LED特性和白光LED的基_知_与__

合集下载

led的基本知识

led的基本知识

LED半导体发光二极管工作原理、特性及应用半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。

事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。

一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN结。

因此它具有一般P-N结的I-N 特性,即正向导通,反向 截止、击穿特性。

此外,在一定条件下,它还具有发光特性。

在正向电压下,电子由N区注入P区,空穴由P区注入N区。

进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。

除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。

发光的复合量相对于非发光复合量的比例越大,光量子效率越高。

由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。

若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。

比红光波长长的光为红外光。

现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

(二)LED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。

超过此值,LED发热、损坏。

(2)最大正向直流电流IFm:允许加的最大的正向直流电流。

超过此值可损坏二极管。

(3)最大反向电压VRm:所允许加的最大反向电压。

LED灯基本知识

LED灯基本知识

LED灯的发光原理
当电子和空穴在LED芯片的PN结中复合时,会产生光子,光子的能量取决于能带隙, 即材料吸收光的最大波长。
光子在LED芯片中的传播过程中,会与芯片表面和荧光粉相互作用,产生散射和反 射,最终以特定的角度和波长向外发出光线。
LED灯的发光效率受到多个因素的影响,包括芯片材料、荧光粉涂层、散热性能等。
03
LED灯的优缺点
LED灯的优点
节能环保
长寿命
LED灯的能效高,耗电量仅为传统白炽灯的 十分之一,同时不含汞等有害物质,废弃 后可回收利用,符合环保要求。
LED灯的寿命长达5万小时,减少了频繁更 换灯具的麻烦和废弃物处理问题。
响应速度快
色彩丰富
LED灯的点亮速度极快,可在瞬间达到最大 亮度,适合用于需要快速响应的场合。
LED灯对电压和电流的要求较为严格, 使用不当可能导致灯具损坏或光效降 低。
定向发光
LED灯属于定向发光光源,光束角较 小,照射范围有限。
LED灯与其他光源的比较
01
02
03
与白炽灯比较
LED灯光效高、寿命长、 节能环保,但价格较高。
与荧光灯比较
LED灯光效高、体积小、 环保,但价格较高。
与HID灯比较
LED灯可以发出红、绿、蓝等多种颜色的光 线,具有较高的色彩饱和度和显色指数, 能够满足不同场合的照明需求。
LED灯的缺点
价格较高
目前LED灯的价格相对较高,是传统 白炽灯和荧光灯的几倍甚至十几倍。
对散热要求高
LED灯的亮度与温度有关,散热不良 会导致灯具温度升高,影响其性能和 使用寿命。
对电压和电流要求严格
LED灯的选择标准
照明需求
根据照明需求选择合适的LED灯 ,如亮度、色温、光束角等。

LED基础知识及外延工艺课件

LED基础知识及外延工艺课件

Create the Light, Light the W
MOCVD简介
表面反应原理
Ga(CH3)3 + NH3 = GaN +3CH4
Create the Light, Light the World
3E Semiconductor
MOCVD简介
工艺材料
波长λ(nm)
780~630 630~600 600~570 570~500 500~470 470~420 420~380
代表波长
700 620 580 550 500 450 420
• 光的峰值波长λ与发光区域的半导体材料禁带 宽度Eg有关,即 λ≈1240/Eg(mm)
• 电子由导带向价带跃迁时以光的形式释放能量 ,大小为禁带宽度Eg。
在500-600度。
Create the Light, Light the World
3E Semiconductor
典型LED外延结构
2. uGaN
• U1层(Rough),形成结晶质量较高的晶核 ,并以之为中心形成岛状生长。
• 首先在停止通入TMGa的情况下升至高温 ,在高温高压条件下,Buffer中结晶质量 不好的部分被烤掉,留下结晶质量较高 的晶核。此时反射率将下降至衬底本身 的反射率水平。
发光原理:在外加电场的作用下,n型半导体载流子电子、p型半导体载流子空 穴,这两种载流子进入量子阱中并相互结合,发出不同波长的光。
Create the Light, Light the World
LED基本构造 3E Semiconductor
GaN 简介
六方纤锌矿结构的GaN
GaN是宽禁带直接带隙半导体,禁带宽度约为3.4ev.

白光LED的特性参数

白光LED的特性参数

白光LED的特性参数从目前的LED产品的机理和结构来看,以下几个方面是用来衡量LED优劣的特性参数。

(1)白光LED电流/电压参数(正、反向)LED的电性能具有典型的PN结伏安特性,不同的电流直接影响LED的发光亮度和PN结的结温.在照明应用中,为了获得大功率的LED灯,往往将许多个发光二极管通过一定的串并联方式组合在一起,相关的各个LED的特性必须匹配,在交流工作状态还必须考虑其反向电特性,因此必须测试它们在工作点上的正向电流和正向压降,以及反向漏电流和反向击穿电压等参数。

(2)白光LED光通量和辐射通量发光二极管单位时间内发射的总电磁能量称为辐射通量,也就是光功率(W).对于照明用LED光源,我们更关心的是照明的视觉效果,即光源发射的辐射通量中能引起人眼感知的那部分当量,称作为光通量ΦV(1m).辐射通量与器件的电功率之比表示LED的辐射效率;光通量与器件的电度指在给定方向上单位立体角内所发射的光通量:I= dΦ/dΩ(cd)(2-1)光强分布曲线如图1所示,是表示LED发光在空间各方向的分布状态.在照明应用中计算工作面的照度均匀性和LED灯的空间布置,光强分布是最基本的数据.对于空间光束为旋转对称型分布的LED,用一个过光束轴平面上的曲线表示即可.对光束为椭圆形分布的LED,则用过光束轴及椭圆形长短轴的两个垂直平面上的曲线来表示.对于非对称的复杂图形,一般用过光束轴的六个以上截面的平面曲线来表示.发光角(或光束角)通常用半强度角θ1/2表示,即在光强分布图中光强大于等于峰值光强1/2时所包含的光束角度.(4)白光LED光谱功率分布LED的光谱功率分布表示辐射功率随波长的变化函数,它既确定了发光的颜色,也确定了它的光通量以及它的显色指数.通常用相对光谱功率分布S(λ)表示,光谱功率沿峰值两边下降到其值的50%时,所对应的两个波长之差Δλ=λ2-λ1,即为光谱带.(5)白光LED色品坐标选三原色红(R)、绿(G)、蓝(B).X=R/(R+G+B),Y=G/(R+G+B),Z=B/(R+G+B) (2-2)由于X+Y+Z=1,所以只用给出X和Y的值,就能唯一地确定一种颜色.这就是通常所说的色度图,为了使坐标值能直接表示亮度大小,国际照明协会规定采用另一种色度坐标X、Y、Z,与R、G、B间存在线性换算关系.若以x、y作为平面坐标系,将自然界中的各种彩色按比色实验法测出其x、y数值,并绘在该坐标平面内,便可得到图2-1所示的色度图.该色度图边沿舌形曲线上的任一点都代表某一波长光的色调,而曲线内的任一点均表示人眼能看到的某一种混合光的颜色.其中白光区域的特征点A、B、C、D65、E的坐标值和色温见表2-1.表2-1 特征点对应的色坐标值和色温光源点X坐标Y坐标色温(K)A 0.4476 0.4074 2854B 0.3484 0.3516 4800C 0.3101 0.3162 6800D65 0.313 0.329 6500E 0.3333 0.3333 5500(6)白光LED色温和显色指数对于白光LED等发光颜色基本为“白光”的光源用色品坐标可以准确地表达该光源的表观颜色.但具体的数值很难与习惯的光色感觉联系在一起.人们经常将光色偏橙红的称为“暖色”,比较炽白或稍偏兰的称为“冷色”,因此用色温来表示光源的光色会更加直观.光源的发光颜色与在某一温度下黑体辐射的颜色相同时,则称黑体的温度为该光源的色温(color temperature) T,单位为开(K).对于白光LED,其发光颜色往往与各种温度下的黑体(完全辐射体)的色品坐标都不可能完全相同,这时就不能用色温表示.为了便于比较,而采用相关色温(CCT)的概念.也就是当光源的色品与完全辐射体在某一温度下的色品最接近,即在1960CIE-UCS色品图上的色品差最小时,则该完全辐射体的温度称为该光源的相关色温R1.用于照明工程的LED,尤其是白光LED,除表现颜色外,更重要的特性往往是周围的物体在LED光照明下所呈现出来的颜色与该物件在完全辐射(如日光)下的颜色是否一致,即所谓的显色特性.1974年CIE推荐了用“试验色”法来定量评价光源显色性的方法,它是测量参照光源照明下和待测光源照明下标准样品的总色位移量为基础来规定待测光源的显色性,用一个显色指数值来表示.CIE规定用完全辐射体或标准照明体D作为参照光源,并将其显色指数定为100,还规定了若干测试用的标准色样.根据在参照光源下和待测光源下,上述标准色样形成的色差来评定待测光源显色性的好坏.光源对某一种标准色样品的显色指数称为特殊显色指数R1.R1=100-4.6△Ei (2-3)式中△Ei为第i号标准色样在参照光源下和待测光源下的色差.CIE推荐的标准色样共有14种.其1-8号为中等饱和度、中等明度的常用代表性色调样品,第9至14号样品包括红、黄、绿、蓝等几种饱和色、欧美的皮肤色和树叶绿色.在一些特殊场合使用的LED光源,必须考核其特殊的显色指数.1985年国家制定了“光源显色性评价方法”标准,并增加了中国人女性肤色的色样,作为第十五种标准色样.这对于评价在电视演播室、商场、美容场所等照明用LED光源的显色性尤为重要.光源对前8个颜色样品的平均显色指数称为一般显色指数Ra.(7)白光LED热性能照明用LED发光效率和功率的提高是当前LED产业发展的关键问题之一,与此同时,LED的PN结温度及壳体散热问题显得尤为重要,一般用热阻、壳体温度、结温等参数表示.(8)白光LED辐射安全目前,国际电工委员会IEC将LED产品等同于半导体激光器的要求进行辐射的安全测试和论证.因LED是窄光束、高亮度的发光器件,考虑到其辐射可能对人眼视网膜的危害,因此,对于不同场合应用的LED,国际标准规定了其有效辐射的限值要求和测试方法.目前在欧盟和美国,照明LED产品的辐射安全作为一项强制性的安全要求执行.(9)白光LED可靠性和寿命可靠性指标是衡量LED在各种环境中正常工作的能力.在液晶背光源和大屏幕显示中特别重要.寿命是评价LED产品可用周期的质量指标,通常用有效寿命或终了寿命表示.在照明应用中,有效寿命是指LED在额定功率条件下,光通量衰减到初始值的规定百分比时所持续的时间.1)平均寿命一批LED同时点亮,当经过一段时间后,LED不亮达到50%时所用的时间.2)经济寿命在同时考虑LED损坏以及光输出衰减的状况下,其综合输出减至一特定比例时的小时数.此比例用于室外光源为70%,用于室内光源为80%.。

白光LED和其他光源的区别

白光LED和其他光源的区别

白光LED和其他光源的区别
白光LED和其他光源的区别
 随白光LED技术发展迅速,很多实用的和不实用的方案也都被提了出来。

这里我们通过一些基本特性的对比,对LED的照明应用和前景做一些分析。

 先明确两个概念:
 功率
 光通量:单位时间里通过某一面积的光能,称为通过这一面积的辐射能通量。

单位是流明(Lumen)
 我们评价一个光源,一般需要看他的几个特性:功率,光效,光线特性,价格。

 功率就是这个光源的常用输入功率,比如100W的白炽灯,是指其输入功率是100W。

每种光源都可以覆盖很大的功率范围,这里我们只对比常用的功率范围。

 光效是光源把电能或者其他输入转化为光能的能力,光能我们用光通量作为评价标准,这个效率的单位就是(流明/瓦特),表示光源把每瓦能源转化为流明的能力。

 光线特性是指光源的颜色,发光面积,光线发散角等特性。

光线特性经常会决定一种光源的应用范围,比如激光的方向性好,可以用于测距,而荧光。

LED特性和白光LED的基础知识与驱动色坐标和波长与电流的关系

LED特性和白光LED的基础知识与驱动色坐标和波长与电流的关系

LED特性和白光LED的基础知识与驱动  很多年来,发光二极管(LED)广泛的应用于状态显示与点阵显示板。

现在,不仅可以选择近期刚刚研发出来的蓝光和白光产品(普遍用于便携设备),而且也能在已有的绿光、红光和黄光产品中选择。

例如,白光LED被认为是彩色显示器的理想背光源。

但是,必须注意这些新型LED产品的固有特性,需要为其设计适当的供电电源。

本文描述了新、旧类型LED的特性,以及对驱动电源的性能要求。

标准红光、绿光和黄光LED 使LED工作的最简单的方式是,用一个电压源通过串接一个电阻与LED相连。

只要工作电压(V B)保持恒定,LED就可以发出恒定强度的光(尽管随着环境温度的升高光强会减小)。

通过改变串联电阻的阻值能够将光强调节至所需要的强度。

对于5mm直径的标准LED,图1给出了其正向导通电压(VF)与正向电流(IF)的函数曲线。

[1] 注意LED的正向压降随着正向电流的增大而增加。

假定工作于10mA正向电流的绿光LED应该有5V的恒定工作电压,那么串接电阻RV 等于(5V -VF,10mA)/10mA = 300。

如数据表中所给出的典型工作条件下的曲线图(图2)所示,其正向导通电压为2V。

图1. 标准红光、绿光和黄光LED具有1.4V至2.6V的正向导通电压范围。

当正向电流低于10mA时,正向导通电压仅仅改变几百毫伏。

 图2. 串联电阻和稳压源提供了简单的LED驱动方式。

 这类商用二极管采用GaAsP (磷砷化镓)制成。

易于控制,并且被绝大多数工程师所熟知,它们具有如下优点: •所产生的色彩(发射波长)在正向电流、工作电压以及环境温度变化时保持相当的稳定性。

标准绿光LED发射大约565nm的波长,容差仅有25nm。

由于色彩差异非常小,在同时并联驱动几个这样的LED时不会出现问题(如图3所示)。

正向导通电压的正常变化会使光强产生微弱的差异,但这是次要的。

通常可以忽略同一厂商、同一批次的LED之间的差异。

LED_百度百科(可编辑)

LED_百度百科(可编辑)

LED_百度百科LED百科名片LED英文单词的缩写,主要含义:LED = Light Emitting Diode,发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光;LED = Large Electronic Display,大型电子展示;LED = Lupus erythematosus disseminatus,播散性红斑狼疮,一种慢性、特发性自身免疫病;led是lead的过去式和过去分词,意为“领导,带领”;俄罗斯Pulkovo机场的IATA代码。

本词条主要介绍发光二极管。

目录LED产品和相关小常识组成光通量发光强度亮度色温基本信息LED应用LED照明颜色 LED优点一、体积小二、耗电量低三、使用寿命长四、高亮度、低热量五、环保六、坚固耐用七、多变幻八、技术先进LED 缺点 LED显示技术发展 LED设计理念 LED的发光原理照明用白光LED LED的调光控制运作参数和效率参数测量标准 LED显示屏控制系统LED分类 LED应用于路灯有先天优势和劣势 LED应用的相关产品 LED产品“贵”的三大原因 1.国内企业没有核心技术 2.LED应用产品散热难 3.LED应用电源管理LED驱动电源九大性能特点要求 LED封装技术介绍 LED产业目前面临的一些问题 LED与LED可见光通讯技术 LED的重要参数释疑 LED焊接技术要求及操作注意事项 LED透镜填充硅胶过程LED产业链构成应用范围照明无线传输发展历史 LED照明国家标准LED产品和相关小常识组成LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。

LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。

半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。

白光LED封装的基础知识

白光LED封装的基础知识

白光LED封装的基础知识白光LED (Light-Emitting Diode) 是一种能够发射出白光的半导体光源。

它是一种高效能、长寿命、无污染、低电压操作和小尺寸的光源,因此在照明、显示、室内和室外装饰等领域得到了广泛应用。

下面是关于白光LED封装的基础知识。

1.白光LED的构成:2.LED芯片:3.封装材料:封装材料是保护LED芯片并对光进行聚焦和散射的重要组成部分。

通常使用的材料有环氧树脂、硅胶、聚合物等,其中环氧树脂是最常见的一种。

封装材料的选择可以影响到LED的耐热性、耐湿性和耐光性等特性。

4.封装类型:常见的白光LED封装类型包括:二氧化硅模制封装(DIP)、瓷制封装、表面贴装(SMT)封装等。

每种封装类型都有不同的优缺点,适用于不同的应用场景。

5.色温和色彩指数:白光LED的发光颜色可以通过不同的荧光或磷光材料来调节,以满足不同的照明需求。

色温是用来描述白光颜色的参数,单位为开尔文(K)。

常见的色温有暖白色(2700-3500K)、自然白色(4000-5000K)、冷白色(5500-6000K)等。

色彩指数(CRI)则用来评估光源显示颜色的准确程度,数值越大代表颜色越自然。

6.光通量和光效:光通量是描述光源总发光量的参数,单位为流明 (lm)。

光效是指光源单位功率所产生的光输出效果,单位为流明/瓦特 (lm/W)。

光通量和光效是评价白光LED性能的重要指标,对于照明应用来说尤为重要。

7.热管理:由于LED的工作过程会产生热量,良好的热管理是确保LED长寿命和稳定性能的关键。

常用的热管理方式包括散热片、散热胶和金属基板等。

8.应用领域:白光LED在照明、显示、室内和室外装饰等领域有广泛应用。

在照明方面,它可以代替传统的白炽灯、荧光灯等光源,用于家庭照明、商业照明、道路照明等;在显示方面,它被广泛应用于电视、显示屏、手机、平板电脑等产品;在室内和室外装饰方面,它被用于灯带、灯泡、车辆装饰等。

白光LED的特性参数

白光LED的特性参数

白光LED的特性参数从目前的LED产品的机理和结构来看,以下几个方面是用来衡量LED优劣的特性参数。

(1)白光LED电流/电压参数(正、反向)LED的电性能具有典型的PN结伏安特性,不同的电流直接影响LED的发光亮度和PN结的结温.在照明应用中,为了获得大功率的LED灯,往往将许多个发光二极管通过一定的串并联方式组合在一起,相关的各个LED的特性必须匹配,在交流工作状态还必须考虑其反向电特性,因此必须测试它们在工作点上的正向电流和正向压降,以及反向漏电流和反向击穿电压等参数。

(2)白光LED光通量和辐射通量发光二极管单位时间内发射的总电磁能量称为辐射通量,也就是光功率(W).对于照明用LED光源,我们更关心的是照明的视觉效果,即光源发射的辐射通量中能引起人眼感知的那部分当量,称作为光通量ΦV(1m).辐射通量与器件的电功率之比表示LED的辐射效率;光通量与器件的电度指在给定方向上单位立体角内所发射的光通量:I= dΦ/dΩ(cd)(2-1)光强分布曲线如图1所示,是表示LED发光在空间各方向的分布状态.在照明应用中计算工作面的照度均匀性和LED灯的空间布置,光强分布是最基本的数据.对于空间光束为旋转对称型分布的LED,用一个过光束轴平面上的曲线表示即可.对光束为椭圆形分布的LED,则用过光束轴及椭圆形长短轴的两个垂直平面上的曲线来表示.对于非对称的复杂图形,一般用过光束轴的六个以上截面的平面曲线来表示.发光角(或光束角)通常用半强度角θ1/2表示,即在光强分布图中光强大于等于峰值光强1/2时所包含的光束角度.(4)白光LED光谱功率分布LED的光谱功率分布表示辐射功率随波长的变化函数,它既确定了发光的颜色,也确定了它的光通量以及它的显色指数.通常用相对光谱功率分布S(λ)表示,光谱功率沿峰值两边下降到其值的50%时,所对应的两个波长之差Δλ=λ2-λ1,即为光谱带.。

毕业设计(论文)--大功率LED恒流驱动电路的研究与设计

毕业设计(论文)--大功率LED恒流驱动电路的研究与设计

毕业设计(论文)--大功率LED恒流驱动电路的研究与设计目录摘要IIIAbstract Ⅳ第一章绪论11.1 白光LED发展的背景和意义 11.2 大功率LED发光原理 31.3 白光LED的发展简介 31.4 课题介绍与研究意义 5第二章大功率LED驱动电路 62.1 白光LED的伏安特性 62.2 白光LED的连接方式7串联驱动 7并联驱动 8混联驱动 82.3 大功率LED驱动电路的发展趋势92.4 大功率LED驱动现状研究10电阻限流电路10线性控制电路11电荷泵升压电路12开关变换电路12第三章脉宽调制型(PWM)开关电源原理143.1 电压控制模式 143.2 电流控制模式 17第四章 LED恒流驱动电路设计 204.1 大功率LED驱动芯片的比较204.2 LT3755芯片介绍214.3 LT3755工作原理234.4 设计电路24第五章总结28参考文献29致谢30大功率白光LED恒流驱动电路的研究与设计摘要近年来,大功率白光LED因其高效、节能、环保、寿命长、高可靠性等优点逐渐在照明领域获得广泛应用,已经开始替代白炽灯、荧光灯等传统照明光源,成为21世纪的新一代照明光源。

大功率白光LED产业的蓬勃发展有力地推动了LED驱动集成电路产业的前进,孕育着巨大的商机。

论文在简要介绍大功率LED 的发光特性、伏安特性及其驱动方案的基础上,详细分析了Buck拓扑结构、PWM调制型开关电源电流控制模式和电压控制模式的优缺点,提出了一种基于PWM调制型Buck模式开关电源恒流驱动电路原理,利用LT3755芯片驱动大功率白光LED的设计电路。

该驱动电路具有1000:1高调光比(PWM调光)、低电流消耗、高效率、短路保护和开路LED保护等Abstract In recent years,Semiconductor lighting is widely used and is gradually replacing the incandescent and fluorescent lighting due to its advantages over conventional lighting of high efficiency,low energy consumption,low pollution,long lifetime and high reliability. The boom of high power white LED greatly promotes the development of integrated circuits for driving LED,which generates the enormous business opportunities.The thesis briefly introduces the characteristics of luminous flux curve and I-V cuve of high power LED and its driving methods. The operating principles of Buck converter for driving High Power LED are analyzed in detail. Compared with other driving mode, switching power technology has high efficiency, so the thesis gives a LED buck mode driver using Chip LT3755 based on switching power technology. The driver in this paper is a high frequency step-down DC-DC converter with the features of low power loss, high efficiency, 1000:1 PWM dimming, short-circuit protection, open-voltage protection, and is ideal for driving high current LED.Key words : high-power LED, Switching Power, PWM, constant-current driving,LT3755绪论在电光源发展的一百多年来,光源照明电器己经经历了三个重要的发展阶段,这三个阶段的代表性光源分别为白炽灯、荧光灯和高强度气体放电灯。

LED基本知识考试试题1

LED基本知识考试试题1

LED基本知识考试试题姓名:一填空题(每空2分共50分)1. LED的特点特性是___________.2. LED靠___________发光.3. LED靠___________决定颜色.4. ___________材质的芯片对____________的要求特别高.英文缩写是__________单位是__________.5.发光二极管是将电能转换成__________能量和__________能量的电子元器件.6. 光是电磁波的一种,人的肉眼能见到的光的范围是__________nm到__________nm.7. 发光二极管的正极用英文字母__________表示,负极__________表示.8. 根据白光的发光原理可知,白光是由__________色_________色__________色组成的混合光,另外可由 __________色和__________色组成.9. 根据VA特性可知道,发光二极管是一个__________控制器件.当__________变化很小的范围时, __________ 变化范围很大.10. 发光二极管的亮度用__________表示,单位是__________.11. IR指的是发光二极管的__________参数.二选择题(每题2分共20分)1.以下哪种指的是反向电压 ( )A:IR B:VF C:IF D:VR2.以下哪种是亮度的单位 ( )A:CD B:V C:A D:LUX3.静电由以下哪种方式表示 ( )A:VF B:VR C:ESD D:V4.相同发光效率的白炽灯和LED灯,在点亮的情况下,LED灯要比白炽灯节能 ( )A:30% B:50% C:70% D:80%5.以下哪种不是LED的正极表示方式 ( )A:+ B:P C:阳极 D:阴极6. 以下哪种是LED的负极表示方式 ( )A:+ B:P C:阳极 D:N7.以下哪种不是发光二极管的优点 ( )A:体积小 B:色彩丰富 C:节能 D:单颗亮度高8.LED作为汽车的刹车灯是因为 ( )A:体积小 B:色彩鲜艳 C:反应速度快 D:省电9.目前我同所用蓝光芯片的材质为( )A:InGaP B:InGaAs C:InGaN D:InGaAl10.VR指的是反向电压但行业中标准VR为( )A:3V B:5V C:6V D:20Ma三联机题,请将有关联的参数名词.单位和缩写.用线连在一起(15分)正向电压 IF mcd反向电压 IV V静电 VF mA正向电流 IR uA反向电流 VR W亮度 ESD nm峰值波长 Pd最大功率入p四问答题(每题5分共15分)1.发光二极管的特点和优点是什么?2.发光二极管的发光原理是什么?3.普通发光二极由哪几部分组成?。

LED灯与普通灯光的区别及优缺点

LED灯与普通灯光的区别及优缺点

LED 灯与一般灯光的区分及优缺点一、LED 灯与节能灯的区分在哪A: LED 的特性1.电压:LED 使用低压电源,供电电压在6-24V 之间,依据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。

2.效能:消耗能量较同光效的白炽灯削减80%3.适用性:很小,每个单元LED 小片是3-5mm 的正方形,所以可以制备成各种外形的器件,并且适合于易变的环境4.稳定性:10 万小时,光衰为初始的50%5.响应时间:其白炽灯的响应时间为毫秒级,LED 灯的响应时间为纳秒级6.对环境污染:无有害金属汞B:亮度烛光= 1 流明/根白炽灯=11-15 流明/W 节能灯=40-60 流明/W led灯=80-120 流明/W1W LED=3W CFL(节能灯〕=15W 白炽灯3W LED=8W CFL(节能灯〕=25W 白炽灯4W LED=11W CFL(节能灯〕=40W 白炽灯8W LED=15W CFL(节能灯〕=75W 白炽灯12W LED=20W CFL(节能灯〕=100W 白炽灯15WLED=25W CFL〔节能灯〕=125W 白炽灯看了这些比照你应当就知道它们在功率上的区分,由此也可以得出它们耗电量的区分,而且led 的寿命很长,比较环保。

LED 灯与节能灯比较,节能灯的发光原理及其优缺点一、节能灯是白炽灯的进步众所周知,白炽灯是爱迪生的重要制造,这个重要的制造使人类从今告辞了黑暗,迎来了光明.但是白炽灯太耗电了,它或许只有不到格外之一的能量才变成了光能,其它都是热能白白的被铺张掉了.所以人们都在想方法要用的光源来替代白炽灯.节能灯就应运而生了.由于它相比而言廉价又好制作,所以就得到了大量的应用,有逐步取代白炽灯的趋势.二、节能灯的发光原理节能灯的两极是一般的钨丝.钨丝通电发热后,就能放射出电子.在灯管两侧加上比较高的电压,形成电场,这些电子就会在灯管里被加速,形成有确定速度和能量的电子流. 灯管是被抽成真空的,里面充有汞,就是我们称为的水银。

LED系列之技术

LED系列之技术
LED的特点
高效节能、体积小、寿命长、响 应速度快、色彩丰富、环保安全 等。
LED的发展历程
01
02
03
04
1960年代
最早的可见光LED诞生,只能 发出低亮度的红光。
1970年代
出现了黄光和绿光LED。
1980年代
蓝光和白光LED开始出现。
1990年代至今
高亮度、超高亮度LED以及全 色LED取得突破性进展,广泛 应用于各种显示和照明领域。
05
LED技术的挑战与解决方案
散热问题与解决方案
01
02
03
04
05
总结词
详细描述
1. 优化LED封装 2. 选用高导热材 3. 合理布局
设计

散热问题是LED技术中的一 大挑战,过高的温度可能 影响LED的性能和寿命。
LED在工作过程中会产生热 量,如果热量不能及时散 出,会导致LED芯片温度升 高,影响其发光效率和稳 定性。为了解决散热问题 ,可以采用以下几种方案
多色与全彩LED
总结词
多色与全彩LED是LED技术的另一大突破,通过多种颜色LED的组合,实现全 彩色的显示和照明效果。
详细描述
多色与全彩LED采用红、绿、蓝等多种颜色的LED芯片,通过调节各颜色LED的 亮度,实现全彩色的显示效果。这种技术广泛应用于广告牌、舞台灯光、景观 照明等领域,为人们带来丰富多彩的视觉体验。
LED系列之技术
• LED技术概述 • LED的制造工艺 • LED的特性与优势 • LED技术的发展趋势 • LED技术的挑战与解决方案 • LED技术案例研究
01
LED技术概述
LED的定义与特点
LED的定义

最全面的LED知识培训资料

最全面的LED知识培训资料
第二种方法是:在蓝色LED芯片上涂敷绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光。该类产品虽显色性较好,但所用荧光粉的转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高,因此推广也较慢。
白光LED的实现方法
第三种方法:在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm-410nm)来激发荧光粉,从而实现白光发射。该种LED的显色性更好,但存在与第二种方法类似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系。这类荧光粉发光稳定性差、光衰较大,故还没批量使用。 其他方法: 在特殊的场合,白光LED还有其他几种封装方法。这里简单的介绍一下: 第一种:将红、蓝、绿三芯片封装在一起,按照一定的比例对其光色进行控制,混出白光。 第二种:实现方法是用红、蓝、绿、黄四芯片混出白光。
Led 知 识
点击此处添加副标题
演讲人姓名
202X
目 录
CONTENTS
LED简介
01
LED发展趋势
02
LED芯片介绍
03
LED封装简介
04
LED基础知识
05
LED简介
CONTENTS
LED的定义
01
LED的特点
02
发光原理
03
什么是LED
LED 是取自 Light Emitting Diode 三个字的 缩写,中文译为“发光二极管”,顾名思义发光二极管是一种可以将电能转化为 光能的电子器件具有二极管的特性。
目前主流Led结构剖析
两种芯片发光形式
水平型结构Led出光路线
垂直型芯片性能介绍
由于当前芯片主要是垂直型的和水平型的两种。 垂直型产品以CREE芯片为代表特点主要是: 光效高:最高可达 161 lm\w,节能; 电压低:蓝光在2.9~3.3V; 热阻小:芯片本身的热阻小于 1 ‘C/W; 亮度高:由于采用垂直结构,电流垂直流动,电流密度均匀, 耐冲击型强;同一尺寸芯片,发光面宽,亮度高。 光型好:85%以上光从正面发出,易封装,好配光; 唯一的缺点就是:不方便集成封装。若要集成封装,芯片需 做特殊处理。 我公司全部采用垂直结构的芯片。

LED照明的设计基础

LED照明的设计基础
2020/4/26
定义
1.什么是LED(light emitting diode)
LED 利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。它是
一种用微弱的电能就能发光的高效固体光源,其基本结构是一块电致发光的半导 体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯 线的作用。它的核心部分是由p型半导体和n型半导体组成的晶片;在p型半导体 和n型半导体之间有一个过渡层,称为p-n结。
LED 照明设计基础
2020/4/26
LED照明设计基础
一: Led 基础知识简介 1. 定义、结构及分类 2. Led主要制作工艺及厂商简介 3. 大功率白光LED封装关键技术简介 4. 主要参数及特性
二:大功率LED灯具设计基础知识 1. LED及驱动电源的选择 2. 散热设计 3. 光学设计
2. 按发光管出光面特征分为圆灯、方灯、矩形、面发光管、侧向管、表面安装用 微型管等。圆形灯按直径分为φ3mm、φ5mm等,方形分为3528,5050灯。
3.从发光强度角分布来分有三类: 1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。 半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用。 2)标准型。通常作指示灯用,其半值角为20°~45°。 3)散射型。这是视角较大的指示灯,半值角为45°~90°,散射剂的量较大。
2.5.1 色温与色品坐标的关系式近似如下:
其关系曲线如右色品图,由此可见, 不要的色品坐标可能会有 同样的色温 ,所以能唯一决定颜色的 参数是色品坐标,色温只能参考。 一般,LED封装厂都会按色品坐标不同 用不同的Bin来区分白光的颜色。以下 一典型的Bin分布图。大功率LED供应商 一般会要求四个Bin同时购买,如数量较 少时可以考虑与供应商沟通买单个Bin.

LED是什么?看完你就懂了-LED-知识介绍

LED是什么?看完你就懂了-LED-知识介绍
照明知识大讲堂
LED基础知识篇
产品基础-LED基础知识
2014.08.15
LED基础知识
1. LED的初步认识
9. LED光效的比较
2.LED优点和缺点
10.LED的封装样式
3.LED光源的特性
11.LED的产业分布
4.LED的发光原理
12.LED的关键参数
5. LED芯片的结构
6.LED芯片的生产
正向电流发光
反向电流不发光
2014.08.15
LED的特性
1.LED工作电压一般在2-3.9V之间。(不同光色的LED压降不一样) 绿色-3.3-3.9V 蓝色、宝蓝色-3.1-3.9V 红色、琥珀色、橘红色、-2.1-2.5V
2.LED的工作电流会随着供应电压的变化而产生较大的波动,所以LED 一般要求工作在恒流驱动状态。
3.LED具有单向导通的特性(电流只能从二极管的正极流入,负极流出) 4.LED的光输出会因应其输入的电流而产生变化 5.LED的光输出深受其工作温度的影响
2014.08.15
LED各种光色的辐射功率
LED的特性
2014.08.15
LED的特性-正向电流与正向电压
2014.08.15
LED的特性-结温与辐射通量
长晶炉生长-掏取晶棒-滚磨-品检-切片-研磨- 倒角-抛光-清洗-品检-OK 2.外延片生产-利用MOCVD金属有机化学气相淀积等方法在单晶衬底在上面磊晶
衬底 - 结构设计 - 缓冲层生长 - N型GaN层生长 - 多量子阱发光层生 - P型GaN层生长 – 退火 - 检测(荧光、X射线) - 外延片 3.芯片生产-在外延片上制作电极(PN电极)并对成品进行切割分选等 外延片活化-蚀刻-蒸镀-PN电极制作-保护层-上焊盘-研磨抛光-点测-切割- 扩张-目检-包装 中游: LED芯片的封装 1.上支架-点底胶-放芯片-烘烤固晶-金丝键合-模具灌胶-插支架-离模-后固化

led与白炽灯发光原理

led与白炽灯发光原理

led与白炽灯发光原理
LED(Light Emitting Diode)发光原理是基于PN结的电致发
光现象。

PN结由N型半导体和P型半导体组成,当施加正向
偏置电压时,在结区域内发生注入载流子的现象。

在LED中,P型半导体的材料中掺杂了少量的掺杂剂,使其
成为P型导电型材料,导电型材料中带正电的空穴数量较多。

而N型半导体的材料中掺杂了少量的元素,形成了自由电子
数量较多的N型导电型材料。

当正向偏置电压施加到PN结上时,P型半导体的正空穴被推
入N型半导体的电子能带中,形成电子空穴对。

这些电子和
空穴在结区域内复合,导致电子能量的释放。

释放出来的能量以光的形式辐射出来,产生可见光。

与白炽灯的发光原理不同,白炽灯是基于热辐射的原理。

白炽灯的灯泡内填充了一定压强的气体(通常是氩气),灯丝通电后产生高温,灯丝的温度足够高,使灯丝加热到发光的温度。

当灯丝升温时,它会发射热辐射,即黑体辐射。

黑体辐射包含了各种波长的光线,其中包括可见光。

当我们看到灯泡发出的白光时,实际上是因为灯丝发射了各种波长的光线,它们混合在一起形成了白光。

因此,LED和白炽灯的发光原理完全不同。

LED是通过注入
载流子并释放能量来产生光线,而白炽灯是通过加热灯丝使其发射热辐射来产生光线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED特性和白光LED的基础知识与驱动
很多年来,发光二极管(LED)广泛的应用于状态显示与点阵显示板。

现在,不仅可以选择近期刚刚研发出来的蓝光和白光产品(普遍用于便携设备),而且也能在已有的绿光、红光和黄光产品中选择。

例如,白光LED被认为是彩色显示器的理想背光源。

但是,必须注意这些新型LED 产品的固有特性,需要为其设计适当的供电电源。

本文描述了新、旧类型LED 的特性,以及对驱动电源的性能要求。

标准红光、绿光和黄光LED
使LED 工作的最简单的方式是,用一个电压源通过串接一个电阻与LED 相连。

只要工作电压(VB)保持恒定,LED 就可以发出恒定强度的光(尽管随着环境温度的升高光强会减小)。

通过改变串联电阻的阻值能够将光强调节至所需要的强度。

对于5mm直径的标准LED,图1给出了其正向导通电压(VF)与正向电流(IF)的函数曲线。

[1] 注意LED的正向压降随着正向电流的增大而增加。

假定工作于10mA正向电流的绿光LED应该有5V 的恒定工作电压,那么串接电阻RV 等于(5V -VF,10mA)/10mA = 300 。

如数据表中所给出的典型工作条件下的曲线图(图2)所示,其正向导通电压为2V。

图1. 标准红光、绿光和黄光LED 具有1.4V 至2.6V 的正向导通电压范围。

当正向电流低于10mA时,正向导通电压仅仅改变几百毫伏。

图2. 串联电阻和稳压源提供了简单的LED 驱动方式。

这类商用二极管采用GaAsP (磷砷化镓)制成。

易于控制,并且被绝大多数工程师所熟知,它们具有如下优点:•所产生的色彩(发射波长)在正向电流、工作电压以及环境温度变化时保持相当的稳定性。

标准绿光LED 发射大约565nm 的波长,容差仅有25nm。

由于色彩差异非常小,在同时并联驱动几个这样的LED 时不会出现问题(如图3 所示)。

正向导通电压的正常变化会使光强产生微弱的差异,但这是次要的。

通常可以忽略同一厂商、同一批次的LED 之间的差异。

•正向电流高至大约10mA时,正向电压变化很小。

红光LED 的变化量大约为200mV,其它色彩大约为400mV (如图1 所示)。

•相比之下,对于低于10mA 的正向电流,蓝光和白光LED 的正向电压变化更小。

可以直接使用便宜的锂电池或三节NiMH 电池驱动。

图3. 该图给出了同时并联驱动几个红光、黄光或者绿光LED 的结构,具有很小的色
彩差异或亮度差异。

因此,驱动标准LED的电流消耗非常低。

如果LED的驱动电压高于其最大的正向电压,则并不需要升压转换器或者复杂昂贵的电流源。

LED甚至可以直接由锂电池或者3节NiMH电池来驱动,只要因电池放电而导致的亮度减弱可以满足该应用的要求即可。

蓝光LED
在很长的一段时间内都无法提供发射蓝光的LED。

设计工程师仅能采用已有的色彩:红色、绿色和黄色。

早期的“蓝光”器件并不是真正的蓝光LED,而是包围有蓝色散射材料的白炽灯。

几年前,使用纯净的碳化硅(SiC)材料研制出了第一个“真正的蓝光”LED,但是它们的发光效率非常低。

下一代器件使用了氮化镓基料,其发光效率可以达到最初产品的数倍。

当前制造蓝光LED的晶体外延材料是氮化铟镓(InGaN)。

发射波长的范围为450nm至470nm,氮化铟镓LED可以产生五倍于氮化镓LED的光强。

白光LED
真正发射白光的LED是不存在的。

这样的器件非常难以制造,因为LED的特点是只发射一个波长。

白色并不出现在色彩的光谱上;一种替代的方法是,利用不同波长合成白色光。

白光LED设计中采用了一个小窍门。

在发射蓝光的InGaN基料上覆盖转换材料,这种材料在受到蓝光激励时会发出黄光。

于是得到了蓝光和黄光的混合物,在肉眼看来就是白色的(如图4所示)。

图4. 白光LED 的发射波长(实线)包括蓝光和黄光区域的峰值,但是在肉眼看来就是白
色。

肉眼的相对光敏感性(虚线)如图所示。

白光LED的色彩由色彩坐标定义。

X和Y坐标的数值根据国际照明委员会(CIE)的15.2规范的要求计算得到。

白光LED 的数据资料通常会详细说明随着正向电流增加而引起的色彩坐标的变化(如图5所示)。

图5. 正向电流的变化改变了白光LED (OSRAM Opto Semiconductors 的LE Q983)
的色彩坐标,并因此改变了白光质量。

不幸的是,采用InGaN 技术的LED 并不像标准绿光、红光和黄光那样容易控制。

InGaN LED的显示波长(色彩)会随着正向电流而改变(如图6所示)。

例如,白光LED所呈现的色彩变化产生于转换材料的不同浓度,以及蓝光发光InGaN 材料随着正向电压的变化而产生波长变化。

从图5可以看到色彩的变化,X和Y坐标的移动意味着色彩的改变(如前所述,白光LED没有明确的波长。

)。

相关文档
最新文档