ASTM D6418-99
ASTMD 剥离强度测试标准中文版
压敏胶带剥离强度测试标准1. 范围1.1 这些测试方法主要用于压敏胶带剥离强度的测试。
1.1.1 方法 A:单面胶从标准钢板或其他类似表面的平板上180°剥离的测试方法。
1.1.2 方法B:单面背衬胶粘性的测试方法。
1.1.3 方法C:双面胶与标准钢板粘性的测试方法。
1.1.4 方法D:单面胶或双面胶与离型纸的粘性的测试方法。
1.1.5 方法E:无基材胶带与标准钢板的粘性的测试方法。
1.1.6 方法F:单面胶与标准钢板90°剥离的测试方法。
1.2 这些测试方法是给定压敏胶带粘性测试的统一评定方法,这评定可以针对一卷,两卷之间或一批。
1.3 不同的基材和(或)胶质都会影响测定结果,因此,这些方法不适用不统一的胶质。
1.4 这些测试方法不适用于一些相对硬质的基材、衬里或在低强度下高粘性背胶的测试。
这些特性对测试结果有很大的影响,因而不能真正代表粘力。
1.5 测试数值用 IS 或英寸—磅做为单位,在每个单位系统中数值的规定都是不同的,因此,每个系统必须使用自己的单位。
1.6 这些标准没用强调在操作过程中可能会发生的所有安全隐患。
标准使用者有义务去建立一个安全健康的操纵规则。
4. 测试方法概要4.1 方法 A——单面胶 180°剥离——用可控压力把胶带粘贴到标准测试板上。
测试时,以恒定的速度180°角从测试板上剥离。
4.2 方法 B——单面背衬胶的粘性——胶带式样一粘贴到测试钢板上,取另一式样粘贴到式样以的背面,然后按方法A 进行测试。
4.3 方法C——双面胶4.3.1 表面粘性——把双面胶的正面贴到不锈钢板上,衬里面朝外。
撕去衬纸,贴一层 0.025mm(0.001in)的聚酯薄膜,接下来按方法A 进行测试。
4.3.2衬里粘力——在双面胶的正面贴上 0.025mm 的聚酯薄膜,然后撕去衬纸贴到不锈钢板上。
接下来的测试同方法A。
4.4 方法 D——测试离型纸胶带(单面或者双面)的粘性——把胶带粘贴到测试钢板上,衬里面朝外。
ASTM D类最新标准目录(十四).doc
ASTM D类最新标准目录(十四).docD6300-04 在石油和润滑剂试验方法中使用的精度和偏差数据的测定标准惯例D6301-03 水中可滤过的和不可滤过的物质样品收集标准惯例D6302-98(2004) 离子交换树脂活性评价标准惯例D6303-98 水中甲醛试验方法D6304-04ae1 卡尔费休库仑滴定法测定石油产品,润滑油和添加剂中水的试验方法D6305-02e1 耐火处理胶合板屋顶覆盖物弯曲强度设计调节系数计算标准惯例D6306-98(2003) 户内空气中气态污染物质检测用扩散型受控无源检测器的位移和使用指南D6307-05 燃烧法测热混合沥青中沥青含量的试验方法D6311-98(2003) 与废物处理活动相关的环境数据生成指南:采样的选择和优化D6312-98(2005) 地表水的监测程序确定恰当的统计近似值指南D6313-99 用氢还原和硫比重差异光谱法测定芳香化合物中硫总含量的试验方法D6316-04 测定煤和焦炭固体残渣中可燃碳酸盐类物质总含量的标准试验方法D6317-98(2004) 紫外过硫酸氧化膜传导检测法低强度测定水中总碳量,无机碳量,有机碳量的试验方法D6318-03 用棒测法校准回音测深仪的标准惯例D6319-00a(2005) 医药操作中腈检测用手套规范D6320-04 钢制单丝软管增强电线试验方法D6321-98(2004) 可机洗T恤衫的评价标准惯例D6322-00e1 涉及织物整理工序的国际试验方法指南D6323-98(2003) 废物处理活动相关方法的实验室二次取样指南D6324-05 合成材料制成的男性避孕套试验方法D6325-98(2004) 毛毡胶粘剂开启使用时间检测试验方法D6326-98(2003) 美国系列匀动悬浮样品取样器的最大传动速率比和深度选择标准惯例D6327-98(2004) 从过滤器上进行有效抽样法测定户内空气中氡衰变产物凝聚物及其作用程度的标准试验方法D6328-06 大气湿沉降化学分析质量保证协议指南D6329-98(2003) 用静态环境箱评价室内材料细菌繁殖能力的分类法编写指南D6330-98(2003) 指定试验条件下用小型环境箱检测木制板挥发性有机物(不包括甲醛)释放的标准惯例D6331-98(2005) 来自固定源头的低浓度气体中微粒物质浓度检测试验方法D6332-99(2005) 用于气体和蒸气中一氧化碳检测仪中测量动态响应部分检测的测试系统指南D6333-98(2004)e1 地板中沉积的残余杀虫剂收集的标准惯例D6334-98(2003)e1 波长分散X射线荧光法测定汽油中硫的试验方法D6335-03b 用加热氧化发动机油模拟试验来检测高温沉积物的试验方法D6336-98(2004) 用真空改进型西格马叶片式搅拌器鉴定颜料浸润载体的标准惯例D6337-98(2003)e1 确定涂料敷贴纺织品物理特征的试验方法D6338-03 高交联硫化热塑塑料(HCTPVs)分类法D6339-05 间同立构聚苯乙烯(SPS)模制和挤压成型规范D6340-98 在含水的或混合环境下放射性同位素示踪塑料需氧生物降解检测试验方法D6341-98(2005) 条状塑料材料和条状塑料型材在华氏:-30度至140度之间(摄氏:-34.4度至60度之间)热延展线形系数检测的试验方法D6342-98(2003) 聚氨酯原材料标准惯例:近红外(NIR)光谱法测定多元醇中羟基数量D6343-99(2004) 电绝缘用弱导热固体材料试验方法D6344-04 包裹运输的集中碰撞试验方法D6345-98(2004)e1 空气中挥发性有机化合物活性综合采样方法分类指南D6346-98(2004) 家庭危险废物处理中的材料的接收,分类和包装指南D6347/D6347M-05 用核反向散射深度密度法检测煤的堆密度的试验方法D6348-03 通过直接抽取在红外傅立叶转换光谱检测来测定气态化合物的试验方法D6349-01 电感耦合等离子体原子发射光谱测定煤和焦炭燃烧后残余煤,焦炭及其他固体残余物中主量和少量元素的试验方法D6350-98(2003) 天然气中水银的采样及用原子荧光分光光度法对其进行分析的试验方法D6351-99(2005) 水流在低温下流动性和外观检测试验方法D6352-04e1 用气相色谱测量沸腾范围在174度至700度内的石油馏分的沸腾范围划分试验方法D6353-06 铝生产中所用碳阴极块中进行平面和核心采样的指南D6354-98(2003) 用于铝生产的阴极碳块的抽样检验法和芯取样指南D6355-98(2003) 医用手套的重复损坏修补试验的试验方法D6356-98(2004) 用乳化沥青作为保护涂层的屋顶用铝产生氢气的试验方法D6357-04 用电感耦合等离子体原子发射光谱(ICP-AES),电感耦合等离子体质谱(ICP-MASS)和石墨炉原子吸收光谱测定煤炭综合加工后的煤,焦炭,燃烧残余物中微量元素的试验方法D6358-06 用国际标准化组织(ISO)方法对聚合物(硫化亚苯)注模和挤压成型材料分类方法D6359-99 用便携式手动设备对新铺筑的路面标记最小反射进行检测的规范D6360-99 塑料密封碳弧照射标准惯例D6361-98(2004)e1 清洁剂和清洗工艺的选择指南D6362-98(2003) 水分析参照物质的鉴定标准惯例D6363-98(2003)e1 过氧化酶荧光法检测大气中水的样品中过氧化氢和有机化合过氧化物试验方法D6364-99(2004) 石油合成物的短时间压缩特性检测试验方法D6365-99(2006) 用火花试验对石油膜接缝进行无损检测的标准惯例D6366-99 用氧化燃烧法和电化学法检测液态芳香烃中微量氮及其衍生物的试验方法D6367-04 AMS(α-甲基苯乙烯)规范D6368-06 蒸汽降级和正常级正丙基溴化物规范D6369-99 乙烯-丙烯-乙烯三元共聚物(EPDM)屋顶板制防水板部件设计指南D6370-99(2003) 用TGA热解重量分析法来分析合成橡胶的试验方法D6371-05 柴油机和加热燃料冷过滤器接插点试验方法D6372-05 表面微处理设计,试验,施工的标准惯例D6373-99 按特性分级的铺路沥青规范D6374-99(2004) 环保石油焦化石英坩埚工序中挥发性物质的试验方法D6375-05 用热解重量分析仪(TGA)诺克法分析润滑油蒸发损失的试验方法D6376-06 用波长分散X射线荧光光谱仪检测石油焦炭中微量金属的试验方法D6377-03 检测原油蒸气压力的试验方法:VPCRx(膨胀法)D6378-03 石油制品,烃类和氧化烃类混合物蒸气压力(VPx)的检测试验方法(三膨胀法)D6379-04 测定航空燃料和石油馏份中芳香烃类的标准试验方法—带有反射指数检测的高效液相色谱法D6380-03 沥青压制屋顶(有机物毡)规范D6381-03b 沥青板抗机械性隆起强度阻力测量试验方法D6382-99(2005) 屋顶和防水隔板材料的力学机械分析和热解重量分析标准惯例D6383-99(2005) EPDM屋顶隔板材料装配胶接部位的疲劳周期(蠕变断裂)的标准惯例D6384-99a(2005) 润滑剂的生物降解性和生物毒性相关术语D6385-99 灰化法测定活性炭中酸的可提取含量的试验方法D6386-99(2005) 镀锌铁和钢制品及要涂覆的金属构件表面制备的标准惯例D6387-99(2005) 毛细管气相色谱测量松节油合成物和相关萜烯产品的试验方法D6388-99(2005) 评价Geonets对液体的化学阻力的试验标准惯例D6389-99(2005) 评价化纤织物对液体的化学阻力的试验标准惯例D6390-05 未压紧的沥青混合物排水特性检测的试验方法D6391-06 土地测量中用钻孔两级渗流测多孔材料流体传导极限的试验方法D6392-99(2006) 检测热熔法生产的非增强石化薄板接缝完整性的试验方法D6393-99 卡尔指数法测块状固体特性的试验方法D6394-05 磺酰塑料(SP)规范D6395-05 硬质塑料平面挠性冲击阻力试验方法D6396-99(2005) 测试三通管管螺纹密封胶的试验方法D6398-01e1 增强标签上药物名称识别的惯例D6399-04 飞机座舱内空气质量测量设备和方法的选择指南D6400-04 合成塑料规范D6401-99(2004) 检测植物鞣料提取物中非鞣质和鞣质的试验方法D6402-99(2004) 检测植物鞣料提取物中可溶性和不可溶性固体的试验方法D6403-99(2004) 检测原料和废料中湿度的试验方法D6404-99(2004) 含鞣质植物材料取样标准惯例D6405-99(2004) 从原料和废料中提取的鞣质标准惯例D6406-99(2004) 植物鞣料中糖分析试验方法D6407-99(2004) 植物鞣料中铁和铜的分析试验方法D6408-99(2004) 制革液分析试验方法D6409-99(2004) 用绵羊粒面剖层皮进行着色试验的标准惯例D6410-99(2004) 检测植鞣液酸度的试验方法D6411/D6411M-99(2005) 硅橡胶室温硫化低释放气体材料规范D6412/D6412M-99(2005) 用以粘接金属和非金属材料的环氧树脂(可塑)附着力规范D6413-99 织物抗燃性试验方法(垂直试验)D6414-01(2006) 用酸吸收法或湿法氧化/冷蒸气原子吸收法检测煤和煤燃烧残余物中总水银含量的试验方法D6415/D6415M-06a 测量纤维增强聚合物母体复合材料弧形束强度的试验方法D6416/D6416M-01e1 简支夹层复合材料板承受分布载荷的二维挠性特征试验方法D6417-03 毛细管气相色谱法评估发动机油挥发性的试验方法D6418-04 挥发性有机物分析用土壤采样和保存自由全体核心样品的使用标准惯例D6419-00(2005) 非热定型丝网透印印刷油墨挥发量试验方法D6420-99(2004) 直接气相色谱-质谱仪测定气态有机化合物试验方法D6421-99a(2004) 用平台程序电子油口燃料注入器堵塞法评价汽车火花点火发动机燃料的试验方法D6422-99 汽油-究竟混合物允许含水量(相分离)试验方法D6423-99(2004) 乙醇,变性燃料乙醇和燃料乙醇(Ed75-Ed85)羟基浓度检测试验方法D6424-04a 正常吸入火花点火飞机发动机的正辛烷值的标准惯例D6425-05 用SRV试验仪测量极限压力(EP)润滑油的摩擦力和耐磨性的试验方法D6426-04 检测馏出燃料油的滤过率的试验方法D6427-99(2004) HFC-236,1,1,1,3,3,3-六氟丙烷的管理,运输和储存标准惯例D6428-99 用氧化燃烧和电化学法检测液态芳香烃及其衍生物中总硫量的试验方法D6429-99(2006) 表面地球物理学方法选择指南D6430-99(2005) 地下勘探重力法使用指南D6431-99(2005) 地下勘探直流电阻率法使用指南D6432-99(2005) 地下勘探表面地下穿透雷达法使用指南D6433-03 道路和停车场地状况指标测量标准惯例D6434-04 柔性聚丙烯地膜试验方法的选择指南D6435-99 条状塑料材料和条状塑料型材的剪切性能的试验方法D6436-02 塑料和热塑弹性材料的性能报告指南D6437-05 聚氨酯原材料试验方法:在低碱性多元醇中碱含量(多元醇中CPR值检测)D6438-05 液相微萃取-气相色谱法测量在涂料涂层中丙酮,甲基丙酮和三氯甲苯含量试验方法D6439-05 清洁,冲洗,净化蒸汽,气体和水力发电涡轮润滑系统的指南D6440-05 烃类树脂相关术语D6441-05 测量粉末涂料中潜在能量的试验方法D6442-06 海水中防污涂层体系铜扩散速度试验方法D6443-04 用波长分散X射线荧光光谱法(数字补偿式)对未使用过的润滑油和添加剂中钙,氯,铜,镁,磷,硫和锌的检测试验方法D6445-99(2004)e1 用能量分散X射线荧光光谱检测汽油中硫含量的试验方法D6446-01 航空燃料燃烧产生净热量(能量比耗)估算试验方法D6447-03 伏安法测定航空涡轮发动机燃料中过氧化氢数量的试验方法D6448-04 使用过的润滑油中提取的工业燃烧用燃料规范D6449-99 钢筋混凝土所用混合好的混凝土流量试验方法(流动锥法)D6450-05 连续密封杯测闪点(CCCFP)试验器的试验方法D6451-99(2006) 沥青原料的防护板应用指南D6452-99(2005) 地下水质检测井清洁方法指南D6453-99 土壤和岩石测试数据计算机交换格式指南D6454-99(2006) 检测增强型草皮(TRMS)短期耐压特性的试验方法D6455-05 预制沥青薄板(PBGM)试验方法分类指南D6456-99(2004) 聚酰亚胺树脂制成品部件的规范D6457-04 聚四氟乙烯(PTFE)制挤压成型和压模成型的棒材和厚壁管材规范D6458-99(2006) 8号至14号瘦型和8号至20号正常男孩身体测量表格D6459-99 山形屋顶防雨水腐蚀用腐蚀控制铺层(ECB)性能检测试验方法D6460-00 土制水渠防风雨腐蚀用腐蚀控制铺层(ECB)性能检测试验方法D6461-99 拦沙网材料规范D6462-03 拦沙网安装标准惯例D6463/D6463M-06 持久剪切载荷下压敏部件疲劳周期试验方法D6464-03ae1 将石膏板固定在木制框架上的可膨胀泡沫粘合剂规范D6465-99(2005) 宇航和一般用途粘合剂和密封剂的分类指南D6466-99(2005) Sirdan-激光扫描纤维直径分析仪测量木材和其他动物纤维直径的试验方法D6467-06a 检测粘土排水残余剪切力的扭环剪切力试验的试验方法D6468-06 馏出燃料的高温稳定性试验方法D6469-04 燃料和燃料系统微生物污染指南D6470-99(2004) 原油中盐份含量试验方法(电位滴定法)D6471-06 汽车和小修用预稀释含水乙二醇(最小容积50%)基发动机循环冷却剂标准规范D6472-06。
热处理术语
Intercritical hardening
亚共析钢件在Ac1~Ac3温度区奥氏体化后淬火冷却,获得马氏体和铁素体组织的淬火工艺。
冷处理
Subzero treatment
钢件淬火冷却到室温后继续在一段致冷设备或介质(-100℃以上)中冷却的处理工艺。
深冷处理
Cryogenic treatment
工件在250℃以下的回火。
高温回火
High temperature tempering
工件在500℃以上温度的回火。
自回火
Self tempering
利用局部或表层淬硬工件内部余热使淬硬部分回火。
回火脆性
Temper brittlement
淬火钢在一定温度区域回火和回火后缓慢冷却产生的脆性现象。
氢脆
金属凝固时,由液相同时析出、紧密相邻的两种或多钟不同的相构成的铸态组织。
共析组织
Eutectoid structure
固态金属自高温冷却时,从同一母相中同时析出、紧密相邻的两种或多钟不同的相构成的组织。
层片状组织
Lamellar- structure
两种或多钟薄层状交替重叠的共晶、共析组织以及其他组织。
ER49-1,ER55-B2L,ER55-C1
用于焊接碳钢和低合金钢,GB/T8110-1995
EF
碳钢用药芯焊丝
EF12-4332,EF03-5042
GB/T10045-1988
RZ
铸铁用实心焊丝
RZC-1,RZCH,RZCQ-2
GB/T10044-1988
5.有色金属及其他焊丝牌号
HS
堆焊硬质合金焊丝
露点
Dew point
气氛中水蒸汽开始凝结的温度。气氛中水气愈多,露点愈高。靠控制气氛露点(水分)可达到控制碳势目的。
ASTM D类最新标准目录(一)
ASTM D类最新标准目录( 一)D4-86(2004) 沥青含量试验方法D5-06e1 沥青材料的渗透性试验方法D6-95(2000)e1 油及沥青混合物加热损失试验方法D8-02 与道路和路面材料相关的术语D9-05 与木材相关的术语D12-88(1998) 未加工的桐油D13-02 松节油规范D16-03 与涂料、清漆、亮漆和有关产品相关的术语D20-03 路面焦油的蒸馏试验方法D25-99(2005) 圆木桩D29-98 虫胶树脂的抽样和试验方法D34-91(2003) 白颜料化学分析指南D36-95(2000)e1 沥青软化点试验方法(沥青软化点测定器)D38-94(2000)e1 木材防腐剂的抽样试验方法D41-05 铺屋面、防潮及防水用沥青底层D43-00 屋顶、防潮及防水材料用杂酚油底漆D49-83(2002) 铅丹的化学分析D50-90(2005) 含铁和锰的黄色、橙色、红色和褐色涂料的化学分析试验方法D56-05 泰格密闭闪点试验器测定闪点的试验方法D61-75(2004) 硬沥青的软化点的试验方法(水中方块试验法)D69-01 磨擦带的试验方法D70-03 半固态沥青材料的比重和密度的试验方法D71-94(2004) 固体硬沥青和地沥青的相对密度试验方法(变位法)D75-03 集料的抽样D76-99(2005) 纺织材料的抗拉试验机D79-86(2004) 氧化锌颜料D81-87(2003) 碱性碳酸盐铅白颜料D83-84(2002) 铅丹颜料D85-05 赭色颜料规范D86-05 大气压下石油产品蒸馏试验方法D87-04 石蜡熔点的试验方法(冷却曲线)D88-94(2005) 赛波特粘度的试验方法D91-02 润滑油的沉淀值试验方法D92-05a 用克利夫兰德开杯法测定石油产品的闪点和燃点的试验方法D93-02a 用潘斯基-马丁斯仪闭杯闪点测定器测定闪点的试验方法D94-02 石油产品的皂化值试验方法D95-05e1 蒸馏法测定石油产品及沥青材料中水的试验方法D97-05a 石油的倾点的试验方法D98-05 氯化钙D113-99 沥青材料的延展性的试验方法D115-02 电绝缘用含清漆试验溶剂的试验方法D116-86(2006) 电气设备用上釉陶瓷材料的试验D117-02 产自石油的电绝缘油的试验方法和规范导则D120-02a 橡胶绝缘手套D121-05 煤和焦炭术语D123-03 与纺织材料相关的术语D124-88(1998) 脱胶的豆油D126-87(2002) 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法D127-05 石油蜡包括凡士林滴熔点的试验方法D128-98(2003)e1 润滑脂分析试验方法D129-00(2005) 石油产品中硫含量试验方法(通用氧弹法)D130-04e1 用铜条变色法检测石油产品对铜腐蚀性的测试方法D139-95(2001)e1 沥青材料浮选试验的检测方法D140-01 沥青材料的抽样D143-94(2000)e1 洁净木材小样品的试验D146-04 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法D149-97a(2004) 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法D150-98(2004) 固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D153-84(2003) 颜料比重测试方法D154-85(2001) 清漆试验D156-02e1 石油产品赛波特比测试方法(赛波特比色计法)D167-93(2004)e1 块焦比重和孔隙度的试验方法D168-94(2000) 杂酚油焦炭渣的测试方法D173-03 屋顶和防水材料用饱和沥青棉织物D176-00 电绝缘用固体充填化合物与浸渍剂的试验方法D178-01(2005) 橡胶绝缘垫子D185-84(1999 颜料,糊剂及涂料中粗颗粒的试验方法D187-94(2003)e1 煤油燃烧质量的测试方法D189-05 石油产品康拉孙残碳测试方法D197-87(2002) 粉煤的取样方法与细度试验方法D198-05a 结构尺寸木料静力试验法D202-97(2002)e1 电绝缘用未浸渍纸的抽样和试验方法D204-02 缝线的测试方法D209-81(2003) 灯黑颜料D210-05 骨炭颜料D211-67(2002) 铬黄和铬橙颜料D215-91(2002) 白色亚麻籽油涂料的化学分析D217-02 润滑剂针入度的测试方法D225-04 表面有矿物颗粒的沥青屋面板D226-06 铺顶和防水用沥青饱和有机毡D227-03 铺顶和防水用焦油沥青饱和有机毡D228-06 沥青屋面卷材,盖板和瓦的试验方法D229-01 电绝缘用硬质薄板及板材的试验方法D233-02 松脂的抽样和测试试验方法D234-82(1998) 生亚麻子油D235-02 矿物溶剂油(石油溶液油)(烃干洗溶液)规格D237-57(1997) 橙色紫胶和其他虫胶D240-02 弹式量热器测定液烃燃料燃烧热的试验方法D242-04 沥青铺路混合料用矿物填料D243-02 规定残渣渗透性测试方法D244-04 乳化沥青的测试方法D245-06 制定目测分等木材的结构等级及有关允许性能的规程D246-04 杂酚油和杂酚油-煤焦油溶液的蒸馏试验方法D256-06 塑料及电绝缘材料的抗冲击性的测试方法D257-99(2005) 绝缘材料的直流电阻或电导的试验方法D260-86(2001) 熟亚麻籽油D261-75(1999) 铁蓝颜料D262-81(1999) 群青蓝颜料D263-05 氧化铬绿颜料D267-82(2003) 黄青铜粉规格D268-01 涂料及其相关涂层和原料用挥发性溶剂及化学中间体的抽样和测试D269-97(2002) 松香和松香衍生物中不溶物的试验方法D276-00a 纺织品中纤维的鉴定方法(AATCC方法20)D279-02 颜料渗出的试验方法D280-01 颜料吸收的水份(及试验条件下挥发的其他物质)的测试方法D281-95(2002) 用刮刀磨损法测定颜料油吸附性的试验方法D283-84(1999) 一氧化铜和铜涂料化学分析试验方法D287-92(2006) 原油和石油产品API比重的试验方法(液体比重计法)D291-86(2002) 烟煤立方英尺重量的试验方法D293-93(2004) 焦炭筛析分析试验方法D295-99(2004) 电绝缘用棉质漆布的试验方法D297-93(2002)e2 橡胶制品的测试方法.化学方法D299-04e1 石棉纱的标准规范D301-95(2004) 可溶性硝化纤维素的试验方法D304-05 n-丁醇(丁醇)D305-84(2003) 黑色涂料中的溶剂萃取材料的试验方法D312-00 屋顶用沥青D315-95(2004)e1 机织石棉带的标准规范D319-04 合成的戊醇D322-97(2002)e1 蒸馏法测定汽油发动机废机油中汽油稀释剂的试验方法D323-99a 石油产品蒸气压力的测试方法D329-02 丙酮D330-93(2001) 2-丁氧基乙醇D331-05 2-乙氧基乙醇D332-87(2004) 白色颜料着色力的试验方法D333-01 透明漆和着色漆的试验方法D341-03 液体石油产品粘度-温度关系曲线图D344-97(2004) 用擦试外规评定法对涂料相对遮盖力的测试方法D345-02 道路和结构用氯化钙的抽样和试验方法D346-04e1 实验室分析用焦炭试样的收集和制备D347-97 杂酚油和煤焦油的体积和比重修正表D348-00 电绝缘用刚性管的测试方法D349-99(2004) 电绝缘用层压圆棒的试验方法D350-01 电绝缘用经处理软套管的试验方法D351-97(2003) 天然白云母块及薄片目检质量分级D352-97(2003) 电绝缘用涂浆云母的试验方法D358-98 涂料耐大气老试验用木片规格D360-89(2001) 紫胶清漆规范D363-90(2000) 磷酸三甲苯酯规格D365-01(2005) 可溶性硝酸纤维素基溶液的试验方法D367-94(2000)e1 杂酚油中苯不溶物的测试方法D368-89(2002) 杂酚油及油质防腐剂比重的试验方法D369-84(2002) 杂酚油馏份与残渣比重的测试方法D370-02e1 油质防腐剂脱水作用的试验方法D372-00(2006) 电绝缘用经处理的软套管规格D374-99(2004) 固体电绝缘厚度的测试方法D374M-99(2005) 固体电绝缘厚度的标准测试方法(米制)D375-95(2004)e1 石棉粗砂的标准规范D378-00 平型橡胶传送带的测试方法D380-94(2006) 橡胶软管的测试方法D381-04 用喷射蒸发法测定燃烧中原在胶的测试方法D387-00 使用机械研磨机测定有色颜料主色和着力色的试验方法D388-05 用排列法测定煤的分类D390-92(1999) 海上,陆地及淡水中用木桩,电杆和木材的防腐处理用煤柏油杂酚油规程D391-94(2000)e1 杂酚油-煤焦油溶液D395-03 橡胶压缩永久变形特性的试验方法D396-05 燃料油规范D402-02 稀释沥青产品蒸馏的测试方法 Standard Test Method for Distillationof Cut-Back Asphalt ic (Bituminous) ProductsD409-02 粉碎机法测定煤炭可磨性的试验方法 Standard Test Method for Grindabilityof Coal by t he Hardgrove-Machine MethodD411-98(2003) 电绝缘用紫胶片试验方法 Standard Test Methods for ShellacUsed for Electrical I nsulationD412-98a(2002)e1 硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法 Standard Test Methods f or VulcanizedRubber and Thermoplastic Elastomers—TensionD413-98(2002)e1 橡胶特性-与软质基底粘附性的试验方法 Standard Test Methods for RubberPro perty—Adhesion to Flexible SubstrateD420-98(2003) 土壤粒度分析的测试方法 Standard Guide to SiteCharacterization for Engineering, Design, and ConstructionPurposesD421-85(2002) 土壤粒度分析试验方法 Standard Practice for Dry Preparationof Soil Samples for Particle-Size Analysis and Determination ofSoil ConstantsD422-63(2002)e1 土壤粒度分析试验方法 Standard Test Method forParticle-Size Analysis of Soils D425-88(2001) 土壤离心湿度当量试验方法 Standard Test Method for CentrifugeMoisture Equiva lent of SoilsD427-04 用水银法测量土壤收缩系数的测试方法 Test Method for Shrinkage Factors ofSoils by t he Mercury MethodD429-03e1 橡胶特性与硬质基底粘附性的试验方法 Standard Test Methods for RubberProperty—Adhesion to Rigid SubstratesD430-06 橡胶变质的动态疲劳试验方法 Standard Test Methods for RubberDeterioration-Dynamic FatigueD434-95 Standard Test Method for Resistance toSlippage of Yarns in Woven Fabrics Using a St andard SeamD440-86(2002) 煤的跌落粉碎试验 Standard Test Method of Drop ShatterTest for CoalD441-86(2002) 煤的滚筒试验 Standard Test Method of Tumbler Test for CoalD444-88(2003) 锌黄颜料(铬酸锌黄)的化学分析方法 Standard Test Methods for Chemical Analysis of Zinc YellowPigment (Zinc Chromate Yellow)D445-06 透明和不透明液体运动粘度的测试方法.(包括动态粘度的计算) Standard Test Method for Kinematic Viscosity ofTransparent and Opaque Liquids (and the Calculation of DynamicViscosity)D446-06 玻璃毛细管运动粘度计操作说明书和规范 Standard Specifications and OperatingInstructi ons for Glass Capillary Kinematic ViscometersD448-03a 道路和桥梁建筑的集料尺寸分类 Standard Classification for Sizes ofAggregate for Roa d and Bridge ConstructionD449-03 防潮和防水用沥青规范 Standard Specification for AsphaltUsed in Dampproofing and WaterproofingD450-96(2006) 铺屋面,防潮与防水用硬煤沥青 Standard Specification for Coal-TarPitch Used in Roofing, Dampproofing, and WaterproofingD451-91(2002) 沥青屋顶制品用粒状矿物铺面材料筛分分析试验方法 Standard Test Method for Si eveAnalysis of Granular Mineral Surfacing For Asphalt RoofingProductsD452-91(2002) 沥青层面制品表面修整用非粒状矿物的筛分试验方法 Standard Test Method for Si eveAnalysis of Surfacing for Asphalt Roofing ProductsD453-94(2000)e1 杂酚油-煤焦油溶液中焦油酸含量的测试方法 Standard Test Method for Tar Aci ds inCreosote-Coal Tar SolutionsD454-04 用加热及空气压力测定橡胶变质的试验方法 Standard Test Method for RubberDeteriorat ion by Heat and Air PressureD459-00 肥皂和其它洗涤剂的术语规范 Standard Terminology Relating toSoaps and Other Deter gentsD460-91(2005) 肥皂和其它洗涤剂粒度的试验方法 Standard Test Methods for Samplingand Che mical Analysis of Soaps and Soap ProductsD464-05 松脂油产品包括妥尔油和其他相关产品的皂化值的试验方法 Standard Test Methods for Saponification Number of Naval Store Products Including Tall Oil and Other Related ProductsD465-05 松脂制品包括妥尔油及其它相关产品酸值的试验方法 Standard Test Methods for Acid N umberof Naval Stores Products Including Tall Oil and Other RelatedProductsD470-05 电线和电缆用交联绝缘与套管的测试方法 Standard Test Methods for CrosslinkedInsulati ons and Jackets for Wire and CableD471-98e2 液体对橡胶性能影响的测试方法 Standard Test Method for RubberProperty-Effect of LiquidsD473-02 萃取法测定原油和燃料油中沉积物的试验方法 Standard Test Method for Sediment inCr ude Oils and Fuel Oils by the Extraction MethodD476-00(2005) 二氧化钛颜料规范 Standard Classification for DryPigmentary Titanium Dioxide P roductsD478-02 锌黄(铬酸锌)颜料 Standard Specificationfor Zinc Yellow (Zinc Chromate) PigmentsD480-88(2003) 铝粉和铝粉浆的抽样和试验方法 Standard Test Methods for Samplingand Testin g of Flaked Aluminum Powders and PastesD482-03 石油产品灰分的测试方法 Standard Test Method for Ash fromPetroleum ProductsD483-04 石油制植物喷洒油不磺化残渣的试验方法 Standard Test Method for UnsulfonatedResidu e of Petroleum Plant Spray OilsD490-92(2005) 道路柏油 Standard Specification for Road TarD494-04 Standard Test Method for Acetone Extraction ofPhenolic Molded or Laminated Products Standard TestMethod for Acetone Extraction of Phenolic Molded or LaminatedProductsD495-99(2004) 固体电绝缘材料的耐高压低电流干电弧性能的测试方法 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid ElectricalInsulationD500-95(2003) 磺化油和硫化油的化学分析和试验方法D501-03 碱性洗涤剂的抽样和化学分析试验方法D502-89(2003) 肥皂和其它洗涤剂粒度的试验方法D509-05 松香分级和抽样试验方法D511-03 水中钙镁离子的测试方法D512-04 测定水中氯离子含量的试验方法D513-02 水中二氧化碳溶解量和总量的试验方法D516-02 水中硫酸铁的试验方法D517-98(2003) 沥青厚板材D518-99 橡胶变质表面龟裂的试验方法D519-04 羊毛条中纤维长度的试验方法D520-00(2005) 锌粉颜料规范D521-02 锌粉(金属锌粉)的化学分析试验方法D522-93a(2001) 用锥形心轴仪测定涂覆有机涂层延伸率的试验方法D523-89(1999) 镜面光泽的试验方法D524-04 石油产品中兰氏残炭的试验方向D525-05 汽油氧化稳定性的试验方法(诱导期方法)D528-97(2002) 纸和纸板的机器定向试验方向D529-04 沥青材料的加速风化试验条件和程序的测试方法(碳弧法)D531-00(2005) 普西和琼斯橡胶压缩试验方法D542-00 透明有机塑料的折射指数的试验方法D543-06 塑料耐化学试剂性能的试验方法D545-99(2005) 混凝土用预制伸缩缝纫填料的试验方法(非挤压和弹性型)D546-05 道路和铺砌材料用矿物填料筛分的测试方法D548-97(2002) 纸张水溶解酸碱度的试验方法D555-84(1998) 干性油试验D558-04 土壤水泥混合物的水分与密度关系的试验方法D559-03 压实的掺土水泥混合物的湿润与干燥的试验方法D560-03 压实的掺土水泥混合物的冻融试验方法D561-82(2003) 涂料用炭黑颜料D562-01(2005) 斯氏粘度计测定涂料稠度的试验方法D563-88(1996)e1 醇酸树脂和树脂溶液中苯酐含量的试验方法D564-87(2002) 液体涂料催干剂的试验方法D565-99(2005) 白色矿物油中可碳化物质的试验方法D566-02 润滑脂滴点的试验方法D570-98(2005) 塑料吸水率的试验方法D572-04 用加热法和氧化法进行的橡胶变质的试验方法D573-04 在空气烤炉中作橡胶变质的试验方法D575-91(2001) 橡胶压缩特性的试验方法D578-05 玻璃纤维丝D579-04 原织物玻璃纤维D580-04 机织玻璃纤维带D581-99 机织玻璃纤维套管的编织D584-96(2005) 原毛中羊毛含量实验室测试方法D585-97(2002) 纸张、纸板、纤维板和相关产品的单批取样和验收方法D586-97(2002) 纸中灰分含量的试验方法D589-97(2002) 纸的不透明度的测试方法D590-93(2002) 纸中石油蜡的测试方法D596-01 水分析结果的报告D600-90(2001) 液体涂料催干剂D601-87(1998) 奥气油(永久液体)D602-81(2003) 硫酸钡颜料规范D605-82(2003) 硅酸镁颜料(滑石)D607-82(2003) 湿磨云母颜料D608-05 邻苯二甲酸二丁酯D609-00 涂料、油漆以及改性涂料与相关涂料产品的测试用冷轧钢板的制备D610-01 涂漆钢表面锈蚀程度评价的试验方法D611-04 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法D612-88(2004) 石蜡中可碳化物质的试验方法D613-05 十六烷法测定柴油燃料燃烧质量的试验方法D618-05 塑料及电绝缘材料的调理方法D619-99(2004) 电绝缘用硫化纤维的测试方法D622-99(2005) 汽车空气制动和真空制动系统用橡胶软管试验方法D623-99e1 橡胶特性-压缩中热的产生及挠曲疲劳的试验方法D624-00e1 橡胶的热塑性弹性的耐老化性的抗撕裂强度的试验方法D628-95(2004)e1 石棉套管的标准规范D629-99 纺织品定量分析试验方法D632-01 氯化钠D633-97(2005) 道路柏油的体积修正表D635-06 自承塑料在水平状态时的燃烧速率或者燃烧蔓延程度及燃烧时间的试验方法D638-03 塑料拉伸性能的试验方法D642-00(2005) 船用集装箱、组合件和单体加载的抗压缩能力的测试方法D643-97(2002) 用厦泊测试仪测试纸的折痕持久性的标准试验方法D644-99(2002) 用烘干法测定纸和纸板中水分的测试方法D645/D645M-97(2002) 纸和纸板厚度的测试方法D646-96(2001) 纸张及纸板的基本重量的试验方法(单位面积的重量)D648-06 在挠曲负荷下塑料的挠曲温度的试验方法D653-05 土壤、岩石和其内部所含液体的相关术语D660-93(2005) 外用漆龟裂程度评价方法D661-93(2005) 外用漆破裂程度评价的试验方法D662-93(2005) 外用漆侵蚀程度评价的试验方法D664-06 电位滴定法测定石油产品酸值的试验方法D665-06 水存在下抑制的矿物油防锈特性的试验方法D668-99(2004) 电绝缘用硬条和硬管尺度测量的测试方法D669-03 层压薄板与层压板的平行于层片的耗散系数和介电常数的试验方法D685-93(2002) 检测调理纸和纸制品D686-93(2002) 纸中矿物填料和矿物涂料的定性测试方法D689-03 纸张的内部耐撕裂的试验方法D692-00(2004) 沥青铺路砌混合用粗集料D693-03a 碎石路面用压碎集料D695-02a 硬质塑料抗压特性的试验方法D696-03 从-30摄氏度到30摄氏度的塑料线性热膨胀系数的试验方法D698-00ae1 实验室中用12000ft-lbt/ft(600KN-m/m)作用力测定土壤压力特性的试验方法D704-99(2004) 三氯氰胺甲醛模制化合物D705-99(2004) 脲甲醛模制化合物D706-05 乙酸纤维素模制和挤压化合物D707-05 醋酸丁酸纤维素模制与挤压料规格D709-01 层压热固材料D710-97(2002) 电绝缘用硫化纤维薄板、条和管D711-89(2004) 路标漆不粘着时间的试验方法D713-90(2004) 路标漆进行路面使用的试验方法D714-02e1 涂料起泡程度的试验方法D715-86(2003) 硫酸钡颜料分析的标准试验方法D716-86(2003) 评定云母颜料的标准试验方法D717-86(2003) 硅酸镁颜料分析的标准试验方法D718-86(2003) 硅酸铝颜料的分析标准试验方法D720-91(2004)e1 煤自由膨胀指数的试验方法D721-05 石油蜡含油量的试验方法D722-93(2002) 纸的抗油脂性标准试验方法D724-99(2003) 纸表面可湿性的测试方法(接触角法)D726-94(2003) 空气中无孔纸的透气性的测试方法D727-96(2001) 真空方法测定屋顶和地板油毡煤油值的试验方法D731-95(1999) 热固模塑料粉末的模塑指数的试验方法D732-02 用穿孔工具测量塑料剪切强度的测试方法D737-04 纺织纤维透气率的试验方法D740-05 丁酮规范D746-04 用冲击法测定塑料及弹性材料的脆化温度的试验方法D747-02 用悬臂梁法对塑料表观弯曲系数的测试方法D748-00(2005)e1 固定式云母介电电容器用天然云母块和云母薄片D750-00 用碳弧型装置和风化装置对橡胶变质的测试方法D751-06 涂层织物的测试方法D763-01 未加工棕土和焙烧棕土颜料D765-87(2003) 未加工黄土和焙烧黄土颜料技术规范D768-01 黄色氧化铁的水合物D769-01 黑色合成氧化铁D770-05 异丙醇规范D772-86(2005) 外部涂料剂落程度评价的试验方法D774/D774M-97(2002) 纸张抗破碎强度的测试方法D776-92(2001) 干热对纸和纸板特性的影响的试验方法D777-97(2002) 经过处理的纸和纸板易燃性的标准试验方法D778-97(2002) 纸萃液(热萃取和冷萃取法)氢离子浓度(pH)的标准试验方法D779-03 纸、纸板和其他印刷材料用干烧指示器法测试耐水性的测试方法D780-95(2003) 纸印刷油墨渗透性的测试方法(蓖麻油试验)D784-03 电绝缘材料用橙色紫胶和其他印度虫胶D785-03 塑料和电绝缘材料的洛氏硬度的测试方法D787-96(2003) 乙基纤维模制和挤压化合物D788-05 甲基丙烯酸酯模制和挤压化合物的分类系统D789-06 聚酰胺相对粘度,熔点和含水量的测试方法D790-03 未增强和增强塑料及电绝缘材料的挠曲性的试验方法D792-00 用位移法测定塑料密度和比重(相对密度)的标准试验方法D800-05 工业用金属除垢剂化学分析试验方法D801-02 二聚戊烯抽样和测试的试验方法D802-02 松油抽样和测试的试验方法D803-03 妥儿油的测试试验方法D804-02 松脂制品包括妥儿油及相关产品的术语D806-00(2006) 掺土水泥混合物中水泥含量的试验方法D807-05 工业锅炉用水引起脆裂倾向的评价方法(美国矿业局的脆变检查器方法)D808-05 新的和使用过的石油产品中氯含量的试验方法(氧弹法)D813-06 测定橡胶龟裂扩展的试验方法D814-95(2005) 橡胶特性挥发性液体蒸汽渗透性的试验方法D816-06 橡胶胶水的试验方法D817-96(2004) 乙酸丙酸纤维素和醋酸丁酸纤维素的试验方法D820-93(2003) 含合成洗涤剂肥皂的化学分析试验方法D822-01 用经过过滤明光碳弧灯和水中曝光装置对涂料及相关涂层和材料上做的导电试验D823-95(2001) 色漆,清漆,喷漆及有关产品制成厚度均匀漆膜试片的方法D824-94(2002) 用皱文纸测定吸水率的测试方法D828-97(2002) 纸和纸板拉力破坏强度的测试方法D829-97(2002) 纸和纸制品湿抗拉断裂强度的标准试验方法D831-94(2004) 电缆及电容器油的气体含量的测试方法D832-92(2001)e1 低温状态下的橡胶试验D841-02 甲苯的硝化定级D843-06 硝化二甲苯D847-04 苯,甲苯,二甲苯,溶剂石脑油和类似的工业芳烃酸度的试验方法D848-03 工业芳烃的酸洗颜色的标准试验方法D849-05 工业芳烃对铜条腐蚀的标准试验方法D850-03 工业芳轻及相关物质的蒸溜法D852-02 苯凝固点的试验方法D853-04 工业芳烃中硫化氢和二氧化硫含量(定性)的标准试验方法D854-06 土壤比重的试验方法D857-02 水中铝含量的测试方法D858-02 水中锰含量的试验方法D859-05 水中二氧化硅的测试方法D861-01a 用特克斯制命名纤维,纱的半制品,纱和其它纺织品线度D865-99(2005) 橡胶的空气中加热变质试验方法(试管法)D866-99(2004) 电线及电缆用丁苯合成橡胶套D868-85(2003) 路标漆渗色程度评价的试验方法D869-85(2004) 涂漆沉降程度评价试验方法D870-02 水浸渍法涂层耐水试验D871-96(2004) 测试乙酸纤维素的试验方法D873-02 航空燃料的氧化稳定性的测试方法D874-06 润滑油和添加剂中硫酸盐类灰分的测试方法D876-00 电绝缘用刚性氧化乙烯聚合物管的测试方法D877-02e1 用圆盘电极测定电绝缘液体介电击穿电压的试验方法D878-01e1 绝缘油中无机氯化物和硫酸盐的测试方法D880-92(2002) 船用集装箱的冲击试验的试验方法D882-02 塑料薄板材抗拉特性的试验方法D883-00 塑料相关术语D885-06 由人造有机纤维制成的轮胎帘子线,轮胎帘布和工业长纱线的测试D887-82(2003)e1 水沉积物抽样D888-05 水中溶解氧的试验方法D889-99(2004) 松香中油挥发性的试验方法D890-98(2003) 液体松脂中水含量的试验方法D891-95(2004) 液态工业化合物的比重,表观比重的测试方法D892-05 润滑油发泡特性的标准试验方法D893-05a 用过的润滑油中不溶物的试验方法D896-04 胶粘剂耐化学试剂粘法的试验方法D897-01e1 胶粘剂粘结力的抗拉性的测试方法D898-05 胶粘剂固体单位面积涂用重量的试验方法D899-00 单位面积涂用液体胶粘剂的重量的测试方法D902-00 电绝缘用挠性涂树脂玻璃布和玻璃布带的测试方法D903-98(2004) 胶粘剂粘结抗剥落或爆皮强度的试验方法D904-99(2005) 人造光(碳弧型)和自然光对胶粘剂试样的曝光D905-03 用压缩荷载法测定胶粘剂的抗剪切强度性能的试验方法D906-98(2004) 用拉力负荷法测定胶合板结构中胶粘剂剪切强度特性的试验方法D907-05e1 胶粘剂术语D909-01e1 增压进料法测定航空汽油抗震性的试验方法(联邦试验方法No.791b) D910-04a 航空汽油技术规范D912-81(1999) 防污涂料用氧化亚铜D913-03e1 路标漆耐磨程度的评价方法D914-00(2006) 乙基纤维的试验方法D918-99(2003) 纸和纸板的抗粘结性试验方法D919-97(2002) 纸和纸板的铜值测试方法D922-00a(2006) 非硬质聚氯乙烯管D923-97 电绝缘液体的抽样方法D924-04 电绝缘液体的损耗因数(或功率因数)和介电常数(电容率)的测试方法D925-06 橡胶特性.表面着色(接触、色移和扩散)的试验方法D926-04 用平行板法测量橡胶的塑性和弹性D928-03 碳酸氢钠D932-85(2002) 水和水沉积物中嗜铁细菌含量试验方法D933-84(2003) 水沉积物的检验和分析结果的报告方法D934-80(2003) 用X射线衍射法作水沉积物中结晶化合物的识别方法D937-04 石油脂的针入度试验方法D938-05 石油蜡(包括凡士林)凝固点的测试方法D942-02 氧弹法测定润滑脂氧化稳定性的试验方法D943-04a 防腐蚀矿物油氧化特性的试验方法D945-06 用机械示波器测定在压缩应力和剪切应力下橡胶特性的试验方法D946-82(2005) 路面建造用按贯入度级配的沥青膏D950-03 胶粘剂抗冲击强度的试验方法D951-99(2004) 用喷射法测定船运集装箱的耐水性的试验方法D952-02 薄板塑料和电绝缘材料粘结强度的试验方法D953-02 塑料支承强度的测试方法D955-00 模制塑料模型尺寸收缩率的测量方法D957-95(2006)e1 塑料生产用模型表面温度的测定D960-02a 生蓖麻油D961-86(2001) 脱水蓖麻油D962-81(2003) 涂料用铝粉和铝浆颜料D964-03 防污漆用铜粉D968-05 用落沙磨蚀法测定有机涂层耐磨性的试验方法D969-85(2003) 路标漆渗色程度的实验室试验方法D971-99a(2004) 环法测定油水界面张力的试验方法D972-02 润滑脂和润滑油蒸发损失的测试方法D974-04 用颜色指示剂滴定法测定酸碱值的标准试验方法D975-06 柴油技术规范D976-04be1 馏分燃料正十六烷指数的计算方法D977-05 乳化沥青D979-01(2006)e1 沥青铺面混合料的取样方法D982-05 Standard Test Method for Organic Nitrogen in Paper andPaperboard D984-97(2002)。
ASTM D类最新标准目录(十五).doc
ASTM D类最新标准目录(十五).docD6473-99(2005) 岩石比重和吸收的腐蚀控制试验方法D6474-99(2006) 高温凝胶渗透色谱检测聚烯烃中分子量分布和分子量平均值的试验方法D6475-00 计算单位面积上防腐覆盖层量的试验方法D6476-05 "充气用织物动态空气渗透性测定的标准试验方法"D6477-04 "轮胎帘线和帘布的相关标准术语"D6478-02 "测定充气用织物密封特性的标准试验方法 "D6479-02 "测定充气用机织织物边角耐精梳性的标准试验方法"D6480-05 用透射电子显微镜对表面擦拭取样中石棉结构值浓度间接制备和分析的标准试验方法D6481-99(2004) 能量分散X射线荧光光谱法检测润滑油中磷、硫、钙、锌的试验方法D6482-01 用搅动抗张法的冷却曲线分析测定液态高聚物骤冷剂冷却特性的试验方法D6483-04 评估T-9柴油机用柴油机油的试验方法D6484/D6484M-04 聚合物基体复合层压材料的开洞耐压强度的测试方法D6485-99(2004) 基体排放的挥发性有机化学药品短期接触的急性和刺激影响的风险描述指南D6486-01(2005) 汽车涂层的短期车辆设备暴露标准实施规范D6487-04 小Joe补偿色浸渍印刷法用胶印墨水预印刷的标准惯例D6488-05 印刷相关问题术语D6489-99(2006) 测定经防水涂层处理过的变硬混凝土吸水性试验方法D6490-99(2006) 用于类水泥面板的无膜成型处理的水蒸气透过的测试方法D6491-99(2003) 在干热试验中预受力的预涂的金属抗老化性的评价标准惯例D6492-99(2003) 检测镀锌和锌/铝合金钢六价铬的标准惯例D6493-05 用自动环和球装置检测烃类树脂的软化点的试验方法D6494-99(2004)e1 测定作为苯可溶性分馏物的工作环境中沥青烟雾颗粒物质的试验方法D6495-02 地面粘土衬认可检验要求指南D6496-04a 测定针刺式土工合成粘土里衬的最上层和底层间平均粘结拉伸强度的试验方法D6497-02 土工薄膜与渗透层或结构间的机械连接指南D6498-99(2002) 对于家庭危险废物操作的家庭危险废物处理培训大纲指南D6499-03 在天然橡胶和它的产品中进行抗原性蛋白质的免疫测量的试验方法D6500-00 用光纤直径分析仪测定羊毛和其它动物纤维直径的试验方法D6501-04 盐水中膦酸酯的测试方法D6502-99(2003) (XRF)用X射线荧光光谱法(XRF)在线测定水中低度微粒和溶解金属的测试方法D6503-99(2005) 用Enterolert测定水中肠球菌试验方法D6504-00 高纯度水中阳离子导电性在线检测规程D6505-00(2006) 检定丙基溴含量试验方法D6506-01 地下防水用沥青防护层规范D6507-00(2005) 复合材料纤维增强定向编码惯例D6508-00(2005)e1 用毛细管电泳法和铬酸盐电解液法测定水基料中可溶无机阴离子的试验方法D6509-00 用玻璃纤维加固不规则聚丙烯改良沥青薄板材规范D6510-00 用于建造屋面系统的沥青的选择指南D6511-00 溶剂负载沥青复合物的试验方法D6512-03 实验室间数值评估惯例D6513-00(2005) 标准耐火测试中计算木结构墙迭加荷载的试验方法D6514-03 透平油高温全氧化测试的试验方法D6515-00(2004) 橡胶轴封从弯曲恢复测定的试验方法D6517-00(2005) 地下水取样的现场保存指南D6518-03a 煤机械取样系统恒定误差试验惯例D6519-05 用液压控固定活塞采样器进行土壤抽样的标准规程D6520-06 挥发性和半挥发性有机化合物分析用水和它的顶部空间的固相微萃取惯例D6521-05 用压力老化容器(PAV)对沥青粘合剂加速老化惯例D6522-00(2005) 测定从往复式发动机,燃气轮机,锅炉,和过程加热器排放物中氧化氮,一氧化碳和氧浓度的试验方法D6523-00(2005) 卫生垃圾掩埋用的可选日常封盖物(ADCs)的评估和选择指南D6524-00(2006) 测量草皮增强垫(TRMs)弹性的试验方法D6525-00(2006) 测量永久性成卷冲刷防护产品公称厚度的试验方法D6526-03e1 毛细管气相色谱法分析甲苯的试验方法D6527-00 用稳态离心法测定多孔介质中不饱和和饱和水分导电率的试验方法D6528-00 粘性土的压密不排水直接样品剪切试验的试验方法D6529-00 馈送50-1000uS/cm的连续电气去电离作用系统的操作性能的试验方法D6530-00(2006) 冷却塔水中活性微生物总量的测试方法(KoolKount化验;KKA)D6531-00(2005) 仪器测量水基墨水的相对着色度的试验方法D6532-00(2006) 关于水凝水泥灰浆样本吸水,清洁防水处理效果评估的试验方法D6534-05 测定机械泵分配器启动力峰值试验方法D6535-05 检定机械泵分配器汲取管长度试验方法D6536-00(2005) 测量机械泵分配器汲取管长度试验方法D6537-00(2006) 包装性能检测用仪表监视包装冲击试验规程D6538-00(2005)e1 自动取样器对废水取样指南D6539-00(2006) 用流动空气测定局部饱水孔隙材料气动渗透性的标准试验方法D6540-05 绒头纱线地板覆盖物的加速染污标准试验方法D6541-05 HFC-236fa、1,1,1,3,3,3-六氟丙烷的标准规范D6542-05 计算堆料中煤吨数的标准规程D6543-00(2006) 用流线煤分析仪进行的测量评价的标准指南D6544-00 紫外线(UV)透射试验前纺织品制备的标准实施规程D6545-00 小孩睡衣裤的织物的可燃性测试方法D6546-00(2005) 工业液压液用弹性密封件能力测定的标准试验方法和建议极限值D6547-00(2005) 双金属电偶用润滑液防腐性能的标准试验方法D6548-00(2005) 薄棉卫生纸抗机械穿透性的标准试验方法D6549-01 搅拌冷却曲线分析法测定冷却剂冷却特性的标准试验方法(Drayton装置)D6550-05 超临界液相色谱法测定汽油中烯烃含量的标准试验方法D6551/D6551M-05 用氙弧曝光器具对压敏胶带做加速老化试验的标准实施规程D6552-06 控制和表征称量聚集的悬浮颗粒的误差的标准规程D6553-00(2005) 导轨润滑剂冷却能力的标准试验方法D6554-00 100%棉粗斜棉布织物的性能规范D6555-03 木制反复使用组件的系统效果评定指南D6556-04 炭黑的标准试验方法.氮吸收法测定总的和外部表面积D6557-04 评估汽车发动机润滑油的防锈性能的试验方法D6558-00a(2005) 碳阳极和阴极块的TGACO2反应率测定标准试验方法D6559-00a(2005) 碳阳极和阴极块的TGA气体反应率测定标准试验方法D6560-00(2005) 原油和石油产品中沥青质(庚烷不溶物)测定的标准试验方法D6561-00 利用(甲氧基-2-苯基-1)哌嗪(MOPIP)测定工作场所空气中气溶胶单体和低聚二异腈酸己二酯(HDI)的标准试验方法D6562-00 利用9-(N-甲氨基甲基)蒽(MAMA)法测定工作场所空气中气态二异腈酸己二酯(HDI)的标准试验方法D6563-05 用毛细管柱气相色谱法分析苯、甲苯、二甲苯及三者浓缩物的试验方法D6564-00(2005) 地表水样现场过滤指南D6565-00(2005) 时间-区域反射计法测定土壤中水(水分)含量的测试方法D6566-00(2006) 测定草皮增强垫的单位面积重量的试验方法D6567-00(2006) 测定草皮增强垫的光线渗透的试验方法D6568-00(2006) 可追溯的化学分析水样的计划编制,执行和报告指南D6569-05 pH1在线测量的标准试验方法D6570-04 机械分级木材指定允许特性的标准实施规程D6571-01 通过静力负载测定高弹性无纺织物的抗压性和复原性的试验方法D6572-00 通过团粒状测试测定粘土的分散性的试验方法D6573/D6573M-01 通用钢丝运输箱规范D6574-00(2006) 用径向流动测定土工织物的(在平面流中)液压透过比的测试方法D6575-00(2006) 测定用做草皮增加垫的土工织物的硬度的试验方法D6576-00 柔性泡沫橡胶化学膨胀规范D6577-00a 工业防护覆层试验的标准指南D6578-00 耐涂写性测定的标准实施规程D6579-00 尺寸筛析色谱法测定烃和萜烯树脂平均分子量和分子量分布的标准实施规程D6580-00(2005) 锌粉涂料与锌粉涂料硫化薄膜和富锌涂层硫化薄膜中金属锌含量测定的标准试验方法D6581-00(2005) 化学悬浮离子色谱法测定饮用水中溴酸盐、亚溴酸盐、氯酸盐和亚氯酸盐的标准试验方法D6582-00(2005) 分等级抽样的标准指南:环境抽样中平均浓度的有效评估D6583-04 涂料薄膜孔隙度的标准试验方法D6584-00e1 气相色谱法测定B-100生物柴油甲酯中自由甘醇和甘醇总值的试验方法D6585-05 未烧结聚四氟乙烯挤压薄膜或胶带规范D6586-03 用快速小刻度柱测试法预测水系中粒状活性炭污染物吸附惯例D6587-00 用自动试验机测试纱线支数的试验方法D6588-02 轮胎帘布的疲劳试验方法(圆盘疲劳试验)D6589-05 大气散射模型性能统计评估指南D6590/D6590M-00(2006) 密封纤维容器和罐用压敏胶带规范D6591-00 高效液相色谱法折射率检测中间馏分中芳烃类型的试验方法D6592-01 轻便式化学发光水质测定的标准试验方法D6593-06 低温和轻型条件下运行的、以汽油为燃料的火花点火式内燃发动机内对抑制沉积物形成的汽车机油评价的标准试验方法D6594-05 135℃时柴油机油腐蚀性评价试验方法D6595-00(2005) 用转盘式电极原子发射光谱法测定用过的润滑油或用过的液压水流体中磨耗金属和污染物的试验方法D6596-00(2005) 汽油和相关烃类材料的安瓿瓶封装和贮藏惯例D6597-00(2006) 评估场所封闭达到净化等级惯例D6598-00 监测垂直变形用沉降平台的安装和操作指南D6599-00 斜坡上活柴笼建造惯例D6600-00(2004) 评估橡胶检验方法的测试灵敏度惯例D6601-02 用无转子剪切流变仪测量硫化和硫化后橡胶动态性能的试验方法D6602-03b 炭黑易消散物或/和其它环境微粒的取样和测试惯例D6603-00 防紫外线纺织品标签指南D6604-00 示差扫描量热法测定烃类树脂玻璃透过温度惯例D6605-00 测定加热后烃类树脂的颜色稳定性的试验方法D6606-00(2005) 通过Duke粘度计测定漆料和清漆的粘度和屈服的试验方法D6607-00(2005) 在规格界限中精密度声明变化的内容惯例D6608-00(2006) 在沥青混合物中鉴定特立尼达湖沥青惯例D6609-01 煤随机抽样的标准指南D6611-00 湿和干的条件下纱与纱之间抗磨损性的测试方法D6612-00 用自动检测器测定纱数和纱数可变性的试验方法D6613-02 尼龙或聚脂纤维尺寸确定的标准实施规程D6614-00 恒延伸法测定纺织纤维的伸展性能的试验方法D6615-06 喷口B广馏份航空涡轮机燃料标准规范D6616-01a(2006) 在摄氏100度时用锥形承载模拟器粘度计测量高剪切速率时粘度的标准试验方法D6617-05 用来自标准材料的单个试验结果的试验室偏差测定惯例D6618-05 在四冲程循环超动力柴油机1M-PC单气缸油检验发动机中的发动机油评估测试方法D6619-00(2006) 通过高速分散合并颜料惯例D6620-00 基于计数测定石棉探测范围惯例D6621-00(2006) 芳烃材料用生产分析器的性能试验惯例D6622-01 完全粘结的热铺增强防水系统应用的指南D6624-06 利用河流分析仪数据测定收集的分批处理流动物质的流量比例平均特性值(FPAPV)的标准实施规程D6625-01 用荧光紫外-集中光-水-冷凝曝光和曝水仪器对涂漆板抛光防护性能试验的标准实施规程D6626-01 分级特立尼达湖地改良沥青粘合剂规范D6627-01 冷沥青混合料挥发性馏份测定试验方法D6628-03 路面标记材料颜色规范D6629-01 由于腐蚀引起的土壤损耗的评价方法的选择指南D6630-01 低坡度绝热屋顶薄膜装配性能指南D6631-05 进行实验室间研究和测定试验方法精确度的委员会D01标准指南D6632-01 防污油漆中铜总量试验方法D6633-05 机械泵分配器的基本功能稳定性的标准试验方法D6634-01(2006) 地下水监测井用净化和取样选择的标准指南D6635-01 平板膨胀剂表现测试方法D6636-01(2006) 加筋土工薄膜的剥纸强度的测定的标准试验方法D6637-01 单边或多边拉伸法测定土工格栅拉伸特性的标准试验方法D6638-01 土工合成加筋和分段式混凝土构件间的连接强度的测定的标准试验方法(模数化混凝土块)D6639-01 地下勘察用频域电磁法使用指南D6640-01(2005) 环境勘察用岩心管样品机获取的土壤的收集和处置的标准实施规程D6641/D6641M-01e1 用组合式荷载压力试验夹具测定聚合物基质复合叠材的压力特性的标准试验方法D6642-01(2006) 确定土壤水(湿度)流量的方法比对指南D6643-01 木基板材角部抗冲击性测试试验方法D6644-01(2002) 有眼镶边纽扣抗拉强度试验方法D6645-01 红外分光光度测定法测定聚乙烯中甲基(共聚单体)含量试验方法D6646-03 测定粒状和丸状活性炭的加速硫化氢突破容量试验方法D6647-01 通过原子吸收测定酸性可溶铁试验方法D6648-01 沥青蠕变强度测定试验方法D6650-01 测定净室中使用无纺织物动擦除效率、湿颗粒去除能力和织物粒子作用试验方法D6651-01 无纺织物吸附率和吸附能力测定试验方法D6652-01 测定无纺织物留下的纤维状碎屑试验方法D6653-01 真空法测定高空对包装系统影响试验方法D6654-05 机械泵分配器基本储存稳定性试验方法D6655-01 机械泵分配器相关术语D6656-01 测定湿铬鞣革中氧化铬试验方法(高氯酸氧化)D6657-01 测定湿铬鞣革pH值试验方法D6658-01 通过烘炉干燥测定湿铬鞣革的挥发性物质(湿度)试验方法D6659-01 物理和化学试验用湿铬鞣革的取样和制备规程D6660-01 自动相变法测定含水乙二醇基发动机冷却剂凝固点试验方法D6661-01(2006) 用擦拭取样方法从表面现场收集有机化合物规程D6662-01 聚烯烃基塑料甲板规范D6663-01 公共场所用和家用编织和针织床罩及附属品规范D6664-01 公共场所用和家用编织、针织和棉绒的床上品规范D6665-01 在沸水试验中评价预应力预涂金属耐老化的标准实施规程D6666-04 评价含水高聚物淬火剂的标准指南D6667-04 紫外线荧光法检测气态烃和液化石油气中挥发性硫总量试验方法D6668-01 F=0和F=1的易燃性额定值间的区分的标准试验方法D6669-01a 醇酸和乳胶内部涂料暴露评定用暴露方案的选择和设计的标准实施规范D6670-01 室内材料/产品排放的挥发性有机物质的全室测定的标准实施规程D6671/D6671M-06 非方向性纤维增强多聚矩阵元件的混合模式I-模式II内层裂纹强度的标准试验方法D6672-06 格式化驱动数值控制的切布机的切割数据的标准实施规程D6673-04 缝制品图案数据交换数据格式的标准实施规程D6674-01 织物用熟练试验程序的标准指南D6675-01 机动车薄钢板上有机涂层的盐加速户外表面腐蚀试验的标准实施规程D6676-01e1 用内部加热测定高温下外部管道镀层的阴极断接的标准试验方法D6677-01 用刀评价粘结性的标准试验方法D6681-05 高速单缸柴油机履带车1P测试程序中发动机油的评估试验方法D6682-01 使用Peschl旋转分开水平撕裂试验机测量粉末撕裂应力的试验方法D6683-01 粉末和其它散料的容积密度的试验方法D6684-04 咬合混凝土块铺面系统的原料和制造规范D6685-01 纤维制混凝土用织物的试验方法的选择的标准指南D6686-01 覆层抗丹宁着色评定的标准试验方法D6687-04 印刷油墨载体和成分测试的标准导则D6688-01 夹层法测定印刷品耐液态化学品腐蚀性试验方法D6689-01 同样试验组织内多层工作台最优控制和报告试验方法不确定性的标准指南D6690-06 沥青铺路和混凝土热应用连接和裂纹密封剂标准规范D6691-01 利用规定的微生物团测定塑料材料在海洋环境中需氧生物降解能力的标准试验方法D6692-01 海水中放射性同位素标记的聚脂塑料的生物降解性的测定的标准试验方法D6693-04 非增强聚乙烯和非增强柔性聚丙烯土工薄膜张力特性的测定的标准试验方法D6694-01 喷射聚氨基甲酸乙酯泡沫屋面结构使用的液硅涂层的标准规范D6695-03b 清漆和相关涂覆料的氙弧曝光操作规程D6696-05e1 了解氰化物种类指南D6697-01 化学需氧量(锰III需氧量)测定试验方法D6698-01 水中5NTU以下混浊度的联机测量的标准试验方法D6699-01(2006) 用水斗取液体样的标准惯例D6700-01(2006) 轮胎废料产生的燃料的使用惯例D6701-01 测定水蒸气通过无纺织物和塑料衬层的透过速率试验方法D6702-01 检定非清洁用的无纺布的动态擦除效果试验方法D6703-01 自动Heithaus滴定试验方法D6704-01 检定冷混合沥青修补材料可成形性试验方法D6705-04 喷射成形聚氨酯泡沫体屋顶系统的维修和重新涂覆指南D6706-01 测定土壤中土工织物抗拉出的测试方法D6707-06 地下排水设施用圆形织法的土工织物规范D6708-06 两种测量材料同一性能的试验方法之间预期一致性的统计分析和改进惯例D6709-06 序列VIII火花点火发动机(CLR油试验发动机)中汽车发动机油评定试验方法D6710-02 烃基淬火油评价指南D6711-01 用于填充金属筐,水泥沉床,和金属筐沉床的石块分类惯例D6712-01 超高分子量聚乙烯(UHMW-PE)实心塑料型材规范D6713-01 (PVDF)由聚偏氟乙烯制成的挤制和压模制型材规范D6714-01 灰化湿铬鞣革中氧化铬的试验方法(高氯酸氧化)D6715-01 用盐保存(腌干)兽皮的理化检测取样和准备惯例D6716-01 湿铬鞣革中总灰份的标准试验方法D6717-01 弹性纱线(绞纱样品)线密度试验方法D6718-02 D13委员会标准的编写规程D6719-05。
(完整版)ASTMD类最新标准目录(四).doc
ASTM D类最新标准目录(四).docD1720-03 硝酸纤维素溶液中活性溶剂稀释比的试验方法D1721-97(2001) 磷酸三甲苯酯高锰酸盐时间的测试方法D1722-98(2004) 水溶性溶剂的水混溶性试验方法D1725-04 树脂溶液粘度的测试方法D1726-03 液体环氧树脂中水解氯含量的试验方法D1729-96(2003) 不透明材料色差的目测评估D1730-03 涂漆铝和铝合金表面预处理D1731-03 涂漆热浸铝表面预处理D1732-03 涂漆镁合金表面预处理D1734-93(2003) 涂料面漆测试用水泥板和瓦工板的制备D1735-04 用水雾仪作涂层耐水性试验D1739-98(2004) 降尘(可沉降粒状物)的收集和测量的试验方法D1740-01 航空涡轮机燃料发光计值的试验方法D1742-06 贮存过程中油从润滑脂中分离的试验方法D1743-05ae1 润滑脂防腐蚀性能的测试方法D1746-03 塑料薄板透明度的试验方法D1747-99(2004)e1 粘性材料折射指数的测试方法D1748-02 在湿润箱中用金属保护剂防止金属生锈的试验方法D1749-93(2002) 纸和纸制品试验方法的实验室间评估D1751-04 混凝土铺面和结构建筑用预制伸缩缝填料(非挤压的弹性沥青型)D1752-04a 混凝土铺面和结构建筑用预制微孔橡胶与软木伸缩缝填料D1754-97(2002) 加热和空气对沥青材料影响的试验方法(薄膜炉试验)D1755-92(2001) 聚氯乙烯树脂规范D1756-02 煤中二氧化碳的测试方法D1757-03 煤灰和焦灰中硫含量的测试方法D1758-06 用木桩现场试验评定木材防腐剂D1760-01 木材产品的加压处理D1761-06 木结构用机械紧固件的测试方法D1762-84(2001) 木炭的化学分析D1763-00(2005) 环氧树脂D1765-05ae1 橡胶制品用碳黑的分类系统D1766-05 橡胶化学制品的试验方法.溶解性D1767-89(2003) 肥皂或合成洗涤剂中乙二胺四乙酸盐(EDTA)含量的测试方法D1768-89(2003) 用紫外线吸收法对合成洗涤剂中烷基苯磺酸钠含量的测试方法D1770-94(2000)e1 羊毛条中毛结,植物性物质与有色纤维含量测试方法D1776-04 试验用调湿织物D1777-96(2002) 测量纺织材料的厚度D1779-98(2004) 传声材料附着力试验方法D1780-05 金属对金属之间胶粘剂引起蠕变的试验D1781-98(2004) 胶粘剂攀缘卷筒剥离的试验方法D1782-95(2001) 粒状阳离子交换材料使用性能的测试方法D1783-01 水中苯酚类化合物的测试方法D1784-03 硬质聚氯乙烯化合物和氯化聚氯乙烯化合物D1785-06 聚氯乙烯塑料管.40,80及120号表D1786-01(2006)e1 甲苯二异氰酸盐D1790-02 用冲击法测定塑料薄板的脆化温度的试验方法D1791-93(2004) 液态水乳化地板擦亮剂加速老化的试验方法D1792-06 乳化地板擦亮剂长期可除污性的测试方法D1793-92(2002) 地板擦亮乳剂水斑的测试方法D1795-96(2001)e1 纤维素固有粘度的测试方法D1796-04 离心法测定燃料油中水分及沉淀物的试验方法(实验室法)D1799-03a 碳黑.包装装运物抽样D1807-00(2005) 电绝缘液体折射指数和比光散度的试验方法D1813-00(2005) 皮件试样厚度测量D1814-70(2005) 测量皮件厚度的测试方法D1815-00(2005) 皮革吸水率(静态)的测试方法D1816-04 用VDE电极测量石油制绝缘油的介电击穿电压的测试方法D1817-05 橡胶化学制品的试验方法.密度D1822-06 对断裂塑料及电绝缘材料的拉伸冲击能量的测试方法D1823-95(2001) 用挤压粘度计测定在高速剪切时塑料溶胶和有机溶胶的表观粘度的试验方法D1824-95(2002) 在低剪切速率下塑料溶胶和有机溶胶的表观粘度的测试方法D1825-03 电气试验用镀铜电绝缘材料及热固层压材料的浸蚀和清洗D1826-94(2003) 用连续记录量热器测定天燃气范围中煤气热值的测试方法D1827-92(2002) 用二氧化碳置换法测定绝缘液体中气含量(非酸性物)的试验方法D1828-01e1 粘接接口和结构的空气暴露D1830-99(2005) 用弧形电极法测定电绝缘挠性薄片材料热稳定性的试验方法D1831-00(2006) 润滑脂滚轧稳定性的试验方法D1832-04 石油蜡过氧化值的测试方法D1833-87(2004) 石油蜡气味的测试方法D1834-90(2000) 蜡纸的20度镜面光泽的试验方法D1835-05 液化石油(LP)气D1836-02 商品己烷D1837-02a 液化石油气挥发性的试验方法D1838-06 液化石油气对铜片腐蚀性的试验方法D1839-91(2005) 柴油燃料中硝酸戊脂的测试方法D1840-03 紫外线分光光度法测定航空涡轮机燃料中萘烃的试验方法D1841-63(1998) 馏出的椰子脂肪酸D1842-63(1998) 馏出的玉米脂肪酸D1843-63(1998) 分馏和馏出的棉子脂肪酸D1844-86(2003) 碱式硅铬酸铅的化学分析测试方法D1845-86(2003) 铬酸锶颜料的化学分析测试方法D1847-93(1998) 环氧树脂中总氯量的试验方法D1849-95(2003) 涂料包装耐久性的测试方法D1854-02 热浇注弹性型抗喷气燃料的混凝土接缝密封料D1856-95a(2003) 用阿布松(Abson)法从溶液中回收沥青的试验方法D1857-04 煤和焦炭灰的可溶性试验方法D1858-63(2000) 杂酚油-石油溶液D1859-71(2000) 与杂酚油掺合用的石油D1860-95(2000) 木材中水份及杂酚油型防腐剂的试验方法D1863-05 组合屋面用矿物集料D1864-89(2002) 组合屋面用矿物集料中水分的测试方法D1865-89(2002) 组合屋面用矿物集料硬度的试验方法D1867-01 印制线路用镀铜热固层压板D1868-93(1998) 电绝缘系统评定中的局部放电(电晕)脉冲的检查和测量的方法D1869-95(2005) 石棉水泥管用橡胶垫圈D1871-04 单根钢丝对橡胶附着力的测试方法D1874-62(2004) 纤维板船运箱顶盖自动机密封用水可溶或溶剂可溶的液体胶粘剂D1875-03 流体胶粘剂密度的测试方法D1876-01 胶粘剂的抗剥离性的试验方法(T型剥离试验)D1879-06 暴露在高能辐射下的胶粘剂样品D1881-97(2002)e1 在玻璃器皿中发动机冷却剂的起泡倾向的试验方法D1882-96(2001) 汽车用冷却系统化学溶液对车辆有机面漆产生影响的测试方法D1883-05 实验室压实泥土的加利福尼亚承载力比的试验方法D1886-03 水中镍含量的测试方法D1889-00 水的混浊度的测试方法D1890-05 水的β粒子放射性的测试方法D1894-06 塑料薄膜及薄板的静态和动态摩擦系数的测试方法D1895-96(2003) 塑料材料的表观密度,容积因素和可倾注性的试验方法D1896-99(2004) 热固化合物传递模塑试样D1900-94(2002) 碳黑.散装装运物抽样D1901-00(2004) 卤化有机溶剂及其掺合物的相对蒸发时间的测试方法D1903-03 阿斯卡列电介液和石油制造的电绝缘液的热膨胀系数的测试方法D1907-01 用绞纱法测定纱线支数的标准试验方法D1909-04 纤维纺织品商品回潮率表D1912-00(2005)e1 家具革耐冻裂性的试验方法D1913-00(2005) 服装革抗湿性的试验方法(喷雾法)D1914-95(2004)e1 有关大气分析的换算单位和换算系数D1916-93(1997) 胶粘剂渗透性的测试方法D1917-03 橡胶性能的测试方法.丁苯橡胶生胶和混炼胶的收缩性D1918-95(2004)e1 石棉织物石棉含量的标准测试法D1921-06 塑料粒度(筛析)的试验方法D1922-06a 用摆锤法测定塑料薄膜与薄板抗扩展扯裂性的测试方法D1926-00(2006) 纤维素羧基含量的测试方法D1929-96(2001)e1 塑料引燃性能的测试方法D1931-99(2004) 电绝缘用完全硫化的硅橡胶涂层玻璃布和玻璃带D1932-04 韧性电绝缘清漆的耐热性的试验方法D1933-03 作为电绝缘材料的氮气D1934-95(2005) 用开杯法作电绝缘石油的氧化老化的试验方法D1937-05 颗粒碳黑的测试方法.质量强度D1938-02 用一次撕裂法测定塑料薄膜与薄板的抗撕裂扩展性的试验方法D1941-91(2001) 用帕夏尔斜槽(Parshall)进行水的明沟流量测量的试验方法D1943-05 水的α粒子放射性的测试方法D1945-03 气相色谱法分析天燃气的测试方法D1946-90(2006) 用气相色谱法作重整气分析D1957-86(2001) 脂肪油和脂肪酸羟基值的试验方法D1959-97 干性油及脂肪酸碘值的试验方法D1963-85(1996) 干性油,清漆,树脂及相关原料在25/25℃时比重的试验方法D1965-87(1998) 干性油,脂肪酸和聚合脂肪酸中不皂化物的测试方法D1966-69(1998) 生亚麻油油脚的标准试验方法D1968-02a 与纸和纸产品相关的术语D1969-01 2-乙基己醇(合成物)D1970-01 冰坝防护用作为陡斜屋面衬底的自粘聚合物改良型沥青板材料D1971-02 用火焰原子吸收或等离子发射光谱法对金属测定用试样的蒸煮D1972-97(2005) 塑料产品的类别标记D1974-98(2003) 封口,密封及加固纤维板海运集装箱的方法D1975-95(2001)e1 塑料注模开口桶抗环境应力断裂的试验方法D1976-02 用电感耦合氩等离子原子发射光谱法对水中元素的测试方法D1977-03 用氢氟酸/硫酸分解和原子光谱分析测定FCC平衡催化剂中镍和钒的测试方法D1978-91(2002) 电镀试样分析D1979-97 氨基树脂中游离甲醛含量的测试方法D1980-87(1998) 脂肪酸和聚合脂肪酸中酸值的试验方法D1981-02 脂肪酸加热后测量颜色的试验方法D1982-85(2004) 脂肪酸冻点测试方法D1985-03 测试连接和裂缝粘合用密封胶用混凝土块的制备D1986-91(2002) 聚乙烯蜡的表观粘度测量的测试方法D1987-95(2002) 土工织物或泥土/土工织物的生物阻塞的测试方法D1988-06 用色斑长度检测管测定天然气中的硫醇的试验方法D1990-00(2002)e1 确定实尺样品分级试验中目测级量度木材的允许参数D1991-05 橡胶化学试验方法.二巯基苯并噻唑(MBT).化验D1992-91(2001) 橡胶用合成增塑剂试验D1993-03 用多点布-埃-特氮气吸附法对沉积二氧化硅表面面积的测试方法D1994-95(2000) 测量热溶胶粘剂酸值的测试方法D1995-92(2004) 胶粘剂(压合式粘合剂)多种强度试验的试验方法D1996-97(2003) 用液体色层分离法(LC)对低浓度聚乙烯中酚醛抗氧剂和棕榈纤维酰胺润滑添加剂的测试方法D1997-91(2001) 用干燥物质作泥炭样品纤维含量的试验室测定的测试方法D1998-04 聚乙稀立式贮藏箱D2000-06 汽车用橡胶制品的分类系统D2001-92(2002) 汽油和石脑油脱戊烷的试验方法D2007-03 粘土凝胶吸附色谱法测定橡胶增量及作业油和加工油中特性基团的试验方法D2008-91(2006) 石油产品紫外线吸收率和吸收系数的试验方法D2010/D2010M-98(2004) 用二氧化铅蜡烛法评定大气中活性硫化物总含量的测试方法D2013-04 分析用煤样品的制备D2014-97(2004) 用底部加热炉对煤的膨胀性和收缩性的测试方法D2017-05 Standard Test Method of Accelerated Laboratory Test ofNatural Decay Resistance ofWoodsD2019-97(2002) 纸和纸板中杂质的测试方法D2020-92(2003) 纸和纸板的耐霉性的测试方法D2022-89(2003) 含氯漂白剂的抽样和化学分析的测试方法D2023-89(2003) 洗涤剂中甲苯磺酸钠分析的测试方法D2024-65(2003) 非离子表面活性剂的混浊点的测试方法D2026-97(2004) 稀释沥青(慢凝型)D2027-97(2004) 稀释沥青(中凝型)D2028-97(2004) 稀释沥青(快凝性)D2029-97(2003) 用露点法测定电绝缘气体中蒸汽含量的试验方法D2035-80(2003) 水的凝聚絮凝瓶试验D2036-06 水中氰化物的测试方法D2041-03a 沥青铺砌混合料最大理论比重和密度的试验方法D2042-01 沥青材料在三氯乙烯中溶解度的试验方法D2043-94(2002) 用纸对银失去光泽的测试方法D2047-04 用杰门机对擦亮涂覆地板表面静摩擦系数的测试方法D2048-92(2002) 地板擦亮膜粉化的测试方法D2050-04 有关拉链的名词术语D2051-03 拉链表面耐洗性能的测试方法D2052-05 拉链耐干洗色牢度的测试方法D2053-99(2004) 拉链耐光照色牢度的试验方法D2054-99(2004) 拉链布带耐磨擦色牢度的标准试验方法D2057-05 洗涤时拉链色牢度的测试方法D2058-03 拉链干洗后耐久性的试验方法D2059-03 拉链抗盐雾(雾状)腐蚀的试验方法D2060-00(2005)e1 测量拉链尺寸的方法D2061-03 拉链强度的测试方法D2062-03 拉链可用性的试验方法D2063-91(2002) 带连续线性封合的包装件用持久扭矩测量的测试方法D2064-91(2003) 建筑涂料抗污染性的标准试验方法D2065-03 在表面活化剂加速潮湿应力下测量组合木材产品边棱性能的测试方法D2066-06 印刷油墨色散的相对着色力测试方法D2067-97(2003) 印刷油墨分散剂中粗颗粒的测试方法D2068-04 馏出燃料油过滤器阻塞倾向的测试方法D2070-91(2001) 液压油热稳定性的试验方法D2071-87(1998) 脂族氮制品的试验方法D2072-92(1998)e1 脂族氮化合物中水的试验方法D2073-92(1998)e1 仲裁电势测定法测定脂肪胺,酰胺基胺及二元胺的总胺值,伯胺值,仲胺值和叔胺值的试验方法D2074-92(1998) 交替指示剂法测定脂肪胺中总胺值,伯胺值,仲胺值和叔胺值的试验方法D2075-92(1998) 脂肪胺,酰胺基胺及二元胺碘值的试验方法D2076-92(1998) 脂族季铵氯化物中酸值和胺值的测试方法D2077-92(1998) 脂族季铵氯化物中灰分的测试方法D2079-92(1998) 脂族季铵氯化物中不挥发物质(固体)的测试方法D2080-92(1998) 脂族季铵氯化物平均分子量的测试方法D2081-92(1998) 脂族季铵氯化物中pH值的测试方法D2082-92(1998) 脂族氮化合物中非胺物百分比的测试方法D2083-92(1998) 脂肪胺中伯,仲,叔胺百分比的计算测试方法D2084-01 橡胶性能的测试方法.用振动圆盘硫化计测量硫化作用。
(完整版)ASTMD类最新标准目录(一)
ASTM D类最新标准目录( 一)D4-86(2004) 沥青含量试验方法D5-06e1 沥青材料的渗透性试验方法D6-95(2000)e1 油及沥青混合物加热损失试验方法D8-02 与道路和路面材料相关的术语D9-05 与木材相关的术语D12-88(1998) 未加工的桐油D13-02 松节油规范D16-03 与涂料、清漆、亮漆和有关产品相关的术语D20-03 路面焦油的蒸馏试验方法D25-99(2005) 圆木桩D29-98 虫胶树脂的抽样和试验方法D34-91(2003) 白颜料化学分析指南D36-95(2000)e1 沥青软化点试验方法(沥青软化点测定器)D38-94(2000)e1 木材防腐剂的抽样试验方法D41-05 铺屋面、防潮及防水用沥青底层D43-00 屋顶、防潮及防水材料用杂酚油底漆D49-83(2002) 铅丹的化学分析D50-90(2005) 含铁和锰的黄色、橙色、红色和褐色涂料的化学分析试验方法D56-05 泰格密闭闪点试验器测定闪点的试验方法D61-75(2004) 硬沥青的软化点的试验方法(水中方块试验法)D69-01 磨擦带的试验方法D70-03 半固态沥青材料的比重和密度的试验方法D71-94(2004) 固体硬沥青和地沥青的相对密度试验方法(变位法)D75-03 集料的抽样D76-99(2005) 纺织材料的抗拉试验机D79-86(2004) 氧化锌颜料D81-87(2003) 碱性碳酸盐铅白颜料D83-84(2002) 铅丹颜料D85-05 赭色颜料规范D86-05 大气压下石油产品蒸馏试验方法D87-04 石蜡熔点的试验方法(冷却曲线)D88-94(2005) 赛波特粘度的试验方法D91-02 润滑油的沉淀值试验方法D92-05a 用克利夫兰德开杯法测定石油产品的闪点和燃点的试验方法D93-02a 用潘斯基-马丁斯仪闭杯闪点测定器测定闪点的试验方法D94-02 石油产品的皂化值试验方法D95-05e1 蒸馏法测定石油产品及沥青材料中水的试验方法D97-05a 石油的倾点的试验方法D98-05 氯化钙D113-99 沥青材料的延展性的试验方法D115-02 电绝缘用含清漆试验溶剂的试验方法D116-86(2006) 电气设备用上釉陶瓷材料的试验D117-02 产自石油的电绝缘油的试验方法和规范导则D120-02a 橡胶绝缘手套D121-05 煤和焦炭术语D123-03 与纺织材料相关的术语D124-88(1998) 脱胶的豆油D126-87(2002) 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法D127-05 石油蜡包括凡士林滴熔点的试验方法D128-98(2003)e1 润滑脂分析试验方法D129-00(2005) 石油产品中硫含量试验方法(通用氧弹法)D130-04e1 用铜条变色法检测石油产品对铜腐蚀性的测试方法D139-95(2001)e1 沥青材料浮选试验的检测方法D140-01 沥青材料的抽样D143-94(2000)e1 洁净木材小样品的试验D146-04 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法D149-97a(2004) 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法D150-98(2004) 固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D153-84(2003) 颜料比重测试方法D154-85(2001) 清漆试验D156-02e1 石油产品赛波特比测试方法(赛波特比色计法)D167-93(2004)e1 块焦比重和孔隙度的试验方法D168-94(2000) 杂酚油焦炭渣的测试方法D173-03 屋顶和防水材料用饱和沥青棉织物D176-00 电绝缘用固体充填化合物与浸渍剂的试验方法D178-01(2005) 橡胶绝缘垫子D185-84(1999 颜料,糊剂及涂料中粗颗粒的试验方法D187-94(2003)e1 煤油燃烧质量的测试方法D189-05 石油产品康拉孙残碳测试方法D197-87(2002) 粉煤的取样方法与细度试验方法D198-05a 结构尺寸木料静力试验法D202-97(2002)e1 电绝缘用未浸渍纸的抽样和试验方法D204-02 缝线的测试方法D209-81(2003) 灯黑颜料D210-05 骨炭颜料D211-67(2002) 铬黄和铬橙颜料D215-91(2002) 白色亚麻籽油涂料的化学分析D217-02 润滑剂针入度的测试方法D225-04 表面有矿物颗粒的沥青屋面板D226-06 铺顶和防水用沥青饱和有机毡D227-03 铺顶和防水用焦油沥青饱和有机毡D228-06 沥青屋面卷材,盖板和瓦的试验方法D229-01 电绝缘用硬质薄板及板材的试验方法D233-02 松脂的抽样和测试试验方法D234-82(1998) 生亚麻子油D235-02 矿物溶剂油(石油溶液油)(烃干洗溶液)规格D237-57(1997) 橙色紫胶和其他虫胶D240-02 弹式量热器测定液烃燃料燃烧热的试验方法D242-04 沥青铺路混合料用矿物填料D243-02 规定残渣渗透性测试方法D244-04 乳化沥青的测试方法D245-06 制定目测分等木材的结构等级及有关允许性能的规程D246-04 杂酚油和杂酚油-煤焦油溶液的蒸馏试验方法D256-06 塑料及电绝缘材料的抗冲击性的测试方法D257-99(2005) 绝缘材料的直流电阻或电导的试验方法D260-86(2001) 熟亚麻籽油D261-75(1999) 铁蓝颜料D262-81(1999) 群青蓝颜料D263-05 氧化铬绿颜料D267-82(2003) 黄青铜粉规格D268-01 涂料及其相关涂层和原料用挥发性溶剂及化学中间体的抽样和测试D269-97(2002) 松香和松香衍生物中不溶物的试验方法D276-00a 纺织品中纤维的鉴定方法(AATCC方法20)D279-02 颜料渗出的试验方法D280-01 颜料吸收的水份(及试验条件下挥发的其他物质)的测试方法D281-95(2002) 用刮刀磨损法测定颜料油吸附性的试验方法D283-84(1999) 一氧化铜和铜涂料化学分析试验方法D287-92(2006) 原油和石油产品API比重的试验方法(液体比重计法)D291-86(2002) 烟煤立方英尺重量的试验方法D293-93(2004) 焦炭筛析分析试验方法D295-99(2004) 电绝缘用棉质漆布的试验方法D297-93(2002)e2 橡胶制品的测试方法.化学方法D299-04e1 石棉纱的标准规范D301-95(2004) 可溶性硝化纤维素的试验方法D304-05 n-丁醇(丁醇)D305-84(2003) 黑色涂料中的溶剂萃取材料的试验方法D312-00 屋顶用沥青D315-95(2004)e1 机织石棉带的标准规范D319-04 合成的戊醇D322-97(2002)e1 蒸馏法测定汽油发动机废机油中汽油稀释剂的试验方法D323-99a 石油产品蒸气压力的测试方法D329-02 丙酮D330-93(2001) 2-丁氧基乙醇D331-05 2-乙氧基乙醇D332-87(2004) 白色颜料着色力的试验方法D333-01 透明漆和着色漆的试验方法D341-03 液体石油产品粘度-温度关系曲线图D344-97(2004) 用擦试外规评定法对涂料相对遮盖力的测试方法D345-02 道路和结构用氯化钙的抽样和试验方法D346-04e1 实验室分析用焦炭试样的收集和制备D347-97 杂酚油和煤焦油的体积和比重修正表D348-00 电绝缘用刚性管的测试方法D349-99(2004) 电绝缘用层压圆棒的试验方法D350-01 电绝缘用经处理软套管的试验方法D351-97(2003) 天然白云母块及薄片目检质量分级D352-97(2003) 电绝缘用涂浆云母的试验方法D358-98 涂料耐大气老试验用木片规格D360-89(2001) 紫胶清漆规范D363-90(2000) 磷酸三甲苯酯规格D365-01(2005) 可溶性硝酸纤维素基溶液的试验方法D367-94(2000)e1 杂酚油中苯不溶物的测试方法D368-89(2002) 杂酚油及油质防腐剂比重的试验方法D369-84(2002) 杂酚油馏份与残渣比重的测试方法D370-02e1 油质防腐剂脱水作用的试验方法D372-00(2006) 电绝缘用经处理的软套管规格D374-99(2004) 固体电绝缘厚度的测试方法D374M-99(2005) 固体电绝缘厚度的标准测试方法(米制)D375-95(2004)e1 石棉粗砂的标准规范D378-00 平型橡胶传送带的测试方法D380-94(2006) 橡胶软管的测试方法D381-04 用喷射蒸发法测定燃烧中原在胶的测试方法D387-00 使用机械研磨机测定有色颜料主色和着力色的试验方法D388-05 用排列法测定煤的分类D390-92(1999) 海上,陆地及淡水中用木桩,电杆和木材的防腐处理用煤柏油杂酚油规程D391-94(2000)e1 杂酚油-煤焦油溶液D395-03 橡胶压缩永久变形特性的试验方法D396-05 燃料油规范D402-02 稀释沥青产品蒸馏的测试方法 Standard Test Method for Distillationof Cut-Back Asphalt ic (Bituminous) ProductsD409-02 粉碎机法测定煤炭可磨性的试验方法 Standard Test Method for Grindabilityof Coal by t he Hardgrove-Machine MethodD411-98(2003) 电绝缘用紫胶片试验方法 Standard Test Methods for ShellacUsed for Electrical I nsulationD412-98a(2002)e1 硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法 Standard Test Methods f or VulcanizedRubber and Thermoplastic Elastomers—TensionD413-98(2002)e1 橡胶特性-与软质基底粘附性的试验方法 Standard Test Methods for RubberPro perty—Adhesion to Flexible SubstrateD420-98(2003) 土壤粒度分析的测试方法 Standard Guide to SiteCharacterization for Engineering, Design, and ConstructionPurposesD421-85(2002) 土壤粒度分析试验方法 Standard Practice for Dry Preparationof Soil Samples for Particle-Size Analysis and Determination ofSoil ConstantsD422-63(2002)e1 土壤粒度分析试验方法 Standard Test Method forParticle-Size Analysis of Soils D425-88(2001) 土壤离心湿度当量试验方法 Standard Test Method for CentrifugeMoisture Equiva lent of SoilsD427-04 用水银法测量土壤收缩系数的测试方法 Test Method for Shrinkage Factors ofSoils by t he Mercury MethodD429-03e1 橡胶特性与硬质基底粘附性的试验方法 Standard Test Methods for RubberProperty—Adhesion to Rigid SubstratesD430-06 橡胶变质的动态疲劳试验方法 Standard Test Methods for RubberDeterioration-Dynamic FatigueD434-95 Standard Test Method for Resistance toSlippage of Yarns in Woven Fabrics Using a St andard SeamD440-86(2002) 煤的跌落粉碎试验 Standard Test Method of Drop ShatterTest for CoalD441-86(2002) 煤的滚筒试验 Standard Test Method of Tumbler Test for CoalD444-88(2003) 锌黄颜料(铬酸锌黄)的化学分析方法 Standard Test Methods for Chemical Analysis of Zinc YellowPigment (Zinc Chromate Yellow)D445-06 透明和不透明液体运动粘度的测试方法.(包括动态粘度的计算) Standard Test Method for Kinematic Viscosity ofTransparent and Opaque Liquids (and the Calculation of DynamicViscosity)D446-06 玻璃毛细管运动粘度计操作说明书和规范 Standard Specifications and OperatingInstructi ons for Glass Capillary Kinematic ViscometersD448-03a 道路和桥梁建筑的集料尺寸分类 Standard Classification for Sizes ofAggregate for Roa d and Bridge ConstructionD449-03 防潮和防水用沥青规范 Standard Specification for AsphaltUsed in Dampproofing and WaterproofingD450-96(2006) 铺屋面,防潮与防水用硬煤沥青 Standard Specification for Coal-TarPitch Used in Roofing, Dampproofing, and WaterproofingD451-91(2002) 沥青屋顶制品用粒状矿物铺面材料筛分分析试验方法 Standard Test Method for Si eveAnalysis of Granular Mineral Surfacing For Asphalt RoofingProductsD452-91(2002) 沥青层面制品表面修整用非粒状矿物的筛分试验方法 Standard Test Method for Si eveAnalysis of Surfacing for Asphalt Roofing ProductsD453-94(2000)e1 杂酚油-煤焦油溶液中焦油酸含量的测试方法 Standard Test Method for Tar Aci ds inCreosote-Coal Tar SolutionsD454-04 用加热及空气压力测定橡胶变质的试验方法 Standard Test Method for RubberDeteriorat ion by Heat and Air PressureD459-00 肥皂和其它洗涤剂的术语规范 Standard Terminology Relating toSoaps and Other Deter gentsD460-91(2005) 肥皂和其它洗涤剂粒度的试验方法 Standard Test Methods for Samplingand Che mical Analysis of Soaps and Soap ProductsD464-05 松脂油产品包括妥尔油和其他相关产品的皂化值的试验方法 Standard Test Methods for Saponification Number of Naval Store Products Including Tall Oil and Other Related ProductsD465-05 松脂制品包括妥尔油及其它相关产品酸值的试验方法 Standard Test Methods for Acid N umberof Naval Stores Products Including Tall Oil and Other RelatedProductsD470-05 电线和电缆用交联绝缘与套管的测试方法 Standard Test Methods for CrosslinkedInsulati ons and Jackets for Wire and CableD471-98e2 液体对橡胶性能影响的测试方法 Standard Test Method for RubberProperty-Effect of LiquidsD473-02 萃取法测定原油和燃料油中沉积物的试验方法 Standard Test Method for Sediment inCr ude Oils and Fuel Oils by the Extraction MethodD476-00(2005) 二氧化钛颜料规范 Standard Classification for DryPigmentary Titanium Dioxide P roductsD478-02 锌黄(铬酸锌)颜料 Standard Specificationfor Zinc Yellow (Zinc Chromate) PigmentsD480-88(2003) 铝粉和铝粉浆的抽样和试验方法 Standard Test Methods for Samplingand Testin g of Flaked Aluminum Powders and PastesD482-03 石油产品灰分的测试方法 Standard Test Method for Ash fromPetroleum ProductsD483-04 石油制植物喷洒油不磺化残渣的试验方法 Standard Test Method for UnsulfonatedResidu e of Petroleum Plant Spray OilsD490-92(2005) 道路柏油 Standard Specification for Road TarD494-04 Standard Test Method for Acetone Extraction ofPhenolic Molded or Laminated Products Standard TestMethod for Acetone Extraction of Phenolic Molded or LaminatedProductsD495-99(2004) 固体电绝缘材料的耐高压低电流干电弧性能的测试方法 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid ElectricalInsulationD500-95(2003) 磺化油和硫化油的化学分析和试验方法D501-03 碱性洗涤剂的抽样和化学分析试验方法D502-89(2003) 肥皂和其它洗涤剂粒度的试验方法D509-05 松香分级和抽样试验方法D511-03 水中钙镁离子的测试方法D512-04 测定水中氯离子含量的试验方法D513-02 水中二氧化碳溶解量和总量的试验方法D516-02 水中硫酸铁的试验方法D517-98(2003) 沥青厚板材D518-99 橡胶变质表面龟裂的试验方法D519-04 羊毛条中纤维长度的试验方法D520-00(2005) 锌粉颜料规范D521-02 锌粉(金属锌粉)的化学分析试验方法D522-93a(2001) 用锥形心轴仪测定涂覆有机涂层延伸率的试验方法D523-89(1999) 镜面光泽的试验方法D524-04 石油产品中兰氏残炭的试验方向D525-05 汽油氧化稳定性的试验方法(诱导期方法)D528-97(2002) 纸和纸板的机器定向试验方向D529-04 沥青材料的加速风化试验条件和程序的测试方法(碳弧法)D531-00(2005) 普西和琼斯橡胶压缩试验方法D542-00 透明有机塑料的折射指数的试验方法D543-06 塑料耐化学试剂性能的试验方法D545-99(2005) 混凝土用预制伸缩缝纫填料的试验方法(非挤压和弹性型)D546-05 道路和铺砌材料用矿物填料筛分的测试方法D548-97(2002) 纸张水溶解酸碱度的试验方法D555-84(1998) 干性油试验D558-04 土壤水泥混合物的水分与密度关系的试验方法D559-03 压实的掺土水泥混合物的湿润与干燥的试验方法D560-03 压实的掺土水泥混合物的冻融试验方法D561-82(2003) 涂料用炭黑颜料D562-01(2005) 斯氏粘度计测定涂料稠度的试验方法D563-88(1996)e1 醇酸树脂和树脂溶液中苯酐含量的试验方法D564-87(2002) 液体涂料催干剂的试验方法D565-99(2005) 白色矿物油中可碳化物质的试验方法D566-02 润滑脂滴点的试验方法D570-98(2005) 塑料吸水率的试验方法D572-04 用加热法和氧化法进行的橡胶变质的试验方法D573-04 在空气烤炉中作橡胶变质的试验方法D575-91(2001) 橡胶压缩特性的试验方法D578-05 玻璃纤维丝D579-04 原织物玻璃纤维D580-04 机织玻璃纤维带D581-99 机织玻璃纤维套管的编织D584-96(2005) 原毛中羊毛含量实验室测试方法D585-97(2002) 纸张、纸板、纤维板和相关产品的单批取样和验收方法D586-97(2002) 纸中灰分含量的试验方法D589-97(2002) 纸的不透明度的测试方法D590-93(2002) 纸中石油蜡的测试方法D596-01 水分析结果的报告D600-90(2001) 液体涂料催干剂D601-87(1998) 奥气油(永久液体)D602-81(2003) 硫酸钡颜料规范D605-82(2003) 硅酸镁颜料(滑石)D607-82(2003) 湿磨云母颜料D608-05 邻苯二甲酸二丁酯D609-00 涂料、油漆以及改性涂料与相关涂料产品的测试用冷轧钢板的制备D610-01 涂漆钢表面锈蚀程度评价的试验方法D611-04 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法D612-88(2004) 石蜡中可碳化物质的试验方法D613-05 十六烷法测定柴油燃料燃烧质量的试验方法D618-05 塑料及电绝缘材料的调理方法D619-99(2004) 电绝缘用硫化纤维的测试方法D622-99(2005) 汽车空气制动和真空制动系统用橡胶软管试验方法D623-99e1 橡胶特性-压缩中热的产生及挠曲疲劳的试验方法D624-00e1 橡胶的热塑性弹性的耐老化性的抗撕裂强度的试验方法D628-95(2004)e1 石棉套管的标准规范D629-99 纺织品定量分析试验方法D632-01 氯化钠D633-97(2005) 道路柏油的体积修正表D635-06 自承塑料在水平状态时的燃烧速率或者燃烧蔓延程度及燃烧时间的试验方法D638-03 塑料拉伸性能的试验方法D642-00(2005) 船用集装箱、组合件和单体加载的抗压缩能力的测试方法D643-97(2002) 用厦泊测试仪测试纸的折痕持久性的标准试验方法D644-99(2002) 用烘干法测定纸和纸板中水分的测试方法D645/D645M-97(2002) 纸和纸板厚度的测试方法D646-96(2001) 纸张及纸板的基本重量的试验方法(单位面积的重量)D648-06 在挠曲负荷下塑料的挠曲温度的试验方法D653-05 土壤、岩石和其内部所含液体的相关术语D660-93(2005) 外用漆龟裂程度评价方法D661-93(2005) 外用漆破裂程度评价的试验方法D662-93(2005) 外用漆侵蚀程度评价的试验方法D664-06 电位滴定法测定石油产品酸值的试验方法D665-06 水存在下抑制的矿物油防锈特性的试验方法D668-99(2004) 电绝缘用硬条和硬管尺度测量的测试方法D669-03 层压薄板与层压板的平行于层片的耗散系数和介电常数的试验方法D685-93(2002) 检测调理纸和纸制品D686-93(2002) 纸中矿物填料和矿物涂料的定性测试方法D689-03 纸张的内部耐撕裂的试验方法D692-00(2004) 沥青铺路砌混合用粗集料D693-03a 碎石路面用压碎集料D695-02a 硬质塑料抗压特性的试验方法D696-03 从-30摄氏度到30摄氏度的塑料线性热膨胀系数的试验方法D698-00ae1 实验室中用12000ft-lbt/ft(600KN-m/m)作用力测定土壤压力特性的试验方法D704-99(2004) 三氯氰胺甲醛模制化合物D705-99(2004) 脲甲醛模制化合物D706-05 乙酸纤维素模制和挤压化合物D707-05 醋酸丁酸纤维素模制与挤压料规格D709-01 层压热固材料D710-97(2002) 电绝缘用硫化纤维薄板、条和管D711-89(2004) 路标漆不粘着时间的试验方法D713-90(2004) 路标漆进行路面使用的试验方法D714-02e1 涂料起泡程度的试验方法D715-86(2003) 硫酸钡颜料分析的标准试验方法D716-86(2003) 评定云母颜料的标准试验方法D717-86(2003) 硅酸镁颜料分析的标准试验方法D718-86(2003) 硅酸铝颜料的分析标准试验方法D720-91(2004)e1 煤自由膨胀指数的试验方法D721-05 石油蜡含油量的试验方法D722-93(2002) 纸的抗油脂性标准试验方法D724-99(2003) 纸表面可湿性的测试方法(接触角法)D726-94(2003) 空气中无孔纸的透气性的测试方法D727-96(2001) 真空方法测定屋顶和地板油毡煤油值的试验方法D731-95(1999) 热固模塑料粉末的模塑指数的试验方法D732-02 用穿孔工具测量塑料剪切强度的测试方法D737-04 纺织纤维透气率的试验方法D740-05 丁酮规范D746-04 用冲击法测定塑料及弹性材料的脆化温度的试验方法D747-02 用悬臂梁法对塑料表观弯曲系数的测试方法D748-00(2005)e1 固定式云母介电电容器用天然云母块和云母薄片D750-00 用碳弧型装置和风化装置对橡胶变质的测试方法D751-06 涂层织物的测试方法D763-01 未加工棕土和焙烧棕土颜料D765-87(2003) 未加工黄土和焙烧黄土颜料技术规范D768-01 黄色氧化铁的水合物D769-01 黑色合成氧化铁D770-05 异丙醇规范D772-86(2005) 外部涂料剂落程度评价的试验方法D774/D774M-97(2002) 纸张抗破碎强度的测试方法D776-92(2001) 干热对纸和纸板特性的影响的试验方法D777-97(2002) 经过处理的纸和纸板易燃性的标准试验方法D778-97(2002) 纸萃液(热萃取和冷萃取法)氢离子浓度(pH)的标准试验方法D779-03 纸、纸板和其他印刷材料用干烧指示器法测试耐水性的测试方法D780-95(2003) 纸印刷油墨渗透性的测试方法(蓖麻油试验)D784-03 电绝缘材料用橙色紫胶和其他印度虫胶D785-03 塑料和电绝缘材料的洛氏硬度的测试方法D787-96(2003) 乙基纤维模制和挤压化合物D788-05 甲基丙烯酸酯模制和挤压化合物的分类系统D789-06 聚酰胺相对粘度,熔点和含水量的测试方法D790-03 未增强和增强塑料及电绝缘材料的挠曲性的试验方法D792-00 用位移法测定塑料密度和比重(相对密度)的标准试验方法D800-05 工业用金属除垢剂化学分析试验方法D801-02 二聚戊烯抽样和测试的试验方法D802-02 松油抽样和测试的试验方法D803-03 妥儿油的测试试验方法D804-02 松脂制品包括妥儿油及相关产品的术语D806-00(2006) 掺土水泥混合物中水泥含量的试验方法D807-05 工业锅炉用水引起脆裂倾向的评价方法(美国矿业局的脆变检查器方法)D808-05 新的和使用过的石油产品中氯含量的试验方法(氧弹法)D813-06 测定橡胶龟裂扩展的试验方法D814-95(2005) 橡胶特性挥发性液体蒸汽渗透性的试验方法D816-06 橡胶胶水的试验方法D817-96(2004) 乙酸丙酸纤维素和醋酸丁酸纤维素的试验方法D820-93(2003) 含合成洗涤剂肥皂的化学分析试验方法D822-01 用经过过滤明光碳弧灯和水中曝光装置对涂料及相关涂层和材料上做的导电试验D823-95(2001) 色漆,清漆,喷漆及有关产品制成厚度均匀漆膜试片的方法D824-94(2002) 用皱文纸测定吸水率的测试方法D828-97(2002) 纸和纸板拉力破坏强度的测试方法D829-97(2002) 纸和纸制品湿抗拉断裂强度的标准试验方法D831-94(2004) 电缆及电容器油的气体含量的测试方法D832-92(2001)e1 低温状态下的橡胶试验D841-02 甲苯的硝化定级D843-06 硝化二甲苯D847-04 苯,甲苯,二甲苯,溶剂石脑油和类似的工业芳烃酸度的试验方法D848-03 工业芳烃的酸洗颜色的标准试验方法D849-05 工业芳烃对铜条腐蚀的标准试验方法D850-03 工业芳轻及相关物质的蒸溜法D852-02 苯凝固点的试验方法D853-04 工业芳烃中硫化氢和二氧化硫含量(定性)的标准试验方法D854-06 土壤比重的试验方法D857-02 水中铝含量的测试方法D858-02 水中锰含量的试验方法D859-05 水中二氧化硅的测试方法D861-01a 用特克斯制命名纤维,纱的半制品,纱和其它纺织品线度D865-99(2005) 橡胶的空气中加热变质试验方法(试管法)D866-99(2004) 电线及电缆用丁苯合成橡胶套D868-85(2003) 路标漆渗色程度评价的试验方法D869-85(2004) 涂漆沉降程度评价试验方法D870-02 水浸渍法涂层耐水试验D871-96(2004) 测试乙酸纤维素的试验方法D873-02 航空燃料的氧化稳定性的测试方法D874-06 润滑油和添加剂中硫酸盐类灰分的测试方法D876-00 电绝缘用刚性氧化乙烯聚合物管的测试方法D877-02e1 用圆盘电极测定电绝缘液体介电击穿电压的试验方法D878-01e1 绝缘油中无机氯化物和硫酸盐的测试方法D880-92(2002) 船用集装箱的冲击试验的试验方法D882-02 塑料薄板材抗拉特性的试验方法D883-00 塑料相关术语D885-06 由人造有机纤维制成的轮胎帘子线,轮胎帘布和工业长纱线的测试D887-82(2003)e1 水沉积物抽样D888-05 水中溶解氧的试验方法D889-99(2004) 松香中油挥发性的试验方法D890-98(2003) 液体松脂中水含量的试验方法D891-95(2004) 液态工业化合物的比重,表观比重的测试方法D892-05 润滑油发泡特性的标准试验方法D893-05a 用过的润滑油中不溶物的试验方法D896-04 胶粘剂耐化学试剂粘法的试验方法D897-01e1 胶粘剂粘结力的抗拉性的测试方法D898-05 胶粘剂固体单位面积涂用重量的试验方法D899-00 单位面积涂用液体胶粘剂的重量的测试方法D902-00 电绝缘用挠性涂树脂玻璃布和玻璃布带的测试方法D903-98(2004) 胶粘剂粘结抗剥落或爆皮强度的试验方法D904-99(2005) 人造光(碳弧型)和自然光对胶粘剂试样的曝光D905-03 用压缩荷载法测定胶粘剂的抗剪切强度性能的试验方法D906-98(2004) 用拉力负荷法测定胶合板结构中胶粘剂剪切强度特性的试验方法D907-05e1 胶粘剂术语D909-01e1 增压进料法测定航空汽油抗震性的试验方法(联邦试验方法No.791b) D910-04a 航空汽油技术规范D912-81(1999) 防污涂料用氧化亚铜D913-03e1 路标漆耐磨程度的评价方法D914-00(2006) 乙基纤维的试验方法D918-99(2003) 纸和纸板的抗粘结性试验方法D919-97(2002) 纸和纸板的铜值测试方法D922-00a(2006) 非硬质聚氯乙烯管D923-97 电绝缘液体的抽样方法D924-04 电绝缘液体的损耗因数(或功率因数)和介电常数(电容率)的测试方法D925-06 橡胶特性.表面着色(接触、色移和扩散)的试验方法D926-04 用平行板法测量橡胶的塑性和弹性D928-03 碳酸氢钠D932-85(2002) 水和水沉积物中嗜铁细菌含量试验方法D933-84(2003) 水沉积物的检验和分析结果的报告方法D934-80(2003) 用X射线衍射法作水沉积物中结晶化合物的识别方法D937-04 石油脂的针入度试验方法D938-05 石油蜡(包括凡士林)凝固点的测试方法D942-02 氧弹法测定润滑脂氧化稳定性的试验方法D943-04a 防腐蚀矿物油氧化特性的试验方法D945-06 用机械示波器测定在压缩应力和剪切应力下橡胶特性的试验方法D946-82(2005) 路面建造用按贯入度级配的沥青膏D950-03 胶粘剂抗冲击强度的试验方法D951-99(2004) 用喷射法测定船运集装箱的耐水性的试验方法D952-02 薄板塑料和电绝缘材料粘结强度的试验方法D953-02 塑料支承强度的测试方法D955-00 模制塑料模型尺寸收缩率的测量方法D957-95(2006)e1 塑料生产用模型表面温度的测定D960-02a 生蓖麻油D961-86(2001) 脱水蓖麻油D962-81(2003) 涂料用铝粉和铝浆颜料D964-03 防污漆用铜粉D968-05 用落沙磨蚀法测定有机涂层耐磨性的试验方法D969-85(2003) 路标漆渗色程度的实验室试验方法D971-99a(2004) 环法测定油水界面张力的试验方法D972-02 润滑脂和润滑油蒸发损失的测试方法D974-04 用颜色指示剂滴定法测定酸碱值的标准试验方法D975-06 柴油技术规范D976-04be1 馏分燃料正十六烷指数的计算方法D977-05 乳化沥青D979-01(2006)e1 沥青铺面混合料的取样方法D982-05 Standard Test Method for Organic Nitrogen in Paper andPaperboard D984-97(2002)。
中文ASTMD648橡胶热变形温度
中文ASTMD648橡胶热变形温度
简介
ASTM D648是一项用于测量橡胶材料热变形温度的标准方法。
热变形温度是指橡胶材料在给定加载条件下开始软化和变形的温度。
这项测试方法可以帮助评估橡胶材料在高温环境下的性能和稳定性。
测试方法
ASTM D648的测试方法需要按照以下步骤进行:
1. 准备样品:将橡胶材料切割成规定尺寸的试样。
2. 设置实验条件:确定加载条件和测试温度范围。
3. 放置样品:将试样放置在预热的热板上。
4. 加载试样:施加一定的载荷到试样上,并保持恒定。
5. 监测温度:记录试样开始软化和变形的温度。
6. 分析结果:根据记录的温度数据,计算出橡胶材料的热变形
温度。
结果解读
根据ASTM D648的要求,橡胶材料的热变形温度以温度单位
表示。
较高的热变形温度意味着橡胶材料具有较好的热稳定性和耐
高温性能。
应用领域
ASTM D648的测试方法广泛应用于橡胶材料的品质检验和性
能评估。
该测试方法可以帮助制造商选择合适的橡胶材料,并确保
产品在高温环境下的可靠性。
结论
ASTM D648是一项用于测量橡胶材料热变形温度的标准方法。
通过这个测试方法,我们可以评估橡胶材料在高温环境下的性能和
稳定性。
这项测试对于质量控制和产品选择非常重要,使得制造商
能够提供具有较好高温耐受性的橡胶制品。
ASTMD类最新标准目录(四).doc(最新整理)
ASTM D类最新标准目录(四).docD1720-03 硝酸纤维素溶液中活性溶剂稀释比的试验方法D1721-97(2001) 磷酸三甲苯酯高锰酸盐时间的测试方法D1722-98(2004) 水溶性溶剂的水混溶性试验方法D1725-04 树脂溶液粘度的测试方法D1726-03 液体环氧树脂中水解氯含量的试验方法D1729-96(2003) 不透明材料色差的目测评估D1730-03 涂漆铝和铝合金表面预处理D1731-03 涂漆热浸铝表面预处理D1732-03 涂漆镁合金表面预处理D1734-93(2003) 涂料面漆测试用水泥板和瓦工板的制备D1735-04 用水雾仪作涂层耐水性试验D1739-98(2004) 降尘(可沉降粒状物)的收集和测量的试验方法D1740-01 航空涡轮机燃料发光计值的试验方法D1742-06 贮存过程中油从润滑脂中分离的试验方法D1743-05ae1 润滑脂防腐蚀性能的测试方法D1746-03 塑料薄板透明度的试验方法D1747-99(2004)e1 粘性材料折射指数的测试方法D1748-02 在湿润箱中用金属保护剂防止金属生锈的试验方法D1749-93(2002) 纸和纸制品试验方法的实验室间评估D1751-04 混凝土铺面和结构建筑用预制伸缩缝填料(非挤压的弹性沥青型)D1752-04a 混凝土铺面和结构建筑用预制微孔橡胶与软木伸缩缝填料D1754-97(2002) 加热和空气对沥青材料影响的试验方法(薄膜炉试验)D1755-92(2001) 聚氯乙烯树脂规范D1756-02 煤中二氧化碳的测试方法D1757-03 煤灰和焦灰中硫含量的测试方法D1758-06 用木桩现场试验评定木材防腐剂D1760-01 木材产品的加压处理D1761-06 木结构用机械紧固件的测试方法D1762-84(2001) 木炭的化学分析D1763-00(2005) 环氧树脂D1765-05ae1 橡胶制品用碳黑的分类系统D1766-05 橡胶化学制品的试验方法.溶解性D1767-89(2003) 肥皂或合成洗涤剂中乙二胺四乙酸盐(EDTA)含量的测试方法D1768-89(2003) 用紫外线吸收法对合成洗涤剂中烷基苯磺酸钠含量的测试方法D1770-94(2000)e1 羊毛条中毛结,植物性物质与有色纤维含量测试方法D1776-04 试验用调湿织物D1777-96(2002) 测量纺织材料的厚度D1779-98(2004) 传声材料附着力试验方法D1780-05 金属对金属之间胶粘剂引起蠕变的试验D1781-98(2004) 胶粘剂攀缘卷筒剥离的试验方法D1782-95(2001) 粒状阳离子交换材料使用性能的测试方法D1783-01 水中苯酚类化合物的测试方法D1784-03 硬质聚氯乙烯化合物和氯化聚氯乙烯化合物D1785-06 聚氯乙烯塑料管.40,80及120号表D1786-01(2006)e1 甲苯二异氰酸盐D1790-02 用冲击法测定塑料薄板的脆化温度的试验方法D1791-93(2004) 液态水乳化地板擦亮剂加速老化的试验方法D1792-06 乳化地板擦亮剂长期可除污性的测试方法D1793-92(2002) 地板擦亮乳剂水斑的测试方法D1795-96(2001)e1 纤维素固有粘度的测试方法D1796-04 离心法测定燃料油中水分及沉淀物的试验方法(实验室法)D1799-03a 碳黑.包装装运物抽样D1807-00(2005) 电绝缘液体折射指数和比光散度的试验方法D1813-00(2005) 皮件试样厚度测量D1814-70(2005) 测量皮件厚度的测试方法D1815-00(2005) 皮革吸水率(静态)的测试方法D1816-04 用VDE电极测量石油制绝缘油的介电击穿电压的测试方法D1817-05 橡胶化学制品的试验方法.密度D1822-06 对断裂塑料及电绝缘材料的拉伸冲击能量的测试方法D1823-95(2001) 用挤压粘度计测定在高速剪切时塑料溶胶和有机溶胶的表观粘度的试验方法D1824-95(2002) 在低剪切速率下塑料溶胶和有机溶胶的表观粘度的测试方法D1825-03 电气试验用镀铜电绝缘材料及热固层压材料的浸蚀和清洗D1826-94(2003) 用连续记录量热器测定天燃气范围中煤气热值的测试方法D1827-92(2002) 用二氧化碳置换法测定绝缘液体中气含量(非酸性物)的试验方法D1828-01e1 粘接接口和结构的空气暴露D1830-99(2005) 用弧形电极法测定电绝缘挠性薄片材料热稳定性的试验方法D1831-00(2006) 润滑脂滚轧稳定性的试验方法D1832-04 石油蜡过氧化值的测试方法D1833-87(2004) 石油蜡气味的测试方法D1834-90(2000) 蜡纸的20度镜面光泽的试验方法D1835-05 液化石油(LP)气D1836-02 商品己烷D1837-02a 液化石油气挥发性的试验方法D1838-06 液化石油气对铜片腐蚀性的试验方法D1839-91(2005) 柴油燃料中硝酸戊脂的测试方法D1840-03 紫外线分光光度法测定航空涡轮机燃料中萘烃的试验方法D1841-63(1998) 馏出的椰子脂肪酸D1842-63(1998) 馏出的玉米脂肪酸D1843-63(1998) 分馏和馏出的棉子脂肪酸D1844-86(2003) 碱式硅铬酸铅的化学分析测试方法D1845-86(2003) 铬酸锶颜料的化学分析测试方法D1847-93(1998) 环氧树脂中总氯量的试验方法D1849-95(2003) 涂料包装耐久性的测试方法D1854-02 热浇注弹性型抗喷气燃料的混凝土接缝密封料D1856-95a(2003) 用阿布松(Abson)法从溶液中回收沥青的试验方法D1857-04 煤和焦炭灰的可溶性试验方法D1858-63(2000) 杂酚油-石油溶液D1859-71(2000) 与杂酚油掺合用的石油D1860-95(2000) 木材中水份及杂酚油型防腐剂的试验方法D1863-05 组合屋面用矿物集料D1864-89(2002) 组合屋面用矿物集料中水分的测试方法D1865-89(2002) 组合屋面用矿物集料硬度的试验方法D1867-01 印制线路用镀铜热固层压板D1868-93(1998) 电绝缘系统评定中的局部放电(电晕)脉冲的检查和测量的方法D1869-95(2005) 石棉水泥管用橡胶垫圈D1871-04 单根钢丝对橡胶附着力的测试方法D1874-62(2004) 纤维板船运箱顶盖自动机密封用水可溶或溶剂可溶的液体胶粘剂D1875-03 流体胶粘剂密度的测试方法D1876-01 胶粘剂的抗剥离性的试验方法(T型剥离试验)D1879-06 暴露在高能辐射下的胶粘剂样品D1881-97(2002)e1 在玻璃器皿中发动机冷却剂的起泡倾向的试验方法D1882-96(2001) 汽车用冷却系统化学溶液对车辆有机面漆产生影响的测试方法D1883-05 实验室压实泥土的加利福尼亚承载力比的试验方法D1886-03 水中镍含量的测试方法D1889-00 水的混浊度的测试方法D1890-05 水的β粒子放射性的测试方法D1894-06 塑料薄膜及薄板的静态和动态摩擦系数的测试方法D1895-96(2003) 塑料材料的表观密度,容积因素和可倾注性的试验方法D1896-99(2004) 热固化合物传递模塑试样D1900-94(2002) 碳黑.散装装运物抽样D1901-00(2004) 卤化有机溶剂及其掺合物的相对蒸发时间的测试方法D1903-03 阿斯卡列电介液和石油制造的电绝缘液的热膨胀系数的测试方法D1907-01 用绞纱法测定纱线支数的标准试验方法D1909-04 纤维纺织品商品回潮率表D1912-00(2005)e1 家具革耐冻裂性的试验方法D1913-00(2005) 服装革抗湿性的试验方法(喷雾法)D1914-95(2004)e1 有关大气分析的换算单位和换算系数D1916-93(1997) 胶粘剂渗透性的测试方法D1917-03 橡胶性能的测试方法.丁苯橡胶生胶和混炼胶的收缩性D1918-95(2004)e1 石棉织物石棉含量的标准测试法D1921-06 塑料粒度(筛析)的试验方法D1922-06a 用摆锤法测定塑料薄膜与薄板抗扩展扯裂性的测试方法D1926-00(2006) 纤维素羧基含量的测试方法D1929-96(2001)e1 塑料引燃性能的测试方法D1931-99(2004) 电绝缘用完全硫化的硅橡胶涂层玻璃布和玻璃带D1932-04 韧性电绝缘清漆的耐热性的试验方法D1933-03 作为电绝缘材料的氮气D1934-95(2005) 用开杯法作电绝缘石油的氧化老化的试验方法D1937-05 颗粒碳黑的测试方法.质量强度D1938-02 用一次撕裂法测定塑料薄膜与薄板的抗撕裂扩展性的试验方法D1941-91(2001) 用帕夏尔斜槽(Parshall)进行水的明沟流量测量的试验方法D1943-05 水的α粒子放射性的测试方法D1945-03 气相色谱法分析天燃气的测试方法D1946-90(2006) 用气相色谱法作重整气分析D1957-86(2001) 脂肪油和脂肪酸羟基值的试验方法D1959-97 干性油及脂肪酸碘值的试验方法D1963-85(1996) 干性油,清漆,树脂及相关原料在25/25℃时比重的试验方法D1965-87(1998) 干性油,脂肪酸和聚合脂肪酸中不皂化物的测试方法D1966-69(1998) 生亚麻油油脚的标准试验方法D1968-02a 与纸和纸产品相关的术语D1969-01 2-乙基己醇(合成物)D1970-01 冰坝防护用作为陡斜屋面衬底的自粘聚合物改良型沥青板材料D1971-02 用火焰原子吸收或等离子发射光谱法对金属测定用试样的蒸煮D1972-97(2005) 塑料产品的类别标记D1974-98(2003) 封口,密封及加固纤维板海运集装箱的方法D1975-95(2001)e1 塑料注模开口桶抗环境应力断裂的试验方法D1976-02 用电感耦合氩等离子原子发射光谱法对水中元素的测试方法D1977-03 用氢氟酸/硫酸分解和原子光谱分析测定FCC平衡催化剂中镍和钒的测试方法D1978-91(2002) 电镀试样分析D1979-97 氨基树脂中游离甲醛含量的测试方法D1980-87(1998) 脂肪酸和聚合脂肪酸中酸值的试验方法D1981-02 脂肪酸加热后测量颜色的试验方法D1982-85(2004) 脂肪酸冻点测试方法D1985-03 测试连接和裂缝粘合用密封胶用混凝土块的制备D1986-91(2002) 聚乙烯蜡的表观粘度测量的测试方法D1987-95(2002) 土工织物或泥土/土工织物的生物阻塞的测试方法D1988-06 用色斑长度检测管测定天然气中的硫醇的试验方法D1990-00(2002)e1 确定实尺样品分级试验中目测级量度木材的允许参数D1991-05 橡胶化学试验方法.二巯基苯并噻唑(MBT).化验D1992-91(2001) 橡胶用合成增塑剂试验D1993-03 用多点布-埃-特氮气吸附法对沉积二氧化硅表面面积的测试方法D1994-95(2000) 测量热溶胶粘剂酸值的测试方法D1995-92(2004) 胶粘剂(压合式粘合剂)多种强度试验的试验方法D1996-97(2003) 用液体色层分离法(LC)对低浓度聚乙烯中酚醛抗氧剂和棕榈纤维酰胺润滑添加剂的测试方法D1997-91(2001) 用干燥物质作泥炭样品纤维含量的试验室测定的测试方法D1998-04 聚乙稀立式贮藏箱D2000-06 汽车用橡胶制品的分类系统D2001-92(2002) 汽油和石脑油脱戊烷的试验方法D2007-03 粘土凝胶吸附色谱法测定橡胶增量及作业油和加工油中特性基团的试验方法D2008-91(2006) 石油产品紫外线吸收率和吸收系数的试验方法D2010/D2010M-98(2004) 用二氧化铅蜡烛法评定大气中活性硫化物总含量的测试方法D2013-04 分析用煤样品的制备D2014-97(2004) 用底部加热炉对煤的膨胀性和收缩性的测试方法D2017-05 Standard Test Method of Accelerated Laboratory Test ofNatural Decay Resistance ofWoodsD2019-97(2002) 纸和纸板中杂质的测试方法D2020-92(2003) 纸和纸板的耐霉性的测试方法D2022-89(2003) 含氯漂白剂的抽样和化学分析的测试方法D2023-89(2003) 洗涤剂中甲苯磺酸钠分析的测试方法D2024-65(2003) 非离子表面活性剂的混浊点的测试方法D2026-97(2004) 稀释沥青(慢凝型)D2027-97(2004) 稀释沥青(中凝型)D2028-97(2004) 稀释沥青(快凝性)D2029-97(2003) 用露点法测定电绝缘气体中蒸汽含量的试验方法D2035-80(2003) 水的凝聚絮凝瓶试验D2036-06 水中氰化物的测试方法D2041-03a 沥青铺砌混合料最大理论比重和密度的试验方法D2042-01 沥青材料在三氯乙烯中溶解度的试验方法D2043-94(2002) 用纸对银失去光泽的测试方法D2047-04 用杰门机对擦亮涂覆地板表面静摩擦系数的测试方法D2048-92(2002) 地板擦亮膜粉化的测试方法D2050-04 有关拉链的名词术语D2051-03 拉链表面耐洗性能的测试方法D2052-05 拉链耐干洗色牢度的测试方法D2053-99(2004) 拉链耐光照色牢度的试验方法D2054-99(2004) 拉链布带耐磨擦色牢度的标准试验方法D2057-05 洗涤时拉链色牢度的测试方法D2058-03 拉链干洗后耐久性的试验方法D2059-03 拉链抗盐雾(雾状)腐蚀的试验方法D2060-00(2005)e1 测量拉链尺寸的方法D2061-03 拉链强度的测试方法D2062-03 拉链可用性的试验方法D2063-91(2002) 带连续线性封合的包装件用持久扭矩测量的测试方法D2064-91(2003) 建筑涂料抗污染性的标准试验方法D2065-03 在表面活化剂加速潮湿应力下测量组合木材产品边棱性能的测试方法D2066-06 印刷油墨色散的相对着色力测试方法D2067-97(2003) 印刷油墨分散剂中粗颗粒的测试方法D2068-04 馏出燃料油过滤器阻塞倾向的测试方法D2070-91(2001) 液压油热稳定性的试验方法D2071-87(1998) 脂族氮制品的试验方法D2072-92(1998)e1 脂族氮化合物中水的试验方法D2073-92(1998)e1 仲裁电势测定法测定脂肪胺,酰胺基胺及二元胺的总胺值,伯胺值,仲胺值和叔胺值的试验方法D2074-92(1998) 交替指示剂法测定脂肪胺中总胺值,伯胺值,仲胺值和叔胺值的试验方法D2075-92(1998) 脂肪胺,酰胺基胺及二元胺碘值的试验方法D2076-92(1998) 脂族季铵氯化物中酸值和胺值的测试方法D2077-92(1998) 脂族季铵氯化物中灰分的测试方法D2079-92(1998) 脂族季铵氯化物中不挥发物质(固体)的测试方法D2080-92(1998) 脂族季铵氯化物平均分子量的测试方法D2081-92(1998) 脂族季铵氯化物中pH值的测试方法D2082-92(1998) 脂族氮化合物中非胺物百分比的测试方法D2083-92(1998) 脂肪胺中伯,仲,叔胺百分比的计算测试方法D2084-01 橡胶性能的测试方法.用振动圆盘硫化计测量硫化作用。
ASTM D 6413-99(垂直燃烧法-美标阻燃测试)
5.3This test method maintains the specimen in a static, draft-free,vertical position and does not involve movement except that resulting from the exposure.5.4Test Method D6413has been adopted from Federal Test Standard No.191A method5903.1,which has been used for many years in acceptance testing.The between-laboratory precision of this test method has not been established.Refer to Section14for single-laboratory precision.5.4.1If there are differences or practical significance be-tween reported test results for two laboratories(or more), comparative tests should be performed to determine if there is a statistical bias between them,using competent statistical assistance.As a minimum,the test samples used should be as homogeneous as possible,that are drawn from the material from which the disparate test results are obtained,and that are assigned randomly in equal numbers to each laboratory for testing.Other materials with established test values may be used for this purpose.The test results from the two laboratories should be compared using a statistical test for unpaired data,at a probability level chosen prior to the testing series.If a bias is found,either its cause must be found and corrected,or future test results must be adjusted in consideration on the known bias.6.Apparatus6.1Test Cabinet and Accessories,fabricated in accordance with the requirements specified in Figs.1-5.Galvanized sheet metal or other suitable metal can be used.The entire inside back wall of the cabinet shall be painted black to facilitate the viewing of the test specimen and pilotflame.6.1.1The test cabinet shall be set up in a laboratory hood or with comparable equipment so that combustion gases canbe FIG.1TestApparatusremoved from the test lab environment.Precautions must be taken to minimize the draft through the laboratory hood while testing.Open doors or windows are examples of unnecessary causes of drafts and must be avoided.A ventilation smoke tube kit 4may be used to check for the presence of drafts.6.2Burner ,equipped with a needle valve to adjust flame height (see Fig.4).6.2.1The burner shall be constructed by combining a 10mm (0.38in.)inside diameter barrel 7666mm (360.25in.)long with a base from an adjustable valve burner.A Tirrill burner is recommended,but a Bunsen burner modified to conform to this test method also will suffice.6.2.2The pilot light tube shall have an inside diameter of approximately 1.5mm (0.06in.)and shall be spaced 3mm (0.12in.)away from the burner edge.6.2.3Gas controls and connections shall be as specified in Fig.5.The solenoid valve shall be capable of being fully opened or fully closed in less than 0.2s and activated by an adjustable timer.6.2.4On the side of the barrel of the burner,opposite the burner pilot light there shall be a flame height gage constructed of metal spaced approximately 13mm (0.50in.)from thebarrel and extending above the burner.The gage shall have two prongs approximately 8mm (0.32in.)long marking the distances of 19mm (0.75in.)and 38mm (1.50in.)above the top of the burner.6.2.5The burner shall be movable when placed in the cabinet and capable of adjustments to center the burner directly below the center bottom edge of the specimen when perform-ing the tests.6.3Gas Regulator Valve System ,a control system with a delivery rate designed to furnish gas to the burner under a pressure of 17.261.7kPa (2.560.25lbf/in.2)at the burner inlet.The manufacturer’s recommend delivery rate for the valve system shall include the required pressure.6.4Gas Mixture ,methane,99%pure.6.5Test Specimen Holder ,constructed as shown in Fig.3.The assembly is shown in Figs.1and 2.6.6Specimen Holder Clamps ,capable of firmly holding the test specimen in the test specimen holder.6.7Laboratory Hood ,in which to carry out the test.6.8Stop Watch ,or other device to measure the burning time to 0.2s.6.9Measuring Scale ,graduated in increments of at least 3mm (0.12in.)to measure the length of char.6.10Metal Hooks and Weights —Metal hooks and a range of weights to produce a series of total loads,which will be used4A ventilation smoke tube kit is available from A-Line Safety Appliance Company,Pittsburgh,PA15230.FIG.2a Test Apparatus ConstructionDetailsto determine char length.The metal hooks shall consist of 1-mm (0.04-in.)diameter steel wire,76mm (3in.)long.The hook is formed by bending the wire to 45°angle forming a hook 3mm (0.5in.)from one end.This hook is used for puncturing the fabric.6.11Flame Impingement Timer ,a timer and electrical gas solenoid used to control the interval,which gas is supplied to the burner.7.Hazards7.1Normal precautions applicable to pressurized flammable gases,open flames,hot flames,hot surfaces,burning fabrics and combustion,off gases and solid residue shall be employed.7.2Conduct the tests in a hood to contain the gases evolved during testing and for exhaust of the gases after each test.8.Preparation of Apparatus8.1Adjust gas pressure to 17.261.7kPa (2.5060.25lbf/in.2)and ignite pilot flame.Adjust the pilot flame to a height of approximately 3mm (0.12in.)when measured from its lowest point.Be sure that the tip does not alter shape of the test flame during the 12s exposure time.8.1.1Adjust the burner flame using the needle valve in the base of the burner to achieve a flame height of 38mm (1.50in.).This height is achieved by fully closing the air opening on the burner tube base and fully opening the solenoid valve.N OTE 1—Tape may be used to close off the air openings on the burner.8.1.2Position the burner so that the middle of the lower edge of the specimen holder is centered 19mm (0.75in.)above the burner.N OTE 2—It may be necessary to turn off nearby lights to make sure of the accuracy of intersect of the midpoint of the flame with the mounting clamp.8.2Adjust the timer to provide a 1260.2-s flame to the specimen.N OTE 3—Using a hand-held timer or stopwatch,verify the flame time.8.2.1Do this by measuring the interval between the opening and closing of the solenoid with an accurate laboratory timer or stopwatch.9.Sampling 9.1Primary Sampling Unit —Consider rolls of fabric or fabric components of fabricated assemblies to be the primary sampling unit,as applicable.9.2Laboratory Sampling Unit —As a laboratory sampling unit take from rolls at least one full-width piece of fabric that is 1m (1yd)long along the selvage (machine direction),after removing first a 1-m (1-yd)length.For fabric components of fabricated assemblies the entire assembly may be used.9.3Test Specimens —From each laboratory sampling unit,cut five lengthwise and five widthwise test specimens 76mm (3.0in.)by 300mm (12in.).For woven fabrics,the long dimensions are cut parallel to the warp yarns forlengthwiseFIG.2b Test Apparatus Construction Details(continued)tests and parallel to the filling yarns for widthwise tests.Take lengthwise specimens from different positions across the width of the fabric.Consider the long direction as the direction of the bel to maintain specimen identity.9.3.1Cut specimens representing a broad distribution di-agonally across the width of the laboratory sampling unit.Ensure specimens are free of folds,creases,or wrinkles.Avoid getting oil,water,grease,etc.,on the specimens when han-dling.9.3.2If the fabric has a pattern,ensure that the specimens are a representative sampling of the pattern.10.Conditioning10.1Bring the laboratory sampling units or test specimens to moisture equilibrium as directed in Practice D 1776,except no preconditioning is necessary.10.2Each specimen to be tested shall be exposed to the test flame within 4min after removal from the standard atmosphere or placed in a desiccator without desiccant or equivalent after conditioning for storage until testing and transfer to the testing area.11.Procedure11.1Mount and expose each specimen to the flame within 4min of removal from the conditioning area or storage.11.2Clamp the test specimen between the two halves of the holder,with the bottom of the specimen even with the bottom of the holder.With the holder held vertically,secure the specimen in the holder with a minimum of four clamps.Position two clamps near the top of the holder,one on each side to stabilize the specimen.Similarly,position two clamps at the bottom of the holder,one on each side.11.3Turn off the hood ventilation.Insert the specimen holder containing the specimen into the test cabinet and position the burner with the middle of the lower edge of the test specimen centered 19mm (0.75in.)above the burner and leveled with the bottom metal prong.11.4Start the flame impingement timer and expose the specimen for the 1260.2s.Observe the specimen for melting or dripping during the flame exposure.Record any observa-tions.Immediately after the flame is removed,start a stopwatch for measurement of the afterflame and afterglow time.11.5Observe how long the specimen continues to flame after the 12s exposure time.Record the afterflame time to within 0.2s.11.6Observe how long the specimen continues to glow after the afterflame ceases or after removal of the flame if there is no afterflame.Record this afterglow time to the nearest 0.2s.Do not extinguish the glow because of potential effect on char length.11.7Remove the specimen holder from the test cabinet.Turn on the hood ventilation to clear the test cabinet of fumes and smoke.Allow the specimen to cool.11.8Measure the char length as shown in Fig.6.FIG.3a Specimen Holder ConstructionDetails11.8.1Make a crease by folding the specimen along a line through the peak of the highest charred area and parallel to the sides of the specimen.11.8.2Puncture the specimen with the hook approximately 6mm (0.25in.)from the bottom edge and from the side edge of the specimen11.8.2.1Attach a weight of sufficient mass to give a combined mass of the weight with the hook that will result in the appropriate tearing force.See Table 1to determine the designated total tearing force for fabrics of different basis weights.11.8.3Apply the tearing force as follows.Grasp the corner of the specimen on the opposite bottom fabric edge from where the hook and weight are attached.Raise the specimen upward in a smooth continuous motion until the total tearing force is supported by the specimen.Note any fabric tear in the charred area of the specimen.Mark the end of the tear with a line across the width of the specimen and perpendicular to the fold line.11.8.4Measure the char length along the undamaged edge of the specimen to the nearest 3mm (0.12in.).12.Calculation12.1Afterflame Time —Calculate the average afterflame time to the nearest 0.5s for the lengthwise and widthwise directions for each laboratory sample.12.2Afterglow Time —Calculate the average afterglow time to the nearest 0.5s for the lengthwise and widthwise directions for each laboratory sample.12.3Char Length —Calculate the average char length to the nearest 3mm (0.12in.)for the lengthwise and widthwise directions for each laboratory sample.13.Report 13.1State that the samples were tested as directed in Test Method D 6413.Describe the materials or product tested.13.2Report the following fabric lengthwise and widthwise information for individual specimens,for the laboratory sam-pling unit and for the lot as applicable to a material specifica-tion or contract order.13.2.1Afterflame time.13.2.2Afterglow time.13.2.3Char length.13.2.4Occurrence of melting or dripping,if any.14.Precision and Bias 14.1Precision :14.1.1Single Laboratory Study —Seven flame resistant wo-ven fabrics were tested in one laboratory,using one operator to determine char length,afterflame time,and afterglow time and three values measured on each specimen by the procedure.Ten specimens were taken from each fabric sample,five in the lengthwise (machine)and five in the widthwise (cross-machine)direction.This single-laboratory data set is analyzed and used in writing a temporary precision statement,pending a full interlaboratory study.Until the full study is completed,users of the test method are advised to exercise conventional statistical caution in making any comparisons of the test results.14.1.2Char Length —Variances for lengthwise and width-wise specimens are similar,ranging in value from 0.043to 0.632,with an average value of 0.320in.2(standarddeviationFIG.3b Specimen Holder Construction Details(continued)50.566in.)as determined by analysis of variance.Critical differences,based on this value and a 95%probability level,may be applied either to lengthwise average comparisons,or to widthwise average comparisons,to determine significance.14.1.3Afterflame —Variances for lengthwise and widthwise specimens are similar,ranging in value from 0.008to 0.106with an average value of 0.0532(standard deviation 50.230)as determined by analysis of variance.Critical differences,based on this value and a 95%probability level,may be applied either to lengthwise average comparisons,or to width-wise average comparisons,to determine significance.14.1.4Afterglow —Variances for lengthwise and widthwise specimens were more dissimilar,but became similar,when four fabrics,with lengthwise and widthwise variances less than 0.9and with an average value of 0.278S 2(standard deviation 50.570)were placed in Group 1,and two fabrics,with length-wise and widthwise variances greater than 1.0and with an average value of 1.870S 2(standard deviation 51.367)are placed in Group 2,both as determined by analysis of variance.One fabric could not be placed in either group.A table of critical differences is calculated for each of the two groups,based on each group’s variance value and a 95%probability level.Apply the appropriate group table values,either to lengthwise average comparisons,or to widthwise average comparisons,depending on whether or not the variance values for the averages being compared fall closer to 0.28or closer to 1.87.14.2Bias —The procedure of this test method produces a value that can be defined only in terms of a test.There is no independent,referee test method by which bias may be determined.This test method has no known bias.Tables 2-415.Keywords 15.1afterflame;afterglow;char length;flammability;tex-tiles;verticalflameFIG.4a Burner and Flame Height GageConstructionFIG.4b Burner and Flame Height Gage Construction(continued)FIG.5Schematic of Methane Gas Controls and AdjustmentsFIG.6a Char Length MeasurementFIG.6b Char Length Measurement(continued)TABLE1Tearing Force for Char Length Determination Fabric Basis Weight A Total Tearing Forceg/m2oz/yd2g oz68to203 2.0to6.0100 4.0over203to508over6.0to15.02008.0over508to780over15.0to23.030012.0over780over23.047516.0A The Fabric Basis Weight refers to the weight of cloth before the addition of any fire retardant treatment or coating.TABLE2Within-Laboratory Critical DifferencesChar Length(in.)(95%Probability Level)N A SE B CD C10.57 1.5830.330.9150.250.7170.210.60A N5Number of determinations per average.B SE5Standard Error for N determinations.C CD52.8SETABLE3Within-Laboratory Critical DifferencesAfterflame(s)(95%Probability Level)N A SE B CD C10.230.6430.130.3750.100.2970.090.24A N5Number of determinations per average.B SE5Standard Error for N determinations.C CD52.8SE.The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,100Barr Harbor Drive,West Conshohocken,PA 19428.This standard is copyrighted by ASTM,100Barr Harbor Drive,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().TABLE 4Within-Laboratory Critical DifferencesAfterglow (s)(95%Probability Level)Group 1(Variance approximately 0.28)N A SE BCD C 10.531.4830.300.8550.240.6670.200.56Group 2(Variance approximately 1.87)N SECD 1 1.373.8330.792.2150.611.7170.52 1.45AN 5Number of determinations per average.B SE 5Standard Error for N determinations.C CD 52.8SE.。
ASTM D648 中文[1]
在边缘位置,负荷的情况下塑料温度偏差的标准检测方法1摘要:1.1本种试验方法覆盖了,在任何人为的测试条件下和任意的变形发生基础上,决定性的温度。
1.2本办法适用于测试材料厚度3毫米或以上,在常温下钢性或者半钢性的铸造成型或者薄片的材料。
1.3在SI的单位下的评估值将视为标准,在插入中间的值只是视为一种信息。
1.4本标准无意涉及所有的安全问题,是否涉及,要视具体使用情况。
这个标准是帮助用户建立适当的安全标准和卫生管理办法。
并且在规定的时期中的使用。
2参考文献2.1 ASTM 标准:D 618, D 883, D 1898, D 1999, D 5947, E1, E77, E220, E608, E664, E691, E879, E11372.2 ISO 标准ISO 75-1ISO 75-22.3 NIST 标准3术语3.1这里指的塑料是跟D 883 标准下一样。
4.检测方法简介4.1在边缘的位置,由于简单的横梁在前卫最大的压强下0.455 MPs 或者是1.82 MPa. 这个范例会在中等热传输的压力下,当温度提高俩提高两度,偏差值在0.2度。
这个偏差值有0.25的偏差的时候。
测试条会有0.25mm的偏差。
这个温度的取得是在测试条在变形压力下和温度偏差是取得的。
5这种情况和重要性5.1 这种测试最适合控制和改进工艺。
本测试所获得的数据可能不适合用来衡量塑料在高温下的形状的预测。
除非时间,温度,负载和压力等因素跟本测试所要求的条件接近。
否则这种数据不可以用在预见塑料在高温下会有这种效果。
6测试矛盾性6.1 本测试方法一定程度上很决定于流体,测试体和流体传导性的热传输率。
6.2 本测试的结果也决定于测试体的长度,深度,和物体在偏差温度下的最终偏差值。
6.3模子的类型和模铸的过程也会对产品测试结果产生影响。
6.4 测试设备的设计也会对测试的结果产生影响。
测试跨度(一般在100mm和101.6mm之间)会影响合成式的测量。
ASTM标准目录(D)
D 1000-1999 电气和电子设备用压敏粘结涂覆带的试验方法ASTM D 1002-2001 用拉力负载法测定单面搭接粘结金属试样的表面剪切强度的标准试验方法(金属之间) ASTM D 1003-2000 透明塑料混浊度和透光系数的标准试验方法ASTM D 1004-1994 塑料薄膜和薄板的抗撕裂强度的测试方法ASTM D 1005-1995 用千分尺测量有机涂层干膜厚度的试验方法ASTM D 1006-2001 木材表面涂料的室外暴露试验标准实施规程ASTM D 1007-2000 仲丁醇ASTM D 1013-1993 树脂和塑料中总氮量的测试方法ASTM D 1014-1995 钢材表面涂料室外暴露试验方法ASTM D 1015-1999 高纯度烃冻结点的标准测试方法ASTM D 1016-1999 通过冻结点测定烃纯度的标准试验方法ASTM D 1018-2000 石油馏分中氢含量的标准试验方法ASTM D 1025-1996 聚合级丁二烯中不挥发性残余物的试验方法ASTM D 1029-1995 纸和纸板的抗剥离试验方法ASTM D 1030-1995 纸和纸板纤维分析的试验方法ASTM D 1034-1994 氟铬砷酸盐苯酚ASTM D 1035-1994 氟铬砷酸盐苯酚的化学分析方法ASTM D 1036-1999 木电杆的标准静态试验方法ASTM D 1037-1999 木质纤维板和刨花板的性能评定试验方法ASTM D 1038-1983 薄板和胶合板相关术语的定义ASTM D 1039-1994 电绝缘用玻璃粘合云母的试验方法ASTM D 1042a-2001 加速操作状态下塑料线性尺寸变化的标准测试方法ASTM D 1043-1999 用扭转试验法测定温度对塑料硬挺度影响的试验方法ASTM D 1044-1999 透明塑料表面耐磨蚀性的试验方法ASTM D 1045-1995 塑料用增塑剂的取样与试验方法ASTM D 1047-1995 电线及电缆用聚氯乙烯套管ASTM D 1048-1999 橡胶绝缘毡层ASTM D 1049-1998 橡胶绝缘封盖物ASTM D 1050-1990 橡胶绝缘衬里套管ASTM D 1051-1995 橡胶绝缘管ASTM D 1052-1985 用罗斯挠曲装置测定橡胶切口扩展的试验方法ASTM D 1053-1992 橡胶特性试验.挠性聚合物和涂覆制品的低温劲度测试方法ASTM D 1054-1991 用回跳摆锤法测定橡胶弹性的试验方法ASTM D 1055-1997 挠性多孔材料.泡沫胶乳ASTM D 1056-2000 韧性多孔材料的标准规范.海绵状或膨胀橡胶ASTM D 1059-1997 基于短长度样品的纱线支数试验方法ASTM D 1060-1996 为测定净毛纤维百分率从成包原毛中心取样ASTM D 1061-1995 石棉卷标准规范ASTM D 1062-1996 金属之间胶粘剂抗劈裂强度的标准试验方法ASTM D 1064-1997 松香油脂肪酸及其它相关制品中铁含量的测试方法ASTM D 1065-1996 松脂制品(包括松香、松油和相关产品)中不可皂化物的测试方法ASTM D 1066-1997 蒸汽的抽样ASTM D 1067-1992 水的酸性和碱性的测试方法ASTM D 1068-1996 水中铁的测试方法ASTM D 1070-1985 气体燃料相关密度的试验方法ASTM D 1071-1983 气体燃料试样容积的测量方法ASTM D 1072-1990 燃料气中总硫量的测试方法ASTM D 1073-2001 沥青铺面混合料用细集料标准规范ASTM D 1074-1996 沥青混合料抗压强度的测试方法ASTM D 1075-1996 水对压实的沥青混合料粘结力影响的试验方法ASTM D 1076-1997 橡胶.浓缩的、氨储存的、乳状的和离心处理的天然胶乳ASTM D 1078-2001 挥发性有机液体馏程的标准试验方法ASTM D 1079-2001 铺屋面材料、防水材料和沥青材料的相关标准术语ASTM D 1082-2000 云母耗散因数和电容率(介电常数)的标准试验方法ASTM D 1083-1991 集装箱、大型船运箱和板条箱的机械搬运的试验方法ASTM D 1084-1997 胶粘剂粘度的测试方法ASTM D 1085-1965 石油和石油产品的测量(只适用于再版单行本)ASTM D 1091-2000 润滑油和添加剂中磷含量的标准试验方法ASTM D 1092-1999 润滑脂表观粘度测量的标准试验方法ASTM D 1093-1998 液态烃及其蒸馏残余物酸度的测试方法ASTM D 1094-1999 航空燃料水反应性的试验方法ASTM D 1101-1997 室外用层压板结构制品的胶合接头完整性的试验方法ASTM D 1102-1984 木材中灰分的测试方法ASTM D 1105-1996 无提取物木材的制备ASTM D 1106-1996 木材中酸不溶木素的测试方法ASTM D 1107-1996 木材的醇苯可溶性试验方法ASTM D 1108-1996 木材中二氯甲烷溶解物的测试方法ASTM D 1109-1984 木材在百分之一的烧碱中可溶性的试验方法ASTM D 1110-1984 木材水溶解度的测试方法ASTM D 1113-1990 洗净羊毛中植物性物质和其它碱性不溶杂质的测试方法ASTM D 1117-1999 无纺织物的试验ASTM D 1118-1995 石棉纤维和石棉织物磁参数的标准测试方法ASTM D 1119-1996 发动机冷却剂与防锈剂的灰分含量的测试方法ASTM D 1120-1994 发动机冷却剂沸点的测试方法ASTM D 1121-1998 发动机抗冻剂、防锈剂和冷却剂储备碱度的测试方法ASTM D 1122-1997 用液体比重计测量发动机冷却剂及其浓缩物比重的试验方法ASTM D 1123-1999 卡尔.费歇尔试剂法测定发动机冷却剂浓缩物中水含量的试验方法ASTM D 1125-1995 水的电导性和电阻率的测试方法ASTM D 1126-1996 水硬度的测试方法ASTM D 1129-2002 与水相关的标准术语ASTM D 1131-1997 松香油的试验方法ASTM D 113-1999 沥青材料延展性的试验方法ASTM D 1133-1997 烃类溶剂的贝壳杉脂丁醇值的测试方法ASTM D 1139-2000 单层或多层沥青表面处理用集料的标准规范ASTM D 1140-2000 土壤中小于200号(75微米)筛孔的材料总量的标准试验方法ASTM D 1141-1998 海水代用品ASTM D 1142-1995 露点温度法测定气体燃料中蒸汽含量的试验方法ASTM D 1143-1981 静态轴向压力荷载下桩柱的试验方法ASTM D 1144-1999 胶粘剂粘结强度提高的测定ASTM D 1146-2000 有效粘结层粘结点的标准试验方法ASTM D 1148-1995 橡胶变质.受热及紫外线使浅颜色表面退色的试验方法ASTM D 1149-1999 橡胶变质的试验方法.在小室中的橡胶表面臭氧龟裂ASTM D 1151-2000 潮气和温度对胶粘剂粘结能力影响的标准试验方法ASTM D 115-1998 电绝缘用含清漆溶剂的试验方法ASTM D 1152-1997 甲醇(甲基醇)ASTM D 1153-1994 甲基异丁基甲酮ASTM D 1155-1989 玻璃球圆度的测试方法ASTM D 1157-1991 轻质烃总抑制剂含量(TBC)的测试方法ASTM D 1159-1998 电位滴定法测量石油馏分及商用脂族烯烃溴值的试验方法ASTM D 1160-1999 石油产品减压蒸馏试验方法ASTM D 116-1986 电气设备用上釉陶瓷材料的试验ASTM D 1165-1980 生活中用硬木和软木的命名法ASTM D 1166-1984 木材及有关材料中甲氧基团的测试方法ASTM D 1168-1999 电绝缘用烃类石蜡的测试ASTM D 1169-1995 电绝缘液体电阻率(电阻系数)的测试方法ASTM D 1171-1999 橡胶变质的标准试验方法.室外或小室内橡胶表面臭氧龟裂(三角形试样)ASTM D 117-1996 产自石油的电绝缘油的试验方法和规范导则ASTM D 1172-1995 肥皂和洗涤剂水溶液pH值的测试方法ASTM D 1173-1953 表面活性剂起泡性试验方法ASTM D 1176-1998 试验用发动机冷却剂或防锈剂水溶液的取样和制备的试验方法ASTM D 1177-1994 发动机冷却剂溶液冻结点的测试方法ASTM D 1179-1999 水中氟化物离子的测试方法ASTM D 1183-1996 胶粘剂耐周期性实验室老化条件的标准试验方法ASTM D 1184-1998 胶粘剂粘结的层压部件挠曲强度的试验方法ASTM D 1185-1998 材料搬运和航运用托盘及有关设备的试验方法ASTM D 1186-2001 铁基非磁性涂层干膜厚度的无损标准试验方法ASTM D 1187-1997 金属保护涂层用沥清乳液ASTM D 1188-1996 用涂石蜡样品测定压实的沥青混合料的体积比重和密度的试验方法ASTM D 1190-1997 热浇铸弹性混凝土填缝料ASTM D 1191-1984 混凝土接缝密封胶的试验方法ASTM D 1192-1998 水和蒸汽的抽样设备ASTM D 1193-1999 试剂水(联邦试验方法No.7916)ASTM D 1194-1994 展宽基底和静荷载用土壤承受能力的测试方法ASTM D 1195-1993 用于公路路面和机场跑道设计和评定的土壤与韧性路面成份的往复静态平板荷载的测试方法ASTM D 1196-1993 用于公路和机场路面设计和评定的土壤与韧性路面成份的非往复静立平板荷载试验方法ASTM D 1198-1993 胺基树脂溶剂容限的测试方法ASTM D 1200-1994 福特粘度杯测定粘度的试验方法ASTM D 1201-1999 热固聚酯模制化合物ASTM D 120-1995 橡胶绝缘手套ASTM D 1203-1994 用活性碳法测定塑料的挥发损失的试验方法ASTM D 1204-1994 高温下非硬性热塑塑料薄板或薄膜线性尺寸变化的测试方法ASTM D 1208-1996 某些颜料通性的试验方法ASTM D 1209-2000 透明液体色度的标准试验方法(铂钴标度)ASTM D 1210-1996 颜料载体体系分散细度的测试方法ASTM D 1211-1997 木材用透明硝基漆漆膜耐温度变化的试验方法ASTM D 121-2000 煤和焦炭的标准术语ASTM D 1212-1991 有机涂层湿膜厚度的测试方法ASTM D 1214-1989 玻璃球筛析的试验方法ASTM D 1217-1993 用宾汉比重法测定液体密度和相对密度(比重)的试验方法ASTM D 1218-1999 液态烃的折射率和折射分散度的标准测试方法ASTM D 12-1988 未加工的桐油ASTM D 121a-2001 煤和焦炭的标准术语ASTM D 1220-1965 立式圆罐的测量和校正(只用做再版单行本)ASTM D 1223-1993 75度下纸和纸板镜面光泽的试验方法ASTM D 1224-1992 纸中锌和镉的试验方法ASTM D 1227-1995 屋面保护涂层用乳化沥青ASTM D 1229-1987 橡胶特性试验方法.低温时的压缩变形率ASTM D 1230-1994 服装纺织品的易燃性的测试方法ASTM D 123-2000 与纺织品相关的标准术语ASTM D 1233-1988 韧皮纤维和叶纤维制双股线ASTM D 1234-1985 含脂羊毛的手扯长度的取样和试验方法ASTM D 1238-2001 用挤压塑性计测定热塑性塑料熔化流率的标准试验方法ASTM D 1239-1998 用化学制剂测定塑料薄膜抗萃取性的试验方法ASTM D 1240-1996 包括松香,高脂油和相关产品中心存储的松香酸含量的测试方法ASTM D 1241-1968 土壤集料次底层、底层和表层用料ASTM D 124-1988 脱胶的豆油ASTM D 1242-1995 塑性材料耐磨性的试验方法ASTM D 1243-1995 氯乙烯聚合物的稀溶液粘度的试验方法ASTM D 1244-1998 纱线结构的名称与符号ASTM D 1245-1984 用化学显微镜作水沉积物的检验ASTM D 1246-1995 水中的溴化物离子的测试方法ASTM D 1248-2000 电线和电缆用聚乙烯塑料挤制材料标准规范ASTM D 1249-1992 辛基正酞酸酯增塑剂ASTM D 1250-1980 石油测量表ASTM D 1251-1994 用周期法测定包装箱的蒸汽渗透性的试验方法ASTM D 1252-2000 水的化学氧需要量(重铬酸盐氧需要量)的标准试验方法ASTM D 1253-1986 水中残余氯的测试方法ASTM D 1257-1990 高比重甘油ASTM D 1258-1995 高比重甘油的试验方法ASTM D 1259-1985 树脂溶液的不挥发物含量的测试方法ASTM D 126-1987 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法ASTM D 1263-1994 汽车轮轴承润滑脂泄漏倾向的试验方法ASTM D 1264-1996 润滑脂抗水洗能力的试验方法ASTM D 1265-1997 液化石油(LP)气取样(手工法)ASTM D 1266-1998 石油产品中硫的试验方法(燃灯法)ASTM D 1267-1995 液化石油(LP)气气压的测试方法(液化石油气法)ASTM D 127-1987 石油蜡包括凡士林滴熔点的试验方法ASTM D 1272-1956 五氯苯酚ASTM D 1274-1995 五氯苯酚的化学分析方法ASTM D 1275-1996 电绝缘油中腐蚀性硫的测试方法ASTM D 1278-1991 天然橡胶的试验方法.化学分析ASTM D 1279-1982 金属除垢剂的抛光作用的试验方法ASTM D 1280-1989 浸槽式金属除垢剂的全浸腐蚀试验的试验方法ASTM D 128-1998 润滑脂的分析试验方法ASTM D 1282-1996 用气流阻力表示羊毛毛条,生条和洗净羊毛的平均纤维直经的测试方法ASTM D 1283-1985 羊毛碱溶性的测试方法ASTM D 1287-1991 发动机冷却剂和防锈剂的pH值的试验方法ASTM D 1290-1995 用离心机测定水乳化抛光剂中沉积物的试验方法ASTM D 1291-2001 氯的需求量和/或水的需求量评估的标准实施规程ASTM D 129-2000 石油产品中硫含量的标准试验方法(氧弹法)ASTM D 1292-1986 水的气味的测试方法ASTM D 1293-1999 水pH值的标准测试方法ASTM D 1294-1995 在1英寸(25.4毫米)长度内羊毛纤维拉伸强度和断裂强度试验方法ASTM D 1296-2001 挥发性溶剂和烯释剂气味的标准试验方法ASTM D 1298-1999 比重计法测定原油和液态石油产品的密度、相对密度和API燃油比重ASTM D 130-1994 用铜条变色法检测石油产品对铜腐蚀性的测试方法ASTM D 1304-1999 与电绝缘试验相关的胶粘剂ASTM D 1305-1999 电绝缘纸和纸板.硫酸盐(牛皮纸)层型ASTM D 1306-1988 醇酸树脂和含有其它二元酸的酯类的酞酸含量测试方法(重量法) ASTM D 1308-1987 家用化学品对透明和着色有机面漆影响的试验方法ASTM D 1309-1993 贮藏期间交通标志用色漆的沉淀特性的测试方法ASTM D 1310-1986 用泰格开口杯装置测定液体闪点和燃点的测试方法ASTM D 1312-1993 涂层用合成酚醛树脂或溶液中表观游离酚的测试方法ASTM D 1316-1993 用美国油墨研究会研磨测量计测定油墨研磨细度的测试方法ASTM D 1318-2000 测定残留燃料油中钠的标准试验方法(火焰光度测定法)ASTM D 1319-1999 用荧光指示剂吸附法测定液态石油产品中烃类物质的试验方法ASTM D 13-1997 松脂油标准规范ASTM D 1321-1997 石油蜡针入度的试验方法ASTM D 1322-1997 航空涡轮机燃料烟点的试验方法ASTM D 1324-1983 改性木材ASTM D 1325-1994 氨化砷酸铜ASTM D 1326-1994 氨化砷酸铜的化学分析法ASTM D 1327-1997 铺屋面和防水用浸沥青物质的机织粗麻布ASTM D 1329-1988 评定橡胶特性的试验方法.低温下的回缩(TR试验)ASTM D 1330-1985 薄橡胶衬垫ASTM D 1331-1989 表面活性剂溶液的表面张力与界面张力的试验方法ASTM D 1334-1996 原毛毛含量的测试方法.商业尺度ASTM D 1335-1998 毛绒地毯绒头联结的标准试验方法ASTM D 1336-1997 机织织物中纱线扭曲度的标准试验方法ASTM D 1337-1996 用稠度和粘结强度测定胶粘剂贮藏寿命的试验方法ASTM D 1338-1999 用稠度和粘结强度测定液态或糊状胶粘剂使用寿命的标准试验方法ASTM D 1342-1992 巴西棕榈蜡中石蜡型烃含量的测试方法ASTM D 1343-1995 用落球法测定纤维素衍生物粘度的测试方法ASTM D 1347-1972 甲基纤维素的试验方法ASTM D 1348-1994 纤维素中湿度的测试方法ASTM D 1349-1999 橡胶.试验温度ASTM D 1351-1997 电线和电缆的聚乙烯绝缘ASTM D 1352-1997 电线和电缆用耐臭氧的丁基橡胶绝缘ASTM D 1353-1996 色漆、清漆、喷漆及相关产品用挥发性溶剂中不挥发物质的试验方法ASTM D 1356-2000 与大气取样和分析相关的标准术语ASTM D 1357-1995 制定外围大气的取样计划ASTM D 1358-1986 用分光光度计测定脱水蓖麻油及其衍生物二稀值的试验方法ASTM D 1360-1998 涂料阻燃性试验方法(小室法)ASTM D 1363-1994 丙铜和甲醇的高锰酸盐时间的测试方法ASTM D 1364-1995 挥发性溶剂中水的测试方法(费歇尔试剂滴定法)ASTM D 1366-1986 颜料粒度特性报告ASTM D 1367-1996 石墨润滑质量的测试方法ASTM D 1369-1984 沥青表面处理用材料的数量ASTM D 1370-2000 沥青材料间接触相容性的试验方法(奥林萨斯试验)ASTM D 1374-1989 金属除垢剂的充气全浸腐蚀的试验方法ASTM D 1384-2001 玻璃器皿中发动机冷却剂腐蚀试验的标准试验方法ASTM D 1385-2001 水中肼含量的标准试验方法ASTM D 1386-1998 合成蜡和天然蜡的酸值(以实验为基础的)的试验方法ASTM D 1387-1989 合成和天然蜡皂化值(经验)的测试方法ASTM D 1388-1996 织物硬挺性测试方法ASTM D 1389-1997 测试薄固体电绝缘材料校验电压的试验方法ASTM D 139-1995 沥青材料浮选试验的检测方法ASTM D 1397-1993 醇酸树脂和树脂溶液中不皂化物的测试方法ASTM D 1398-1993 醇酸树脂和醇酸树脂溶液的脂肪酸含量测试方法ASTM D 1399-1995 磷酸三甲苯酯不可皂化物含量的测试方法ASTM D 1400-1994 非铁金属基表面非传导涂层干膜厚度无损测量的测量方法ASTM D 1401-1998 石油和合成燃料的水分离特性的试验方法ASTM D 140-2001 沥青材料的抽样标准实施规程ASTM D 1403-1997 用1/4和1/2标度的锥形设备测定润滑脂锥入度的试验方法ASTM D 1404-1999 评定润滑脂中有害粒子的标准试验方法ASTM D 1405-2001 平定航空燃料净燃烧热的标准试验方法ASTM D 1406-1965 油箱的液体校准(只适用于单行本)ASTM D 1407-1965 驳船油槽的测量和校准(只适用于单行本)ASTM D 1408-1965 球形和扁球形油槽的测量和校准(只适用于单行本)ASTM D 1409-1965 油槽车油槽的测量和校正ASTM D 1410-1965 固定卧式油槽的测量和校准ASTM D 1411-1999 分级集料筑路混合物中作为掺合物的溶水氯化物的试验方法ASTM D 1412-1999 在96%-97%相对湿度和30℃时煤的平衡湿气的标准测试方法ASTM D 1413-1999 用实验室土块培养法测试木材防腐剂ASTM D 1414-1994 O型橡胶圈的试验方法ASTM D 1415-1988 橡胶特性的测试方法.国际硬度ASTM D 1416-1989 合成橡胶的测试方法.化学分析ASTM D 1417-1997 合成橡胶胶乳的试验方法ASTM D 1418-2001 橡胶和橡胶胶乳的标准实施规程.命名ASTM D 1418a-2001 橡胶和橡胶乳液标准规范.术语ASTM D 1422-1999 退捻加捻法测定单细纱捻数的试验方法ASTM D 1423-1999 直接计算法测定纱线捻数的试验方法ASTM D 1424-1996 埃尔曼多夫落锤仪测定机织物抗撕裂的试验方法ASTM D 1425-1996 用电容测试设备测定纱线条干不匀度的测试方法ASTM D 1426-1998 水中氨态氮的测试方法ASTM D 1429-1995 水和盐水的比重的测试方法ASTM D 1430-1995 聚氯三氟乙烯(PCTFE)塑料ASTM D 143-1994 洁净木材小样品的试验ASTM D 1434-1982 测定塑料薄膜和薄片透气性能的测试方法ASTM D 1435-1999 塑料的室外风化ASTM D 1436-1997 试验用乳胶地板基质抛光剂的使用ASTM D 1439-1997 羧甲基纤维素钠盐的试验方法ASTM D 1440-1996 棉纤维长度和长度分布的试验方法(列阵法)ASTM D 1441-1987 试验用棉纤维取样ASTM D 1442-1993 棉纤维成熟度的试验方法(烧碱膨胀与偏振光法)ASTM D 1445-1995 棉纤维的断裂强度和延伸率的试验方法(扁纤维束法) ASTM D 1447-1989 用纤维照相法测定棉纤维的长度和长度均匀度的测试方法ASTM D 1448-1997 棉纤维的马克隆尼读数的试验方法ASTM D 1452-1980 用螺旋钻作土壤勘探和取样ASTM D 1455-1987 乳化地板抛光剂60度镜面光泽度的试验方法ASTM D 1456-1986 橡胶特性的测试方法.特定应力下的延伸ASTM D 1457-1992 聚四氟乙烯模塑及挤压成型物料ASTM D 1458-1996 电绝缘用完全硫化硅橡胶涂层的玻璃布与玻璃带的试验方法ASTM D 1459-1993 电绝缘用硅清漆涂层的玻璃布和玻璃带ASTM D 1460-1986 橡胶性能的测试方法.液体浸没期间的长度变化ASTM D 1461-1985 沥青铺砌混合料中水份或挥发性馏份含量的测试方法ASTM D 146-1997 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法ASTM D 1464-1990 棉花染色差异性的试验方法ASTM D 1465-1990 石油蜡的熔点和粘着点的测试方法ASTM D 1466-1986 涂料,清漆及相关物料常用液体油和脂肪酸取样的测试方法ASTM D 1467-1989 防护涂层用脂肪酸试验ASTM D 1468-1993 磷酸三甲苯酯中挥发物质的试验方法ASTM D 1469-1993 车辆涂层中总松香酸含量的测试方法ASTM D 1474-1998 有机涂层压痕硬度的试验方法ASTM D 1475-1998 色漆、清漆、喷漆及相关产品密度的试验方法ASTM D 1476-1988 喷漆溶剂的庚烷混溶性试验方法ASTM D 1478-1991 滚珠轴承润滑脂低温转矩的试验方法ASTM D 1480-1993 用宾汉比重计测定粘性材料密度和相对密度(比重)的试验方法ASTM D 1481-1993 用利普金双毛细管比重计测定粘性材料密度和相对密度(比重)的试验方法ASTM D 1483-1995 用加纳尔--科尔曼法测定颜料的吸油量的试验方法ASTM D 1485-1986 从天然原料中获取橡胶的方法.取样和样品制备ASTM D 1488-2000 胶粘剂中淀粉物质的标准试验方法ASTM D 1489-1997 含水胶粘剂中不挥发物含量的试验方法ASTM D 1490-2001 脲甲醛树脂溶液中不挥发物含量的标准测试方法ASTM D 149-1997 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法ASTM D 1492-1996 库仑计滴定法测定芳烃溴指数的测定方法ASTM D 1493-1997 工业有机化学品固化点的测试方法ASTM D 1494-1997 增强塑料板的散射光透射系数的测试方法ASTM D 1498-1993 水的氧化还原潜能ASTM D 1499-1999 操纵塑料暴露用曝光和曝水装置(碳弧型)ASTM D 1500-1998 石油产品ASTM颜色的试验方法(ASTM比色刻度尺)ASTM D 150-1998 固体电绝缘材料(恒定电介质)的交流损耗特性和介电常数的试验方法ASTM D 1505-1998 用密度梯度法测定塑料密度的试验方法ASTM D 1506-1999 炭黑的标准测试方法.灰分含量ASTM D 1508-1999 粒状碳黑的试验方法.细粒含量ASTM D 1509-1995 碳黑的测试方法.加热损耗ASTM D 1510-2001 炭黑的标准试验方法.碘吸收值ASTM D 1510a-2001 炭黑标准测试方法.碘吸收值ASTM D 1511-1998 碳黑的试验方法.丸粒尺寸分布ASTM D 1512-1995 碳黑的测试方法.pH值ASTM D 1513-1999 丸状炭黑的标准测试方法.倾注密度ASTM D 1514-2000 炭黑的标准试验方法.筛渣ASTM D 1516-1984 皮革宽度的测试方法ASTM D 1517-1999 皮革的相关标准术语ASTM D 1518-1985 纺织材料的热传导的试验方法ASTM D 1519-1995 橡胶化学制品的试验方法.溶化范围ASTM D 1523-1995 工作温度为90℃的电线和电缆用合成橡胶绝缘材料ASTM D 1524-1994 用过的石油制电绝缘油的现场目测检查的方法ASTM D 1525-2000 塑料维卡(Vicat)软化温度的标准试验方法ASTM D 1527-1999 丙烯腈-丁二稀-苯乙稀塑料管.表40和80ASTM D 1531-1995 用液体位移法测定介电常数与耗散系数的试验方法ASTM D 153-1984 颜料比重测试方法ASTM D 1533-2000 用卡耳费瑟库仑滴定法测定绝缘液体中水的标准试验方法ASTM D 1534-1995 用比色指示剂滴定法测定电绝缘液近似酸度的试验方法ASTM D 1535-2001 用孟塞尔制规定颜色的标准实施规程ASTM D 1537-1960 蒸馏的大豆脂肪酸ASTM D 1538-1960 蒸馏的亚麻籽脂肪酸ASTM D 1539-1960 脱水蓖麻籽脂酸ASTM D 1541-1997 干性油及其衍生物总碘值的试验方法ASTM D 154-1985 清漆试验ASTM D 1542-1960 清漆中松香的质量检测的测试方法ASTM D 1544-1998 透明液体颜色的试验方法(加德纳比色刻度尺)ASTM D 1545-1998 用起泡时间法测定透明液体粘度的试验方法ASTM D 1546-1996 透明地板密封剂的性能试验ASTM D 1550-1994 ASTM丁二烯测量表ASTM D 1552-1995 石油产品中硫含量的试验方法(高温法)ASTM D 1554-2001 与木基纤维和刨花板材料相关的标准术语ASTM D 1555-1995 工业芳烃体积和重量的计算方法ASTM D 1555M-2000 工业香烃类计量的体积和重量计算的标准测试方法ASTM D 1556-2000 用砂锥法现场测定土壤密度和单位重量的标准试验方法ASTM D 1557-1991 用修正作用力56000 ft-Ibf/ft(2700 KN-m/m)测量土壤实验室压实性能的测试方法ASTM D 1558-1994 细粒土水含量渗透阻力关系的试验方法ASTM D 1559-1989 用马歇尔(Marshall)装置测定沥青混合物抗塑性流动的试验方法ASTM D 1560-1992 用赫维门(Hveem)装置测定沥青混合物抗变形和粘结性的试验方法ASTM D 1561-1992 用搅拌压实机法制作沥青混合物试样ASTM D 156-2000 石油产品赛波特颜色的标准试验方法(赛波特比色计法)ASTM D 1562-1998 纤维素丙酸酯模制和挤压化合物ASTM D 1566-2000 与橡胶相关的标准术语ASTM D 1567-1989 评定除垢剂对某些搪瓷制品腐蚀影响的测试方法ASTM D 1568-1997 烷基苯磺酸盐的取样与化学分析的标准试验方法ASTM D 1569-1962 烷基洗涤剂的试验方法ASTM D 1570-1995 脂肪烷基硫酸盐的取样与化学分析的测试方法ASTM D 1571-1995 石棉布的标准规范ASTM D 1573-1995 石棉织物热老化的标准测试方法ASTM D 1574-1987 羊毛和其它动物纤维中可萃取物的试验方法ASTM D 1575-1990 洗净羊毛及生条中羊毛纤维长度的测试方法ASTM D 1576-1990 用炉烘干法测定羊毛内水分的试验方法ASTM D 1577-1996 纺织纤维线密度的测试方法ASTM D 1578-1993 绞纱形式下纱线的断裂强度的试验方法ASTM D 1579-2001 苯酚、间苯二酚和三聚氰胺胶粘剂中填料含量的标准测试方法ASTM D 1582-1998 液相苯酚、间苯二酚和三聚氰胺胶粘剂中不挥发物含量的测试方法ASTM D 1583-2001 干粘膜中氢离子浓度的标准试验方法ASTM D 1585-1996 中心仓库中松香,妥尔油和相关产品的脂肪酸含量测试方法ASTM D 1586-1999 土壤渗透试验和对开管取样的试验方法ASTM D 1587-1994 泥土薄壁管抽样ASTM D 1593-1999 非硬性氯乙烯塑料薄板ASTM D 1596-1997 包装材料减震性能的试验方法ASTM D 1598-1997 恒定内压下塑料管的破裂时间的测试方法ASTM D 1599-1999 塑料管道和配件的短时破裂水压的测试方法ASTM D 1600-1999 与塑料相关的缩略语的标准术语ASTM D 1601-1999 乙烯聚合物稀溶液粘度的测试方法ASTM D 1603-2001 烯烃塑料中碳黑含量的标准试验方法ASTM D 1607-1991 大气中二氧化氮含量的测试方法(格里斯-沙耳茨曼反应)ASTM D 1608-1998 气态燃烧产物中氮的氧化物的测试方法(苯酚二磺酸法)ASTM D 1610-1991 试验用皮革和皮革制品的修整ASTM D 1611-1981 皮革与金属接触时产生腐蚀的试验方法ASTM D 1612-1995 甲醇(木精)中丙酮含量的测试方法ASTM D 1613-1996 色漆,清漆,喷漆和有关产品用挥发性溶剂和化学介质中酸度的试验方法ASTM D 1614-1995 丙酮中碱度的试验方法ASTM D 1615-1960 醇酸树脂中甘油,乙二醇和季戊四醇的试验方法ASTM D 1617-1990 溶剂和稀释剂酯化值的试验方法ASTM D 1618-1999 炭黑可萃取性的标准试验方法.甲苯脱色ASTM D 1619-1999 碳黑的试验方法.硫含量ASTM D 16-2000 涂料、相关涂层、材料和应用的标准术语ASTM D 1621-2000 硬质泡沫塑料压缩特性的标准试验方法ASTM D 1622-1998 硬质泡沫塑料表观密度的测试方法ASTM D 1623-1978 硬质泡沫塑料张力和张力粘合性能的试验方法ASTM D 1624-1971 酸性铬酸铜ASTM D 1625-1971 铬酸盐砷酸铜ASTM D 1627-1994 酸性铜铬酸盐的化学分析ASTM D 1628-1994 铬酸盐砷酸铜的化学分析的测试方法ASTM D 1630-1994 橡胶特性的试验.耐磨性(NBS磨损机)ASTM D 1631-1999 用碘试剂法测定苯酚和有关原料中水分的试验方法ASTM D 1632-1996 试验室中水泥土压缩试样和挠曲试样的制作和养护ASTM D 1633-2000 模制掺土水泥圆筒抗压强度的标准试验方法ASTM D 1634-2000 用横梁弯曲断裂部分测定掺土水泥抗压强度的标准试验方法(改良立方体法) ASTM D 1635-2000 用简支梁三点负荷法测定掺土水泥抗挠强度的标准试验方法ASTM D 1636-1999 烯丙基模制化合物ASTM D 1639-1990 有机涂料酸值试验方法ASTM D 1640-1995 室温下有机涂料干燥,固化及成膜试验方法ASTM D 1641-1997 外用清漆耐用性的试验方法ASTM D 1642-1993 清漆弹性或韧性的试验方法ASTM D 1644-2001 清漆中不挥发物含量的标准试验方法ASTM D 1646-1999 橡胶的试验方法.粘度和硫化特性(穆尼粘度计)ASTM D 1647-1989 清漆干膜耐水性和耐碱性试验方法ASTM D 1648-1986 碱式硅铬酸盐颜料ASTM D 1649-1995 铬酸锶颜料ASTM D 1652-1997 环氧树脂中环氧含量的试验方法ASTM D 1653-1993 有机涂层薄膜水蒸气渗透性测试方法ASTM D 1655-2001 航空涡轮机燃料标准规范ASTM D 1657-1989 用压力温差比重计测定轻烃类物质的密度或相对密度的测试方法ASTM D 1662-1992 切削润滑油中活性硫的测试方法ASTM D 1665-1998 焦油制品恩氏比粘度的测试方法ASTM D 1666-1987 木材和木基材料的传导机械试验ASTM D 1667-1997 软质泡沫材料.氯乙烯聚合物和共聚物(闭孔泡沫)ASTM D 1668-1997 铺屋面和防水用(机织和经处理的)玻璃织物ASTM D 1669-1989 沥青材料在加速风化与室外风化用试片的制备ASTM D 1670-1998 沥青材料在加速风化与室外风化中端点损坏的试验方法ASTM D 167-1993 块焦比重和孔隙度的试验方法ASTM D 1673-1994 电绝缘用充气泡沫塑料的介电常数与耗散系数的测试方法。
ASTM D6411D.M-99
mittivity (Dielectric Constant) of Solid Electrical Insulation3 D 257 Test Methods for DC Resistance or Conductance of Insulating Materials3 D 412 Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension4 D 792 Test Method for Density and Specific Gravity (Relative Density) of Plastics by Displacement5 D 907 Terminology of Adhesives6 D 1002 Test Method for Apparent Shear Strength of SingleLap Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)6 D 1084 Test Method for Viscosity of Adhesives6 D 2240 Test Method for Rubber Property Durometer Hardness4 D 2651 Guide for Preparation of Metal Surfaces for Adhesive Bonding6 D 3951 Practice for Commercial Packaging7 E 595 Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment8 2.2 National Aeronautics and Space Administration (NASA) JSC SP-R-0022 General Specification, Vacuum Stability Requirement of Polymeric Material for Spacecraft Application9 MSFC-HDBK-527/JSC-09604 Material Selection List for Hardware Systems9 GSFC RP 1124 Outgassing Data for Selecting Spacecraft Materials9
ASTM D6470-99
Designation:D 6470–99An American National StandardStandard Test Method forSalt in Crude Oils (Potentiometric Method)1This standard is issued under the fixed designation D 6470;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method covers the determination of salt in crude oils.For the purpose of this test method,salt is expressed as %(m/m)NaCl (sodium chloride)and covers the range from 0.0005to 0.15%(m/m).1.2The limit of detection is 0.0002%(m/m)for salt (as NaCl).1.3The test method is applicable to nearly all of the heavier petroleum products,such as crude oils,residues,and fuel oils.It may also be applied to used turbine oil and marine diesel fuel to estimate seawater contamination.Water extractable salts,originating from additives present in oils,are codetermined.1.4The values stated in SI units are to be regarded as the standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents 2.1ASTM Standards:D 329Specification for Acetone 2D 770Specification for Isopropyl Alcohol 2D 843Specification for Nitration Grade Xylene 2D 1193Specification for Reagent Water 3D 4006Test Method for Water in Crude Oil by Distillation 4D 4057Practice for Manual Sampling of Petroleum and Petroleum Products 4D 4177Practice for Automatic Sampling of Petroleum and Petroleum Products 4D 4377Test Method for Water in Crude Oils by Potentio-metric Karl Fischer Titration 4D 4928Test Method for Water in Crude Oils by Coulom-etric Karl Fischer Titration 4E 200Practice for Preparation,Standardization,and Stor-age of Standard and Reagent Solutions for Chemical Analysis 53.Summary of Test Method3.1After homogenizing the crude oil with a mixer,a weighed aliquot is dissolved in xylene at 65°C and extracted with specified volumes of alcohol,acetone,and water in an electrically heated extraction apparatus.A portion of the aqueous extract is analyzed for total halides by potentiometric titration.4.Significance and Use4.1A knowledge of water extractable inorganic halides in oil is important when deciding whether or not the oils need desalting.Excessive halide,especially in crude oil,frequently results in higher corrosion rates in refining units.5.Apparatus5.1Extraction Apparatus ,made of borosilicate glass,con-forming to the dimensions given in Fig.1,and consisting of the following component parts:5.1.1Boiling Flask ,500mL capacity.5.1.2Hopkins Reflux Condenser ,having a vapor outlet connected by a rubber tube to an outside vent or to a suction hood.5.1.3Thistle Tube ,approximately 70mL capacity,with a line to indicate approximately the 50mL level.5.1.4Heating Tube ,containing a chimney for increasing convection in the liquid.5.1.5Heating Coil ,250W,consisting of a suitable gage of Nichrome wire.5.1.6Rheostat ,of suitable resistance and capacity,for regulating the heater.5.2Safety Shield ,colorless safety glass,or equivalent,to be mounted in front of the extraction apparatus (see 5.1).1This test method is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.03on Elemental Analysis.Current edition approved Nov.10,1999.Published January 2000.2Annual Book of ASTM Standards ,V ol 06.04.3Annual Book of ASTM Standards ,V ol 11.01.4Annual Book of ASTM Standards ,V ol 05.02.5Annual Book of ASTM Standards ,V ol 15.05.1Copyright ©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.NOTICE:This standard has either been superseded and replaced by a new version or withdrawn.Contact ASTM International ()for the latest information5.3Sampling Tube ,glass,length approximately 600mm,I.D.approximately 5mm,with a bulb having a volume of 100mL,or more,and drawn out at one end to an opening of inside diameter (I.D.)2to 3mm.A pipette with cut-off tip makes a suitable sample tube.5.4Potentiometric Titration Equipment ,with a measuring accuracy of 62mV ,or better,provided with a silver indicating and a glass reference electrode and 10mL burette,preferably piston type.If an automatic titrator is used,this shall be capable of adding fixed increments of titrant (see 9.3.3.2).5.5Magnetic Stirrer ,with polytetrafluoroethylene (PTFE)-coated stirring bar.5.6Homogenizer .A mixer with counter-rotating blades operating at approximately 3000r/min (50/s)is usually suitable for homogenization of samples up to 500mL.Other designs can also be used provided the performance conforms to the requirements described in Annex A1.5.7Oven ,explosion-proof,temperature 6565°C.5.8Filter Paper ,Whatman No.41,or equivalent.5.9Stopwatch .6.Reagents and Materials6.1Purity of Reagents —Unless otherwise indicated,it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemi-cal Society where such specifications are available.66.2Purity of Water —For all purposes where water is mentioned,reagent water of a suitable purity shall be used.Various types of reagent water are described in Specification D 1193.6Reagent Chemicals,American Chemical Society Specifications ,American Chemical Society,Washington,D.C.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals ,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary ,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,MD.N OTE 1—Hopkins-type condenser is used.FIG.1ExtractionApparatus6.3Acetone(2-propanone),conforming to Specification D329.(Warning—Extremelyflammable.Vapors may cause flashfire.)6.4Alcohol,for example,95%(V/V)ethanol,or propan-2–ol(isopropyl alcohol),conforming to Specification D770. (Warning—Flammable.)6.5Barium Nitrate, A.R.,crystals.(Warning—Barium compounds and their solutions present a health risk if incor-rectly handled.Prevent all contact.)6.6Hydrochloric Acid,0.1mol/L,aqueous.Add9mL ofA.R.concentrated hydrochloric acid(density1.19g/mL)to1L with water.(Warning—Corrosive.Causes skin burns.)6.7Nitric Acid,5mol/L,aqueous.Cautiously add325mL of A.R.concentrated nitric acid(density1.42g/mL)to1L water,while stirring.(Warning—Corrosive.Causes skin burns.)6.8Silver Nitrate Solution,standard,c(AgNO3)=0.1 mol/L,aqueous.Prepare,standardize and store as described in Practice E200for0.1N aqueous solution,reading concentra-tions in mol/L in place of normality.Restandardize regularly, but in any case before preparation of the standard0.01mol/L solution(see6.9)N OTE1—Alternatively,ampoules containing concentrated solutions for preparation of standard volumetric solutions are available from various suppliers.(Warning—Silver compounds and their solutions present a health risk if incorrectly handled.Prevent all contact.)6.9Silver Nitrate Solution,standard,c(AgNO3)=0.01 mol/L,aqueous.Prepare shortly before use by accurately diluting one volume of the recently restandardized0.1mol/L silver nitrate solution(Warning—see6.8)to a ten-fold volume with water.6.10Sodium Chloride Solution,approximately1mmol/L, aqueous.Dissolve5961mg sodium chloride in1L water.6.11Xylene,conforming to Specification D843. (Warning—Xylene presents a health risk if incorrectly handled.Avoid inhalation.Extract vapor by working in a fume cupboard.)6.12Lead Acetate Paper.6.13Polishing Paper,800grit,orfiner,to polish the silver electrode.7.Sampling and Sample Preparation7.1Sampling is defined as all the steps required to obtain an aliquot representative of the contents of any pipe,tank,or other system,and to place the sample into the laboratory sample container.The laboratory sample container and sample volume shall be of sufficient dimensions and volume to allow mixing, as described in7.4.(Warning—The results of the round robin have shown that for reliable results,strict adherence to the sampling and mixing procedure is of the utmost importance.)7.2Laboratory Sample—The sample of crude oil presented to the laboratory or test facility for analysis by this test method. Only representative samples obtained as specified in Practices D4057and D4177shall be used for this test method.7.3Test Sample—The sample aliquot obtained from the laboratory sample for analysis by this test method.Once drawn,the entire portion of the test sample will be used in the analysis.Mix the laboratory sample properly,as described in 7.4,prior to drawing the test sample.7.4Homogenize the laboratory sample of crude oil imme-diately(within15min)before drawing the test sample to ensure complete homogeneity.Mix the sample at room tem-perature(15to25°C),or less,in the laboratory sample container,and record the temperature of the sample in degrees Celsius immediately before mixing.Heat waxy samples,solid at room temperature,to3°C above their pour point in order to facilitate test sample withdrawal.Select the type of mixer related to the quantity of crude oil in the laboratory sample container.Before any unknown mixer is used,the specifica-tions for the homogenization test(see Annex A1)shall be met. Reevaluate the mixer for any changes in the type of crude,the quantity of crude,the shape of the sample container,or the mixing conditions(such as mixing speed and time of mixing).7.5For small laboratory sample containers and volumes,50 to500mL,a nonaerating,high speed(3000r/min),shear mixer is e the mixing time,mixing speed,and height above the bottom of the container found to be satisfactory to Annex A1.For larger containers and volumes,appropriate mixing conditions shall be defined by following a set of procedures similar to those outlined in Annex A1and Practice D4177but modified for application to the larger containers and volumes.Clean and dry the mixer between samples.7.6Record the temperature of the sample immediately after homogenization.The rise in temperature between this reading and the initial reading prior to mixing(see7.4)shall not exceed 10°C,otherwise excessive loss of volatile vapors can occur or the dispersion can become unstable.7.7In order to ensure that crude oils with rapidly settling impurities are properly sampled,withdraw the test sample container immediately after homogenization by lowering the tip of the sample tube(see5.3)almost to the bottom of the container,and withdrawing the test sample as quickly as possible.Clean and dry the sample tube before and after sampling.8.Preparation of Apparatus8.1Extraction Apparatus—To reduce the risk of superheat-ing and the resulting hazards,introduce a gentle stream of air into the bottom of the extraction apparatus.This can be done by passing a length of hypodermic tubing through the bore of the tap so that the lower end reaches the bottom of the heating tube,while the upper end of the tubing is passed through a rubber bung in the top of the thistle tube.Place the extraction apparatus behind a safety screen.Shield all electrical resis-tances and devices;alternatively,remove them from the immediate vicinity of the extraction apparatus.8.2Potentiometric Titration Equipment:8.2.1Glass Electrode—Before each titration(or each series of titrations),rinse the electrode with water and soak it for at least10min in0.1mol/L hydrochloric acid(see6.6).Then rinse again with water.After titrations store the electrode immersed in reagent water.8.2.2Silver Electrode—Polish the silver electrode before each set of titrations with polishing paper(see6.13)until a clean,polished metal surface isobtained.9.Procedure9.1Extraction:9.1.1Weigh about40g of sample,to the nearest0.1g,into a250mL beaker and heat on a water bath or in an oven to65 65°C.Heat4061mL of xylene to the same temperature and add slowly to the sample while stirring constantly until dissolution is complete.Transfer the solution quantitatively to the extraction apparatus,rinsing the beaker with two separate portions of1561mL of hot xylene and adding these rinsings also to the extraction apparatus.9.1.2While the solution is still hot,add2561mL of ethanol or isopropyl alcohol and1561mL of acetone,using these portions for further rinsing of the beaker.Switch on the heating element of the extraction apparatus to full heat until boiling begins,then adjust the rheostat to regulate the heat to maintain boiling at a vigorous rate,but not at such a rate to cause bumping in theflask or to cause the condenser toflood. Allow to reflux for2min after the liquid starts boiling(see 8.1).Switch off the heater.When boiling ceases,add12561 mL of water and again bring the liquid to the boil and reflux fora further15min.9.1.3Switch off the heater,and allow the two phases to separate for5to10min.Draw off the aqueous phase,filtering through afilter paper into a conicalflask of suitable capacity, stopper theflask,and retain the contents for the total halide determination as described in9.2and9.3.9.2Removal of Sulfur-Containing Compounds—Pipet50.0 mL of the aqueous extract(see9.1.3)into a beaker,and add5 mL of5mol/L nitric acid(see6.7).Cover the beaker with a watch-glass,and bring the contents to the boil.Test the vapors periodically for hydrogen sulphide with lead acetate paper and continue boiling for a further5min after a negative result has been obtained.Allow the contents of the beaker to cool and quantitatively transfer to a250-mL titration vessel,rinsing the beaker with water.(Warning—Hydrogen sulfide presents a health risk if incorrectly handled.Avoid inhalation.Extract escaping gas by working in a fume cupboard.)9.3Salt Determination:9.3.1Pipet10.0mL of the1mmol/L sodium chloride solution(see6.10;see Note2)in the titration vessel(see9.2). Adjust the volume of the sample solution in the vessel to150 mL with acetone(see Note3).Add approx.0.5g of barium nitrate crystals.Stir to dissolve the barium nitrate.N OTE2—To obtain a titration end point even for small amounts of chloride,afixed amount of sodium chloride is added to the blank and sample solution.N OTE3—Acetone is added to lower the solubility of the silver chloride precipitate.9.3.2Fill the burette with0.01mol/L silver nitrate solution, place the beaker on a magnetic stirrer,and immerse the electrodes in the sample solution.Immerse the tip of the burette approximately25mm below the liquid surface,and adjust the magnetic stirrer to produce vigorous stirring without spatter-ing.9.3.3Titrate as follows:9.3.3.1When applying manual titration,record the initial burette reading and the pH/millivolt meter reading.Titrate with standard silver nitrate solution,adding the titrant in small portions.After each addition,wait until a constant potential has been established and record the burette and meter readings(see Note4).In regions between inflections where the potential change is small for each increment of silver nitrate used,add volumes as large as0.5mL.When the rate of change of potential becomes greater than5mV per0.1mL,use0.1mL increments of silver nitrate solution.Construct a graph by plotting the meter readings versus the volumes of standard silver nitrate solution used in the titration.N OTE4—If silver halides are precipitated on the silver electrode,tap the electrode gently to dislodge the clinging precipitate and ensure that an equilibrium has been reached before taking a meter reading.9.3.3.2When using an automatic recording titrator,titrate with standard silver nitrate solution,addingfixed increments. N OTE5—It is essential that incremental titration is applied,as described in9.3.3,to ensure that complete precipitation occurs between additions.9.3.3.3After each titration,clean the electrodes with water (see also8.2)9.4Curve Interpretation:9.4.1The end-point of the titration is found as the most positive value of the steepest portion of the observed inflection of the titration curve.9.4.2The exact location of the inflection point is dependent on the chloride concentration,the electrodes used,the nature of the titration medium,and the concentration of the silver nitrate solution applied.To establish the value of the cell potential at the inflection point,prepare a typical solution containing0.001 to1mol of chloride,titrate this solution as described in9.3, and determine the inflection point.9.5Blank Determination—Prepare a blank solution by pi-petting10.0mL of1mmol/L sodium chloride solution(see 6.10)in a titration vessel.Add50mL demineralized water,5 mL of5mol/L nitric acid(see6.7)and approximately0.5g of barium nitrate crystals(see6.5).Adjust the volume of the sample solution in the vessel to150to175mL with acetone. Stir to dissolve the barium nitrate.Titrate the solution as described in9.3.10.Calculation10.1Calculate the amount of chloride present in the aque-ous solution,inµmol,by means of the following equation: Amount of chloride,µmol5~V–V b!3C3103(1)where:V=volume of standard silver nitrate solution used to endpoint,mL,V b=volume of standard silver nitrate solution used for blank titration,mL,andC=concentration of standard silver nitrate solution, mol/L.10.2Calculate the salt content of the sample,expressed as %(m/m)sodium chloride,by means of the following equation: Salt,as sodium chloride,%~m/m!5A358.44m3P31063100(2)where:A=amount of chloride found in the aliquot of the aqueous extract(see10.1),µmol,P=proportional part of extract used in analysis;P= 50/158for ethanol and50/152for isopropyl alcohol(see Note6),andm=mass of the sample,g.N OTE6—If the water content of the sample(for example,in accordance with Test Method D4006)is less than5%(m/m),the volume of the extract from a single extraction may be assumed to be158mL when using ethanol or152mL when using isopropyl alcohol.Hence P will be50/158 or50/152.If,however,the water content of the sample exceeds5% (m/m),the appropriate amount of water should be added in calculating P.11.Report11.1Report the result calculated in10.2as salt(as NaCl), mass%,rounding to two significant digits.State that the result was obtained in accordance with Test Method D6470.12.Precision and Bias712.1Precision—The precision of this test method as deter-mined by a statistical examination of interlaboratory test results is as follows:12.1.1Repeatability—The difference between successive results obtained by the same operator with the same apparatus under constant operating conditions on identical test materials would,in the long run,in the normal and the correct operation of the test method,exceed the following values in only one case in twenty.r50.0243X0.612(3) where:X=the salt concentration in mass%(as NaCl).12.1.2Reproducibility—The difference between two single and independent results,obtained by different operators work-ing in different laboratories on identical test materials,would, in the long run,and in the normal and the correct operation of the test method,exceed the following values in only one case in twenty.R50.0477X0.612(4) where:X=the salt concentration in mass%(as NaCl).N OTE7—The precision data from the interlaboratory program were obtained on three different crude oils ranging in density between825and 950kg/m3,spiked with varying amounts of(artificial)sea water and formation water where the salt content(as NaCl)varied from0.0005to 0.15mass%.Statistical evaluation could not detect any dependency of precision on crude oil density or water type,except for reproducibility. The reproducibility variance(power transform)proved to be inversely related to crude oil density and varied from0.49for the heavy crude to 1.35for the light crude.The above quoted reproducibility represents the overall variance of0.99.12.2Bias—The procedure in Test Method D6470has no bias since salt content is defined only in terms of this test method and certified reference materials are unavailable.How-ever,since the samples from the interlaboratory study where neat desalted crudes,spiked with known quantities of salt(as sea water and formation water),bias might be defined as percent recovery of halide added.Over the range0.0005to 0.0400mass%salt added,the recovery proved to be constant and averaged97%.Over the range0.0400to0.1500,the recovery proved to be a function of concentration and gradu-ally decreased from97%at0.04mass%to88%at the0.15 mass%level.13.Keywords13.1crude oil;extraction;potentiometric;saltANNEX(Mandatory Information)A1.HOMOGENIZATION EFFICIENCY OF UNKNOWN MIXERA1.1The homogenization efficiency of each unknown mixer must be evaluated before use.To evaluate the mixer, confirm that the expected water content can be obtained by the Karl Fischer titration,following the addition of a known amount of water to a nominally dry crude and the homogeni-zation of this mixture.This procedure for checking the homog-enization efficiency of a mixer is based upon the use of a 500-mL sample container;however,a similar procedure must be followed for the different sample sizes that may be received in a particular laboratory.A1.2Weigh the500-mL sample container to the nearest 0.01g.Fill the container to about80%with the dry crude(less than0.1mass%water).Insert the mixer shaft into the container so that the head is about5mm from the container bottom.Homogenize the contents of the container at80% power for2min,take test aliquot of the resulting emulsion,and determine its water content in duplicate,as described in Test Method D4377or D4928.Obtain the average of the duplicate results,and designate this as the inherent water content.A1.3Weigh the crude and container to the nearest0.01g. Record the temperature of the oil to the nearest1°C.Immerse the mixer in the crude as in ing a Grade A pipette, transfer15mL of water to the contents of the container. Homogenize the oil and water at80%power for2min.Record the temperature of the emulsion immediately after homogeni-zation.The rise in temperature during homogenization should not exceed10°C;otherwise,loss of water can occur and the emulsion can be destabilized.Determine the water content of7Supporting data have beenfiled at ASTM Headquarters.Request RR:D02-1458.the crude immediately after mixing.Sample the crude just below the liquid level.A1.4Without additionally mixing the crude,determine the water content(single determination)of the crude15and30 min after the initial mixing in A1.3.A1.5The water contents(added plus inherent)of these three portions(immediately,15and30min after homogeniza-tion)shall agree within0.10%absolute of each other and within0.10%of the calculated water content(that is,added plus inherent).If they do not agree,then the homogenization must be repeated on fresh portions of crude and water in a clean container while changing the power,mixing time,or the height of the mixer shaft,or a combination thereof,until the chosen conditions result in a mixture that yields the required agreement.These conditions of power,mixing time,and depth of immersion of the mixer shaft are then to be used for all subsequent mixings.A1.6The mixing conditions shall be evaluated for all new crudes and repeated periodically for known crudes spiked with water to4to5mass%to check that the conditions remain effective.A1.7This procedure need not be effective for crudes with abnormally low or high viscosity at room temperature.These crudes can require special treatment in order to obtain stable water-in-crude emulsions.N OTE A1.1—Some crudes cannot hold a stable water emulsion for the 15and30min described.In some cases,the crude oil can be cooled below room temperature to improve the stability of the emulsion.Alternatively, additional testing is needed to determine the time period over which the emulsion is stable for a given set of mixing conditions.The test specimen should be taken within the stability period established.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().。
ASTM-D4318-98(中英文)
ASTM-D4318-98(中英文)Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils11. Scope 适用围1.1 These test methods cover the determination of the liquid limit, plastic limit, and the plasticity index of soils as defined in Section 3 on Terminology.1.1 本试验方法包括术语第3节定义的液限、塑限和塑性指数的测定。
1.2 Two methods for preparing test specimens are provided as follows: Wet preparation method, as described in 10.1. Dry preparation method, as described in 10.2. The method to be used shall be specified by the requesting authority. If no method is specified, use the wet preparation method.1.2 试样准备的两种方法如下:湿法制备,详见10.1。
干法制备,详见10.2。
所采用的方法按有关权威指定。
如没有指定试验方法,采用湿法备样。
1.2.1 The liquid and plastic limits of many soils that have been allowed to dry before testing may be considerably different from values obtained on non-dried samples. If the liquid and plastic limits of soils are used to correlate or estimate the engineering behavior of soils in their natural moist state, samples should not be permitted to dry before testing unless data on dried samples are specifically desired.1.2.1 许多土用干法制备与湿法制备测定出来的液、塑限结果有显著不同。
橡胶基摩擦片标准
橡胶基摩擦片是一种用于阻尼、隔振和减震的特殊材料。
以下是一些常见的橡胶基摩擦片的标准:
1.ASTM D4014:美国材料和试验协会(ASTM)制定的标准,规定了用于橡胶基摩擦片的
材料性能测试方法,包括硬度、拉伸强度、断裂伸长率等。
2.ISO 22762:国际标准化组织(ISO)发布的标准,规定了橡胶基摩擦片的尺寸、形状和
物理性能要求,以及相关测试方法。
3.GB/T 20180:中国国家标准,对橡胶基摩擦片的分类、要求和试验方法进行了规定。
-R-6855:美国军事标准,适用于军用航空器和设备中使用的橡胶基摩擦片,包括硫
化橡胶、丁腈橡胶等材料。
这些标准主要涵盖了橡胶基摩擦片的材料性能、尺寸要求、耐热性、耐油性、耐磨性、抗老化性等方面的指导和测试方法。
具体选用标准应根据不同的应用领域和要求进行选择。
在实际使用中,还可以根据特定行业或客户需求,制定专门的技术规范或标准。
astm橡胶裁刀标准
astm橡胶裁刀标准ASTM(美国材料与试验协会)发布了许多与橡胶裁刀相关的标准。
这些标准主要涵盖了橡胶裁刀的设计、材料、测试方法等方面。
以下是一些与橡胶裁刀相关的ASTM标准:1.ASTM D5286 - 08(2018) "Standard Test Methods for RubberProperty—Vulcanization Using Oscillating Disk Cure Meter":该标准规定了使用振荡盘硫化仪测定橡胶硫化特性的测试方法。
2.ASTM D3767 - 19 "Standard Practice for Rubber—Measurement of Dimensions":该标准规定了测量橡胶制品尺寸的常用做法,可能涉及到裁刀的设计和使用。
3.ASTM D3194 - 16 "Standard Test Method for Rubber fromNatural Sources—Determination of Ash Content":该标准规定了测定天然橡胶中灰分含量的方法,这可能与橡胶裁刀的生产和使用相关。
4.ASTM D412 - 16 "Standard Test Methods for VulcanizedRubber and Thermoplastic Elastomers—Tension":该标准规定了在拉伸状态下测试橡胶和热塑性弹性体(弹性体)的方法,这可能与裁刀的强度和性能有关。
5.ASTM D2240 - 15e1 "Standard Test Method for RubberProperty—Durometer Hardness":该标准规定了测定橡胶的硬度的方法,硬度是一个可能与橡胶裁刀相关的性能指标。
请注意,标准的具体版本和内容可能随时间而变化,建议查阅最新的ASTM标准文档以获取准确和最新的信息。
ASTM D 1646
3.1.3stress relaxation,n—the response of a raw or com-pounded rubber to a rapid cessation offlow or a sudden deformation;specific to the use of the shearing disk viscom-eter,it takes the form of a decaying level of stress initiated by suddenly stopping the rotation of the disk.3.1.4test temperature,n—the steady-state temperature of the closed dies with rotor in place and the cavity empty;this steady-state temperature shall be measured within the dies as described in6.1.3.4.Summary of Test Methods4.1These test methods are divided into three parts:4.1.1Part A—Viscosity:This test method describes the measurement of the Mooney viscosity.The Mooney viscosity is measured by a metal disk embedded in a rubber specimen contained in a rigid cylindrical cavity maintained at a specified pressure and temperature.The disk is slowly and continuously rotated in one direction for a specified time.The resistance to this rotation offered by the rubber is measured in arbitrary torque units as the Mooney viscosity of the specimen.4.1.2Part B—Stress Relaxation:This test method de-scribes the procedure to measure stress relaxation.At the end of a Mooney viscosity test,the rotation of the metal disk is suddenly stopped and the rate of decrease of torque is monitored as a function of time.4.1.3Part C—Pre-Vulcanization Characteristics:This test method describes how pre-vulcanization properties may be measured.The viscosity of vulcanizable rubber compounds is recorded during heating at a specified temperature.The mini-mum viscosity and the times for the viscosity to increase by specified amounts are used as arbitrary measures of the start and rate of vulcanization.5.Significance and Use5.1Viscosity—Viscosity values determined by this test method depend on molecular structure,molecular mass,and non-rubber constituents that may be present.Since rubber behaves as a non-Newtonianfluid,no simple relationship exists between the molecular mass and the viscosity.Therefore, caution must be exercised in interpreting viscosity values of rubber,particularly in cases where molecular mass is very high.For example,as the molecular mass increases,the viscosity values for IIR polymers(butyl rubbers)reach an upper limit of about80,at100°C(212°F)using a large rotor at a rotation speed of2r/min,and may then decrease to considerably lower values.For these higher molecular mass rubbers,better correlation between viscosity values and mo-lecular mass is obtained if the test temperature is increased.5.2Stress Relaxation—The stress relaxation behavior of rubber is a combination of both an elastic and a viscous response.Viscosity and stress relaxation behavior do not depend on such factors as molecular mass and non-rubber constituents in the same way.Thus both of these tests are important and complement each other.A slow rate of relaxation indicates a higher elastic component in the overall response, while a rapid rate of relaxation indicates a higher viscous component.The rate of stress relaxation has been found to correlate with rubber structure characteristics such as molecu-lar mass distribution,chain branching,and gel content.5.3Pre-Vulcanization Characteristics—The onset of vul-canization can be detected with this instrument as evidenced by an increase in viscosity.Therefore,this test method can be used to measure incipient cure time and the rate of cure during very early stages of vulcanization.This test method cannot be used to study complete vulcanization because the continuous rota-tion of the disk will result in slippage when the specimen reaches a stiff consistency.6.Apparatus6.1Mooney Viscometer—An instrument consisting of a motor-driven rotating disk within a cylindrical die cavity formed by two dies maintained at specified conditions of temperature and die closure force.The Mooney viscometer measures the effect of temperature and time on the viscosity of rubbers.If the stress relaxation test is to be performed,the instrument must be capable of stopping the rotation of the disk and monitoring the relaxation of stress versus time.The die-rotor relationship of one design is shown in Fig.1.The Mooney viscometer shall incorporate the following compo-nents:6.1.1Dies—The dies and die holders forming the die cavity shall be fabricated from a nondeforming tool steel,shall have an unplatedfinish,and shall be hardened to a Rockwell hardness of60HRC minimum.The dimensions of the die cavity,measured from the highest surfaces,shall be50.936 0.13mm(2.00560.005in.)in diameter and10.5960.03mm (0.41760.001in.)in depth.The surfaces of the die cavity shall either be serrated or contain V-grooves to minimize slippage of the specimen.N OTE2—The two types of dies may not give the same results.6.1.1.1Serrated Dies—When the cavity is formed from four pieces of steel,serrations on the surfaces of the dies and die holders are used.These serrations consist of rectangular grooves0.860.02mm(0.03160.0008in.)wide with a uniform depth of not less than0.25mm(0.010in.)nor more than0.38mm(0.015in.).The grooves shall be vertical and shall be cut on1.660.04mm(0.06360.002in.)centers.The serrations of the dies shall consist of two sets of such grooves at right angles to each other.6.1.1.2Radial Grooved Dies—When the die cavity is formed from two pieces of steel,radial V-grooves are used only on theflat surfaces of the die cavity.The grooves shall be spaced at20°intervals and shall form a90°angle in the die surfaces with the bisector of the angle perpendicular to the surface.They shall extend from the7-mm(0.281-in.)circle to the47-mm(1.875-in.)circle in the upper die and from the 12-mm(0.472-in.)circle to the47-mm circle in the lower die. The grooves shall be160.1mm(0.0460.004in.)wide at the surface.6.1.1.3Mounting of Dies—The dies shall be an integral part of or mounted on platens equipped with a heating device and controls capable of maintaining the die cavity at the specified test temperature with a tolerance of60.5°C(61°F)at equi-librium conditions.6.1.1.4Die Closure—The viscometer shall have a suitable device for opening and closing the platens and dies and for holding them closed during a test.During a test it isextremelyimportant that the die cavity be held closed with the correctforce.To obtain the correct closing force for the mechanical-type closures,follow explicitly either the manufacturer’s rec-ommendation or other procedure of equal reliability.4Diesclosed by pneumatic means shall be held closed during theactual test with a force of approximately 11.560.5kN (25856115lbf).A greater force may be required to close the dieswhen tests are made on stocks having extreme toughness.Atleast 10s before the motor is started,the force should bereduced to 11.560.5kN.The die closure shall be such that apiece of thin soft tissue (with a thickness not greater than 0.04mm (0.0015in.))placed between the meeting surfaces willretain a continuous pattern of uniform intensity when the diesare closed upon it.A nonuniform pattern indicates wear of thedie holder surface or distortion of dies and die holders.Eithersituation will result in undue leakage and erroneous results.N OTE 3—For mechanical-type closure viscometers,the pressure on thedie cavities may change if the viscometer is used at a different temperaturethan that at which it is adjusted.6.1.2Rotors —Two rotors are specified,differing only intheir diameter.They shall be fabricated from a nondeformingtool steel,shall have an unplated finish and shall be hardenedto a Rockwell hardness of 60HRC minimum.The large rotorshall be 38.1060.03mm (1.50060.001in.)in diameter and5.5460.03mm (0.21860.001in.)in thickness as measuredfrom the highest points.The small rotor shall conform to thelarge rotor except the diameter shall be 30.4860.03mm(1.20060.001in.).The serrations on the face of the rotor shallconform to the requirements for the serrated dies given in 6.1.1.1and the serrations on the edge of the rotor shall conform to the requirements specified for the serrated die holders.The rotor head shall be securely mounted perpendicularly to a suitable straight cylindrical stem not exceeding 11mm (0.433in.)in diameter.The rotor head shall be positioned so that the top and bottom surfaces are 2.5460.10mm (0.10060.005in.)from the surfaces of the top and bottom dies,respectively,when the dies are closed.The wear tolerance from the center position should not exceed 60.25mm (60.010in.).A suitable seal shall be provided in the lower die having a minimum clearance and constant torque when the machine is run empty.The eccentricity,or runout,shall not exceed 0.1mm.6.1.2.1Rotor wear will affect test results.Any rotor worn to such an extent that the rotor diameter is less than the minimum diameter shown in this procedure shall not be used.6.1.2.2Rotor Drive —The disk shall be rotated relative to the dies at a rotational rate of 0.21rad/s (2.0r/min),unless otherwise specified.The permissible tolerance shall be 60.002rad/s (60.02r/min).6.1.2.3Rotor Stop —If the stress relaxation test is to be performed,the instrument shall be capable of stopping the rotor within 0.1s.6.1.3Temperature Measuring System —Since the measure-ment of the temperature of the rubber in the die cavity is difficult and impractical,the temperature of the closed dies shall be measured with the rotor in place and the cavity empty.The temperature measuring system shall consist of platinum resistance temperature sensors,thermocouples,or thermistors.Calibrated platinum resistance temperature sensors capable of indicating the temperature to within 60.25°C (60.5°F)are preferred.When calibrated thermocouples (copper-constantan,4Decker,G. E.,“Note on the Adjustment of the Mooney Viscometer DieClosure,”ASTM Bulletin ,No.195,January 1954,p.51.FIG.1Relationship of Platens,Dies,and Rotor in a Typical Shearing DiskViscometerType T0.25mm,or 30wire gage are suggested)or thermistorsare used,they shall be capable of indicating the temperature toat least 60.5°C (61°F).A temperature sensor shall be locatedin each die for control of the die temperature.The activeelement of the sensor shall be 3to 5mm (0.12to 0.20in.)fromthe surface of the die and 15to 20mm (0.6to 0.8in.)from therotor axis.6.1.4Torque Measuring System —The torque measuringsystem shall be designed to measure zero torque when the rotoris turning in an empty cavity,and to measure 10060.5Mooney units when a torque of 8.3060.02N-m (73.560.2lbf-in.)is applied to the rotor shaft.If the stress relaxation testis to be performed,the torque measuring system must reset toa zero force for a stationary rotor.The torque measuring systemshall record the torque during the relaxation test at minimumrates of one reading each second for the first 6s after the rotoris stopped,one reading each 3s for the next 24s,one readingeach 6s for the next 30s,and one reading each 12s for theremainder of the relaxation test.6.2Mill —A laboratory rubber mill conforming to the re-quirements in Practice D 3182and set as described in 7.2ofthis test method shall be used to prepare massed samples.7.Specimen Preparation7.1Condition the sample obtained in accordance with TestMethods D 1485or Practice D 3896until it has reached roomtemperature (2363°C (7365°F))throughout.7.2The sample may be tested as received,unmassed,or itmay be massed.Better repeatability within labs and reproduc-ibility between labs is normally obtained on unmassed speci-mens.However,the sample may be massed to expel air,toconsolidate particles,or to modify it,if necessary.When millmassing is required use the sample preparation steps shown in7.2and as specified in Table 1for the type of rubber beingtested.When specimens cannot be easily cut from the un-massed material and mill massing is not appropriate,themanufacturer of the material should be asked to recommend analternate sample preparation procedure.For best reproducibil-ity of results,minimum work (shear)should be done to the material during specimen preparation.7.2.1Pass 25065g of the sample between the rolls of the standard laboratory mill as described in Practice D 3182having a roll temperature of 7065°C (15869°F)and having a distance between the rolls of 2.560.1mm (0.160.005in.)as determined by a lead slug.Roll the specimen and immedi-ately insert it endwise in the mill for another pass.Repeat this procedure until a total of ten passes have been completed.Sheet the specimen on the tenth pass.7.2.2Pass 25065g of the sample between the rolls of the standard laboratory mill as described in Practice D 3182having a roll temperature of 5065°C (12269°F)and having a distance between the rolls of 1.460.1mm (0.05560.005in.)as determined by a lead slug.Immediately fold the specimen in half and insert the folded end into the mill for a second pass.Repeat this procedure until a total of nine passes have been completed.Immediately insert the rubber without folding into the mill for a tenth pass.Do not allow the specimen to rest between passes or to band on the mill rolls at any time.7.2.3Pass 25065g of the sample between the rolls of the standard laboratory mill as described in Practice D 3182having a roll temperature of 5065°C (12269°F)and having a distance between the rolls of 1.460.1mm (0.05560.005in.)as determined by a lead slug.Immediately fold the specimen in half and inserted the folded end into the mill for a second pass.Repeat this procedure until a total of nine passes have been completed.Open the mill rolls to 360.1mm (0.12560.005in.),fold the specimen in half and pass it between the rolls once.Do not allow the specimen to rest between passes or to band on the mill rolls at any time.7.3Unmassed Specimen —Prepare an unmassed sample by cutting a piece of rubber approximately 60by 150by 10mm (2by 6by 0.375in.)from which the specimen can be cut.This piece should be cut in a way that will minimize work on the sample.7.4Pre-Vulcanization Characteristics Sample —Prepare compounded stock as described in the test method for the typeTABLE 1Standard Viscosity Test ConditionsType Rubber ASample Preparation,See Section Test Temperature,°C B Running Time,min C IRM 2417.1and 7.310060.5or 12560.58.0Unmassed sample7.1and 7.3Use conditions listed below for type rubber being tested.NR7.1and 7.2.110060.5 4.0BR7.1and 7.2.210060.5 4.0CRIRNBRSBRBIIR7.1and 7.2.2D 10060.5or 12560.5E 8.0CIIRIIREPDM7.1and 7.2.212560.5 4.0EPMSynthetic rubber black masterbatch7.1and 7.2.310060.5 4.0Compounded stock reclaimed material7.1and 7.310060.5 4.0MiscellaneousIf similar to any group above,test accordingly.If not,establish a procedure.ASee Practice D 1418.B Test temperatures are 10060.5°C (21261°F)or 12560.5°C (25761°F).C Time after the standard 1.0-min warm-up period at which the viscosity measurement is made.D If no air bubbles are visible in the sample,7.2.2may be omitted.E Use a temperature of 12560.5°C (25761°F)whenever specimen has a viscosity higher than 60-ML 1+8(100°C).rubber being tested or another agreed-upon recipe or proce-dure.8.Test Specimen8.1Conditioning —Condition unmassed specimens untilthey have attained room temperature (2363°C (7365°F))throughout.Allow massed specimens to rest at room tempera-ture for at least 30min before measuring their viscosity.8.2Preparation —The test specimen shall consist of twopieces of the material being tested having a combined volumeof 2563cm 3.This volume is approximately 1.5times thevolume of the test cavity (1.45times for small rotor,1.67timesfor large rotor)and will ensure that the cavity is filledcompletely.For convenience the mass of the test specimen ofcorrect volume may be calculated as follows:m 5v 3d 525cm 33d (1)where:m 5mass,g,v 5volume in cm 3525cm 3,and d 5density in Mg/m 3(g/cm 3).N OTE 4—Mg/m 3and g/cm 3are numerically equivalent.Test specimen mass shall be within a tolerance of 63g.Thepieces shall be cut from the prepared specimen and shall be ofsuch dimensions that they will fit within the die cavity withoutprojecting outside it before the viscometer is closed.A45-mm(1.75-in.)diameter cutting die may be used to assist inpreparing the test pieces.A hole punched in the center of oneof the test pieces facilitates the centering of the disk stem.Itshall not be permissible to slip the test piece around the rotorstem by cutting it edgewise.When testing low viscosity orsticky materials,it is permissible to insert between the speci-men and die cavity a layer of film approximately 0.025mm(0.001in.)thick.The film selected should not react with thetest specimen.Materials that have been found suitable includecellophane,5polyester,6high-density polyethylene (at 100°Conly),and similar materials.The test specimen shall be as freeof air and volatile materials as it is practical to make it and shallbe free of pockets which may trap gasses against the rotor ordie surfaces.8.3Because the value of viscosity obtained for a givenspecimen will vary depending on the manner in which thespecimen is prepared and the conditions of rest prior to the test,it is imperative that specimen preparation be made in strictaccordance with this procedure or some mutually agreed uponprocedure if comparisons of results are to be made.9.Calibration9.1The shearing disk viscometer shall be calibrated anytime its results are suspected of being inaccurate,after anyrepairs,before any interlaboratory test program,before testingdisputed specimens,and frequently enough to ensure themaintenance of proper calibration of the instrument.9.2The shearing disk viscometer shall be calibrated while the machine is running at the temperature at which it is normally used.The viscometer shall be adjusted so that it will read zero torque when run empty and 10060.5when a torque of 8.3060.02N-m (73.560.2lbf-in.)is applied to the rotor shaft.Therefore,a torque of 0.083N-m (0.735lbf-in.)is equivalent to one Mooney unit.N OTE 5—It is recommended that ASTM Industrial Reference Material,IRM 241,butyl rubber,be used for routine checking of the operation of the viscometer.The use of this or any other reference rubber shall not be used as a substitute for mechanical calibration as described in this section of the standard.PART A—MEASURING MOONEY VISCOSITY 10.Procedure 10.1Select the rotor to be used for the test.The large rotor should be used unless the Mooney viscosity would exceed the capacity of the instrument,or when slippage occurs or is suspected.However,when slippage occurs with the large rotor,changing to the small rotor may not prevent it.10.2Adjust the temperature of the closed dies with the rotor in place to the temperature shown in Table 1for the type of rubber being tested.The temperature of the two dies shall be within 0.5°C (1°F)of each other.Unless otherwise specified the temperature for viscosity determination shall be 10060.5°C (21261°F).10.3Adjust the torque indicator to the zero reading while the viscometer is running in the unloaded condition with the rotor in place.Then stop the rotation of the disk.This adjustment should be made with the dies open for machines with rotor ejection springs (so the rotor does not rub against the upper die),but with the dies closed for all other types of machines.N OTE 6—If the viscometer has a seal between the rotor stem and the die,frequent zero adjustment may be necessary because of a change in friction between the rotor stem and the seal.10.4Remove the hot rotor from the properly conditioned cavity,quickly insert the stem through the center of one of the test pieces,and replace in the viscometer.Place the second piece on the center of the rotor,close the dies and immediately activate the timer.N OTE 7—A brass pry rod with a flattened end should be used for removing the rotor to prevent damaging it or the dies.10.5Warm the specimen in the closed cavity of the Mooney viscometer for exactly 1min and then start the motor which drives the rotor.Experimental polymers or especially tough materials may require a longer warm-up time.10.6It is recommended that a recorder be used to continu-ously record viscosity readings for the time shown in Table 1for the type of rubber being tested.When a recorder is not used,observe the dial indicator or digital display continuously during the 30-s interval preceding the specified time of reading.Take as the viscosity the minimum value to the nearest whole unit during this interval.The running time should never be less than 2min.N OTE 8—The temperature gradients and rate of heat transfer will differ somewhat from one machine to another,particularly if different types of5Flexel 128PUT uncoated cellophane,available from Flexel,Inc.,115PerimeterCenter Place,Suite 1100,Atlanta,GA 30346has been found satisfactory for thispurpose.6Mylar 100A,available from Cadillac Plastic and Chemical Co.,530Stephen-son Hwy.,Troy,MI 48002-6035,has been found satisfactory for thispurpose.heating are employed.Therefore,it may be expected that the viscosity values obtained for a rubber tested on different machines will be more comparable if taken after temperature equilibrium of the specimen is ually this condition is reached about10min after the machine is closed on the specimen.For most rubbers,the viscosity value obtained will not be altered appreciably by permitting the specimen to warm in the machine for different times,provided that the viscosity is read at a specified time.11.Report11.1The report on the viscosity test shall include the following:11.1.1Sample identification,11.1.2Method of specimen preparation:U5unmassed, M5massed,and C5compounded.11.1.3Mooney viscosity number to the nearest whole unit, 11.1.3.1The Mooney viscosity number shall be reported as measured.Values obtained with one rotor shall not be con-verted to equivalent values for the other rotor since the relationship between rotors may vary depending on the type ofrubber and test conditions.If an exact relationship is required, it should be established for each rubber and set of test conditions.11.1.4Rotor size(L5large,S5small),11.1.5Time that the test specimen was permitted to warm in the machine before starting the motor,min,11.1.6Time at which the viscosity reading was taken after starting the motor,min,11.1.7Test temperature,11.1.8Rotor speed if other than0.20rad/s(2.0r/min), 11.1.9Type offilm used,if any,and11.1.10Make and model of instrument used.N OTE9—Example:Results of a typical test would be reported as follows:50−UML1+4(100°C)using polyethylenefilm anda Monsanto MV2000instrumentWhere50−is the viscosity number,U indicates an unmassed specimen, M indicates Mooney,L indicates the use of the larger rotor(S would indicate the small rotor),1is the time in minutes that the specimen was permitted to warm in the machine before starting the motor,4is the time in minutes after starting the motor at which the reading is taken,and 100°C is the temperature of test.PART B—MEASURING STRESS RELAXATION12.Procedure12.1If the stress relaxation test is to be performed,it must follow a viscosity test as described in10.12.2At the end of the viscosity test,stop the rotation of the disk within0.1s,reset the zero torque point to the static zero for a stationary rotor,and record the torque at minimum rates as listed in6.1.4.The relaxation data shall be collected starting typically1s after the rotor is stopped,and continuing for at least1min and typically for2min after the rotor is stopped.A typical chart from a Mooney viscosity test followed by a stress relaxation test is shown in Fig.2.N OTE10—Resetting torque to a static zero is necessary because the dynamic zero used for the viscosity test would result in a negative torque value once the material had completely relaxed with a stationary disk.The relaxation of torque for most polymers is so rapid that stopping the rotor,resetting zero and recording the relaxing torque must be controlled automatically.12.3Analysis of Stress Relaxation Data:12.3.1Analysis of stress relaxation data(torque versus time data)consists of(1)developing a plot of torque(Mooney units) versus time(s);this normally takes the form of a log-log plot as shown in Fig.3,and(2)calculating the constants of the power law model of material response,as represented by Eq2.M5k~t!a(2) where:M5Mooney units(torque)during the stress relaxation test,k5a constant equal to the torque in Mooney units1s after the disk is stopped,anda5an exponent that determines the rate of stress relax-ation.12.3.2If Eq2is transformed by taking the log of both sides, Eq3isobtained:FIG.2Example Torque Curve from a Mooney Viscosity Test Plusa Stress RelaxationTestFIG.3Plot of Log Mooney Units Versus Log Time from a StressRelaxationTestlog M5a~log t!1log k(3) This has the form of a linear regression equation where a equals the slope,log k equals the intercept and log M and log t correspond respectively to the dependent and independent variables.In a plot of log M versus log t,as shown in Fig.3, the slope of the graph,(log M/log t),is equal to a.The correlation coefficient,r,from the regression equation should also be calculated.12.3.3The area under the stress relaxation curve from the beginning time(t o)to the end of the stress relaxation test(t f) may also be calculated using Eq4:A5k~a11!@t f~a11!2to~a11!#~afi21.000!(4)where:A5area under the relaxation curve from(t o)to the end of (t f)the stress relaxation test(Mooney units-seconds),andt o5beginning time of the stress relaxation test,s,and.t f5total time of the stress relaxation test,s.12.3.3.1If the slope a5−1.000,then Eq4should be changed to Eq5:A5k@1n~t f/t o!#~a521.000!(5) 13.Report13.1The report for a stress relaxation test shall contain the following information:13.1.1The full report of the viscosity test of Part A,13.1.2Duration of the stress relaxation test,s,13.1.3One or more of the following data points from the stress relaxation curve:13.1.3.1Time,s,from disk stop to x%decay of the Mooney viscosity,t x,13.1.3.2Percent decay of the Mooney viscosity at y seconds after disk stop,X y%,13.1.3.3The value of the exponent a,the constant k and the correlation coefficient r from the calculation of a power law model of the stress relaxation.13.1.3.4The value of A,(M-s),area under the stress relaxation curve power law model for a time span from1s to t f,time of the end of the stress relaxation test.N OTE11—Example:Results of a typical stress relaxation test would be reported as follows:505ML1+4(100°C)+120s SRt 80516.0s of stress relaxation to decay by80%of MooneyviscosityX 30586.1%decay of Mooney viscosity at30s from disk stopPower Law Decay Model:k548.0a5−0.5805r50.9946A5738M-sPART C—MEASURING PRE-VULCANIZATIONCHARACTERISTICS14.Procedure14.1Adjust the temperature of the closed dies with rotor in place to the desired test temperature.The recommended test temperatures are those specified in Practice D1349from70°C (158°F)upward.Other temperatures may be used if desired. An optimum test temperature for vulcanizable compounds will yield the required increase of Mooney units within a period of 10to20min.14.2Adjust the torque indicator to the zero reading while the closed viscometer is running in the unloaded condition with the rotor in place and the proper operating pressure.Then stop the rotation of the disk(Note6).14.3Remove the hot rotor from the properly conditioned cavity,quickly insert the stem through the center of one of the test pieces and replace the viscometer.Place the second test piece on the center of the rotor,close the dies immediately,and activate the timer(Note7).14.4Warm the specimen in the closed cavity of the Mooney machine for exactly1min and then start the motor which drives the rotor.14.5Measure the time from the instant the dies are closed, and start the rotor1min later unless otherwise specified.Either record the viscosity continuously or take sufficient readings to permit the preparation of a complete time-viscosity curve (example shown in Fig.4).Record the following information: 14.5.1Minimum viscosity.14.5.2The time required for a specified increase above the minimum viscosity.When the small rotor is used this increase is3units and the time is designated t3.When the large rotor is used the increase is5units and the time is designated t5. 14.5.3The time required for a specified larger increase above the minimum viscosity.When the small rotor is used the increase is18units and the time is designated t18.When the large rotor is used the increase is35units and the time is designated t35.14.5.4Cure index as follows:For small rotorD t S5t182t3(6) For large rotorD t L5t352t5(7)15.Report15.1The report for the pre-vulcanization characteristics shall include the following(for referee purposes the entire viscosity-time curve shall be provided):15.1.1Sample and specimen identification,15.1.2Test temperature,15.1.3Rotor size,15.1.4Minimum viscosity,15.1.5t3or t5,15.1.6t18or t35,15.1.7Cure index,and15.1.8Make and model of instrument used.N OTE12—A low value for the cure index indicates a fast rate-of-cure.A high value for the cure index would correspondingly indicate a slow rate-of-cure.The curing characteristics reported in14.1.5.2,14.1.5.3and 14.1.5.4may differ appreciably when determinations are made on the same compound using the large and smallrotors.。
ASTM D648
ASTM D6481. 简介ASTM D648是美国材料和试验协会(American Society for Testing and Materials, ASTM)制定的一个标准测试方法,用于评估塑料和弹性材料的热变形温度(Heat Deflection Temperature, HDT)。
该测试方法可以帮助工程师和研究人员确定材料在加热过程中的性能以及其在实际应用中的可行性。
2. 测试原理ASTM D648测试方法是通过加热样品,并施加一定的载荷,将材料暴露在高温下,以确定其热变形温度(HDT)。
具体而言,ASTM D648测试方法需要将样品加热到从室温到特定温度的温度范围内。
在这个温度范围内,对样品施加一个持续的、预定的压力,然后测量样品弯曲直至达到定义的变形标准。
通过测量样品在不同温度下的变形标准,可以绘制出热变形温度与应力之间的关系曲线,从而确定材料的热变形温度。
3. 实施步骤ASTM D648测试方法包含以下步骤:3.1 准备样品首先,需要准备符合标准要求的样品。
通常情况下,样品应具有特定的几何形状和尺寸,并且应由代表性的材料制成。
3.2 设定测试条件根据需要,设定合适的加热速率和温度范围。
测试中使用的温度范围通常从室温开始,以所需的步骤增加至目标温度。
3.3 加载样品将样品放置在测试设备中,并施加定义的载荷。
通常情况下,载荷应保持恒定,以避免对测试结果的影响。
3.4 加热样品使用适当的加热设备和方法,将样品加热到设定的温度。
在加热过程中,应监测并记录样品的温度。
3.5 记录测试结果当样品达到设定温度时,记录样品上产生的变形。
该变形可以是样品的弯曲、弯曲或其他形式的形变。
3.6 分析数据使用记录的温度和变形数据,可以生成变形温度与应力之间的关系曲线。
这些曲线可以帮助确定材料的热变形特性。
4. 应用与意义ASTM D648测试方法的结果广泛应用于塑料和弹性材料的设计、制造和选择过程中。
检测方法 中外标准对照
检测方法中外标准对照检测方法中外标准对照一、涂层厚度的测量(一)新gb(征求意见稿)gb/t13448―20211范围本方法适用于彩色涂层钢板及钢带(以下简称彩涂板)表面涂层厚度的测定。
本方法规定了磁性测厚仪法、手持式千分尺法(以下简称千分尺法)、金相显微镜法和钻孔破坏式显微观察法四种彩涂板涂层厚度测定方法。
磁性测厚仪法:适用于以冷轧板和镀锌板为基材的彩涂板涂层厚度的测量。
如果涂层厚度小于3μM,则该方法不适用。
千分尺法:适用于各种材料为基板的彩涂板涂层厚度的测定。
在千分尺测量装z负荷下容易变形的涂层则本方法不适用。
金相显微镜法:适用于各种材料的彩色涂层钢板涂层厚度的测量。
钻孔破坏式显微观察法:适用于各种材料为基板的彩涂板涂层厚度的测定。
当各涂层界面可清晰分辨时,亦可适用于各涂层(初涂层、精涂层)厚度的分别测定。
2原理2.1磁性测厚仪法利用电磁场磁阻原理,以流入钢铁基板的磁通量大小来测定涂层厚度。
2.2手持式千分尺法通过测量去除涂层前后彩色涂层板的厚度差来检测涂层厚度。
2.3金相显微镜法利用彩涂板断面涂层和金属基板的光反射率不同,从而测量彩涂板涂层厚度。
2.4钻孔破坏式显微观察法用钻孔机在彩涂板涂层上钻一个一定锥度的圆孔,用光学显微镜观察涂层,定位涂层界面,测量水平距离,并根据锥度换算成涂层厚度。
3仪器和材料3.1磁性测厚仪3.1.1当涂层厚度不大于50μm时,仪器示值误差为±1μm。
3.1.2当涂层厚度大于50μm时,仪器示值误差为±2μm。
3.1.3已知厚度的标准片(非磁性膜厚),厚度应与被测涂层相近。
3.2千分尺3.2.1数显式仪表的指示误差为±0.001mm。
3.2.2测量头为圆形平面,直径小于5mm。
3.3金相显微镜3.3.1目镜带标尺的显微镜,仪器示值误差为±2.5μm。
3.3.2适当牌号的金相砂纸。
3.3.3固定试样用材料(如树脂),应对涂层无损害作用,其颜色明显区别于涂层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NOTICE: This standard has either been superseded and replaced by a new version or discontinued.Contact ASTM International () for the latest information.times beyond48h are necessary,storage of samples in the En Core sampler at462°C or–1262°C for longer than48h is an option,provided it can be shown that the longer storage time used does not influence the concentrations of the VOCs of interest in the samples,or that the data generated by analysis of the samples meet the DQOs(see Practice D5792).4.6This practice does not use methanol preservation or other chemical preservatives in thefield.As a result,there are no problems associated withflammability hazards,shipping restrictions,or dilution of samples containing low volatile concentrations due to solvents being added to samples in the field.4.7The En Core sampler is a single-use device.It should not be cleaned,or reused,or both.4.8This practice cannot be used for sampling cemented material,consolidated material,or material having fragments coarse enough to interfere with proper coring techniques.5.Apparatus5.1En Core Sampler—The En Core sampler has three components:the coring body/storage chamber,which is volu-metrically designed to collect and store a soil sample of approximately5or25g;an O-ring sealed plunger for nondisruptive extrusion of the sample into an appropriate container for analysis or preservation;and,a slide-on cap having an O-ring seal and locking arm mechanism(see Fig.1). The coring body/storage chamber of the5-g sampler has a volume of3cm3to give a sample size of approximately5g,assuming a soil density of1.7g/cm3.The coring body/storage chamber of the25-g sampler has a volume of14.5cm3to givea sample size of approximately25g,assuming a soil density of1.7g/cm3.The seals of the sampler are provided by three polytetrafluoroethylene-coatedfluoroelastomer O-rings(see Fig.1).The coring body/storage chamber,plunger,and cap of the En Core sampler are constructed of an inert composite polymer.The En Core sampler is certified as clean and should not be reused.There are two stainless steel reusable attach-ments that are used with the En Core sampler.These are a T-handle,which is used to push the sampler into the soil for sample collection;and an extrusion tool,which attaches to the plunger for extrusion of the sample from the coring body/ storage chamber(see Fig.2).Each En Core sampler is supplied with a protective moisture-proof bag for shipment to the laboratory.5.2Minimum/Maximum Thermometer—This is any ther-mometer that registers the minimum and maximum tempera-tures reached during any given period of time in°C and has a range that includes the specified storage temperature in divi-sions of1°C.6.Procedure6.1The size of the En Core sampler used is determined by the size of the sample required by the laboratory procedure that will be used to analyze the sample.If a sample size of approximately5g is required for analysis,the5-g En Core sampler,and not the25-g device,should be used to collectand FIG.1Components of the En CoreSamplerstore the sample.Subsampling from the En Core devices should not be performed to obtain smaller sample sizes for analysis.6.2If volatile contaminant levels in the soil being sampled are not known,it is recommended that three samples be collected at each sampling location using three En Core samplers.If determination of moisture content is required for reporting sample results on a dry weight basis,a fourth sample should be collected from each sampling location using a suitable container.The proper sample preparation method for low-level or high-level volatile analysis 5,6can be determined by screening one of the three samples collected in the En Core samplers for high or low concentrations of VOCs.If a high concentration is present,one of the remaining samples in the En Core devices can be extruded into methanol for high-level analysis;if a low concentration is present,the two remaining samples in the En Core devices can be extruded into two appropriate vials for low-level analysis giving an additional low-level sample for analysis,if needed.For guidance on sample collection,sample handling,and sample preparation methods for volatile organic analysis,see Practice D 4547.For quality assurance considerations related to field sampling,see Guide D 4687.6.3As stated in 4.8,the En Core device cannot be used for sampling cemented material,consolidated material,or material having fragments coarse enough to interfere with proper coring techniques.6.4Sample Collection —The manufacturer’s specific in-structions for operating the En Core sampler and T-handle to collect a soil sample should be followed.The steps involved in sample collection using the En Core sampler are given below.6.4.1Before collecting a sample in the En Core sampler,the plunger rod (see Fig.1)should be positioned so that the plunger can be moved freely from the top to the bottom of the coring body/storage chamber.For sample collection,the T-handle (see Fig.2)should be attached to the sampler,and the plunger should be positioned so that the bottom of the plunger is flush with the bottom of the coring body/storage chamber.This prevents air from being trapped in the device during sample collection.When inserting a coring device into a surface for sample collection,air should not be trapped behind the sample.If this occurs,air can pass through the soil causing VOCs to be lost,or it can cause the sample to be prematurely pushed from the coring device.6.4.2Sample collection should be performed as quickly as ing the T-handle,push the En Core sampler into the soil until the coring body/storage chamber is completely full.It can be verified that the coring body/storage chamber is full by looking into the appropriate viewing hole (either 5or 25-g)in the T-handle (see Fig.2).The coring body/storage chamber is completely full if the small O-ring on the plunger rod (see Fig.1)is centered in the T-handle viewing hole.If possible,look at the viewing hole while the device is in the soil to check if the coring body/storage chamber is completely full.If it is not possible to view the hole when the device is in the soil,remove the sampler from the soil to view the hole.If the coring body/storage chamber is not completely full,quickly insert the device back into the same sampling spot and push harder to fill the coring body/storage chamber.When the coring body/storage chamber is completely full,scrape a spatula across the bottom of the coring body/storage chamber so the surface of the soil in the sampler is flush with the opening of the coring body/storage chamber (see Note 2).Quickly wipe the external surface of the coring body/storage chamber with a clean tissue or cloth.After ensuring that the sealing surfaces are clean,cap the coring body/storage chamber while it is still on the T-handle.This is done by gently sliding the cap onto the coring body/storage chamber with a twisting motion.The cap is5U.S.EPA,1996,Method 5035:Closed-System Purge-and-Trap and Extraction for V olatile Organics in Soil and Waste Samples.Test Methods for Evaluating Solid Waste:Physical/Chemical Methods (SW-846),V ol 1B,Final Update III.6U.S.EPA,1996,Method 5021:V olatile Organic Compounds in Soils and Other Solid Matrices Using Equilibrium Headspace Analysis.Test Methods for Evaluating Solid Waste:Physical/Chemical Methods (SW-846),V ol 1B,Final UpdateIII.FIG.2Reusable Attachments to the En CoreSamplerlocked into position when the grooves on the locking arms seat over the ridge on the coring body/storage chamber(see Fig.1). If the cap of the En Core sampler is difficult to lock into position,the O-ring in the cap(see Fig.1)may be bent out of position,and a new cap should be used to seal the device.A bent O-ring in the cap may result in loss of VOCs from the stored sample(see X1.1.8.2and X1.1.9.2).After the cap is locked into position,the T-handle is removed from the sampler, and the plunger is locked into position by rotating the plunger rod(see manufacturer’s specific operating instructions).N OTE2—For drier soils that are difficult to compact in the sampler, scraping a spatula across the surface of the soil to make itflush with the opening of the coring body/storage chamber may loosen particles of the soil in the coring body/storage chamber.These particles may scatter when the device is capped and may affect the seal between the cap and coring body/storage chamber(see X1.1.9.3).Caution should be used when working with these types of soils to prevent scattering from happening.6.4.3A sample label showing the sample number is attached to the cap of the En Core sampler,and the sampler is placed in its protective moisture-proof shipping bag(provided with each En Core sampler).This bag has a label attached for recording sample name,date collected,comments,and sample number.6.5Sample Storage—The capped coring body immediately becomes a sealed sample storage chamber.A sample can be stored in the sealed coring body/storage chamber at462°C for up to48h.For cases where holding times beyond48h are necessary,storage of samples in the En Core sampler at4 62°C or–1262°C for longer than48h is an option,provided it can be shown that the longer storage time used does not influence the concentrations of the VOCs of interest in the samples,or that the data generated by analysis of the samples meet the DQOs(see Practice D5792).Data showing perfor-mance of the En Core sampler as a storage chamber for samples of three different soil types stored at462°C for48h; 462°C for four days;462°C for48h followed by storage for 5days at–1262°C;and,–1262°C for seven days are given in Appendix X1.6.5.1Storage of samples at462°C can be achieved by placing the protective shipping bag,in which the En Core sampler has been placed,in a cooler with ice,cold packs,or in a refrigerated compartment regulated at462°C.If the optional storage temperature of–1262°C is used as discussed in6.5, the En Core sampler should be stored in a freezer compartment regulated at–1262°C.A minimum/maximum thermometer should be placed with the samples during storage to verify that the temperature requirement is maintained.6.6Arrangements with the receiving laboratory for sample log in,sample handling,required storage conditions,and analysis should be made.6.7Extrusion of the Soil Sample from the En Core Sampler—The manufacturer’s specific instructions for operat-ing the En Core sampler and extrusion tool to extrude the soil sample from the coring body/storage chamber should be followed.The steps involved in sample extrusion from the En Core sampler are outlined in6.7.1.6.7.1At the laboratory,the soil is transferred into the appropriate container without disturbing the integrity of the sample by removing the cap from the coring body/storage chamber and using the plunger to expel the soil into the receiving container(see Note3).This is done by performing the following steps according to the manufacturer’s specific operating instructions:attach the extrusion tool(see Fig.2)to the En Core sampler;rotate the extrusion tool plunger knob into position for sample extrusion;unlock the locking arms of the cap;carefully remove the cap from the sampler;and,push down on the plunger knob of the extrusion tool(see Fig.2)to expel the sample from the coring body/storage chamber directly into the appropriate container for analysis or preser-vation(see Practice D4547).After the sample is expelled from the En Core sampler,the O-ring in the sampler cap should be inspected to make sure that the O-ring was not bent when the cap was placed on the coring body/storage chamber.A bent O-ring in the sampler cap can result in loss of VOCs from the stored sample and should be documented(see X1.1.8.2and X1.1.9.2).N OTE3—Samples that have been stored at–1262°C should be allowed to sit at room temperature for2to3min before extrusion from the En Core sampler,which will facilitate extrusion of the frozen sample from the device.7.Report7.1For guidance on information that should be recorded fora sampling activity,see Guide D4687.8.Precision and Bias8.1Precision—Data on the precision of this practice are to be generated in the near future.8.2Bias—No information can be given on the bias of the sampling/storage procedure described in this practice because there is no standard reference material for sampling soil for VOCs in thefield;however,data have been generated to provide information on the performance of the En Core sampler for storage of soil samples at462°C for48h,at4 62°C for four days,at462°C for48hours followed by storage forfive days at–1262°C,and at–1262°C for seven days7.These data are shown in Appendix X1.9.Keywords9.1En Core sampler;soil sampling;storage of soil samples; volatile organic compounds(VOCs);VOC analysis 7A copy of the research report on the study described in Appendix X1is available from ASTM Headquarters.RequestRR:D34-1012.APPENDIX(Nonmandatory Information)X1.PERFORMANCE OF THE EN CORE SAMPLER TO STORE VOC-SPIKED SOIL SAMPLESX1.1A study was conducted to evaluate the performance of the 5-and 25-g En Core samplers to store three different soil types spiked with an aqueous solution containing nine volatile compounds.The En Core samplers used in this study were manufactured in 1998.The 5-g devices that were used repre-sent lot numbers K018166,K028132,and K038132.The 25-g devices that were used represent lot numbers K218266,K018140,P018138,018134,018135,018126,and 018128.The manufacturer can be contacted for information on these lot numbers.X1.1.1The soils used in the study are representative of different environments and contained native microbial popula-tions.They are a river bank soil having 49%sand,26%silt,24%clay,5.3%organic material,approximately 14%mois-ture,and a dehydrogenase (microbial)activity of 22-mg total product formed (TPF)/g/24h;a mountain soil having 75%sand,13%silt,12%clay,4.3%organic material,approxi-mately 12%moisture,and a dehydrogenase activity of 11mg TPF/g/24h;and,a prairie soil having 67%sand,17%silt,16%clay,1.5%organic material,approximately 8%mois-ture,and a dehydrogenase activity of 17mg TPF/g/24h.X1.1.2The VOCs used in the study are cis-dichloroethylene (CDCE),benzene,trichloroethylene (TCE),toluene,perchlo-roethylene (PCE),ethylbenzene,m/p-xylene,o-xylene,and methylethylketone (MEK).These compounds were selected as the analytes of interest because they are representative of halogenated,aromatic,and polar VOCs typically found in contaminated soils.X1.1.3In the study,soil samples were collected in the En Core samplers from a large container of loose soil and then spiked with an aqueous solution containing the compounds listed in X1.1.2at concentrations of approximately 50mg/L.The spiking solution was injected into the middle of the soil plug in the sampler,after which,the sampler was immediately capped.The 5-g samples were spiked with 250µL of the spiking solution,and the 25-g samples were spiked with 1250µL of the spiking solution to give an approximate concentration of 2.5µg/g of each analyte of interest in the samples.This analyte concentration in the soil was selected to limit the influence of the analytical method on the data.X1.1.4After all samples were spiked and capped,five random samples for each soil type were extruded from each size of En Core sampler into methanol for analysis to givetime-zero concentrations of the analytes of interest.The remaining samples were stored under the storage conditions shown in Table X1.1.Storage temperatures were monitored to make sure they were at the specified temperature.After the samples were held for the appropriate times,they were extruded into methanol for extraction and analysis.The metha-nol extracts of the samples were analyzed using EPA Method 8021B.8X1.1.5To evaluate the data,the mean values of the analytes of interest in the stored samples were compared to their mean values in the time-zero samples by calculating average percent recovery.Before average percent recovery was calculated,the data sets were evaluated for outlier data points as described in Practice D 2777.X1.1.6The data generated by this testing are specific to the experimental design of the study.The data give information on the performance of the En Core samplers for storing soil samples collected from loose soil,spiked with an aqueous solution of selected analytes of interest,and then stored under specific storage conditions.The data generated by this testing also are specific to the soils used in the study,the analytes of interest,the analyte concentrations,and the storage conditions that were evaluated.For other soil types,analytes,analyte concentrations,and storage conditions,these data may not apply.X1.1.7The average percent recoveries of the VOCs of interest from samples of the river bank soil stored in the 5-g En Core samplers are shown in Table X1.2;and,the average percent recoveries of the VOCs of interest from samples of the river bank soil stored in the 25-g En Core samplers are shown in Table X1.3.In each of these tables,the percent relative standard deviation of the concentration values in the stored samples is given in parentheses next to the corresponding average percent recovery value.The percent relative standard deviation of the concentration values in the time-zero samples is given in a footnote to each of the tables.X1.1.7.1As shown in Table X1.2,the VOCs of interest in this study have average percent recovery values ranging from8U.S.EPA,1996,Method 8021B:Aromatic and Halogenated V olatiles by Gas Chromatography Photoionization and/or Electrolytic Conductivity Detectors.Test Methods for Evaluating Solid Waste:Physical/Chemical Methods (SW-846),V ol 1B,Final Update III.TABLE X1.1Storage Conditions for Testing the Disposable En Core SamplersStorage Times Storage ConditionsNo Storage462°C on Ice462°C on Ice for 48h then Refrigerated at462°C462°C on Ice for 48h then Frozen at –1262°CFrozen at –1262°CTime-zero 5samples48h 5samples4days 5samples7days5samples5samples87–102%for storage of the river bank soil samples in the 5-g En Core samplers for all of the storage conditions used in this study.Taking into account the error introduced in preparation and analysis of the samples,these data show little loss of the VOCs of interest from the river bank soil during storage in the 5-g En Core samplers.The mean of the nine average percent recovery values listed in Table X1.2for the analytes of interest in the samples of river bank soil stored at 462°C for 48h is 98%recovery with a standard deviation of 4%and a percent relative standard deviation of 4%.The overall mean of the 36average percent recovery values listed in Table X1.2for the analytes of interest and various storage conditions is 97%recovery with a standard deviation of 4%and a percent relative standard deviation of 4%.X1.1.7.2As shown in Table X1.3,the VOCs of interest in this study have average percent recovery values ranging from 79–102%for storage of the river bank soil samples in the 25-g En Core samplers for all of the storage conditions used in this study.Taking into account the error introduced in preparation and analysis of the samples,these data show little loss of the VOCs of interest from the river bank soil during storage in the 25-g En Core samplers.The mean of the nine average percent recovery values listed in Table X1.3for the analytes of interest in the samples of river bank soil stored at 462°C for 48h is 95%recovery with a standard deviation of 3%and a percent relative standard deviation of 3%.The overall mean of the 36average percent recovery values listed in Table X1.3for the analytes of interest and various storage conditions is 95%recovery with a standard deviation of 6%and a percent relative standard deviation of 6%.X1.1.8The average percent recoveries of the VOCs of interest from samples of the mountain soil stored in the 5-g En Core samplers are shown in Table X1.4;and,the average percent recoveries of the VOCs of interest from samples of the mountain soil stored in the 25-g En Core samplers are shown in Table X1.5.In each of these tables,the percent relative standard deviation of the concentration values in the stored samples is given in parentheses next to the corresponding average percent recovery value.The percent relative standard deviation of the concentration values in the time-zero samples is given in a footnote to each of the tables.X1.1.8.1As shown in Table X1.4,TCE,toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene have average percent recovery values for storage of the mountain soil at 462°C for 48h in the 5-g En Core samplers that range from 90–97%.Average percent recovery values of these compounds from the mountain soil samples stored for 7days at –1262°C are similar,ranging from 91–101%.Taking into account the error introduced in preparation and analysis of the samples,these data show very little or no loss of the six VOCs from the mountain soil during storage in the 5-g samplers under the two different storage conditions.The average percent recovery values for TCE,toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene from the mountain soil samples stored for four days at 462°C and for 48h at 462°C followed by five-day storage at –1262°C in the 5-g En Core samplers are slightly lower,ranging from 80–92%.The same trend is shown in Table X1.4for CDCE and benzene.These compounds have averageVOCsStorage Conditions 462°C/48h 462°C/4Days 462°C/48h then –1262°C/5Days –1262°C/7Days CDCE 91%B (15%)C 96%B (4%)C 89%B (3%)C 98%B (7%)C Benzene 93%(3%)94%(4%)87%(5%)93%(10%)TCE 97%(1%)100%(3%)95%(4%)101%(8%)Toluene 99%(1%)96%(4%)96%(3%)99%(6%)PCE100%(1%)100%(1%)99%(3%)99%(7%)Ethylbenzene 101%(3%)100%(4%)101%(3%)101%(6%)m\p-Xylene 102%(2%)100%(3%)96%(9%)99%(6%)o-Xylene 99%(1%)99%(4%)91%(7%)100%(7%)MEK100%(0%)100%(0%)92%(6%)91%(6%)A Soil 1is a river bank soil (49%sand,26%silt,24%clay,5.3%organic material,and approximately 14%moisture).BAverage percent recovery based on mean values determined for five time-zero samples and five stored samples CValue in parentheses is the percent relative standard deviation of the concentration values in the five stored samples.The percent relative standard deviation of the concentration values in the time-zero samples ranged from 0to 6%for all tests using soil 1in the 5-g device.TABLE X1.3Average Percent Recoveries of VOCs from Samples of Soil 1A Stored in 25-G En Core SamplersVOCsStorage Conditions 462°C/48h 462°C/4Days 462°C/48h then –1262°C/5Days –1262°C/7Days CDCE 91%B (1%)C 94%B (3%)C 81%B (8%)C 90%B (8%)C Benzene 90%(4%)94%(4%)79%(11%)87%(12%)TCE 92%(3%)96%(8%)87%(6%)100%(6%)Toluene 94%(3%)94%(6%)91%(4%)98%(6%)PCE96%(3%)100%(5%)92%(5%)102%(6%)Ethylbenzene 98%(3%)100%(1%)98%(3%)102%(4%)m\p-Xylene 98%(1%)98%(2%)95%(6%)100%(3%)o-Xylene 98%(3%)100%(2%)97%(5%)102%(4%)MEK96%(1%)96%(3%)90%(4%)93%(4%)A Soil 1is a river bank soil (49%sand,26%silt,24%clay,5.3%organic material,and approximately 14%moisture).BAverage percent recovery based on mean values determined for five time-zero samples and five stored samples CValue in parentheses is the percent relative standard deviation of the concentration values in the five stored samples.The percent relative standard deviation of the concentration values in the time-zero samples ranged from 1to 4%for all tests using soil 1in the 25-gdevice.percent recovery values ranging from 84–87%for the samples stored at 462°C for 48h and –1262°C for seven days.While the percent recovery values of CDCE and benzene from the mountain soil samples stored for four days at 462°C and for 48h at 462°C followed by five-day storage at –1262°C are slightly lower,ranging from 69to 77%.The average percent recovery values of MEK from the mountain soil samples stored under the four storage conditions in the 5-g En Core samplers range from 71–83%.These values are lower than would be expected for this less volatile compound,especially when compared to the average percent recovery values of the other VOCs listed in Table X1.4.The reason for the lower average percent recovery values for MEK from the mountain soil may be that the ketone reacts with this soil causing a decrease in MEK concentrations with time.X1.1.8.2As shown in Table X1.5,TCE,toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene have average percent recovery values ranging from 93–98%for storage of the mountain soil samples in the 25-g En Core samplers at 462°C for 48h.Average percent recovery values of CDCE and benzene from samples of the mountain soil stored in the 25-g En Core samplers for 48h at 462°C are 87and 90%,respectively.For four-day storage at 462°C in the 25-g En Core samplers,TCE,toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene have average percent recovery values from the mountain soil samples ranging from 87–96%;and average percent recoveries of CDCE and benzene from these samples are 82and 81%,respectively.In testing storage of the spiked mountain soil samples in the 25-g En Core samplers for 48h at 462°C followed by five-day storage at –1262°C,two of the devices used to store the samples had O-rings in their caps that were bent out of position as discussed in 6.4.2and 6.7.1.Because of this error in capping these devices,the seal between the cap and coring body/storage chamber was compromised.As a result,data for only three of the stored samples were used to calculate the average percent recovery values for this storage condition.As shown in Table X1.5,these values range from 56–69%for CDCE,benzene,and TCE;and 78–93%for toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene.For seven-day storage at –1262°C in the 25-g En Core samplers,TCE,toluene,PCE,ethylbenzene,m/p-xylene,and o-xylene have average percent recovery values from the mountain soil samples ranging from 82–98%;and average percent recovery values of CDCE and benzene from these samples are both 71%.The average percent recovery values of MEK from the mountain soil samples stored under the four storage conditions in the 25-g En Core samplers range from 73–86%.As discussed in X1.1.8.1,these values are lower than would be expected and may be due to a chemical reaction between MEK and the mountain soil.X1.1.8.3Differences in the average percent recovery values of the VOCs of interest in this study from the river bank soil (Tables X1.2and X1.3)and mountain soil (Tables X1.4and X1.5)may be due to the difference in the composition of these soils.As described in X1.1.1,the river bank soil is 49%sand,26%silt,and 24%clay,while the mountain soil containsVOCsStorage Conditions 462°C/48h 462°C/4Days 462°C/48h then –1262°C/5Days –1262°C/7Days CDCE 87%B (10%)C 77%B (10%)C 74%B (7%)C 84%B (11%)C Benzene 86%(11%)74%(12%)69%(9%)84%(12%)TCE 91%(8%)83%(9%)80%(5%)91%(9%)Toluene 90%(5%)83%(7%)86%(2%)97%(8%)PCE96%(4%)89%(6%)90%(5%)99%(6%)Ethylbenzene 92%(7%)90%(6%)90%(10%)96%(16%)m\p-Xylene 92%(2%)86%(6%)89%(2%)101%(5%)o-Xylene 97%(2%)92%(6%)92%(5%)97%(10%)MEK83%(0%)76%(7%)74%(4%)71%(9%)A Soil 2is a mountain soil (75%sand,13%silt,12%clay,4.3%organic material,and approximately 12%moisture).BAverage percent recovery based on mean values determined for five time-zero samples and five stored samples CValue in parentheses is the percent relative standard deviation of the concentration values in the five stored samples.The percent relative standard deviation of the concentration values in the time-zero samples ranged from 3to 8%for all tests using soil 2in the 5-g device.TABLE X1.5Average Percent Recoveries of VOCs from Samples of Soil 2A Stored in 25-G En Core SamplersVOCsStorage Conditions 462°C/48h 462°C/4Days 462°C/48h then –1262°C/5Days –1262°C/7Days CDCE 87%B (8%)C 82%B (11%)C 59%D (17%)C 71%B (25%)C Benzene 90%(11%)81%(14%)56%(18%)71%(30%)TCE 94%(6%)88%(9%)69%(9%)82%(17%)Toluene 93%(6%)87%(5%)78%(5%)89%(12%)PCE98%(6%)92%(4%)85%(4%)92%(11%)Ethylbenzene 96%(4%)94%(4%)90%(2%)98%(7%)m\p-Xylene 93%(4%)91%(3%)92%(2%)98%(7%)o-Xylene 96%(4%)96%(5%)93%(2%)96%(6%)MEK86%(2%)83%(6%)75%(2%)73%(2%)A Soil 2is a mountain soil (75%sand,13%silt,12%clay,4.3%organic material,and approximately 12%moisture).BAverage percent recovery based on mean values determined for five time-zero samples and five stored samples CValue in parentheses is the percent relative standard deviation of the concentration values in the stored samples.The percent relative standard deviation of the concentration values in the time-zero samples ranged from 1to 8%for all tests using soil 2in the 25-g device.DAverage percent recovery based on mean values determined for five time-zero samples and three storedsamples.。