碳纤维环氧复合材料高温力学性能研究
碳纤维环氧树脂复合材料的制备及性能研究
碳纤维环氧树脂复合材料的制备及性能研究摘要碳纤维环氧树脂复合材料具有轻质、高强度和优异的力学性能,被广泛应用于航空航天、汽车和能源等领域。
本文旨在研究碳纤维环氧树脂复合材料的制备方法以及其性能研究。
首先介绍了碳纤维和环氧树脂的基本概念,然后阐述了碳纤维环氧树脂复合材料的制备工艺,包括预浸料制备、成型工艺和固化过程。
接着,对碳纤维环氧树脂复合材料的力学性能、热性能和耐腐蚀性进行了研究,分析了其影响因素和优缺点。
最后,对碳纤维环氧树脂复合材料的未来发展进行了展望。
1. 碳纤维和环氧树脂的基本概念1.1 碳纤维碳纤维是由碳元素为主要成分的纤维材料,具有轻质、高强度和高模量的特点。
其制备过程包括原料选择、纤维拉伸、炭化和后处理等步骤。
1.2 环氧树脂环氧树脂是一种具有交联结构的聚合物材料,具有优异的机械性能和化学稳定性。
其制备过程包括单体合成、聚合和固化等步骤。
2. 碳纤维环氧树脂复合材料的制备工艺2.1 预浸料制备预浸料是碳纤维环氧树脂复合材料制备的关键步骤之一。
其制备过程包括树脂调制、纤维浸润和固化等步骤。
2.2 成型工艺成型工艺是碳纤维环氧树脂复合材料制备的关键步骤之一。
常见的成型工艺包括手工层叠、自动化层叠和压缩成型等方法。
2.3 固化过程固化过程是碳纤维环氧树脂复合材料制备的关键步骤之一。
常见的固化方法包括热固化和光固化等。
3. 碳纤维环氧树脂复合材料的性能研究3.1 力学性能碳纤维环氧树脂复合材料的力学性能受到纤维取向、纤维体积分数和树脂固化度等因素的影响。
常见的力学性能包括强度、弹性模量和断裂韧性等。
3.2 热性能碳纤维环氧树脂复合材料具有良好的耐高温性能和导热性能。
其热性能受到树脂体系、纤维体积分数和纤维取向等因素的影响。
3.3 耐腐蚀性碳纤维环氧树脂复合材料的耐腐蚀性能受到介质环境、表面涂层和纤维保护等因素的影响。
常见的腐蚀介质包括酸、碱和溶剂等。
4. 碳纤维环氧树脂复合材料的发展趋势碳纤维环氧树脂复合材料在航空航天、汽车、能源和体育器材等领域有着广阔的应用前景。
碳纤维复合材料的力学性能研究
碳纤维复合材料的力学性能研究随着科学技术的不断发展,碳纤维复合材料作为新一代优良的结构材料,受到了广泛的关注。
其独特的力学性能使其在航空、航天、汽车、体育器材等领域有广泛的应用。
本文将对碳纤维复合材料的力学性能进行研究。
材料的力学性能是评价其质量的关键指标之一。
碳纤维复合材料由纤维基体和树脂基体组成,两者相互配合,使其具备高强度、高刚度、低密度等优良的力学性能。
其中,纤维基体主要由碳纤维组成,其强度和刚度是影响材料性能的关键因素之一。
在研究碳纤维复合材料的力学性能时,人们通常会关注其拉伸性能、弯曲性能和压缩性能等方面。
首先,拉伸性能是指材料在外力作用下的抗拉强度和断裂延伸率。
碳纤维本身具备很高的强度和刚度,使得复合材料在拉伸载荷下表现出较好的抗拉性能。
其次,弯曲性能是指材料在弯曲作用下的变形能力。
碳纤维复合材料的高刚度使其在承受弯曲载荷时产生较小的挠度,从而具备较好的抗弯性能。
最后,压缩性能是指材料在承受压缩力时的变形能力。
由于复合材料的低密度和高刚度,使得其在承受压缩载荷时具备出色的抗压性能。
除了上述力学性能外,碳纤维复合材料还具备疲劳性能和冲击性能等特点。
疲劳性能是指材料在多次循环荷载下的耐久性能。
由于碳纤维的高强度和良好的疲劳寿命,使得复合材料在长时间循环荷载下仍然能够保持较好的性能。
冲击性能是指材料在受到突然冲击时的抵抗外力的能力。
由于碳纤维具备较高的强度和韧性,使得复合材料具备较好的抗冲击能力。
为了进一步提高碳纤维复合材料的力学性能,人们进行了各种探索和研究。
例如,通过改变纤维的取向和层片的排列组织方式,可以提高复合材料的强度和刚度。
同时,通过改变树脂基体的成分和添加剂,可以改善复合材料的韧性和耐疲劳性能。
此外,人们还通过研究纳米材料在碳纤维复合材料中的应用,进一步改善了其力学性能。
综上所述,碳纤维复合材料具备优良的力学性能,其拉伸性能、弯曲性能和压缩性能等方面表现出色。
同时,其具备较好的疲劳性能和冲击性能。
碳纤维复合材料的热力学与力学性能分析
碳纤维复合材料的热力学与力学性能分析碳纤维复合材料是现代工业中广泛使用的新型高性能材料。
其优良性能包括高强度、高刚度、轻质化、耐腐蚀、高温性能等,使得它在航空航天、轨道交通、汽车工业、体育器材等领域得到广泛的应用。
本文将从热力学和力学两个方面对碳纤维复合材料的性能进行分析。
一、热力学性能分析碳纤维复合材料具有优异的热稳定性和高温性能。
它们的应力-应变关系呈现出线性弹性,而且弹性模量随温度升高而下降的趋势相对较缓。
这是因为碳纤维复合材料中的碳纤维具有较高的热稳定性,能够承受较高的温度,而有机基体的热膨胀系数相对较小,因此在高温环境下材料的线膨胀系数较低。
碳纤维复合材料中的碳纤维和有机基体具有不同的热传导系数。
碳纤维的热传导系数较大,因此在高温条件下,热能主要通过纤维传递,从而使得材料的温度分布较为均匀。
而有机基体的热传导系数较小,因此在高温条件下,较少的热能通过基体传递,从而使得材料的温度分布不均,容易出现热应力现象。
碳纤维复合材料的热膨胀系数随温度变化较小,因此在不同温度下的线膨胀系数均较低。
在高温条件下,碳纤维和有机基体各自的线膨胀系数变化的速率不同,因此容易产生热应力,从而影响材料的性能。
二、力学性能分析碳纤维复合材料具有很高的强度和刚度,但韧性相对较低。
它们的破坏方式主要有纤维拉断和基体剪切等。
纤维和基体之间存在较大的力学不相容性,因此容易产生裂纹和开裂现象。
碳纤维复合材料的破坏性能主要与纤维和基体之间的结合强度和相对位移有关。
在应力作用下,纤维和基体之间的相对位移较大时,容易产生微裂纹和分界面失效。
在织构合成的碳纤维复合材料中,纤维的优化分布可以使得材料具有较好的强度和韧性,但由于织构合成的特殊结构,复合材料的各向异性较为显著。
碳纤维复合材料的强度和刚度与纤维的取向、长度和断面积等有关。
理想情况下,纤维取向垂直于应力方向时,材料的强度和刚度最大。
在实际制备中,由于纤维长短不均、定向不准确等因素影响,复合材料的强度和刚度常常低于理论值。
碳纤维复合材料力学性能研究进展
包 装 工 程第44卷 第21期 ·36·PACKAGING ENGINEERING 2023年11月收稿日期:2023-05-30基金项目:国家自然科学基金(12172344) *通信作者碳纤维复合材料力学性能研究进展段裕熙,张凯*,徐伟芳,陈军红,龚芹(中国工程物理研究院总体工程研究所,四川 绵阳 621999)摘要:目的 综述碳纤维复合材料这一热结构材料的力学性能研究进展,推进碳纤维复合材料的研制和应用。
方法 采用文献调研法,梳理和汇总国内外有关碳纤维复合材料力学性能的研究内容,对二维复合材料、针刺复合材料及三维编织复合材料3种结构进行性能影响因素分析。
结论 影响碳纤维复合材料静态和动态力学性能的因素主要有温度、应变率、密度等,提出应进一步开展碳纤维复合材料在多因素耦合及高温动态性能方面的研究。
关键词:碳纤维复合材料;静态力学性能;动态力学性能;三维编织复合材料 中图分类号:TB332 文献标识码:A 文章编号:1001-3563(2023)21-0036-10 DOI :10.19554/ki.1001-3563.2023.21.005Mechanical Property of Carbon Fiber CompositesDUAN Yu-xi , ZHANG Kai *, XU Wei-fang , CHEN Jun-hong , GONG Qin(Institute of Systems Engineering, China Academy of Engineering Physics, Sichuan Mianyang 621999, China) ABSTRACT: The work aims to explore recent advancements in the mechanical properties of carbon fiber composites for thermal structural applications, with the objective of promoting the development and utilization of carbon fiber composites. Through a comprehensive literature review, the current research status on the mechanical properties of carbon fiber composites was summarized, and the factors affecting the static and dynamic mechanical properties of 2D composites, needled composites, and 3D woven composites were analyzed. The results indicate that factors affecting the static and dynamic mechanical properties of carbon fiber composites include temperature, strain rate, density, et al. And further investigations are necessary in multi-factor coupling and high temperature dynamic properties of carbon fiber composites. KEY WORDS: carbon fiber composite; static mechanical properties; dynamic mechanical properties; three-dimensional weaving composite碳纤维由有机纤维经过一系列热处理转化而成,它是含碳量高于90%的无机高性能纤维,既具有碳材料的固有本征,又兼具纺织纤维的柔软可加工性。
碳纤维增强复合材料的力学性能研究
碳纤维增强复合材料的力学性能研究随着科技的发展和人们对材料性能要求的不断提高,碳纤维增强复合材料作为一种新型材料,逐渐受到了人们的关注和研究。
碳纤维增强复合材料的优点在于具有轻质、高强和高刚性等特点,因此在航空航天、汽车和体育器材等领域得到了广泛应用。
本文将围绕碳纤维增强复合材料的力学性能展开讨论,并分析其优点与不足。
一、碳纤维增强复合材料的力学性能研究碳纤维增强复合材料是由无定形材料和纤维增强材料组成的一种粘合材料。
其力学性能是影响使用效果的重要因素。
在实际应用中,碳纤维增强复合材料的力学性能主要表现在强度、刚度、韧度和疲劳寿命等方面。
下面将对这些方面进行详细讨论。
1. 强度碳纤维增强复合材料的强度是指在外力作用下,材料发生断裂前所能承受的最大应力。
由于其结构特殊,具有纤维对外界应力的抗拉能力,因而其强度很高。
实验表明,碳纤维增强复合材料的抗拉强度约为1500 MPa。
而同样条件下的钢材和铝材抗拉强度只有400 MPa左右,而且在高温、腐蚀等恶劣环境下,铝材和钢材的强度更低,而碳纤维增强材料的强度不变,还会增加。
2. 刚度碳纤维增强复合材料的刚度是指在外界力作用下,材料抵抗形变的能力。
由于其纤维本身刚度很高,因此材料的刚度也很高。
实验结果表明,碳纤维增强复合材料的弹性模量约为210 GPa,而同样条件下的钢材和铝材弹性模量分别为200 GPa 和70 GPa左右。
因此,在需要使用刚度较高的场合下,碳纤维增强复合材料具有较好的应用前景。
3. 韧度碳纤维增强复合材料的韧度是指在受力时,材料离开弹性阶段到断裂之前所需要的功。
与强度和刚度不同,碳纤维增强复合材料的韧度较低。
这是由于该材料虽然具有纤维与增强材料的双重优势,但其内部结构复杂度很高,存在许多微小裂缝,因此材料整体的韧性有所下降。
实验结果表明,碳纤维增强复合材料的韧度约为25-50 kJ/m2,而同样条件下的钢材和铝材韧度分别为200 kJ/m2和10-20 kJ/m2左右。
碳纤维增强环氧树脂复合材料性与结构的研究
碳纤维增强环氧树脂复合材料性能与结构的研究碳纤维增强环氧树脂复合材料性能与结构的研究摘要:本文研究了E-44双酚A型环氧树脂固化体系的反应特性,以低分子聚酰胺树脂为固化剂,采用手糊成型螺栓加压工艺制备了复合材料,并以沥青基碳纤维为增强材料,研究了复合材料的常温力学性能、水煮后力学性能和固化过程的热分析,并对其拉伸断面进行了分析。
研究结果得出:E-44树脂基体粘度低、韧性好且适用期长,适合于手糊成型,缠绕成型等低成本的制造工艺,因此制得的EP/CF复合材料具有优良的力学性能;该复合材料也具有良好的界面粘接性(树脂对纤维的浸润性良好)、较低的空隙率且碳纤维分布均匀。
关键Carbon fibre reinforced epoxy resin composite materialproperties and structure of the researchAbstract: This paper studies the E-44 bisphenol A type epoxy resin curing system response characteristics, with low molecular polyamide resin as curing agent, the pressure molding paste hand bolt for the composite technology was studied, and the carbon fiber with asphalt to strengthen materials, the mechanical properties of the composite materials under normal temperature, boiled after the mechanical properties and the solidification process of thermal analysis, and the tensile section is analyzed. We can get this conclusions:E-44 resin matrix low viscosity, good toughness penguins applicable periods long, suitable for molding paste hand around the molding, the low cost manufacturing process, thus made EP/CF composite material with excellent mechanical properties; The composite material also has a good interface bonding sex (of the fibers infiltrating the resin good), low air void and carbon fiber distribution even.Keywords: epoxy resins; Carbon fiber; Composite materials; Mechanical propertie.目录1 前言 (1)1.1 课题背景 (1)1.1.1 复合材料定义 (1)1.1.2 EP/CF复合材料的应用 (1)1.2 双酚A型环氧树脂 (2)1.2.1 双酚A型环氧树脂的定义 (2)1.2.2 双酚A型环氧树脂的固化原理 (3)1.2.3 双酚A型环氧树脂的结构 (3)1.3 环氧树脂固化剂 (4)1.3.1 环氧树脂固化剂的定义 (4)1.3.2 环氧树脂固化剂分类 (4)1.3.3 环氧树脂固化剂发展趋势 (6)1.3.4低分子聚酰胺树脂(型号650) (7)1.4碳纤维 (8)1.4.1 碳纤维概述 (8)1.4.2 碳纤维的性能 (9)1.4.3 碳纤维的处理 (11)1.5 环氧树脂/碳纤维的增强机理 (13)1.6 选题的目的与研究意义 (13)2 实验部分 (15)2.1 主要实验原料及试剂 (15)2.2 实验原料的配比 (15)2.3 主要实验设备 (15)2.4 实验流程 (16)2.4.1 实验流程图 (16)2.4. 碳纤维处理 (18)2.4.3 环氧树脂/碳纤维复合材料的制备 (18)2.5 性能测试 (19)2.5.1 力学性能测试 (19)2.5.2 固化过程的热分析 (19)2.5.3 E-44环氧树脂固化过程的温度变化的研究 (19)2..4 碳纤维增强环氧树脂复合材料的微观结构的观察 (19)3 结果与讨论 (20)3.1 常温下处理的碳纤维增强复合材料的力学性能 (20)3.2 水煮后碳纤维增强环氧树脂复合材料的力学性能 (21)3.3 碳纤维处理时间的不同对复合材料的力学性能的影响 (22)3.4 力学性能的对比 (27)3.4.1 常温下复合材料的力学性能 (27)3.4.2 水煮后复合材料的力学性能 (27)3.5 固化过程的热分析 (27)3.6 E-44环氧树脂固化过程的温度升高研究 (28)3.7 碳纤维增强复合材料的断面的显微结构 (29)4 结论 (31)参考文献 (32)致谢 (33)1前言1.1 课题背景1.1.1 复合材料定义复合材料,是指把两种以上宏观上不同的材料,合理地进行复合而制得的一种材料,目的是通过复合材料来提高单一材料所不能发挥的各种特性。
碳纤维复合材料的力学性能与应用分析
碳纤维复合材料的力学性能与应用分析第一章:引言碳纤维复合材料是一种具有优异力学性能的高强度材料。
它由碳纤维和树脂基体组成,具有密度低、刚度高、强度高、耐疲劳性好等优点。
因此,碳纤维复合材料在航空、航天、汽车、船舶等领域有着广泛的应用前景。
本文将对碳纤维复合材料的力学性能及其应用进行分析和探讨,以期帮助人们更好地了解该材料。
第二章:碳纤维复合材料的力学性能2.1 碳纤维的力学性能碳纤维是碳纤维复合材料的主要组成部分,它具有很高的强度和刚度,也叫做纤维增强材料。
碳纤维的强度取决于其直径和生长方向,通常其直径小于10微米。
随着直径的减小,碳纤维的强度和刚度会增加。
碳纤维还具有很好的耐疲劳性能和耐腐蚀性能。
2.2 树脂基体的力学性能树脂基体是碳纤维复合材料的另一部分,它可以密封和固定碳纤维,还可以起到传递均匀载荷的作用。
树脂基体通常是环氧树脂或聚酰亚胺树脂。
环氧树脂具有优良的成型性能和加工性能,而聚酰亚胺树脂具有很好的耐高温性能和耐热冲击性能。
2.3 碳纤维复合材料的力学性能碳纤维复合材料的力学性能取决于碳纤维和树脂基体的性质和结构。
它的强度和刚度随纤维体积分数和方向变化而变化,而断裂韧性则取决于树脂基体的性质和结构。
碳纤维复合材料的强度和刚度往往比金属材料高,但断裂韧性较差。
第三章:碳纤维复合材料的应用3.1 航空领域碳纤维复合材料在航空领域的应用非常广泛。
它们常用于制造飞机机身、翼面和垂直尾翼等部件。
与传统金属材料相比,碳纤维复合材料具有重量轻、寿命长、耐疲劳性强等优点。
同时,碳纤维复合材料也可以降低飞机的燃油消耗和环境污染。
3.2 汽车领域汽车制造商也开始广泛地采用碳纤维复合材料。
碳纤维复合材料的轻量化特性可以降低汽车的油耗和排放量,同时还可以提高汽车的性能和安全性。
如日本的丰田公司在其旗下的超级跑车“雷克萨斯LFA”中采用了大量碳纤维复合材料。
3.3 船舶领域碳纤维复合材料在船舶领域的应用也在不断增加。
磨碎碳纤维增强环氧树脂复合材料的性能
汽车在行驶过程中会受到冲击力的作用,磨碎碳纤维增强 环氧树脂复合材料具有较好的抗冲击性能,能够提高材料 的耐久性。
建筑领域的应用
01
结构加固
磨碎碳纤维增强环氧树脂复合材料可以用于建筑结构的加固,提高结构
的承载能力和抗震性能。
02
防腐保护
建筑结构中的钢结构、混凝土结构等易受到腐蚀介质的影响,磨碎碳纤
01
02
03
复合材料的定义
由两种或两种以上不同性 质的材料,通过物理或化 学的方法组成,具有新性 能的材料。
复合材料的优点
具有各组成材料的优点, 如强度高、质量轻、耐腐 蚀等。
复合材料的应用
广泛应用于航空航天、汽 车、建筑、体育器材等领 域。
碳纤维增强环氧树脂复合材料简介
碳纤维的特性
01
具有高强度、高模量、低密度、耐腐蚀、导电性好等优点。
导热性能与隔热性能
导热性能
磨碎碳纤维增强环氧树脂复合材料具有较好的导热性能,能够有效地传递热量。
隔热性能
该材料具有较好的隔热性能,能够有效地阻挡热量的传递。
耐候性与耐腐蚀性
耐候性
磨碎碳纤维增强环氧树脂复合材料具有较好的耐候性,能够在恶劣的环境条件下保持较好的性能。
耐腐蚀性
该材料具有较好的耐腐蚀性,能够抵抗化学物质的侵蚀。
环氧树脂的特性
02
具有优良的力学性能、电绝缘性能、耐腐蚀性能等。
碳纤维增强环氧树脂复合材料的制备方法
03
将碳纤维与环氧树脂混合,经过固化反应形成。
磨碎碳纤维增强环氧树脂复合材料的研究意义
提高材料的力学性能
通过磨碎碳纤维可以增加材料的比表 面积,提高材料的力学性能。
碳纤维复合材料的研究进展
碳纤维复合材料的研究进展碳纤维复合材料是一种被广泛应用于各行各业的轻质高强材料,它由碳纤维和树脂基质组成,具有优良的力学性能、抗腐蚀性能和耐高温性能。
目前,全球对于碳纤维复合材料的研发和应用越来越重视,本文将从碳纤维复合材料的制备、性能、应用等方面进行阐述。
一、碳纤维复合材料的制备技术碳纤维复合材料制备的关键在于纤维的制备和树脂基质的浸渍,制备工艺不同会对碳纤维复合材料的力学性能和耐久性产生重要的影响。
目前有几种主要的制备方法。
1.手工叠层法手工叠层法是较早期的制备方法,该方法的思想是将预先裁剪好的碳纤维布按照预定的角度和层数粘合在一起,在采用硬化树脂或热固性树脂浸渍后进行热处理。
该方法可达到良好的力学性能,但受操作者技术水平的影响较大,生产效率较低。
2.压缩成型法压缩成型法的原理是将碳纤维和树脂复合材料放入并图,通过多次压实使树脂在碳纤维的间隙中均匀分布。
该方法制备的复合材料力学性能优良,但需要大量的人工操作时间和人工费用。
3.树脂浸渍型碳纤维复合材料树脂浸渍型碳纤维复合材料制备的关键技术是浸渍技术,该方法通过机械泵将树脂注入碳纤维预制件的孔隙中,树脂的浸渍效果可以通过控制注入时间和流量来实现。
该方法制备的复合材料性能稳定,生产效率高,应用广泛。
二、碳纤维复合材料的性能碳纤维复合材料具有以下显著的优势:1.轻质高强该材料的密度约为金属的一半,但强度却是普通金属材料的3倍以上。
在敏感应用领域和高性能车辆的制造中得到广泛应用。
2.抗腐蚀性能碳纤维复合材料在常温下不易受到腐蚀,其阻塞和电绝缘性能远优于金属材料。
在海洋、化工、电力等领域具有广泛应用。
3.耐高温性能碳纤维复合材料的耐高温性能极强,能够耐受高温热气流和火苗灼烧。
在航空航天和火箭制造领域得到广泛应用。
三、碳纤维复合材料的应用1.航空航天碳纤维复合材料因其轻质高强的特点,可以用于飞机和宇宙航行器燃料储罐、机身、涡轮及叶片、导弹等部件。
在现代航空发展中起到了重要作用。
碳纤维环氧树脂复合材料的制备及性能研究
图5 影响
图6 改性碳纤维含量对改性碳纤维/环氧树脂 材料抗弯强度的影响
偶联剂含量对环氧树脂复合材料力学性能的影响
图7 偶联剂含量对抗压强度的影响
图8 偶联剂含量对抗弯强度的影响
弯曲断口形貌
环氧树脂弯曲断口的宏观形貌
碳纤维/环氧树脂弯曲断口的宏观形 貌
图4 碳纤维含量对碳纤维/环氧树脂复合材料抗弯强度的影响
图11 改性碳纤维/环氧树脂在不同温度下的变形率
图3 碳纤维含量对碳纤维/环氧树脂复合材料抗压强度的影响
将碳纤维在丙酮溶液中超声分散。
58%,这表明改性碳纤维/环氧树脂复合材料的高温尺寸稳定性好。
以环氧树脂、固化剂、碳纤维、改性碳纤维、偶联剂为主要原料,采用常温固化的方法制备了力学性能优良的碳纤维/环氧树脂复合材
碳纤维环氧树脂复合材料的制备及性能研究
• 绪论 • 实验内容 • 实验数据曲线 • 实验结论
绪论
环氧树脂的特性
环氧树脂通常是具有两个及两个以上环氧基团,与固化剂反应后形成三维网状
结构的热固性材料。环氧树脂固化后不仅热性能、机械性能和电气性能优异还具有 突出的尺寸稳定性、耐化学药品性、耐湿热性及耐腐蚀性,已广泛用于表面涂料、 结构胶黏剂、印刷电路板、电子绝缘材料及先进复合材料等。
实验内容
实验原料
环氧树脂、环氧树脂固化剂、偶联剂、碳纤维、改性碳纤维
实验所需设备
干燥箱、电子天平、环块摩擦试验机、电子万能试样机、体式显微镜
实验过程
1、环氧树脂样品的制备 (1)用天平和烧杯称量一定量的环氧树脂,用一定量分散剂稀释备用。 (2)用烧杯称量所需质量的固化剂(质量分数分别为20 wt%、25 wt%、30 wt%、35 wt%),倒入环氧树脂烧杯中,均匀搅拌混合样品,常温下固化制得环氧树脂样品。 2、碳纤维/环氧树脂样品制备: (1)称取所需质量的碳纤维备用,碳纤维含量分别为5 vol%、10 vol%、15 vol%、20 vol%。将碳纤维在丙酮溶液中超声分散。 (2)称取一定量的环氧树脂,并称取所需要的固化剂质量。 (3)将超声分散好的碳纤维加入用分散剂稀释好的环氧树脂中,用玻璃棒充分搅拌,动作 幅度要小,避免能产生气泡,搅拌均匀后,加入固化剂。倒入模具中常温固化,便于测试其力 学性能。
碳纤维复合材料在不同温度下的性能差异
第52卷第9期 辽 宁 化 工 Vol.52,No. 9 2023年9月 Liaoning Chemical Industry September,2023基金项目: 沈阳市科技局双百项目(项目编号:Y18-1-018)。
收稿日期: 2022-09-24碳纤维复合材料在不同温度下的性能差异张宋茂苗1,张罡2,赵平1,时卓3(1. 沈阳理工大学 环境与化学工程学院,辽宁 沈阳 110000;2. 沈阳理工大学 材料科学与工程学院,辽宁 沈阳 110000;3. 辽宁省轻工科学研究院有限公司,辽宁 沈阳 110000)摘 要:碳纤维复合材料越来越多地被应用在各个领域。
随着使用的范围越来越广,环境因素逐渐成为各行各业关注的对象。
因此,在设计中需要更多地考虑到环境对于材料耐久性使用的问题。
并且,随着人们对安全性能的要求越来越高,需要对碳纤维复合材料在不同温度下的工作状态、损伤特性有一个清晰的认知。
介绍了碳纤维树脂基材料在不同温度下比较典型的破坏模式以及失效机理,重点介绍了环氧树脂、碳纤维、碳纤维复合材料在不同温度下的破坏方式以及改进方式。
关 键 词:碳纤维复合材料;环氧树脂;碳纤维;温度中图分类号:TB332 文献标识码: A 文章编号: 1004-0935(2023)09-1365-05碳纤维复合材料最早应用于航空航天领域,其发展一直受航空航天驱动[1]。
由于碳纤维复合材料具有优异的机械、物理和化学性能的独特组合,如高强度、高模量、耐热性和高强度重量比,碳纤维被广泛应用于汽车能源系统、燃料电池、低温传感器系统、海上深海钻井平台以及抗静电和电磁屏蔽记忆材料[3,6-7,48]。
但是当碳纤维复合材料在使用时遭遇恶劣的环境条件时,如温度的大幅度变化,仅靠材料自身的结构无法应对,因此,碳纤维复合材料会在环境暴露下表现出一定程度的性能退化,从而缩短预期寿命[2-3]。
传统上,将高聚物的老化分为两大类:物理老化和化学老化。
碳纤维增强环氧树脂基复合材料的性能研究
铸和缠绕等低成本制造工艺】,并对其力学性能、耐 热性和耐水性等性能进行了研究。
1实验部分
1.1 实验原料 WBS一3环氧树脂,无锡树脂厂;T一700S碳纤维
单向布,南京玻纤研究院。
1.2实验仪器 NDJ一79型旋转式黏度计,上海昌吉地质仪器有
限公司;2910型差示扫描量热分析仪,美国TA Instruments公司;CMT型万能实验机、ZBC-4型冲 击实验机,深圳新三思材料检测有限公司;S一570型 扫描电子显微镜(SEM),日立公司;Q800型动态力 学分析(DMA)仪,美国TA公司。
2.5复合材料的动态力学行为分析 由于材料的玻璃化转变、结晶、取向、交联和相
2.6复合材料的力学性能 2.6.1 复合材料的常温力学性能
复合材料的常温力学性能如表2所示。由表2
可知,T一700S用BS一3复合材料具有很好的综合力
学性能。这是由于WBS一3体系的黏度较低(不需要 加入溶剂来调节黏度),对纤维的浸润性较好,固化
时无小分子析出,也无气泡产生,故WBS一3树脂与 纤维的界面粘接性能良好,表现为复合材料的综合 力学性能较好。另外,采用RTM、缠绕成型和拉挤成 型等其他工艺同样能制备出性能优良的T一700s/ WBS一3复合材料。 2.6.2复合材料的高温力学性能
O
20
40
60
80
100
120
温度,℃
Fig.2
图2等遽升温条件下黏度一温度曲线 Viscosity vs temperature curve at constant heating speed
由图2可知,树脂在等速升温(2 oC/min)过程 中,其黏度呈先降后升的趋势。如AB段(20-60℃) 黏度下降是由于混合物受热后分子运动加速所致; BC段(60—120℃)黏度逐渐趋于恒定,其黏度小于 80 mPa·s;CD段(大于120℃)黏度迅速升高,说明 此阶段已发生了EP的链增长反应。
碳纤维增强环氧树脂复合材料的制备及其性能研究
碳纤维增强环氧树脂复合材料的制备及其性能研究介绍随着科技的不断发展,复合材料在工业和民用领域中得到广泛应用。
而碳纤维增强环氧树脂复合材料是目前最常用的一种,它具有力学性能优良、耐热、防腐等优点,因而在航空航天、汽车、体育器材等领域中得到广泛应用。
本文将介绍碳纤维增强环氧树脂复合材料的制备及其性能研究。
制备方法碳纤维增强环氧树脂复合材料的制备方法分为手工层坯法和机械自动化层坯法两种。
手工层坯法主要是通过手工将碳纤维叠放、涂覆环氧树脂制成层坯,其中的纤维层坯配比和工艺控制都在操作工的经验和技术控制下完成。
这种制备方法的优点是成本低,缺点是不易保证工艺质量稳定。
机械自动化层坯法是通过机械化设备将碳纤维层坯制成复合材料。
将预先切好的纤维根据设计图样放置在模具中,然后通过涂胶、烘干、压制等多道工序制成复合材料。
这种制备方法的优点是工艺质量稳定,缺点是设备投资大,成本相对较高。
性能研究碳纤维增强环氧树脂复合材料的力学性能优良,主要体现在以下三个方面:1、高强度和高刚度。
碳纤维本身就是一种优质的高强度、高模量材料,而环氧树脂的刚度也比较高,在二者结合后可以弥补各自的不足,大大提高复合材料的力学性能。
2、疲劳性能好。
研究表明,碳纤维增强环氧树脂复合材料的能够承受大量的疲劳循环,在动载情况下具有良好的应用前景。
3、耐热性好。
环氧树脂在高温下仍能保持较好的力学性能,而碳纤维能够对高温下膨胀进行补偿,从而使得复合材料的高温性能大大提高。
总结本文介绍了碳纤维增强环氧树脂复合材料的制备方法和性能研究,这种材料具有力学性能优良、耐热、防腐等优点,已经在航空航天、汽车、体育器材等领域中得到广泛应用。
随着科技的不断进步,我们相信这种材料会有更广泛的应用前景。
YSZ涂覆碳纤维/环氧复合材料性能的研究
u cae F.T ew ih osn ae n h aigo e cae o p stsw r b iul e rae t4 0 n otdC h eg tl igrtso e t ft otd c m oi e o vo s d c s d a 5 ℃ 一 s n h e e y e
c i e r fh ot g w s b u 1 m, h t lmnr ha s nt IS ) s t igs n ha dbn - l d m t eca ns a aot 0n tei e a ia er t g L S , t c n r g d e a e ot i nr s r h( e e r h t t n e e
碳 纤维 是 一种 引人 注 目的增强 材料 ,在航 空 、航 天 、机 械 、化 工等 许 多领域 内得 到广 泛 的应 用 ;但 未 经 表面 改性 的 碳纤 维 ,由于其 表 面惰性 l ,作 为增 强 l J 材 料 时 ,与基 体树 脂 的粘接 性差 [ ,致使 复合 材料 的 2 1 剪 切强 度低 ,限制 了其优异 性 能的 发挥 。 为了 改善 碳 纤 维 的表 面性 能 ,增 强碳纤 维 和树脂 的 结合 力 ,必 须
塑 料 工 业
C NA P n S I DUs R HI L C N T Y
第3 2卷第 8 期
20 04年 8月
Y Z涂覆碳纤维/ S 环氧复合材料性能的研究
郝 艳 霞 。杨 绪杰 。陆路德 。汪 信
( 南京理工 大学化工学 院,江苏 南京 2 09 ) 10 4 摘要 :采用溶胶 一凝胶 法在碳纤 维 的表面 涂覆了一层钇稳定 氧化锆 ( s )涂层 ,并研究 了用其制备 的碳纤 维/ YZ 环
碳纤维环氧树脂复合材料的制备及性能研究
A
18
致谢
感谢各位老师在百忙之中抽出时间对我的毕业设计进行答辩,您们 辛苦了!
A
19
改性碳纤维/环氧树脂弯曲断 口的宏观形貌
A
13
高温稳定性曲线
图9 纯环氧树脂在不同温度下的变 形率
图10 碳纤维/环氧树脂在不同温度下 的变形率
图11 改性碳纤维/环氧树脂在 不同温度下的变形率
A
14
耐磨性能分析
图12 纯环氧树脂材料在10 N载 荷下不同滑行时间下的变形率
A
图13 碳纤维/环氧树脂材料在10 N载荷下不同滑行时间下的变形 率
wt%),倒入环氧树脂烧杯中,均匀搅拌混合样品,常温下固化制得环氧树脂样品。
2、碳纤维/环氧树脂样品制备:
(1)称取所需质量的碳纤维备用,碳纤维含量分别为5 vol%、10 vol%、15 vol%、20
vol%。将碳纤维在丙酮溶液中超声分散。
(2)称取一定量的环氧树脂,并称取所需要的固化剂质量。
(3)将超声分散好的碳纤维加入用分散剂稀释好的环氧树脂中,用玻璃棒充分搅拌,动作
(2)用称重器和烧杯称量所需要质量的分散剂与固化剂。 (3)将一定量的环氧树脂与分散剂混合,然后加入超声分散好的改性碳纤维,最后加入 一定量的固化剂常温等待其固化,将制备好的样品进行力学性能测试。
A
7
实验数据曲线
固化剂含量对环氧树脂复合材料力学性能的影响
图1 固化剂含量对纯环氧树脂抗压强度的影响 A
幅度要小,避免能产生气泡,搅拌均匀后,加入固化剂。倒入模具中常温固化,便于测试其力
学性能。
A
6
3、加入改性碳纤维的环氧树脂样品的制备: (1)将碳纤维放置在箱式电阻炉中于在400 ℃下氧化处理30 min,冷却到室温后备用。
碳纤维复合材料的力学性能分析
碳纤维复合材料的力学性能分析碳纤维复合材料(CFRP)是一种高强度、高刚度、轻量化的材料,广泛应用于航空航天、汽车、体育器材、建筑等领域。
CFRP的力学性能是其能够取代传统材料的主要原因之一。
因此,了解CFRP的力学性能对于材料设计和工程应用具有重要意义。
本文将对CFRP的力学性能进行分析。
强度和刚度CFRP的强度和刚度是其最突出的特点之一。
CFRP的强度通常由其短纤维或连续纤维的拉伸强度决定。
CFRP的刚度则由其纤维的弹性模量决定。
与钢铁等传统材料相比,CFRP的强度和刚度要高得多,可以承受更高的载荷和应变。
然而,CFRP的强度和刚度并不是固定不变的。
它们受到许多因素的影响,包括纤维类型、纤维排列方式、树脂基质的亲合性等。
例如,使用高强度的碳纤维可以显著提高CFRP的强度和刚度。
采用不同的纤维排列方式可以达到不同的性能指标。
因此,在CFRP的制备过程中,必须根据具体应用场景进行材料设计和工艺优化,以实现最佳的性能表现。
疲劳性能疲劳性能是材料在交替载荷作用下的耐久性能,也是CFRP力学性能评价的重要指标之一。
CFRP在疲劳加载的过程中,往往会发生纤维疲劳断裂、界面开裂、树脂基质变形等现象,导致材料性能下降。
因此,疲劳性能的评估需要考虑材料的蠕变、断裂、疲劳裂纹扩展等方面的影响。
近年来,许多研究已经针对CFRP的疲劳性能进行了深入探究。
这些研究结果表明,通过优化材料设计和工艺参数,可以显著改善CFRP的疲劳强度和寿命。
例如,采用更好的纤维预处理和树脂固化技术可以减少裂纹的产生和扩展,从而使CFRP的疲劳寿命延长。
应力分布和损伤在CFRP的应用过程中,由于受到复杂的力学载荷作用,会产生应力集中和局部应变增大的现象,这可能会导致材料损坏和失效。
因此,了解CFRP的应力分布和损伤特征对于材料设计和应用具有重要意义。
CFRP的应力分布和损伤部位通常受到材料组分、表面处理、结构制备等因素的影响。
通过采用力学测试、光学显微镜、扫描电镜等手段,可以对CFRP的应力分布和损伤机制进行更为详细的分析。
碳纤维复合材料的力学性能研究
碳纤维复合材料的力学性能研究近几十年来,碳纤维复合材料在许多工业领域中得到了广泛的应用。
碳纤维复合材料具有轻质、高强度、高刚度和优异的耐腐蚀性能等优点,在航空航天、汽车制造、体育器材等领域都有着重要的应用。
为了更好地理解和利用碳纤维复合材料,研究其力学性能是非常关键的。
一、材料结构和性质碳纤维复合材料的核心组成部分是由碳纤维和树脂基体组成的。
碳纤维是由碳原子组成的连续纤维,具有高度的拉伸强度和模量。
树脂基体是一种高分子材料,能够粘合碳纤维并提供保护。
通过将碳纤维与树脂基体结合,形成了具有良好性能和刚度的复合材料。
二、拉伸性能研究拉伸试验是研究碳纤维复合材料力学性能的主要方法之一。
通过在拉伸机上对样品进行拉伸,可以获得材料的应变-应力曲线。
该曲线能够反映材料在拉伸过程中的力学行为。
根据应变-应力曲线的斜率,可以计算出材料的弹性模量和屈服强度等参数。
三、弯曲性能研究弯曲试验是评估碳纤维复合材料屈服和断裂性能的重要方法之一。
通过在弯曲机上施加一定的载荷,可以测量材料在弯曲过程中产生的应变和应力。
根据弯曲试验数据,可以计算出材料的弯曲模量和弯曲强度等参数。
弯曲性能的研究对于碳纤维复合材料在结构设计和应用中的应变和破坏行为的理解至关重要。
四、疲劳性能研究疲劳性能是指材料在受到交变载荷作用下,长期使用后的损伤行为。
对于碳纤维复合材料来说,疲劳性能的研究对于预测和评估材料在实际使用中的寿命非常重要。
疲劳试验可以通过施加周期性载荷,模拟出材料在实际使用中可能遇到的循环负载情况。
通过观察材料的疲劳寿命、裂纹扩展速率等参数,可以评估材料的疲劳性能,并为材料的设计和使用提供依据。
五、应用前景展望碳纤维复合材料的力学性能研究为其在航空航天、汽车制造、体育器材等领域的应用提供了重要的支撑。
然而,随着科技的不断进步,人们对于碳纤维复合材料的力学性能还有着许多研究空间。
例如,可以进一步研究材料的多轴应变和断裂行为,以及材料的高温和低温性能。
碳纤维复合材料的力学性能研究
碳纤维复合材料的力学性能研究引言碳纤维复合材料(CFRP)自问世以来,在航空、航天、汽车、体育器材等领域均有较广泛的应用。
其具有轻质、高强度、高刚度、高温耐性、腐蚀性能好等优点。
在对其力学性能的研究中,主要围绕着弯曲、剪切、拉伸、冲击等方面展开,本文旨在对其力学性能的研究进行综述。
一、弯曲性能弯曲强度、弯曲刚度、屈曲载荷、屈曲长度和剩余弯曲强度是衡量CFRP弯曲性能的重要指标。
其中弯曲强度和弯曲刚度是反映其抵御外力弯曲变形的能力的重要参数。
实验研究表明,CFRP的弯曲强度随着纤维体积分数的增加而增大,说明纤维体积分数对CFRP的弯曲强度具有重要影响。
在加工过程中,应掌握好合适的纤维取向角度,以获得最佳的弯曲性能。
二、剪切性能剪切强度、剪切模量和取向角度等参数是评价CFRP剪切性能的关键指标。
剪切强度是衡量材料抗剪切载荷能力的重要参数,其大小取决于材料的组成、钢纤维扭角以及纤维的排布方式等因素。
CFRP的剪切模量一般都接近于它的纵向模量,而且这两者之间的差异随着纤维取向角度的变化而减小。
因此,在工程应用的过程中,应根据具体情况来选择合适的剪切方向以获得最佳的剪切性能。
三、拉伸性能拉伸强度是衡量CFRP拉伸性能的最重要指标,它受到纤维体积分数、纤维强度、纤维取向角度等因素的影响。
CFRP的拉伸强度一般都较高,但其拉伸模量较低。
其原因在于,CFRP的拉伸模量主要受到纤维取向的影响。
当纤维取向与外力载荷方向垂直时,CFRP的拉伸模量最低,而当纤维取向与外力载荷方向平行时,CFRP的拉伸模量最高。
四、冲击性能冲击强度和弹性塑性减缓均是衡量CFRP冲击性能的重要指标,其反映了材料在受到冲击载荷时产生的损伤程度。
CFRP的冲击强度随纤维体积分数的增加而增大,而随纤维强度的增加而减小。
同时,CFRP的弹性塑性减缓与其矩阵的塑性变形有关。
在工程应用中,一般采用合适的树脂体系和纤维阻尼材料,以优化CFRP的冲击性能。
复合材料的高温力学性能研究
复合材料的高温力学性能研究在当今科技飞速发展的时代,复合材料因其卓越的性能在众多领域得到了广泛应用,从航空航天到汽车制造,从能源领域到体育用品。
而在一些特殊的应用场景中,如高温环境下的工作条件,复合材料的高温力学性能就成为了关键的研究课题。
首先,我们需要了解什么是复合材料。
简单来说,复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的一种新型材料。
通过巧妙的组合,复合材料能够综合各组分材料的优点,从而展现出比单一材料更为出色的性能。
那么,为什么要研究复合材料的高温力学性能呢?这是因为在许多实际应用中,复合材料会面临高温的考验。
比如,航空发动机内部的部件,在工作时会承受极高的温度;再比如,某些工业炉中的结构材料,也需要在高温下保持良好的力学性能。
如果复合材料在高温下性能不佳,可能会导致部件失效,从而引发严重的事故或损失。
在高温环境下,复合材料的力学性能会发生显著变化。
一般来说,随着温度的升高,材料的强度和刚度通常会下降。
这是由于高温会导致材料内部的原子和分子运动加剧,从而削弱了原子间的结合力。
此外,高温还可能引起材料的相变、氧化、蠕变等现象,进一步影响其力学性能。
为了研究复合材料的高温力学性能,科学家们采用了多种实验方法。
其中,常见的有高温拉伸试验、高温压缩试验、高温疲劳试验等。
通过这些试验,可以获得复合材料在不同温度下的应力应变曲线、强度、弹性模量、疲劳寿命等重要参数。
以高温拉伸试验为例,在实验过程中,需要将复合材料试样加热到设定的温度,并保持恒温。
然后,使用专门的拉伸试验机对试样施加逐渐增大的拉力,同时记录下试样的变形和所承受的拉力。
通过对实验数据的分析,可以了解复合材料在高温下的拉伸强度、屈服强度、延伸率等性能指标。
除了实验研究,数值模拟也是研究复合材料高温力学性能的重要手段。
通过建立数学模型和使用有限元分析软件,可以模拟复合材料在高温下的力学行为,预测其性能变化趋势,并为材料的设计和优化提供理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 5 O℃ 下 各 试 验 样 品 的 力 学 性 能 参 数 。 通 过 对 试 样 的 应 力 与
应 变的关系、 拉 伸 破 坏 强度 、 拉 伸 弹 性 模 量 以 及 保 留 率 的 分析 , 研 究碳 纤 维 环 氧 复合 材 料 的 高 温 力 学 性 能 。 结 果 表 明 , 4种 碳 纤 维环 氧 复 合材 料 的 应 力 一 应 变 曲线 整 体 变化 趋 势 大 致 相 同 ,
文章编号 : 1 0 0 9 ~0 0 2 9 ( 2 O 1 6 ) l 2 —1 6 5 9 一O 5
T3
碳 纤 维 环 氧 树 脂 复 合 材 料 凭 借 高 比强 度 、 高 比模 量 、 结构尺寸稳定性好 、 耐腐蚀 、 可 设 计 性 好 和 良好 的 力 学 性
能等优点 , 在军工 企业 、 民用工业 、 建 筑 加 固 改 造 领 域 得 到了广泛的应用 , 尤 其 在 航 空 等 高 科 技 领 域 中 的应 用 越 来 越多 , 常作为机身框 、 仪 表 箱 等 工 艺 的制 造 材 料 。碳 纤 维环氧复合材料暴露于高温时 , 基体树脂会发 生分解 , 引 起 复合 材 料抗 拉 、 抗剪、 弹 性 模 量 等 力学 性 能 的 改 变 , 严 重危及 材料结构的安全 。 近年 , 国外 学 者 对 碳 纤 维 复 合 材 料 的 高 温 力 学 性 能 有 一定 研 究 , 主要 集 中 在 铺 层 数 量 对 材 料 高 温 力 学 性 能 影 响 以及 高温 下 材 料 的 破 坏 方 式 等 方 面 , 对 碳 纤 维 环 氧
自定 义 T 3 0 0 碳 纤 维 布 3 K织物/ 环 氧 [ ( O 。 / 9 0 。 ) 6 / ( ±4 5 。 ) 2 ] 8 自定 义 T3 0 0 碳 纤 维 布 3 K织物/ 环 氧 [ ( 0 。 / 9 0 。 ) / ( ±4 5 。 ) ] 4 8
—
摘 要 : 以航 空领 域 中 广 泛 应 用 的 4种 典 型 碳 纤 维 环 氧 复 合 材 料 为研 究 对 象 , 采 用微 机 控 制 高 温 试 验 机 测 试 2 5 、 5 0 、 1 0 0 、
号为 T 1 、 T 2 、 T 3 , 和一种单项预浸料 , 编号为 D 1 。将 碳 纤 维 单 向预 浸 料 T1 、 T 2和 T 3 碳 纤 维 布 的差 异 在 于 碳 纤 维 的铺 层 方 式 不 同 。其 中 , T 1 和 T2 为 自定 义 铺 层 , 主 要 是
[ ( ±4 5 。 ) / 0 。 / 4 5 。 / 0 。 / ~4 5 。 / o 。 ]
根 据 国家标准 G B / T 3复合材料拉伸性能试验方法 》 , 试 验 样 品 的几 何 形
状 如 图 1所 示 , 试样 尺寸为 : L 。 一6 7 mm , L一 2 3 0 mm, b 。
( b ) 侧 面 图
图 1 试样 几 何形 状
强度 、 拉 伸 弹 性 模 量 以及 高 温 保 留率 , 揭 示 高 温 对 碳 纤 维
一
2 5 mm , 6 —9 . 8 1 T I m, h一 2 . 1 8 mm 。
( a ) 俯 视 图
复合材料 在高温下的力学性能以及影响高温力学性 能 因
素 方 面 的研 究 较 少 。 笔 者 通 过 试 验 研 究 比较 , 分 析 4种 典 型碳 纤 维 环 氧 复 合 材 料 的 应 力 一 应 变 曲线 、 拉 伸 破 坏
3 K碳 布 和单 向 预 浸料 组成 , 常作 为 飞 机 上 仪 表 板 的 制 作
材 料 。试 样 的铺 层 方 式 如 表 l所 示 。
表 1 T 1 、 T 2 、 T 3和 D1的 铺 层 方 式 试 样 编 号 性 质 T1 T2
—
牌
号
铺 层 方 式
层 数
D1
机 身 框 T3 0 0 [ ( O 。 / 9 0 。 ) / 士4 5 。 ] 2 试 验 件 3 K织物/ 环 氧 [ ±4 5 。 / ( O 。 / 9 0 。 ) ]
—
8 6
2
仪 表 板 T 3 0 0 — 3 K织物/ 环氧 、 试 验 件 UI N4 6 2 0 0
在 发 生拉 伸 破 坏 现 象 之 前 , 应 力与应 变呈正 相 关关 系; 碳 纤 维 环 氧 复 合 材 料 的 高 温 力 学 性 能 与 材 料 的铺 层 角度 有 关 , 与受力
方 向一 致 的铺 层 越 多, 试样 的力 学性能 就越好 ; 通 过 数 据 拟 舍 得 到 了碳 纤 维环 氧 复 合材 料 高 温 力 学 性 能 的 经 验 公 式 。 关键词 : 碳 纤 维 ;复 合 材 料 ;高温 力 学 ;拉 伸 破 坏 强 度 中 图分 类 号 : X 9 1 3 . 4 。 V2 1 4 文 献 标 志码 : A
碳 纤 维 环 氧 复 合 材 料 高 温 力 学 性 能研 究
王 志 ,张 雷 , 陈 健 。 。徐艳 英 。 ( 1 . 沈 阳航 空航 天大 学 辽 宁省 通 用航 空重 点 实验 室 ,辽 宁 沈 阳 1 1 0 1 3 6 ;
2 . 沈 阳航 空航 天 大学 辽 宁省 飞机 火爆 防控及 可 靠性 适航 技 术 重点 实验 室 , 辽宁 沈阳 1 1 0 1 3 6 )