、【基础知识重温】一、等腰三角形1.等腰三角形的定义:有两条边相等的三角形是等腰三角形.2.等腰三角形的性质(1)等腰三角形两底角相等;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,简称:三线合一;(3)等腰三角形是轴对称图形,有 1 条对称轴.3.等腰三角形的判定方法(1)定义判定:一个三角形中,如果有两条边相等,那么这个三角形是等腰三角形.(2)判定定理:等角对等边,即一个三角形中,如果有两个角相等,那么这两个角所对的边相等.4.等边三角形的性质等边三角形的各角都相等,并且每—个角都等于60°;等边三角形是轴对称图形,有 3 条对称轴.5.等边三角形的判定(1)三边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于60°的等腰三角形是等边三角形.二、直角三角形1.直角三角形的定义有一个角是90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形四、例题分析题型一、等腰三角形的性质【例1】(2016贵州安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.【答案】45.【点评】此题主要考查了平行线的性质以及等腰三角形的性质,正确识图是解题关键.【趁热打铁】如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=.【答案】18°.【解析】∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.题型二、等腰三角形的内角的计算【例2】(2016山东烟台)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【答案】D.【分析】本题主要考虑到可以利用圆周角的知识以及以BC为边的等腰三角形的不同情形,即可得解.【点评】此题主要考查学生对等腰三角形的性质和圆周角定理的理解和应用,此题的关键是能分情况讨论.【趁热打铁】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.【答案】15.【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=12(180°﹣50°)=65°.∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.题型三、等腰三角形的多解问题【例3】(2016广西贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【答案】C【分析】因为等腰三角形的两边分别为5和6,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【趁热打铁】若等腰三角形的两条边长分别为7cm和14cm,则它的周长为____________cm.【答案】35.【解析】试题分析:等腰三角形的两条边长分别为7cm和14cm,可能是7cm,7cm,14cm和7cm,14cm,14cm,但7cm,7cm,14cm不符合三角形三边关系,所以这个等腰三角形的边长分别为7cm,14cm,14cm,它的周长为35cm.题型四、勾股定理及其逆定理【例4】(2016四川甘孜州)直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为.【答案】6.【分析】要求出直角三角形的面积,需要先用勾股定理求出另一条直角边长,然后利用三角形的面积公式即可得.【解析】∵直角三角形斜边长是5,一直角边的长是3.该直角三角形的面积S=12×3×4=6.故答案为:6.【点评】本题考查了勾股定理以及三角形面积的计算,正确分析是解决问题的关键.【趁热打铁】如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.【答案】32.五、牛刀小试1、【题源】2016广西百色如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.C.D.12【答案】A【解析】根据30°所对的直角边等于斜边的一半求解.∵∠C=90°,∠A=30°,AB=12,∴BC=12×21=6,故选A. 2. 【题源】2016甘肃武威如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°【答案】D.【解析】∵AB ∥CD ,∴∠D=∠1=34°.∵DE ⊥CE ,∴∠DCE=90°-∠EDC=56°.故选D.3.【题源】2016山东枣庄如图,在△ABC 中,AB = AC ,∠A = 30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( )A .15°B .17.5°C .20°D .22.5°【答案】A.4.【题源】2016山东泰安如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=44°,则∠P 的度数为( )A .44°B .66°C .88°D .92°【答案】D【解析】根据等腰三角形的性质得到∠A=∠B ,证明△AMK ≌△BKN ,得到∠AMK=∠BKN ,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.∵PA=PB ,∴∠A=∠B ,在△AMK 和△BKN 中,⎪⎩⎪⎨⎧=∠=∠=BN AK B A BK AM ,∴△AMK ≌△BKN ,∴∠AMK=∠BKN ,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK ,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A ﹣∠B=92°,故选D.5.【题源】2016广西贺州如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB 的度数为 .【答案】120°6.【题源】2016湖北鄂州如图,AB =6,O 是AB 的中点,直线l 经过点O ,∠1=120°,P 是直线l 上一点。

中考数学一轮复习第21讲直角三角形与勾股定理教

中考数学一轮复习第21讲直角三角形与勾股定理教

第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。

(2)掌握角平分线性质的逆定理。

(3)掌握勾股定理及其逆定理。

二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。

四、教学过程(一)知识梳理直角三角形的概念、性质与判定b,外接圆勾股定理及逆定理互逆命题如果两个命题的题设和结论正好相反,我们把这样的两个命题叫做互命题、定义、定理、公理述,作出_______(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )A、3CMB、6CMC、CMD、CM[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.。

第1讲等腰三角形与直角三角形-教案

第1讲等腰三角形与直角三角形-教案

第1讲等腰三角形与直角三角形-教案概述适用学科初中数学适用年级初中二年级适用区域北师版区域课时时长(分钟) 120知识点1.等腰三角形判定与性质2.直角三角形判定与性质1.理解等腰三角形的判定定理,并会运用其进行简单的证明.教学目标2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性教学重点特殊三角形的灵活应用教学难点特殊三角形的灵活应用.【教学建议】本节的教学重点是使学生能熟练掌握特殊三角形的性质与判定,这一节在本册书乃至整个初中数学几何部分占据非常重要的地位,在中考中出题的频率和分值都比较高,所以教师在教学过程中要注意结合中考题型进行拓展。

学生学习本节时可能会在以下几个方面感到困难:1. 等腰三角形及直角三角形的性质与判定。

2. 结合三角形全等的几何动点。

3.综合性解答题的思路与几何问题中的数学模型。

【知识导图】1等腰三角形与直角三角形等腰三角形判定与性质直角三角形判定与性质教学过程一、导入【教学建议】有关等腰三角形和直角三角形的考题,考查重点是几何动点以及几何类比探究的综合的题型,学生最开始接触时一定要把基础的性质与判定及常见的几何模型整理好,老师在授课过程中要注重方法的指导。

二、知识讲解知识点 1 等腰三角形判定与性质1.提请学生回忆并整理已经学过的8条基本事实中的5条:(1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条平行线被第三条直线所截,同位角相等;(3)两边夹角对应相等的两个三角形全等(SAS);(4)两角及其夹边对应相等的两个三角形全等(ASA);(5)三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:(1)(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理2进行证明;(2)回忆全等三角形的性质。

2.等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。

中考数学复习方案第四单元三角形第21课时直角三角形及勾股定理

中考数学复习方案第四单元三角形第21课时直角三角形及勾股定理
综上所述,原直角三角形纸片的斜边长是 4 5或 10,
故答案是:4 5或 10.
第二十五页,共四十页。












考向二 勾股定理(ɡōu ɡǔ dìnɡ lǐ)及其逆定理的应用
例2 [教材(jiàocái)题]一架2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果
梯子的顶部滑下0.4米,梯子的底部向外滑出多远?












题组二
易错题
【失分点】
直角的不确定引起的分类讨论;求最短距离时,将立体(lìtǐ)图形展开成平面图形求解.
6.[2018·东营]如图 21-2 所示的圆柱的高 AB=3,底面直径 BC=3,现在有一只蚂蚁
想从 A 处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是 (
A.3 1 + π
的中点,连接BM,MN,BN, ∠BAD=60°,AC平分∠BAD,AC=2,则BN的长为
.






图21-6
第二十二页,共四十页。






[答案] 2
1
[解析]在△ CAD 中,∵M,N 分别是 AC,CD 的中点,∴MN∥AD,MN= AD,
2
1
在 Rt△ ABC 中,∵M 是 AC 的中点,∴BM= AC=1.
∵∠ACB=45°,∴AF=CF=1,
∴DF= 2 - 2 = 3,
∴CD=DF-CF= 3-1.

中考数学复习《三角形及其性质》练习题含答案

中考数学复习《三角形及其性质》练习题含答案

第2节三角形及其性质课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°. 16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C 【解析】∵点E 为BC 边的中点,CD ⊥AB ,DE =32,∴BE =CE =DE =32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF,∴CD∥AF,∴CDAF=EDEA.当D与A重合时,CD与AF重合,取得最大值为5,当D接近于E时,DE越小,CD越小,∵线段CD不能为0,∴0<CD ≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA=30°,如解图,将△ABD 绕点A 逆时针旋转120°得到△ACD ′,∴∠D ′CA =∠B =30°,AD =AD ′,∴∠D ′CE =60°,∵∠DAE =60°,∠DAD ′=120°,∴∠EAD ′=60°,∴△EAD ′≌∠EAD (SAS ),∴ED ′=ED ,∴ED ′+BD +EC =6,∴EC =6-DE 3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE 3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16.2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM=B′M,BN=B′N,B′M∥BA,∴MCBC=B′MAB,即MCB′M=BCAB=2,∴MCB′M=2,即MC+BMBM=2+11,即BCBM=2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。

精选-中考数学总复习第四单元三角形第21课时直角三角形与勾股定理课件

精选-中考数学总复习第四单元三角形第21课时直角三角形与勾股定理课件

(1)把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题.
(2)原命题成立,其逆命题不一定成立
若一个定理的逆命题经过证明是真命题,那么它就是这个定理的逆定理,称这两个定理为 互逆定理
互逆定理
最新
精选中小学课件
4
课前双基巩固 考点四 命题、定义、定理、公理
定义
在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,做出明确的规定,也就是给它 们下定义
第 21 课时 直角三角形与勾股定理
最新
精选中小学课件
1
课前双基巩固
考点聚焦
考点一 直角三角形的概念、性质与判定
定义
性质
判定 常见 结论
最新
有一个角是①
直角
的三角形叫做直角三角形
(1)直角三角形的两个锐角② 互余
(2)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的③ 一半
(3)在直角三角形中,斜边上的中线等于斜边的④ 一半
最新
精选中小Hale Waihona Puke 课件7课前双基巩固
3. [七下 P161 习题第 1(2)题改编] 已知命题:“自然数是整数.”写
出它的逆命题:
.该逆命题是
(填
“真”或“假”)命题.
[答案] 整数是自然数 假 [解析] 交换原命题的条件和结论,可得 到其逆命题.举一个反例,可说明这是一 个假命题,如“-2 是整数,但-2 不是自然 数”,可知该逆命题为假命题.
2
2
精选中小学课件
2
课前双基巩固 考点二 勾股定理及逆定理
勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即① a2+b2=c2

中考数学第16讲等腰三角形与直角三角形复习教案北师大版

中考数学第16讲等腰三角形与直角三角形复习教案北师大版

课题:第十六讲等腰三角形与直角三角形复习目标:1.了解等腰三角形、等边三角形、直角三角形的有关概念,掌握等腰三角形、等边三角形、直角三角形的性质,掌握一个三角形是等腰三角形、等边三角形、直角三角形的条件.2.掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形. 教学重点与难点:重点:等腰三角形、直角三角形的性质与判定.难点: 掌握一个三角形是等腰三角形、等边三角形、直角三角形的条件、勾股定理,并会运用勾股定理解决简单问题.教学过程:一、课前热身1.(2014•滨州)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,32.(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.3.(2014•云南)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= .4.(2014•扬州)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.5.(2014•呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为.6.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形 D.△ADE的周长是97.(2014•襄阳)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=O C.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.处理方式:本环节的习题学生课前已完成,课上利用7分钟的时间让学生以“教师的身份”展示讲解,其余学生与教师补充、纠错.设计意图:鼓励每一位学生敢于亲自体验,敢于展示讲解,更好训练学生解题能力和口头表达能力,从而形成会做不如会写的,会写的不如会讲的.必将极大地激发了学生学习的积极性与主动性,提高教学的实效性.二、考点聚焦考点1 等腰三角形的概念与性质定义有____相等的三角形是等腰三角形.相等的两边叫腰,第三边为底性质轴对称性等腰三角形是轴对称图形,有____条对称轴定理1等腰三角形的两个底角相等(简称:__________)定理2等腰三角形顶角的平分线、底边上的________和底边上的高互相重合,简称“三线合一”拓展(1)等腰三角形两腰上的高相等(2)等腰三角形两腰上的中线相等(3)等腰三角形两底角的平分线相等(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半(5)等腰三角形顶角的外角平分线与底边平行考点2 等腰三角形的判定考点3 等边三角形处理方式:先让学生通过查阅课本或小组合作解决知识回顾,再让学生分组展示,在学生展示同时,教师引出相应考点,生回答师强调补充完善.设计意图:通过知识回顾,考点聚焦达到以下目的:1.了解等腰三角形、等边三角形、直角三角形的有关概念,掌握等腰三角形、等边三角形、直角三角形的性质,掌握一个三角形是等腰三角形、等边三角形、直角三角形的条件.2.掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形.三、典例分析例1 若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.处理方式:学生读题独立思考,必要时教师给予引导分析:题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.方法总结:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.例2 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6处理方式:学生读题独立思考,必要时教师给予引导分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.学生完成解答.方法总结:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.例3 如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.处理方式:学生读题独立思考,必要时教师给予引导分析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.学生完成解答.方法总结:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.设计意图:围绕考点,挑选部分中考题作为典型例题,一让学生知道中考对等腰三角形与直角三角形考什么?怎么考?二让学生通过典型例题解答,在复习回扣考点同时掌握一些解题方法和处理技巧.四、回声嘹亮师:同学们经历了这节课的探索学习,你在知识上和方法上什么收获呢?请说说看.处理方式:同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳.设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力.五、考点达标已知关于x 的一元二次方程(a +c )x 2+2bx +(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业必做题:复习指导丛书 P 82 强化训练 1—13题.选做题:如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =3,EC =1,则DE 的长为( )A . 22B . 10C . 32D .6 设计意图:“必作题”可以巩固本节课所学内容,“选作题”可以培养学生对数学学习内容的兴趣.板书设计: 第十六讲 等腰三角形与直角三角形等腰三角形:直角三角形: 例1 例2 例3投影区学 生 活 动 区2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的不等式21x a --…的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-2.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( )A .k>-14B .k>-14且0k ≠C .k<-14D .k ≥-14且0k ≠ 3.下面的几何体中,主视图为圆的是( )A .B .C .D . 4.如图,在Y ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:2 5.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩6.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( ) A .5B .6C .7D .97.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断8.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是()A.63B.123C.183D.2439.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.410.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.5C.233D.2511.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°12.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.14.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.16.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.18.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。

一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。

两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。

2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。

(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。

2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。

三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。

(2)一边的中线等于这条边的一半,这个三角形是直角三角形。

(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。

江西省2019年中考第5单元第21课时等腰三角形与直角三角形教案

江西省2019年中考第5单元第21课时等腰三角形与直角三角形教案

第五单元三角形第21课时等腰三角形及直角三角形教学目标【考试目标】1.了解等腰三角形的有关概念,掌握等腰三角形的性质和一个.三角形为等腰三角形的条件;了解等边三角形的概念及性质;2.了解直角三角形的概念,掌握直角三角形的性质和一个三角形是直角三角形的条件;3.会运用勾股定理解决简单问题;会用勾股定理的逆定理判定一个三角形是否为直角三角形.【教学重点】1.了解掌握等腰三角形的有关概念及性质.2.学会等腰三角形的判定.3.掌握等边三角形的性质及判定方法.4.掌握线段垂直平分线与角平分线的相关性质.5.学会直角三角形的相关性质与判定方法.教学过程一、体系图引入,引发思考二、引入真题、归纳考点【例1】(2019年菏泽)如图,△ABC 与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为 ( A )A .25:9B .5:3C . D.【解析】解:过A 作AD⊥BC 于D ,过A′作A′D′⊥B′C′于D′,∵△ABC 与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD ,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=0.5AD•BC=0.5AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=0.5A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC:S△A′B′C′=25:9.故选A.【例2】(2019年苏州)如图,在△ABC 中,AB=10,∠B=60°,点D 、E 分别在AB 、BC 上,且BD=BE=4,将△BDE 沿DE 所在直线折叠得到△B'DE(点B'在四边形ADEC 内),连接AB',则AB'的长为________ .【解析】过点B′作B′F⊥AD,垂足为F ,因为BD=BE=4,∠B=60°,所以△BDE 是等边三角形.由折叠的性质可得DB′=BD=4,3355:35:∠BDE=∠B′DE=60°,所以∠ADB′=60°,所以在Rt△B′FD 中,DF=2,B′F= .因为AB=10,所以AF=4,所以【例3】(2019年西宁)如图,OP 平分∠AOB,∠AOP=15°,PC∥OA,OA⊥PD 于点D ,PC=4 ,则,PD= 2 .【解析】过点P 作PE⊥OB 于点E.∵OP 平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°.∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=0.5PC=2,∴PD=PE=2.【例4】(2019年江西)如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP则AE=AP=5,底边长PE 2=AP 2+AE 2=52+52=50, PE= ;如果点P 落在DC 边上,则底边长AE=5;如果点P 落在BC 边上,则两条腰AE=EP=5,所以 所以等腰三角形AEP 的底边长是 或5或 .三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:同步导练教学反思 学生对特殊三角形的掌握情况很好,望多加复习巩固,做到熟练会用.72().7232422=+=25,4352222=-=-=EB EP BP 54482222=+=+=BP AB AP 54252019-2020学年数学中考模拟试卷一、选择题1.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-42.下列等式成立的是( )A .x 2+3x 2=3x 4B .0.00028=2.8×10﹣3C .(a 3b 2)3=a 9b 6D .(﹣a+b )(﹣a ﹣b )=b 2﹣a 23.已知△ABC ∽△DEF ,其中AB =6,BC =8,AC =12,DE =3,那么△DEF 的周长为( ) A.394B.263C.13D.264.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( )A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=-50,-1,π这四个数中,最大的数是( )A B .π C .0 D .-16.如图,要使□ABCD 成为矩形,需添加的条件是()A .AB=BCB .∠ABC=90°C .AC ⊥BD D .∠1=∠2 7.在实数范围内把二次三项式x 2+x ﹣1分解因式正确的是( )A .(x ﹣12-)(x ﹣12)B .(x ﹣12)(x+12+)C .()(x )D .()() 8.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .2B .8CD .9.下列计算结果等于4的是( )A .|(﹣9)+(+5)|B .|(+9)﹣(﹣5)|C .|﹣9|+|+5|D .|+9|+|﹣5|10.如图,已知⊙O 的半径为6cm ,两弦AB 与CD 垂直相交于点E ,若CE =3cm ,DE =9cm ,则AB =( )cm 11.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°12.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为( )A .﹣1,0,1B .﹣1,0C .0,1D .﹣1,1 二、填空题13.分解因式:a 3﹣a =_____.14.已知a ,b 是方程x 2﹣3x ﹣1=0的两个根,则代数式a+b 的值为_____.15.若正多边形的一个外角是40°,则这个正多边形的边数是_____.16.为了了解一批圆珠笔芯的使用寿命,宜采用________方式进行调查;为了了解某班同学的身高,宜采用________方式进行调查.(填“抽样调查”或“普查”)17.在实数范围内分解因式4m 4﹣16=_____.18.如图,已知△ABC 为等边三角形,点E 为△ABC 内部一点,△ABE 绕点B 顺时针旋转60°得到△CBD ,且A 、D 、E 三点在同一直线上,AD 与BC 交于点F ,则以下结论中:①△BED 为等边三角形;②△BED 与△ABC 的相似比始终不变;③△BDE ∽△AD B ;④当∠BAE =45°时,CD DF 其中正确的有_____(填写序号即可).三、解答题19.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ;(2)补全条形统计图;(3)学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求丙和丁两名学生同时被选中的概率.20.如图,在△ABC 中,AB =8,BC =4,CA =6,CD ∥AB ,BD 是∠ABC 的平分线,BD 交AC 于点E ,求AE 的长.21.先化简,再求值:(x ﹣1+221x x -+)÷21x x x -+,其中x 的值从不等式﹣1≤x<2.5的整数解中选取. 22.如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且25AE cm =,手臂60AB BC cm ==,末端操作器35CD cm =,AF 直线L .当机器人运作时,45,75,60BAF ABC BCD ∠=︒∠=︒∠=︒,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)23.已知:21(1)()12x x x +-=+(1)请计算( )内应该填写的式子;(2)若( )代数式得值为3,求x 的值.24.如图,在△ABF 中,以AB 为直径的作⊙O ,∠BAF 的平分线AD 交⊙O 于点D ,AF 与⊙O 交于点E ,过点B 的切线交AF 的延长线于点C(1)求证:∠FBC =∠FAD ;(2)若54AE FD =,求AD BC的值.25.如图,在平面直角坐标系xOy 中有矩形OABC ,()()A 40C 02,,,,将矩形OABC 绕原点O 逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC 上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x?轴上时,直接写出此时点A′的坐标.【参考答案】***一、选择题二、填空题13.a (a+1)(a ﹣1)14.315.916.抽样调查 普查17.4(m 2+2)(m+)(m )18.①三、解答题19.(1)本次调查的学生总人数为60人,扇形统计图中C 所对应扇形的圆心角度数是90°;(2)补全条形图见解析;(3)丙和丁两名学生同时被选中的概率为16. 【解析】(1)由A的人数及其所占百分比可得总人数,用360°乘以C人数所占比例即可得;(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此补全图形即可得;(3)画树状图列出所有等可能结果,再利用概率公式计算可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×15 60=90°,故答案为:60、90°;(2)D类别人数为60×5%=3,则B类别人数为60﹣(24+15+3)=18,补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中丙和丁两名学生同时被选中的结果数为2,所以丙和丁两名学生同时被选中的概率为212=16.【点睛】本题主要考查条形统计图以及列表法与树状图法.条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数.当有两个元素时,可用树形图列举,也可以列表列举.20.4【解析】【分析】根据角平分线定义和平行线的性质求出∠D=∠CBD,求出BC=CD=4;利用两个角对应相等证得△AEB∽△CED,得出比例AB AECD CE, 代值,求出AE=2CE,即可得出答案【详解】∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴AB AE CD CE=,∴84=AECE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.【点睛】本题考查了相似三角形的性质和判定和等腰三角形的判定、平行线的性质等知识点,能求出AE=2CE和△ABE△CDE是解此题的关键;21.11,2xx-.【解析】【分析】先算括号里的,然后算除法化简分式,最后将中不等式﹣1≤x<2.5的整数解代入求值.【详解】原式=221 11(1)x xxx x x-+⎛⎫-+⋅⎪+-⎝⎭=12(1)1 (1)+(1)1(1)x x xxx x x x x+--+ -⋅⋅-+-=12 xx x +-+=1 xx -﹣1≤x<2.5的整数解为﹣1,0,1,2,∵分母x≠0,x+1≠0,x﹣1≠0,∴x≠0且x≠1,且x≠﹣1,∴x=2当x=2时,原式=211 22 -=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.22.(20+)cm.【解析】作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,解Rt CBG ∆和Rt ABH ∆,分别求出CG 和BH 的长,根据D 到L 的距离()BH AE CD CG =+--求解即可.【详解】如图,作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,在Rt CBG ∆中,∠BCD=60°,BC=60cm ,∴cos6030CG BC =⋅︒=,在Rt ABH ∆中,∠BAF=45°,AB=60cm ,∴sin45BH AB =⋅︒=∴D 到L 的距离()25520)BH AE CD CG cm =+--=-=.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.23.(1)2x+2(2)x=12【解析】【分析】根据已知等式确定出( )内的式子,进而确定出x 的值即可.【详解】 (1)21(1)(22)12x x x x +-+=+; (2)当223x+=时,12x =. 【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.24.(1)见解析;(2)58 【解析】【分析】(1)根据等角的余角相等即可证明.(2)连接DE .证明△AED ∽△BFC 即可解决问题.【详解】(1)证明:∵AB 是直径,∴∠ADB =90°,又∵AD 平分∠BAF ,∴∠BAD =∠FAD ,∵BC 切⊙O 于B 点,∴∠ABC =90°,∴∠BAD+∠ABD =∠FBC+∠ABD =90°,∴∠BAD =∠FBC ,∴∠FBC =∠FDA .(2)解:连接DE .∵∠ADB =90°,AD 平分∠BAF ,∴△ABF 是等腰三角形,∴∠ABD =∠AFD ,BF =2FD , ∵54AE FD =, ∴58AE FB =, ∵四边形AEDB 内接于⊙O ,∴∠AED+∠ABD =180°,∵∠AFD+∠CFB =180°,∵∠ABD =∠AFD ,∴∠AED =∠CFB ,∵∠FBC =∠FAD ,∴△AED ∽△BFC , ∴58AD AE BC FB == .【点睛】本题主要考查圆的切线的性质,关键在于构造辅助线,证明三角形相似,利相似比来计算.25.(Ⅰ)旋转角为30°;(Ⅱ)B′的坐标为1,2+;(Ⅲ)点A′的坐标为⎛ ⎝⎭【解析】【分析】(Ⅰ)过点'A 作A D x '⊥,垂足为D ,由旋转的性质及A 、C 坐标可得OA=OA′=4,A′D=A′B′=OC=2,由A′D=12OA′可得30A OD ∠='︒,即可得答案;(Ⅱ)过点'B 作B′E⊥BC ,垂足为E ,根据矩形的性质可得30OA C A OA ∠∠''==︒,可得60B A E ∠︒='',即可求出A′C、A′E、B′E 的长,进而可得B′点坐标;(Ⅲ)过点'A 作A F x '⊥轴,垂足为F ,可证明''~'BAO AFO ,利用勾股定理可求出OB′的长,根据相似三角形的性质可求出OF 的长,进而可得A′F 的长,即可得点A′坐标.【详解】(Ⅰ)如图a ,过点'A 作A D x '⊥,垂足为D ,∵()()4002A C ,,,, ∴42OA OA A D B A OC ''''=====,.在'Rt OAD 中,1''2A D OA =, ∴30A OD ∠='︒,即旋转角为30︒.(Ⅱ)如图b ,过点'B 作B E BC '⊥,垂足为E ,∵BC AO∴30OA C A OA ∠∠''==︒.∴60,B A E A C ∠︒''=='.∴1,A E B E ''==∴'B 的坐标为(1,2+.(Ⅲ)如图c ,过点'A 作A F x '⊥轴,垂足为F ,∵A′B′=2,A′O=4,=∵90''B A O AF BO ∠=︒⊥'',,∠A′OB′=∠A′OB′,∴'''BAO AFO ∽. ∴'''OB OA OA OF=.∴OF =.∴'A F =.∴点'A 的坐标为55⎛- ⎝⎭,.【点睛】本题考查旋转的性质、相似三角形的判定与性质,正确得出对应边与对应角是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.已知:32251025x x x x -++﹣M =55x x -+,则M =( ) A .x 2 B .25x x + C .2105x x x -+ D .2105x x x ++ 2.如图,将边长为6cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长为( )A .32B .3C .94D .1543.已知a,b 2,则a ,b 的关系是( ) A .a =b B .a =﹣b C .a =1b D .ab =﹣14.若23,则a 的值可以是( )A .﹣7B .163C .132D .125.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A .众数B .方差C .中位数D .平均数6.计算正确的是( )A.()020190-=B.623x x x ÷=C.()423812a b a b -=-D.45326a a a ⋅= 7.如图:A B C D E F ∠∠∠∠∠∠+++++等于( )A .180B .360C .540D .7208.已知二次函数y =ax 2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx+c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .59.下列运算正确的是( )A .ab•ab=2abB .(3a )3=9a 3C .3(a≥0)D 10.反比例函数y=-3x -1的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1<x 2B .x 1=x 2C .x 1>x 2D .不确定11.如图,AB 是半圆O 的直径,且AB=12,点C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧BC 恰好过圆心O ,则图中阴影部分的面积是( )A .4πB .5πC .6πD .8π12.将一张宽为5cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A cm 2B .252cm 2C .25cm 2D 2二、填空题13.如图,二次函数y=ax2+bx+c(a≠0).图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1、3,与y轴负半轴交于点C.下面三个结论:①2a+b=0;②a+b+c>0;③只有当12a 时,△ABD是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)14.一组数据3,4,x,5,8的平均数是6,则该组数据的中位数是__________.15.边长为1的正三角形的内切圆半径为________16.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=12,则该等腰三角形的顶角为______度.17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是_____.18.如图,菱形ABCD的对角线AC,BD相交于点O.若tan∠BAC=34,AC=6,则BD的长是_____.三、解答题19.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。

中考数学冲刺复习课件:第21课时直角三角形和勾股定理

中考数学冲刺复习课件:第21课时直角三角形和勾股定理

第21课时 直角三角形和勾股定理课时作业
一、选择题
1.(2014•黄石)如图21-1,一个矩形纸片,剪去部分后得到
一个三角形,则图中∠1+∠2的度数是( C )
A.30°
B.60° C.90°
D.120°
2.如图21-2,△ABC与△ABD是直角三角形,点F是AB的中点
,若CF=8,则DF的长为( C )
第21课时 直角三角形和勾股定理
4.(2014•西宁)如图21-8,在△ABC中,∠C=90°,∠B=30° ,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说 法错误的是( D )
A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED
提示:∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°, ∴∠CAD=∠BAD=∠B, ∴AD=BD,AD=2CD, ∴BD=2CD, 根据已知不能推出CD=DE, 即只有D错误,选项A、B、C的答案都正确.
A.49
B.25
C.13
D.1
提示:由于大正方形的面积25,小正方形的面积是1,
则四个直角三角形的面积和是25-1=24,即4× ab=24,
即2ab=24,a2+b2=25,
则(a+b)2=25+24=49.
5.(2013•济南)如图21-5,小亮将升旗的绳子拉到旗杆底端
,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆
8.在△ABC中,若BC边上的中线AD= BC, 则该三角形的形状为( B )
A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形
9.在下列选项中,已知三角形三边长,能

6、等腰三角形和等边三角形-苏教版四年级数学下册教案[推荐五篇][修改版]

6、等腰三角形和等边三角形-苏教版四年级数学下册教案[推荐五篇][修改版]

第一篇:6、等腰三角形和等边三角形-苏教版四年级数学下册教案5、等腰三角形和等边三角形-苏教版四年级数学下册教案第三单元三角形(第5课时等腰三角形和等边三角形) 教学目标:1、在实际的操作中,认识等腰三角形和等边三角形的基本特征,并能根据具体要求画出等腰三角形和等边三角形。

2、学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、使学生在学习活动中,进一步产生对数学的好奇心,锻炼动手能力,增强创新意识。

教学重点、难点: 等腰三角形和等边三角形的基本特征。

教学准备:例题中的三角形教学过程:一、自主探索、主动发现1、认识等腰三角形。

讲述:请每个同学拿出事先准备好的三角形,量一量这三个三角形的三条边的长度,并纪录下来。

学生操作。

2、提问:这三个三角形有什么共同的特点?引导学生说出:每个三角形都有两条边是相等的。

师小结:向这样,有两条边相等的三角形叫作等腰三角形。

3、出示图,提问:照下面的方法剪成的三角形是等腰三角形吗?学生小组内讨论。

全班交流,引导学生用轴对称图形的有关知识加以解释。

3、出示等腰三角形,介绍各部分名称。

讲述:请同学们用量角器量出两个底角的度数,你发现了什么?引导学生说出:等腰三角形的底角相等。

二、认识等边三角形1、学生拿出事先准备好的等边三角形。

学生小组活动,要求:通过量一量,看看这个三角形有什么特征?教师个别辅导学生。

全班交流,引导学生说出;这些三角形的三条边的长度相等。

师小结:像这样三条边相等的三角形叫做等边三角形。

2、学生照样子用一张正方形纸剪出一个等边三角形。

介绍剪的方法。

弄清三个角的关系。

3、提问:等边三角形还有什么特点?引导学生说出:等边三角形的三个角也相等。

三、巩固提高完成“想想做做”的题目第1题,让学生说出判断的理由。

第2题,学生独立操作,可小组交流。

全班交流时说清楚为什么是等腰三角形和直角三角形。

第3题,学生先按要求画,再依次说明为什么是等腰三角形,还可怎么分类?第4题,通过画图,学生进一步体会等腰三角形可以是直角三角形,也可以是锐角三角形,还可以是钝角三角形。

人教版四年级下册第五单元《三角形》教案

人教版四年级下册第五单元《三角形》教案

⼈教版四年级下册第五单元《三⾓形》教案第五单元三⾓形⼀、教学内容学⽣通过第⼀阶段以及四年级上册对空间与图形内容的学习,对三⾓形已经有了直观的认识,能够从平⾯图形中分辨出三⾓形。

本单元内容的设计是在上述内容基础上进⾏的,通过这⼀内容的教学进⼀步丰富学⽣对三⾓形的认识和理解。

本单元主要内容有:三⾓形特性、三⾓形两边之和⼤于第三边、三⾓形的分类、三⾓形内⾓和是180°及四边形内⾓和。

⼆、教学⽬标1、使学⽣认识三⾓形的特性,知道三⾓形任意两边之和⼤于第三边以及三⾓形的内⾓和是180°。

2、使学⽣认识锐⾓三⾓形、直⾓三⾓形、钝⾓三⾓形和等腰三⾓形、等边三⾓形,知道这些三⾓形的特点并能够辨认和区别它们。

3、联系⽣活实际并通过拼摆、设计等活动,使学⽣进⼀步感受三⾓形的特征及三⾓形与四边形的联系,感受数学的转化思想,感受数学与⽣活的联系,学会欣赏数学美。

4、使学⽣在探索图形的特征、图形变换以及图形的设计活动中进⼀步发展空间观念,提⾼学⽣观察能⼒和动⼿操作能⼒。

三、教学重点1、三⾓形的分类。

2、三⾓形的特性:三⾓形的两边之和⼤于第三边以及三⾓形的内⾓和是180°。

3、三⾓形与四边形的联系与区别。

四、教学难点1、三⾓形根据不同的⾓度进⾏分类。

2、三⾓形的两边之和⼤于第三边以及三⾓形的内⾓和是180°。

3、学⽣对数学的转化思想的理解。

五、教学策略1、准确把握本册关于“三⾓形的认识”的教学⽬标。

因为本册对三⾓形认识的教学⽬标与第⼀学段“获得对简单平⾯图形的直观经验”有所不同,应使学⽣通过观察、操作、推理等⼿段,逐步认识三⾓形。

因此,在进⾏本单元的教学,落实“了解三⾓形任意两边的和⼤于第三边”“三⾓形内⾓和是180°”等内容的具体⽬标时,不仅要求学⽣积极参与各种形式的活动,⽽且要积极引导学⽣对活动过程和结果进⾏判断分析、推理思考和抽象概括,让学⽣在学习知识的过程中提⾼能⼒。

13.3.1等腰三角形(第二课时)教案

13.3.1等腰三角形(第二课时)教案

等腰三角形教案(第二课时)一、内容和内容解析1、内容等腰三角形的判定。

2、内容解析本节课是在学生已经学习了轴对称和等腰三角形的性质的基础上,进一步探索等腰三角形的判定方法,这为我们提供了证明两条线段相等的新方法.基于以上分析,确定本节课的教学重点:探索并证明等腰三角形判定。

二、教学目标1、知识与技能(1)探索等腰三角形判定定理.(2)理解等腰三角形的判定定理,并会运用其进行简单的证明.(3)了解等腰三角形的尺规作图.2、过程与方法(1)探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念;(2)通过等腰三角形的判定定理的简单应用,加深对定理的理解。

3、情感态度价值观目标:(1)学生通过积极参与分析,体验到学习知识的乐趣,思考的魅力,增强应用数学的意识。

(2)经历运用等腰三角形的性质和等腰三角形判定定理解决问题的过程,体会数学的应用价值,提高运用知识和解决问题的能力。

三、教学重点与难点1、重点:理解和运用等腰三角形的判定定理;2、难点:等腰三角形判定的利用作中线的证明方法。

四、教学方法和教学手段1、教学方法:师生问答探究教学法数形结合法2、教学手段:多媒体教学(PPT)、圆规直尺作图分析五、教学过程(一)、教学流程设计。

1、复习旧知,回顾思考: 通过对等腰三角形性质的复习提出问题,引发学生思考;2、讨论分析,论证性质: 通过探索,归纳等腰三角形的判定并予以证明;3、课堂练习,师演生学:在解题过程中加深对判定的理解,学会判定的运用及等腰三角形的画法;4、梳理反思,布置作业:回顾反思,从知识、方法、情感态度等方面谈收获。

(二)、教学过程设计。

问题与情境师生活动设计意图时间一、复习旧知,回顾思考:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?回顾:性质定理证明方法是什么?思考:一个三角形满足什么条件是等腰三角形?如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B。

中考数学第五章《全等三角形》复习教案新人教版

中考数学第五章《全等三角形》复习教案新人教版

章节第五章课题全等三角形课型复习课教法讲练结合教学目标(知1。

了解图形全等的概念,能利用全等图形解决有关问题。

识、能力、教育)2.掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.3.体会在证明过程中,所运用的归纳、转化等数学思想方法.教学重点掌握两个三角形全等的条件教学难点应用三角形的全等解决一些实际问题.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1。

全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS".(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边"或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”. (5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理"或“HL”.2。

全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【课前练习】1.如图,若△ABC≌△DEF,∠E等于( )A.30° B.50° C.60° D、100°2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD3。

在下列各组几何图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4。

下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5。

2024年中考数学复习课件---第17讲 等腰三角形与直角三角形

2024年中考数学复习课件---第17讲 等腰三角形与直角三角形
上的高互相重合)


5.面积:


S△ABC = BC·
AD

1.有两边相等的三角形是等腰三角形
判定
两角
2.有④________相等的三角形是等腰三角形
【满分技法】等腰三角形判定简记为“要证边相等先证角相等,
要证角相等先证边相等”
C
第17讲 等腰三角形与直角三角形— 考点梳理
返回思维导图
返回栏目导航
∴∠DAC=90°-∠C=60°,∴∠BAD=90°-∠DAC=30°,
∴∠BAD=∠ABF,∴AF=BF.∵∠FBD=30°,∠FDB=90°,



∴BF=2DF∴AD=AF+DF=BF+ BF= BF=10,∴BF= .



例2
3
4
第17讲 等腰三角形与直角三角形— 重难突破
返回重难清单
6.(2022·贵阳8题3分)如图,“赵爽弦图”是由四个全等的直角三角形
与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条
直角边的长分别为1和3,则中间小正方形的周长是( B )
A.4
B.8
C.12
D.16
6
7
8
9
10
11
第17讲 等腰三角形与直角三角形— 真题试做
返回命题点清单
返回栏目导航
三角形的判定定理:有两个角相等的三角形是等腰三角形.
2.探索等边三角形的性质定理:等边三角形的各角都等于60°.探索等边三
角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角
形)是等边三角形.
第17讲
等腰三角形与直角三角形— 课标要求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元三角形
第21课时等腰三角形及直角三角形教学目标
【考试目标】
1.了解等腰三角形的有关概念,掌握等腰三角形的性质和一个. 三角形为等腰三角形的条件;了解等边三角形的概念及性质;
2.了解直角三角形的概念,掌握直角三角形的性质和一个三角形是直角三角形的条件;
3.会运用勾股定理解决简单问题;会用勾股定理的逆定理判定一个三角形是否为直角三角形.
【教学重点】
1.了解掌握等腰三角形的有关概念及性质.
2.学会等腰三角形的判定.
3.掌握等边三角形的性质及判定方法.
4.掌握线段垂直平分线与角平分线的相关性质.
5.学会直角三角形的相关性质与判定方法.
教学过程
一、体系图引入,引发思考
二、引入真题、归纳考点
【例1】(2016年菏泽)如图,△ABC 与
△A′B′C′都是等腰三角形,且AB=AC=5,
A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC
与△A′B′C′的面积比为 ( A )
A .25:9
B .5:3
C .
D.
【解析】解:过A 作AD⊥BC 于D ,过A′作A′D′⊥B′C′于D′,
∵△ABC 与△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,
BC=2BD ,B′C′=2B′D′,
∴AD=AB•sinB,A′D′=A′B′•sinB′,
BC=2BD=2AB•cosB,
B′C′=2B′D′=2A′B′•cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵S△BAC=0.5AD•BC=0.5AB•sinB•2AB•cosB=25sinB•cosB, 3
355:3
5:
S△A′B′C′=0.5A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′, ∴S△BAC:S△A′B′C′=25:9.故选A.
【例2】(2016年苏州)如图,在△ABC 中,
AB=10,∠B=60°,点D 、E 分别在AB 、BC 上,
且BD=BE=4,将△BDE 沿DE 所在直线折叠得
到△B'DE(点B'在四边形ADEC 内),连接AB',
则AB'的长为________ .
【解析】过点B′作B′F⊥AD,垂足为F ,因为BD=BE=4,∠B=60°,
所以△BDE 是等边三角形.由折叠的性质可得DB′=BD=4, ∠BDE=∠B′DE=60°,所以∠ADB′=60°,所以在Rt△B′FD 中, DF=2,B′F= .因为
AB=10,所以AF=4,
所以 【例3】(2016年西宁)如图,OP 平分∠AOB,∠AOP=15°,
PC∥OA,OA⊥PD 于点D ,PC=4 ,则,PD= 2 .
【解析】过点P 作PE⊥OB 于点E.∵OP 平分∠AOB,∴PD=PE,
∠AOB=2∠AOP=30°.∵PC∥OA,∴∠ECP=∠AOB=30°, ∴PE=0.5PC=2,∴PD=PE=2.
【例4】(2016年江西)如图是一张长方形纸片ABCD ,已知AB=8,
AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片
(△AEP),使点P 落在长方形ABCD 的某一条边上,则等腰三角形
AEP 的底边长是 .
【解析】据题意,如果点P 落在AD 边上,
则AE=AP=5,底边长PE 2=AP 2+AE 2=52+52
=50,
PE= ;如果点P 落在DC 边上,则底边长 AE=5;如果点P 落在BC 边上,则两条腰AE=EP=5,
所以 所以等腰三角形AEP 的底边长是 或5或 . 三、师生互动,总结知识 72().
72324''2222=+=+=F B AF AB 2
5,
4352222=-=-=EB EP BP 54482222=+=+=BP AB AP 5
42
5
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业
布置作业:同步导练
教学反思
学生对特殊三角形的掌握情况很好,望多加复习巩固,做到熟练会用.。

相关文档
最新文档