一元二次方程章节检测题

合集下载

一元二次方程单元测试题含答案

一元二次方程单元测试题含答案

第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。

《一元二次方程》单元检测试题(含答案)

《一元二次方程》单元检测试题(含答案)

《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每小题3分,共24分)1.在一元二次方程265x x x -=+中,二次项系数、一次项系数、常数项分别是( ).A .1、-1、5B .1、6、5C .1、-7、5D .1、-7、-5 2.用配方法解方程22x x +=,方程的两边应同时( ).A .加上14B .加上12C .减去14D .减去123.方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =74.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽,小刚设四周垂下的边宽为xcm ,则应列得的方程为( ). A .(160+x )(100+x )=160×100×2 B .(160+2x )(100+2x )=160×100×2 C .(160+x )(100+x )=160×100 D .(160+2x )(100+2x )=160×1005.电流通过导线会产生热量,设电流强度为I (安培),电阻为R (欧姆),1秒产生的热量为Q (卡),则有Q=0.24I 2R ,现在已知电阻为0.5欧姆的导线,1秒间产生1.08卡的热量,则该导线的电流是( ).A .2安培B .3安培C . 6安培D .9安培 6.关于x 的方程20ax bx c ++=(a ≠0,b ≠0)有一根为-1,则ba c+的值为( ) A .1 B .-1 C .2 D .-27.关于x 的一元二次方程x 2(23)20m x m --+-=根的情况是( ).A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的情况无法确定8.在解二次项系数为1的一元二次方程时,粗心的甲、乙两位同学解同一道题,甲看错了常数项,得到两根分别是4和5;乙看错了一次项系数,得到的两根分别是-3和-2,则方程是( )A .2960x x ++=B .2960x x -+=C .2960x x +-=D .2960x x --= 二、填一填,画龙点睛(每题3分,共18分) 9.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为_______.10.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组m ,n 的实数值可以是m =_________,n =________. 11.第二象限内一点A (1x -, x 2-3),其关于x 轴的对称点为B ,已知AB=12,则点A 的坐标为__________.12.随着人们收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入了普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆.则2008年底至2010年底该市汽车拥有量的年平均增长率为__________.13.黎明同学在演算某正数的平方时,将这个数的平方误写成它的2倍,使答案少了35,则这个数为__________.14.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =______. 三、做一做,牵手成功(共58分)15.(每小题3分,共9分)用适当方法解下列方程: (1)(x -4)2-81=0; (2)3x (x -3)=2(x -3);(3)2216x x -=.16.(5分)已知213y x x =-+,25(1)y x =-,当x 为何值时,12y y =. 17.(6分)飞机起飞时,要先在跑道上滑行一段路程,这种运动在物理中叫做匀加速直线运动,其公式为2012s v t at =+,若某飞机在起飞前滑行了400m 的距离,其中v 0=30m/s ,a =20m/s 2,求所用的时间t .18.(7分)阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x -看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①. 解得y 1=1,y 2=4.当1y =时,211x -=,∴22x =,∴x =;当4y =时,214x -=,∴25x =,∴x =.故原方程的解为1x =2x =22x =-,4x =解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程x 4-x 2-6=0.19.(7分)设a 、b 、c 是△ABC 的三条边,关于x 的方程220x c a ++-=有两个相等的实数根,且方程322cx b a +=的根为0. (1)求证:△ABC 为等边三角形;(2)若a 、b 为方程230x mx m +-=的两根,求m 的值.20.(7分)在国家的宏观调控下,某市的商品房成交价由今年5月份的14000元/m 2下降到7月份的12600元/ m 2(1)问6、70.95≈) (2)如果房价继续回落,按此降价的百分率,你预测到9月份该市的商品房成交均价是否会跌破10000元/ m 2?请说明理由.21.(8分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.22.(9分)如图1,在矩形ABCD 中,AB=6㎝,BC=12㎝,点P 从A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,如果P 、Q 分别从A 、B 同时出发. (1)经过几秒后,△PBQ 的面积等于28cm ;(2)经过几秒后,五边形APQCD 的面积最小,最小值是多少?参考答案:一、选一选,慧眼识金1.D .点拨:原方程的一般形式为2750x x --=.2.A .点拨:方程两边同时加上一次项系数一半的平方. 3.D .点拨:可利用因式分解法解方程.4.B .点拨:桌布的长为(160+2x )cm ,桌布的宽为(100+2x )cm . 5.B .点拨:根据题意得,20.240.5 1.08I ⨯=.6.A .点拨:由1x =-,得0a b c -+=,即a c b +=.7.C .点拨:[]2224(23)4(2)4(2)10b ac m m m -=----=-+>.8.B .点拨:设原方程为20x bx c ++=,则129x x b +=-=,126x x c ⋅==. 二、填一填,画龙点睛9.—2. 点拨:根据一元二次方程的定义知,222m -=且20m -≠.图110.2,1. 点拨:答案不惟一,只要满足24m n =即可.11.(-4,6).点拨:根据题意得,23x -=6,解得1x =-3,2x =3(不符合题意,舍去) 12.20%. 点拨:设该市汽车拥有量的年平均增长率为x . 根据题意,得2150(1)216x +=. 13.7.点拨:设这个正数为x ,根据题意得2235x x -=,解得1x =7,2x =-5(舍去)14.点拨: 原方程可转化为22(1)(1)6x x ++-=. 三、做一做,牵手成功15.(1)1x =13,2x =-5; (2)1x =3,223x =; (3)132x =,232x =16.根据题意得,235(1)x x x -+=-,整理得2680x x -+=,解得1x =2,2x =4.即当x =2或x =4时,12y y =. 17.根据题意得,2140030202t t =+⨯,整理得23400t t +-=, 解得1t =5,2t =-8(不符合题意,舍去).答:飞机在起飞前滑行400m 的距离所用的时间为5秒. 18.(1)换元法(2)设2x y =,那么原方程可化为260y y --=,解得13y =;22y =-.当y =3时,23x =,∴x =当y =-2时,x 2 =-2,,不符合题意,应舍去.∴原方程的解为1x 2x =.19.(1)∵方程220x c a ++-=有两个相等的实数根,∴24(2)0c a --=,化简得2a b c +=; 又∵x =0是方程322cx b a +=的根,∴a b =. ∴a b c ==,故△ABC 为等边三角形(2)由(1)知a b =,∴方程230x mx m +-=有两个相等的实数根.∴24(3)0m m -⨯-=,即2120m m +=,解得10m =,212m =-.20.(1)设6、7两月平均每月降价的百分率为x .根据题意,得214000(1)12600x -=,化简得2(1)0.9x -=. 解得10.05x ≈,2 1.95x ≈(不合题意,应舍去).答:设6、7两月平均每月降价的百分率为5%.(2)如果房价按此降价的百分率继续回落,则9月份该市的商品房成交均价为12600(1-x )2 =12600×0.9=11340>10000.答:9月份该市的商品房成交均价不会跌破10000元/m 2. 21.(1)由题意有2224(21)40b ac m m -=--≥,解得14m ≤. 即实数m 的取值范围是14m ≤. (2)由22120x x -=得,1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. ∵21>41,∴12m =不合题意,应舍去. 若120x x -=,即12x x =,∴240b ac -=,由(1)知14m =. 故当22120x x -=时,14m =. 22.(1)设经过x 秒后,△PBQ 的面积等于28cm .此时BP=(6-x )cm ,BQ=2x cm .根据题意得1(6)282x x -⋅=,解得12x =,14x =. 答:经过2秒或4秒后,△PBQ 的面积等于28cm . (2)设经过y 秒后,五边形APQCD 的面积最小. 此时BP=(6-y )cm ,BQ=2y cm ,则S △PBQ =1(6)22y y -⋅=26y y -. ∴S 五边形APQCD =S 四边形ABCD -S △PBQ =72-(26y y -)=2(3)63y -+. ∴当3y =时,S 五边形APQCD =63.答:经过3秒后,五边形APQCD 的面积最小,最小值是63cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。

一元二次方程单元检测题(含参考答案)

一元二次方程单元检测题(含参考答案)

九年级数学阶段质量监测题(一)(一元二次方程)测试时间:90分钟第Ⅰ卷 [基础测试卷]一、单项选择题(每小题2分,共20分)1.下列方程是一元二次方程的是 ( )A.y x =-12B.562=xC.xx 12=D.2)2)(1(x x x =++ 2.一元二次方程122=-x x 的常数项为 ( ) A.-1 B.1 C.0 D.1± 3.若方程013)2(=+++mx xm m是关于x 的一元二次方程,则 ( )A.2±=mB.2=mC.2-=mD.2±≠m4.在方程)0(02≠=++a c bx ax 中,若有0=+-c b a ,则方程必有一根为 ( )A.1B.1-C.1±D.05.一元二次方程032=+x x 的根为 ( ) A.-3 B.0,3 C.0,-3 D.36.将方程0462=+-x x 配方,其正确的结果是 ( )A.9)3(2=-xB.5)3(2=-xC.13)3(2=-xD.5)3(2=+x7.已知关于x 的一元二次方程0122=++x mx 有两个不相等的实数根,则m 的取值范围是 ( ) A.1-<m B.1>m C.1<m 且0≠m D.1->m 且0≠m8.若方程0132=--x x 的两根为1x 、2x ,则1211x x +的值为 ( ) A.3 B.-3 C.13D.13-9. 已知一个三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角形的周长是 ( ) A.11 B.13 C.11或13 D.11和1310.关于x 的方程0)2(222=+++k x k x 的两实数根之和不小于-4,则k 的取值范围是( )A.1->kB.0<kC.01<<-kD.01≤≤-k 二、填空题(每小题2分,共20分) 1.关于x 的方程03)3(12=+---x x m m是一元二次方程,则=m .2.一元二次方程x x 6122=-的一般式是 ,其中一项系数是 . 3.方程032=-x x 的根是 ,方程0)2)(1(=-+x x 的是 . 4. 关于x 的一元二次方程02=+-k x x 的一个根是2,则k = ,另一个根为 . 5.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是 . 6.关于x 的一元二次方程032=--m x x 有两个不相等的实数根,则m 的取值范围是______________.7.小华在解一元二次方程042=-x x 时,只得出一个根是x =4,则被他漏掉的另一个根是x = .8.如果21x x 、是方程0482=-+x x 的两个根,那么21x x += ,2221x x += . 9.直角三角形两条直角边长分别为1+x ,3+x ,斜边长为x 2,那么x = . 10.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=*+x 的解是 .三.按指定的方法解方程(每小题4分,共16分)1.4)1(2=-x (直接开平方法); 2.0542=-+x x (配方法);3.0652=+-x x (因式分解法);4.012222=+-x x (公式法).四.用适当的方法解方程(每小题4分,共8分)1.x x x =-)3(;2.06)32(2=++-x x .五.解答题(每小题6分,共18分)1.已知2+3是方程042=+-c x x 的一个根,求方程的另一个根及c 的值.2.若关于x 的方程0342=+-+a x x 有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最小整数,求此时方程的根.3.设a 、b 、c 是△ABC 的三条边,关于x 的方程021212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为0=x .(1)试判断△ABC 的形状;(2)若a 、b 为方程032=-+m mx x 的两个根,求m 的值.六、应用题(每小题6分,共18分)1.某城2014年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2016年底增加到363公顷,求平均每年的增长率.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?3.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P 运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?第Ⅱ卷[实践操作卷]一、猜一猜,算一算(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?二、想一想,试一试(10分)今要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化,设计方案如图所示,已知矩形P,Q为两块绿地,其余为硬化路面,P,Q两块绿地周围的硬化路面宽都相等.若使两块绿地面积的和为矩形ABCD面积的14,求P,Q两块绿地周围的硬化路面的宽.九年级数学阶段质量监测题(一)参考答案第Ⅰ卷一、选择题:二、填空题:1. 3-;2.01622=--x x ,-6;3.0或3,-1或2;4.-2,-1;5.062=-+x x ;6. 41->m ;7.0; 8.8-,72; 9.5;10.-7或3. 三、1.3或-1;2.1或-5;3.2或3;4.2221==x x . 四、1.0,4;2.2,3.五、1.1=c ,另一根为32-;2.(1)1-≥a ,(2)221-==x x ;3.(1)△ABC 是等边三角形,(2)12-=m .六、1.10%;2.每件衬衫应降价20元.3.85s 或245s . 第Ⅱ卷一、m 20==BC AB .二、两块绿地周围的硬化路面的宽都为10m.。

人教版数学九年级上册 第二十一章 一元二次方程单元测试(含答案)

人教版数学九年级上册 第二十一章 一元二次方程单元测试(含答案)

人教版数学九年级上册一元二次方程一、选择题1.下列方程中,属于一元二次方程的是( )A.x―2y=1B.x2+3=2xC.x2―2y+4=0D.x2―2x+1=0 2.关于x的一元二次方程(m―3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A.0B.±3C.3D.-33.用配方法解一元二次方程x2―2x=9,配方后可变形为( )A.(x―1)2=10B.(x+1)2=10C.(x―1)2=―8D.(x+1)2=―84.定义运算:m☆n=n2―mn―1,例如:5☆3=32―5×3―1=―7,则方程2☆x=6的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根5.一个等腰三角形两边的长分别等于一元二次方程x2―16x+55=0的两个实数根,则这个等腰三角形周长为( )A.11B.27C.5或11D.21或276.春意复苏,郑州绿化工程正在如火如荼地进行着,某工程队计划将一块长64m,宽40m的矩形场地建设成绿化广场如图,广场内部修建三条宽相等的小路,其余区域进行绿化.若使绿化区域的面积为广场总面积的80%,求小路的宽,设小路的宽为x m,则可列方程( )A.(64―2x)(40―x)=64×40×80%B.(40―2x)(64―x)=64×40×80%C.64x+2×40x―2x2=64×40×80%D.64x+2×40x=64×40×(1―80%)7.已知方程a x2+bx+c=0(a≠0),当b2―4ac=0时,方程的解为( )A.x=±b2a B.x=±baC.x=―b2aD.x=b2a8.已知关于x的方程x2―kx―6=0的一个根为x=3,则实数k的值为() A.1B.﹣1C.2D.﹣29.如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则EG2+CG2的最小值为( )A.52B.60C.68D.7610.定义[x]表示不超过实数x的最大整数,如[1.4]=1,[―1.2]=―2,[―3]=―3,则方程2[x]=x2的解为( )A.0或2B.0或2C.2或2D.0或2或2二、填空题11.设x1,x2是关于x的方程x2-2x+k=0的两个根,且x1=x2,则k的值为 .12.设a、b是方程x2+x―2018=0的两个实数根,则a2+2a+b的值是 .13.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”. 如果关于x的一元二次方程x2+(m-2)x-2m=0是“倍根方程”,那么m的值为 .14.若某商品经过两次连续降价后,由400元下调至256元,则这种商品平均每次降价的百分率是 .15.如图,在等边三角形ABC中,D是AC的中点,P是边AB上的一个动点,过点P作PE⊥AB,交BC于点E,连接DP,DE.若AB=8,△PDE是等腰三角形,则BP的长是 .16.已知:m2-2m-1=0,n2+2n-1=0且mn≠1,则mn+n+1的值为 .n三、解答题17.解方程:x2+2x―4=018.已知关于x的方程:x2―4x―k=0有两个不相等的实数根,(1)求实数k的取值范围、(2)已如方程的一个根为5,求方程的另一个根.19.记S n=n a1+n(n―1)d(如n=1,则S1=a1;n=2,则S2=2a1+d),其中n为正自然数,a1,d 2为实数.(1)用a1和d分别表示S3,S4;(2)若S3S4+12=0,求d2的取值范围.20.阅读材料:各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3―2x2―3x=0,通过因式分解可以把它转化为x(x2―2x―3)=0,解方程x=0和x2―2x―3=0,可得方程x3―2x2―3x =0的解.问题:(1)方程x3―2x2―3x=0的解是x1=0,x2=______,x3=______.(2)求方程x3=6x2+16x的解.拓展:(3)用“转化”思想求方程―2x+15=x的解.21.子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩.”—《论语·第十二章·为政篇》列方程解决下面问题:大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符哪位学子算得快,多少年华属周瑜?22.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=2,这时我们把关于x的形如a x2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”a x2+2cx+b=0必有实数根;(3)若x=﹣1是“勾系一元二次方程”a x2+2cx+b=0的一个根,且四边形ACDE的周长是62,求△ABC面积.23.在2023年1月初新冠肺炎疫情大爆发期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为 ,第五个图中y的值为 .(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为 ,当x=48时,对应的y= .(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】A5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】B10.【答案】D11.【答案】112.【答案】201713.【答案】-1或-414.【答案】20%15.【答案】12﹣4 6或33﹣3或416.【答案】317.【答案】x1=―1+5,x2=―1―518.【答案】(1)k>―4(2)-119.【答案】(1)S3=3a1+3d;S4=4a1+6d(2)d2≥1620.【答案】(1)―1,3;(2)x1=0,x2=―2,x3=8;(3)x=3 21.【答案】周瑜的年龄是36岁.22.【答案】(1)解:当a=3,b=4,c=5时勾系一元二次方程为3x2+52x+4=0;(2)证明:根据题意,得Δ=(2c)2﹣4ab=2c2﹣4ab∵a2+b2=c2∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0即△≥0∴勾系一元二次方程a x2+2cx+b=0必有实数根;(3)解:当x=﹣1时,有a﹣2c+b=0,即a+b=2c ∵2a+2b+2c=62,即2(a+b)+2c=62∴32c=62∴c=2∴a2+b2=c2=4,a+b=22∵(a+b)2=a2+b2+2ab∴ab=2∴S△ABC=12ab=1.23.【答案】(1)10;15(2)y=x(x―1)2;1128(3)依题意,得:x(x―1)2=190,化简,得:x2―x―380=0,解得:x1=20,x2=―19(不合题意,舍去).答:该班共有20名女生.。

一元二次方程章节测试卷

一元二次方程章节测试卷

一元二次方程章节测试姓名: 分数:一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A.)1(2)1(32+=+x xB.02112=-+xx C.02=++c bx ax D. 0)7(2=+-x x x 2.方程0442=++-x x 根的情况是( )A. 只有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根3. 关于x 的方程012=-+mx x 的两根互为相反数,则m 的值为( ) A. 0 B. 2 C. 1 D. -2 4.用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为 100)1(2=-x B. 0982=++x x 化为25)4(2=+xC. 04722=--t t 化为1681)47(2=-t D. 02432=--y y 化为 910)32(2=-y 5. 方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -6.三角形两边的长分别是8和6,第三边的长是方程020122=+-x x 的一个实数根,则三角形的周长是( ) A. 24 B. 24或16 C. 16 D. 227. 已知方程07822=+-x x 的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角形的斜边的长是( ) A.9B.6C.3D.38.若方程07532=--x x 的两根为21,x x ,下列表示根与系数关系的等式中,正确的是( )A.7,52121-=⋅=+x x x xB.37,352121=⋅-=+x x x xC.37,352121=⋅=+x x x xD.37,352121-=⋅=+x x x x9. 已知c b a ,,分别是三角形的三边,则方程0)(2)(2=++++b a cx x b a 的根的情况是( ) A.没有实数根 B.可能有两个相等的实数根C .有两个不等的实数根 D.无法确定10. 一个三角形的两边长是方程0222=+-kx x 的两根,第三边长为2,则k 的范围是( ) A. 4>k 或4-<k B. 4>k C. 524<<k D. 244<<k二、填空题(每小题4分,共24分)11.一元二次方程01422=--x x 的二次项系数 一次项系数 常数项为 。

一元二次方程章节测试及单元测试试卷五套

一元二次方程章节测试及单元测试试卷五套

22.1一元二次方程一、认认真真,书写快乐1.把方程2(21)(1)(1)x x x x +-=+-化成一般形式是 .2.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 . 3.已知1x ≠-是方程260x ax -+=的一个根,则a = .4.关于x 的方程2(1)230m x mx ++-=是一元二次方程,则m 的取值范围是 . 5.已知236x x ++的值为9,则代数式2392x x +-的值为 . 二、仔仔细细,记录自信6.下列关于x 的方程:①20ax bx c ++=;②2430x x+-=;③2540x x -+=;④23x x =中,一元二次方程的个数是( ) A .1个 B .2个 C .3个D .4个7.若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( ) A .2a >-B .2a <-C .2a >-且0a ≠D .12a >8.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .1或1-D .129.已知2是关于x 的方程23202x a -=的一个解,则21a -的值是( ) A .3 B .4 C .5 D .6三、拓广探索,游刃有余10.如右图所示,相框长为10cm ,宽为6cm ,内有宽度相同的边缘木板,里面用来夹相片的面积为32cm 2,则相框的边缘宽为多少厘米?我们可以这样来解:(1)若设相框的边缘宽为cm x ,可得方程 (一般形式); (2)分析并确定x 的取值范围; (3(4参考答案:一、1.23320x x ++= 2.5- 3.7- 4.1m ≠-5.7二、6.A7.C8.B9.C三、10.(1)2870x x -+=;(2)03x <<;(3)7,0,5-,8-;(4)1cm .22.1 一元二次方程一、双基整合: 1.方程(x+3)(x+4)=5,化成一般形式是________.2.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________. 3.若关于的方程x 2-3x+k=0有一个根是1,则它的另一个根是________. 4.已知方程x 2-x-m=0有整数根,则整数m=________.(填上一个你认为正确的答案) 5.根据题意列出方程:有一面积为54m 2(设正方形的边长为m )的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,这个正方形的边长是多少?设正方形的边长为xm ,请列出你求解的方程__________.6.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x ,•你能列出求解x 的方程吗?______________.7.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m 2,若设路宽为xm ,则可列方程为:_________. 8.下列各方程中一定是关于x 的一元二次方程的是( )A .3x 2=4x+mB .ax 2-8=0C .x+y 2=0D .5xy-x+6=09.如果关于x 的方程(m-3)27mx -x+3=0是关于x 的一元二次方程,那么m 的值为( )A .±3B .3C .-3D .都不对10.以-2为根的一元二次方程是( )A .x 2+2x-x=0B .x 2-x-2=0C .x 2+x+2=0D .x 2+x-2=0 11.若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( ) A .a>-2 B .a<-2 C .a>-2且a≠0 D .a>1212.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,•全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是( ) A .x (x+1)=182 B .x (x-1)=182 C .2x (x+1)=182 D .x (x-1)=182×213.已知关于x 的方程(2k+1)x 2-4kx+(k-1)=0,问:(1)k 为何值时,此方程是一元二次方程?求出这个一元一次方程的根;(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项.14.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.一个两位数,个位上的数字比十位上的数字小4,•且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.二、拓广探索:15.先从括号内①②③④备选项中选出合适的一项,填在横线上,•将题目补充完整后再解答.如果a 是关于x 的方程x 2+bx+a=0的根,且a≠0,求________的值. ①ab ②ba③a+b ④a-b 16.如果方程ax 2+bx+c=0(a≠0),a-b+c=0,那么方程必有一个解是________.17.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( ) A .x 2+130x-1400=0 B .x 2+65x-350=0C .x 2+130x-1400=0D .x 2-65x-350=0 18.若x 2a+b -3x a-b +1=0是关于x的一元二次方程,求a 、b 的值,下面是两位学生的解法:•甲:根据题意得2a+b=2,a-b=1解方程组得a=1,b=0.乙:由题意得2a+b=2,a-b=1•或2a+b=1,a-b=2解方程组得a=1,b=0或a=1,b=-1.你认为上述两位同学的解法是否正确?•为什么?如果都不正确,请给出正确的解答.三、智能升级19.为争创市规范化学校,某中学向全体师生征集空地绿化 方案,•如图是李刚同学对其中一块正方形空地的设计图,中央绿地面积为24平方米,如果设正方形空地的边长为x ,那么空地中央长方形绿地的长为______米,宽为______米,根据题意,•可得方程___________.20.若方程(m-1)x 2x=1是关于x 的一元二次方程,则m 的取值范围是( )A .m≠1B .m≥0C .m≥0且m≠1D .m 为任意实数21.某大学为改善校园环境,计划在一块长80m ,宽60m •的长方形场地的中央建一个长方形网球场,网球场占地面积为3500m 2.四周为宽度相等的人行走道,如图所示,若设人行走道的宽为xm .(1)你能列出相应的方程吗?(2)x 可能小于0吗?说说你的理由.(3)x 可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽xm 是多少吗?说说你的求解过程.答案:1.x2+7x+7=0 2.k≠3 3.2 4.2等5.(x+5)(x+2)=54 6.x(x+2)=323或x(x-2)=3237.(30-x)(20-x)=500 8.A 9.C 10.D 11.C 12.B13.(1)k=-12时,方程是一元二次方程,x=34;(2)k≠12,2k+1,-4k,k-1.14.设个位数字为x,则十位数字为x+4,由题意得x2+(x+4)2=10(x+4)x+x-415.③a+b=-1 16.-1 17.B18.解:均不正确,考虑不全,欲使x2a+b-3x(a-b)+1=0是关于x•的一元二次方程,•则2a+b=2,a-b=2;或2a+b=2,a-b=1;或2a+b=2,a-b=0;或2a+b=1,a-b=2;或2a+b=0,a-b=2,∴a=43,b=-23;或a=1,b=0;或a=23,b=23或a=1,b=-1;或a=23,b=-4319.x-2,x-4,(x-2)(x-4)=24 20.C21.(1)设人行道的宽为xm,则网球场的长和宽分别为(80-2x)m,(60-2x)m,•则可列方程:(80-2x)(60-2x)=3500,整理为:x2-70x+325=0;(2)x的值不可能小于0,因为人行道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际,当然x更不可能大于40.(4)由上面问题可知:x的大致范围应为0<x<30.求解过程如下:显然当x=5时,x-70x+325=0,∴人行道的宽度为5m.人教九上22.2降次——解一元二次方程一、选一选!1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=-2. (2006年杭州)已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -= (C) 2(2)9x p -+= (D) 2(2)5x p -+=3. (2006年广州)一元二次方程2230x x --=的两个根分别为( ). (A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或2 5. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-26. 已知x 满足方程2310x x -+=,则1x x +的值为( ). (A )3 (B )-3 (C )32(D )以上都不对7. 要使分式2544x x x -+-的值为0,x 等于( ).(A )1 (B )4或1 (C )4 (D )-4或-1 8. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ). (A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =- 二、填一填! 9. 222(_____)[(____)]3y y y -+=+.10. x =__________. 11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______. 三、做一做!17.用配方法解下列方程:(1)210257x x -+=;(2)261x x +=;(3)23830x x +-=;(4)2310x x -+=. 18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=. 19.用因式分解法解下列方程:(1)(41)(57)0x x -+=;(2)3(1)22x x x -=-; (3)2(23)4(23)x x +=+;(4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=y=4时,x 2-1=4,∴x 2=5,∴x=x 1x 2x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48 (1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选一选! 1.D ; 2.B ; 3.C ; 4.A ; 5.D ; 6.A ; 7.A ; 8.C ;二、填一填! 9.19,13-; 10. -5或3; 11.9或-2; 12.4,-3,-5;13. x 1x 214.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多. 15. -•4或1; 16.略;三、做一做!17.(1)15x =25x =(2)13x =-23x =- (3)113x =,23x =-;(4)1x =2x =18.(1)19x =,22x =-;(2)1x =2x =; (3)1213x x ==-;(4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.22.3 实际问题与一元二次方程一、双基整合:1.要用一条长为24cm的铁丝围成一个斜边是10cm的直角三角形,•则两条直角边的长分别为________.2.一个多边形有9条对角线,则这个多边形有________条边.3.一个矩形及与它等积的正方形的周长之和为54cm,矩形两邻边的差为9cm,•则这个矩形的面积为________.4.两个正方形,小正方形边长比正方形边长的一半多4cm,•大正方形的面积比小正方形的面积的2倍少32cm2,则大小正方形的边长分别是______.5.如图,一块矩形纸片ABCD,长BC=8cm,宽CD=6cm,将这块矩形纸片沿对角线BD 对折(折痕与折叠后得到的图形用虚线表示),得到△BDE,则EF=________.6.从正方形的铁片上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm2B.64cm2C.80cm2D.32cm27.用一块长80cm、宽60cm的长方形铁皮,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方体盒子,设小正方形的边长为x,则可列出方程()A.x2-70x+825=0 B.x2+70x-825=0 C.x2-70x-825=0 D.x2+70x+825=0 8.若一个等腰三角形两边长分别是x2-12x+32=0的两根,•则这个等腰三角形的周长为()A.20 B.16 C.16或20 D.不能确定9.如图,水池中离岸边D点1.5m的C处,直立着一根芦苇,出水部分BC的长是0.5m,把芦苇拉到岸边,它的顶端B恰好在D点,求水池的深度AC.10.一块长方形铁片长32cm,宽24cm,四角都截去相同的小正方形,折起来做成一个无盖铁盒,使底面积是原来面积的一半,求盒子的高.二、拓广探索:11.如图,有一块直角△纸片,两直角边AC=6cm,BC=8cm,现将直角边AC•沿直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD=()A.2cm B.3cm C.4cm D.5cm12.线段AB=6cm,点C是AB的黄金分割点(如图),即较长线段AC是较短线段BC和原线段AB的比例中项,那么线段AC的长为()A B C.()cm D.()cm13.如图所示,东西和南北街道交于点O,甲沿东西道由西向东,速度是每秒4m,乙沿南北道由南向北走,速度是每秒3m,当乙通过O点后又继续前进50m时,•甲刚好通过O 点,当甲、乙相距85m时,求每个人位置.14.用一根8米长的木料做成一个长方形的窗框,若设这个长方形的长为x米.(1)这个长方形的面积S=________.(2)根据上式完成下表:(3)你发现了什么?(4)为什么现实生活中,窗户一般都做成一个长与宽接近相等的长方形,•而不做成一个正方形,谈谈你的看法.三、智能升级:15.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米(如右图),如果梯子的顶端下滑1米,那么(1)猜一猜,底端也将滑动1米吗?(2)•列出底端滑动距离所满足的方程,并说明(1)中结论.16.有一块缺角矩形地皮ABCDE (如下图),其中AB=110m ,BC=80m ,CD=90m ,•∠EDC=135°,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,•才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式.(3(4 (5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确. (6)你认为A 、B 、C 、D 中哪一种方案合理?答案:1.6cm ,8cm 2.6 3.36cm 2 4.16m 和12cm 5.74cm 6.B 7.A 8.A 9.AC=2 10.4cm 11.B 12.C 13.设甲通过O 点以后t 秒时,甲、乙位置分别是AB (图略), 则OA`=4t ,OB`=50+3t ,根据题意得(4t )2+(50+3t )2=852, 即t 2+12t-189=0,t 1=9,t 2=-21,当t=9时,OA`=36,OB`=77; 当t=-21时,OA`=-84,OB`=-13,答:甲、乙分别都在通过O 点后又前进了36m ,77m 或者尚未通过O 点,分别在距O 点84m ,13m 的位置. 14.(1)S=x×822x=-x 2+4x , (2)S 的值分别为1.75、3、3.75、3.99、4、3.99、3.75、3、1.75, (3)当长与宽相等时,S 的值最大,即当窗户为正方形时,面积最大,(4)•窗户做成正方形时,面积最大,透光性最大,但同时窗户内部的其他用料也相对增多,如钢筋、水泥等,所以,制成一个长与宽接近相等的长方形,即有利于透光,又可相对地节省材料,当然,也涉及到美学等方面的知识. 15.(1)底端滑动的距离大于1米.(2)设底端将滑动x 米,依题意,得72+(x+6)2=102,•解得x 1,x 2(舍去),-6=7-6=1,∴底端滑动的距离大于1米. 16.(1)方案A 的面积为80×90=7200m 2,方案B 的面积为110×(80-20)=6600m 2;(2)•由于MF=80-x ,∠EDC=135°,所以DF=80-x ,NB=CD+DF=90+(80-x )=170-x ,S=(170-x )×x ,即S=-x 2+170x ; (3)S 的值从左到右依次为6000、6600、7000、7125、7176、7189、7200、7209、7216;(4)猜想:当x≤80时,S 随x 的增大而增大; (5)S=-x 2+170x=-(x-85)2+852,所以当x≤85时,S 随x 的增大而增大,由于x≤80,所以,当x=80•时,•S •最大值为7200m 2;(6)选A 种方案.第二十二章一元二次方程水平测试题一.填空题:(每小题2分,共22分)1.方程20x x -=的一次项系数是____________,常数项是____________; 2.若代数式219991998m m -+的值为0,则m 的值为____________; 3.在实数范围内分解因式:221x x --=__________________________;4.已知13x =-是方程2230x kx +-=的一个根,2x 是它的另一个根,则k =_____,2x =____5.方程220x -+=的判别式∆=____________,所以方程_________________实数根;6.已知分式2212x x x -+-的值为0,则x 的值为____________;7.以2,-3为根的一元二次方程是__________________________; 8.当方程()()211120m m xm x +--+-=是一元二次方程时,m 的值为________________;9.若12,x x 是方程25x x -=的两根,则2212x x +=________________;10.已知210x x +-=,则2339x x +-=____________; 11.已知2x y +=,1xy =,则x y -=____________; 二.选择题(每小题3分,共30分)1.方程()2211x +=化为一般式为( ) A .22421x x ++=B .241x x +=-C .22410x x ++=D .22210x x ++=2.用配方法解下列方程,其中应在两端同时加上4的是( )A .225x x -= B .2245x x -= C .245x x += D .225x x += 3.方程()1x x x -=的根是( )A .2x =B .2x =-C .122,0x x ==D .122,0x x =-=4.下列方程中以1,2-为根的一元二次方程是( )A .()()120x x +-=B .()()121x x -+=C .()221x +=D .21924x ⎛⎫+=⎪⎝⎭ 5.下列方程中,无论b取什么实数,总有两个不相等实数根的是( )A .210x bx ++=B .221x bx b +=+C .20x bx b ++=D .22x bx b += 6.将222x x --分解因式为( )A .1144x x ⎛--- ⎝⎭⎝⎭ B .11244x x ⎛+- ⎝⎭⎝⎭C .11244x x ⎛-++ ⎝⎭⎝⎭D .11244x x ⎛-+- ⎝⎭⎝⎭7.县化肥厂今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为( )A .()21a x + B .()21100a x + C . ()21100x + D .()2100a a x + 8.已知2120m m+=,则1m -=( ) A .0或12- B .0或-2 C .-2 D .12-9.一项工程,甲队独做要x天,乙队独做要y天,若甲乙两队合作,所需天数为( )A .xy x y +B .2x y+ C .x y xy+ D .x y +10.已知方程2220383x x x x+-=+,若设23x x y +=,则原方程可化为( )A .2208y y -= B .2208y -= C .208y y -= D .2208y y -= 三.解方程(组)(每小题5分,共20分)1.()()22211x x +=- 2.2232211x y x y x y +=⎧⎨+++=⎩3.22431242x x x x -=+--- 4.22124321x x x x +++=++四.解答下列各题(每小题7分,共28分)1.已知12,x x 是关于x 的一元二次方程()2160x m x m ++++=的两实数根,且22125x x +=,求m 的值是多少?2.求证:无论k 为何值,方程()23210x k x k -++-=总有两个不相等的实数根。

一元二次方程》单元测试题及答案

一元二次方程》单元测试题及答案

一元二次方程》单元测试题及答案一元二次方程单元测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是()A.(a—3)x^2=8(a≠3)。

B.ax^2+bx+c=0.C。

(x+3)(x-2)=x+5.D.3x^2+x-2=572改写为:下列方程中不是一元二次方程的是()2.下列方程中,常数项为零的是()A.x^2+x=1B.2x^2-x-12=0C.2(x^2-1)=3(x-1)D.2(x^2+1)=x+2改写为:下列方程中,常数项为零的是()3.一元二次方程2x^2-3x+1=0化为(x+a)^2=b的形式,正确的是()A.(x-1/2)^2=16.B.2(x-2)^2=4.C.(x-1)^2=1/4.D.以上都不对改写为:将一元二次方程2x^2-3x+1=0化为(x+a)^2=b 的形式,正确的是()4.关于x的一元二次方程(a-1)x^2+x+a^2-1=0的一个根是√3,则a值为()A.1B.-1C.1或-1D.1/2改写为:关于x的一元二次方程(a-1)x^2+x+a^2-1=0的一个根是√3,则a值为()5.已知三角形两边长分别为2和9,第三边的长为二次方程x^2-14x+48=0的一根,则这个三角形的周长为()A.11B.17C.17或19D.19改写为:已知三角形两边长分别为2和9,第三边的长为二次方程x^2-14x+48=0的一根,则这个三角形的周长为()6.已知一个直角三角形的两条直角边的长恰好是方程2x^2-8x+7=0的两个根,则这个直角三角形的斜边长是()A.3B.3√2C.6D.9改写为:已知一个直角三角形的两条直角边的长恰好是方程2x^2-8x+7=0的两个根,则这个直角三角形的斜边长是()7.使分式的值等于零的x是()A.6B.-1或6C.-1D.-6改写为:使分式的值等于零的x是()8.若关于y的一元二次方程ky^2-4y-3=3y+4有实根,则k 的取值范围是()A.k。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 解一元二次方程 ax^2 + bx + c = 0 的常用方法不包括:A. 配方法B. 因式分解法C. 直接开平方法D. 微分法2. 已知方程 x^2 - 5x + 6 = 0 的两个根为 a 和 b,下列关系式正确的是:A. a + b = 5B. ab = 6C. a^2 + b^2 = 25D. a^2 - 5ab + b^2 = 13. 若一元二次方程 x^2 - 2x + 1 = 0 有两个相等的实根,则该方程的判别式Δ等于:A. 1B. 0C. -4D. 44. 一元二次方程 ax^2 + bx + c = 0 的根与系数的关系中,如果 a < 0,b > 0,c < 0,那么方程的根的情况是:A. 有两个正实根B. 有两个负实根C. 有一个正实根和一个负实根D. 没有实根5. 用配方法解方程 x^2 - 6x + 9 = 0,其解为:A. x = 3B. x = -3C. x = ±3D. x = 0二、填空题6. 方程 x^2 - 4x + 3 = 0 的两个根之积为 _______。

7. 方程 x^2 - 8x + 15 = 0 的两个根之和为 _______。

8. 已知一元二次方程 ax^2 + bx + c = 0 的两个根为 x1 和 x2,则a -b +c = _______。

9. 若一元二次方程 x^2 + px + q = 0 有两个不相等的实根,且这两个实根的倒数之和为 4,则 p = _______,q = _______。

三、解答题10. 解方程 x^2 - 3x - 4 = 0,并验证其解的正确性。

11. 已知一元二次方程 x^2 - (m-1)x - m^2 = 0 有两个不相等的实根,求 m 的取值范围。

12. 利用因式分解法解方程 2x^2 + 5x - 3 = 0,并指出其解的情况。

一元二次方程测试题及答案

一元二次方程测试题及答案

一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。

答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。

一元二次方程全章测试题

一元二次方程全章测试题

一元二次方程全章测试卷班级 姓名 成绩一、选择题:(本大题共12个小题,每小题3分,共36分)1. 关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( ) A.1a ≠ B. 1a ≠-C. 1a ≠± D .为任意实数 2.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -= 3.方程(3)(2)0x x -+=的解是( )A .3x = B. 2x =- C.123,2,x x =-= D. 123,2x x ==-4. 已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 1B. -1C. 0D. 25.若关于x 的一元二次方程2210kx x --=有两个不等实根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠6.若把代数式2223(),x x x m k m k -+-+化为形式,其中为常数,结果为( )A .2(1)4x ++B .2(1)4x -+C .2(1)2x -+D .2(1)2x ++7. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定 8.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛110场,共有( )个队参加比赛?A .8B . 9 C. 10 D. 119. 下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A .若x 2=4,则x =2B .若3x 2=6x ,则x =2C .02=-+k x x 的一个根是-1,则k =2D .若分式()xx x 2- 的值为零,则x =2 10.已知实数12121212,+=7=12,x x x x x x x x 满足,,则以为根的一元二次方程是( )A .27120x x -+=B .27120x x --=C .27120x x +-=D .27120x x ++=11.一元二次方程22(1)230m x x m m -+++-=的一个根为0,则m 的值为( )A .-3B .1C .1或-3D .-4或212.某商店购进一种商品,单价为30元.试销中发现这种商品,每天的销售量P (件)与每件的销售价x (元)满足关系:P=100-2x .若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( )A .(30)(1002)200x x --=B .(1002)200x x -=C .(30)(1002)200x x --=D .(30)(2100)200x x --=二. 填空题:(本大题共6个小题,每小题3分,共18分)13..一元二次方程x 2=16的解是 .14.方程2(1)5322x x -+=化为一元二次方程的一般形式是 它的一次项系数是 . 15. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是 .16. 如果2x 2+1与4x 2-2x -5互为相反数,则x 的值为________.17. 已知代数式532++x x 的值是7,则代数式2932-+x x 的值是 。

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案题目一:解方程$x^2-5x+6=0$。

解法:使用因式分解法,将方程进行因式分解:$(x-2)(x-3)=0$。

根据零因子法则,得到两个解:$x=2$或$x=3$。

题目二:解方程$3x^2+4x-1=0$。

解法:可以使用求根公式,其中$a=3$,$b=4$,$c=-1$。

根据求根公式,方程的解为:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$带入数值计算,得到两个解:$x = \frac{-4 + \sqrt{52}}{6}$ 或$x = \frac{-4 - \sqrt{52}}{6}$。

题目三:已知一元二次方程$2x^2-7x-3=0$的一个解是$x=-1$,求另外一个解。

解法:我们可以使用解方程的方法,其中一个解已知为$x=-1$。

将此值带入方程进行计算:$2(-1)^2-7(-1)-3=2+7-3=6$。

因此,另外一个解为$x=3$。

题目四:解方程$x^2+5x+6=0$。

解法:可以使用因式分解法,将方程进行因式分解:$(x+2)(x+3)=0$。

根据零因子法则,得到两个解:$x=-2$或$x=-3$。

题目五:解方程$4x^2+8x+3=0$。

解法:可以使用因式分解法,将方程进行因式分解:$(2x+1)(2x+3)=0$。

根据零因子法则,得到两个解:$x = -\frac{1}{2}$ 或 $x = -\frac{3}{2}$。

题目六:解方程$x^2+6x+9=0$。

解法:可以使用因式分解法,将方程进行因式分解:$(x+3)(x+3)=0$。

根据零因子法则,得到一个重根:$x=-3$。

题目七:解方程$x^2-9=0$。

解法:可以使用因式分解法,将方程进行因式分解:$(x+3)(x-3)=0$。

根据零因子法则,得到两个解:$x=3$或$x=-3$。

题目八:解方程$2x^2+3x-2=0$。

解法:可以使用求根公式,其中$a=2$,$b=3$,$c=-2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程章节检测题
一、选择题:(每小题3分,共30分) 1. 下列方程中是一元二次方程的是( ). A.xy +2=1 B. 0921
2
=-+
x
x C. x 2=0 D.02=++c bx ax 2.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )
A. 23162x ⎛
⎫-= ⎪⎝⎭
B.2
312416x ⎛⎫-= ⎪⎝⎭ C.
2
31416x ⎛
⎫-= ⎪
⎝⎭
D.以上都不对 3.关于x 的一元二次方程()2
2
110a x x a -++-=的一个根是0,则a 值为( ) A. 1 B. 1- C. 1或1- D.
1
2
4.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )
A. 11
B. 17
C. 17或19
D. 19
5.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( ) A .4个
B .5个
C .6个
D .7个
6.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-
74 B.k≥-74 且k≠0 C.k≥-74 D.k>7
4
且k≠0 7.已知方程22
=+x x ,则下列说中,正确的是( )
A .方程两根和是1
B .方程两根积是2
C .方程两根和是1-
D .方程两根积比两根和大2
8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)
9.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为_____.
10.若一元二次方程ax 2+bx+c=0(a≠0)有一个根为-1,则a 、b 、c 的关系是______. 11.若方程x 2+px+q=0的两个根是-2和3,则p = q =
12.已知
x 2+mx+7=0的一个根,则另一根为_______.
13.已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是___________.
14.已知x x 12,是方程x x 2
210--=的两个根,则
12
11
x x +等于__________. 15.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长是 16. 在实数范围内定义一种运算“﹡”,其规则为a ﹡b=a 2
-b 2
,根据这个规则,方程(x+2) ﹡
9_____________ 10_____________ 11_______ ________ 12_____________
13____________ 14_____________ 15_________________ 16_____________ 三、解答题:
17. (12分)解方程:
(1) 2
410y y ++= (2) 3x 2+2x -1=0
18. (10分)某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
19. (10分)如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为
570m 2,道路应为多宽?
20. (10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?
21. (10分)已知关于x 的方程222(2)40x m x m +-++=两根的平方和比两根的积大21,求m 的值
附加题:已知:如图所示,在△ABC 中,cm 7cm,5,90==︒=∠BC AB B .点P 从点A 开
始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.
(1)如果Q P ,分别从B A ,同时出发,那么几秒后,△PBQ 的面积等于4cm 2
? (2)如果Q P ,分别从B A ,同时出发,那么几秒后,PQ 的长度等于5cm ?
(3)在(1)中,△PQB 的面积能否等于7cm 2
?说明理由。

相关文档
最新文档