Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO2 nanoparticles
不同溶剂对钨酸铋形貌及可见光催化性能的影响
不同溶剂对钨酸铋形貌及可见光催化性能的影响张鸿羽;王爱军;袁耀【摘要】以水、乙醇、乙二醇与丙三醇的纯溶液和水与三种醇的混合溶液为溶剂,通过溶剂热法合成了Bi2WO6催化剂,并对其形貌及可见光催化性能进行研究,结果表明:相比纯溶剂,混合溶剂合成的Bi2WO6结构复杂、形貌规则,且粒径较大、分散性好;此外,随着溶剂分子中羟基数目的增加,Bi2WO6呈现出结晶度降低,晶体粒径和纳米片尺寸减小的规律;最后,乙二醇和水混合溶剂制备的花球状Bi2WO6光催化活性良好,且容易沉淀分离,易于回收,具有实际应用价值.%Bi2WO6 was synthesized by solvothermal method,using four pure solutions(H2O,C2H5OH, (CH2OH)2 and C3H8O3)and three alcohol-water solutions as solvents.Research on the morphology and visible-light photocatalytic properties of Bi2WO6 suggested that Bi2WO6 synthesized by alcohol-water solutions had more complex structure and regular morphology with larger size and better dispersion compared with Bi2WO6 synthesized by pure solvents.In addition, with the increase of hydroxyl groups, the crystallinity of Bi2WO6 went worse and the size of crystal and nanosheet decreased.Furthermore, the follow-spherical Bi2WO6 prepared by the mixture of ethylene glycol and water had better visible-light photocatalytic activity, it was of better value to apply to reality because it can be subsided and recycled easily.【期刊名称】《广州化工》【年(卷),期】2017(045)009【总页数】4页(P81-84)【关键词】溶剂热法;钨酸铋;形貌;可见光催化性能【作者】张鸿羽;王爱军;袁耀【作者单位】中国石油大学(北京)理学院,中国石油大学(北京)油气光学探测技术北京市重点实验室,北京 102249;中国石油大学(北京)理学院,中国石油大学(北京)油气光学探测技术北京市重点实验室,北京 102249;中国石油大学(北京)理学院,中国石油大学(北京)油气光学探测技术北京市重点实验室,北京 102249【正文语种】中文【中图分类】O643.3TiO2在光催化领域有着广泛应用,但TiO2基光催化材料的禁带宽度为3.2 V,只有420 nm 以下的紫外光可以利用[1]。
环境因素对水体中四环素光催化降解行为的影响
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期环境因素对水体中四环素光催化降解行为的影响徐诗琪1,朱颖1,陈宁华2,陆彩妹1,江露莹1,王俊辉1,覃岳隆2,张寒冰1(1 广西大学资源环境与材料学院,广西 南宁 530004;2 广西环境科学保护研究院,广西 南宁 530022)摘要:为探索实际水体中四环素(tetracycline ,TC )的降解规律,以ZnO 作为光催化剂研究四环素在复杂的自然环境条件(曝气、重金属、光照)下反应时间、pH 、腐殖酸(humic acid ,HA )浓度及四环素浓度对光催化降解过程的影响。
结果表明,3种环境条件均促进了四环素的降解:曝气情况下大量的溶解氧会和催化剂协同促进超氧自由基和羟基自由基的生成,使TC 达到99%的光催化降解率;重金属Cu(Ⅱ)的加入使溶液中形成TC-Cu(Ⅱ)-ZnO 络合物,显著提高了ZnO 对TC 的降解效率,在30min 时达到89%的降解率;自然光拥有全光谱,相比可见光展现出更强的TC 降解作用,TC 降解率达到86%,比可见光下降解率提高了14%。
三因素协同作用可以有效降低TC 的降解时间,在75min 时达到降解平衡,降解率为99%。
通过动力学分析比较了不同环境状态下的光催化活性,结果为:曝气>重金属>光照。
关键词:水体;四环素;光催化;曝气;Cu(Ⅱ)共存;自然光中图分类号:X522 文献标志码:A 文章编号:1000-6613(2024)01-0551-09Effect of environmental factors on the photocatalytic degradationbehavior of tetracycline in waterXU Shiqi 1,ZHU Ying 1,CHEN Ninghua 2,LU Caimei 1,JIANG Luying 1,WANG Junhui 1,QIN Yuelong 2,ZHANG Hanbing 1(1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China;2Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, Guangxi, China)Abstract: To explore the degradation pattern of tetracycline (TC) in actual water, ZnO was used as a photocatalyst to investigate the effects of reaction time, pH, humic acid (HA) concentration and tetracycline concentration on the photocatalytic degradation process under complex natural environmental conditions (aeration, heavy metals and light). The results showed that all three environmental conditions promoted the degradation of tetracycline. The large amount of dissolved oxygen under aeration wouldcollaboratively promote the generation of superoxide radicals and hydroxyl radicals with the catalyst, enabling TC to reach 99% photocatalytic degradation efficiency. The addition of the heavy metal Cu(Ⅱ) caused the formation of TC-Cu(Ⅱ)-ZnO composite in solution, which significantly improved the degradation efficiency of TC by ZnO, reaching 89% degradation efficiency at 30min. Natural light possessed a full spectrum and exhibited stronger TC degradation compared to visible light, with a TC研究开发DOI :10.16085/j.issn.1000-6613.2023-0217收稿日期:2023-02-17;修改稿日期:2023-05-04。
钨酸铋及其复合材料光催化降解罗丹明B的研究
摘要利用半导体进行光催化反应一直被人们广泛关注。
在各种光催化剂的研究中,钨酸铋(Bi2WO6)是一种很有前途的催化剂,由于其在可见光下能分解水产生氧气(O2)和分解有机污染物。
然而,纯Bi2WO6光催化剂太阳能利用率低,光生电子-空穴复合率高,量子效率低等问题限制了其应用。
近年来,许多研究都致力于提高Bi2WO6的光催化活性,获得较高的光催化效率。
本文运用了三种方法对Bi2WO6来改性,并对改性后的光催化剂用X射线衍射、红外光谱、扫描电子显微镜、紫外-可见漫反射光谱和光致发光光谱等进行表征。
通过降解罗丹明B评价光催化剂的性能,并探究了光催化反应过程。
(1)用水热法制备的碳质多糖球体为模版,成功合成了相互粘连的Bi2WO6微粒光催化剂。
实验结果表明颗粒状聚集Bi2WO6的光催化性能明显优于块状Bi2WO6。
相互粘连的Bi2WO6微粒增大了比表面积具有更大的吸附容量,存在的少量碳构成Bi2WO6/C异质结抑制了光生电子与空穴的复合。
(2)用水热法制备了碱式硝酸铋(BHN)改性的Bi2WO6复合光催化剂Bi2WO6/BHN。
对实验数据分析可知,通过构建异质结使电子的迁移能力增强,促进光生电子和空穴的分离。
BHN引入有效地提高了Bi2WO6对罗丹明B降解的光催化活性。
实验结果表明0.05 g的BHN复合量最佳,光催化速率最快。
(3)利用两步水热法制备了Cu/Bi2WO6光催化剂。
实验结果表明Cu2+被乙二醇还原为Cu单质并负载在花球状钨酸铋表面。
与纯Bi2WO6相比,Cu/Bi2WO6的可见光吸收更强,光生载流子利用率更高。
Cu的负载量为1.0 %时,Cu/Bi2WO6复合材料的光催化活性最高。
关键字:光催化剂,钨酸铋,水热法AbstractThe use of semiconductors for photocatalytic reactions has been widely concerned. Bismuth tungstate (Bi2WO6) is a promising catalyst in the study of various photocatalysts, because it can decompose water to produce oxygen (O2) and decompose organic pollutants in visible light. However, pure Bi2WO6catalyst has low utilization rate of solar energy, high photogenerated electron-hole recombination rate and low quantum efficiency, which limit its application. In recent years, many studies have been devoted to improving the photocatalytic activity of Bi2WO6 and achieving higher photocatalytic efficiency.In this paper, Bi2WO6 was modified by three methods, and the modified photocatalyst was characterized by X-ray diffraction, infrared spectrum, scanning electron microscope, UV-vis diffuse reflectance spectrum and photoluminescence spectrum.The performance of photocatalyst was evaluated by degradation of rhodamine B, and the photocatalytic reaction process was explored.(1) Bi2WO6microparticle photocatalyst was successfully synthesized by hydrothermal preparation of carbonaceous polysaccharide spheres as templates. The results showed that the photocatalytic performance of granular Bi2WO6was significantly better than that of bulk Bi2WO6.The adhesion of Bi2WO6 particles increases the specific surface area and has a larger adsorption capacity. The small amount of carbon in the Bi2WO6/C heterojunction inhibits the combination of photogenerated electrons and holes.(2) Bi2WO6/BHN composite photocatalyst modified by BHN was prepared by hydrothermal method. According to the analysis of experimental data, the migration ability of electrons is enhanced and the separation of photogenic electrons and holes is promoted because of constructing heterogeneous junction. The introduction of BHN effectively enhanced the photocatalytic activity of Bi2WO6for rhodamine B degradation. The experimental results showed that the optimum BHN composite amount was 0.05 g and the photocatalytic rate was the fastest.(3) Cu/Bi2WO6photocatalyst was prepared by two-step hydrothermal method.The results showed that Cu2+ was reduced to Cu by ethylene glycol and loaded on the surface ofbismuth tungstate. Compared with pure Bi2WO6, Cu/Bi2WO6has stronger visible light absorption and higher utilization rate of photo-generated carrier. When the Cu content was 1.0 %, the photocatalytic activity of Cu/Bi2WO6 composite was the best.Key words:photocatalyst, bismuth tungstate, hydrothermal method目录摘要 (I)Abstract (II)目录 (IV)第一章绪论 (1)1.1 引言 (1)1.1.1 光催化技术在环境和能源领域的应用 (1)1.1.2 光催化过程中电荷转移过程和机理 (2)1.1.3 光催化剂改性 (4)1.1.4 异质结光催化剂 (7)1.1.5 新型光催化剂 (9)1.2 钨酸铋光催化材料的概述 (9)1.2.1 钨酸铋的简介 (9)1.2.2 钨酸铋的能带结构 (10)1.2.3 钨酸铋的光催化机理 (11)1.2.4 钨酸铋的制备方法 (11)1.2.5 本文的研究内容 (13)第二章实验部分 (15)2.1 实验试剂与仪器 (15)2.1.1 论文研究中用到的实验药品 (15)2.1.2 实验仪器 (16)2.2 催化剂的表征分析 (17)2.2.1 X射线衍射分析 (17)2.2.2 扫描电子显微镜 (17)2.2.3 傅里叶红外光谱分析 (17)2.2.4 紫外-可见漫反射光谱分析 (18)2.2.5 荧光光谱分析 (18)2.2.6 电化学分析 (18)2.3 光催化性能研究 (19)2.3.1 罗丹明B概述 (19)2.3.2 罗丹明B最大吸收波长 (19)2.3.3 罗丹明B最大吸收波长 (19)2.3.4 光催化反应装置 (21)2.3.5 光催化实验方法 (21)第三章颗粒状Bi2WO6的制备及光催化性能 (22)3.1 引言 (22)3.2 颗粒状Bi2WO6的制备 (23)3.2.1 碳质多糖球体的的制备 (23)3.2.2 Bi2WO6的制备 (23)3.3 光催化实验 (23)3.4 颗粒状Bi2WO6的表征 (24)3.4.1 不同形貌Bi2WO6的XRD分析 (24)3.4.2 Bi2WO6-P的SEM分析 (24)3.4.3 不同形貌Bi2WO6的DRS分析 (25)3.4.4 不同形貌Bi2WO6的PL分析 (26)3.4.5 不同形貌Bi2WO6光催化剂的光电性能测试 (27)3.4.6 不同形貌Bi2WO6光催化性能 (27)3.4.7 Bi2WO6-P降解RhB的紫外-可见吸收光谱分析 (28)3.4.8 Bi2WO6-P的稳定性实验 (29)3.5 本章小结 (30)第四章 Bi2WO6/Bi6O6(OH)3(NO3)3的制备及其光催化性能 (31)4.1 引言 (31)4.2 Bi2WO6/BHN复合材料的制备 (32)4.2.1 BHN的制备 (32)4.2.2 合成Bi2WO6/BHN (32)4.3 Bi2WO6/BHN复合材料的表征 (32)4.3.1 不同复合量Bi2WO6/BHN的XRD分析 (32)4.3.2 不同复合量Bi2WO6/BHN的FT-IR分析 (33)4.3.3 不同复合量Bi2WO6/BHN的SEM分析 (34)4.3.4 不同复合量Bi2WO6/BHN的DRS分析 (35)4.3.5 不同复合量Bi2WO6/BHN的PL分析 (36)4.3.6 不同复合量Bi2WO6/BHN的光电性能测试 (36)4.3.7 不同复合量Bi2WO6/BHN光催化性能分析 (38)4.3.8 Bi2WO6/BHN的稳定性实验 (39)4.4 Bi2WO6/BHN光催化反应原理 (39)4.5 本章小结 (40)第五章负载铜钨酸铋的制备及其光催化性能 (41)5.1 引言 (41)5.2 Cu/Bi2WO6复合材料的制备 (42)5.2.1 花球状Bi2WO6的制备 (42)5.2.2 Cu/Bi2WO6的制备 (42)5.2.3 Cu/Bi2WO6的光催化实验 (42)5.3 Cu/Bi2WO6催化剂的表征 (43)5.3.1 Cu/Bi2WO6光催化剂的XRD分析 (43)5.3.2 Cu/Bi2WO6光催化剂的FT-IR分析 (43)5.3.3 Cu/Bi2WO6光催化剂的SEM分析 (44)5.3.4 Cu/Bi2WO6光催化剂的DRS分析 (45)5.3.5 Cu/Bi2WO6光催化剂的PL分析 (46)5.3.6 Cu/Bi2WO6光催化剂的光电性能测试 (47)5.3.7 Cu/Bi2WO6光催化性能分析 (48)5.3.8 Cu/Bi2WO6的稳定性实验 (49)5.4 Cu/Bi2WO6光催化反应原理 (49)5.5 本章小结 (50)第六章结论与展望 (51)6.1 结论 (51)6.2 展望 (51)参考文献 (52)致谢 (56)第一章绪论1.1 引言1.1.1 光催化技术在环境和能源领域的应用由于两次能源危机,即1973年的石油危机和1979年的能源危机,1972年发现的光催化分解水制氢吸引了当前科学家的研究兴趣[1] [2] 。
酸法制羟基氧化铁催化降解甲基橙研究
酸法制羟基氧化铁催化降解甲基橙研究张丽清;刘志国;周华锋;吴昊;姜文文【摘要】采用酸法制备羟基氧化铁纳米粒子,以其为催化剂,以过氧化氢为氧化剂,进行甲基橙的催化降解反应并推断反应机理.研究催化剂加入量、氧化剂浓度、反应温度和反应pH等对甲基橙降解率的影响,并对催化剂的溶铁量进行测量.研究结果表明:当H2O2浓度为0.23 mmol/L,催化剂质量浓度为0.28 g/L,pH为2.54时,在60℃下反应30 min,质量浓度为9.41 mg/L的甲基橙的降解率为97.3%.在催化反应过程中发挥主要作用的OH·由均相催化反应和非均相的表面催化反应提供.由催化剂溶铁而进行的均相催化反应在甲基橙降解过程中可能发挥了重要作用.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2015(046)002【总页数】5页(P416-420)【关键词】FeOOH;甲基橙;降解;反应机理【作者】张丽清;刘志国;周华锋;吴昊;姜文文【作者单位】沈阳化工大学应用化学学院辽宁省稀土化学与应用重点实验室,辽宁沈阳,110142;沈阳化工大学应用化学学院辽宁省稀土化学与应用重点实验室,辽宁沈阳,110142;沈阳化工大学应用化学学院辽宁省稀土化学与应用重点实验室,辽宁沈阳,110142;沈阳化工大学应用化学学院辽宁省稀土化学与应用重点实验室,辽宁沈阳,110142;沈阳化工大学应用化学学院辽宁省稀土化学与应用重点实验室,辽宁沈阳,110142【正文语种】中文【中图分类】O643.13铁氧化物主要包括铁的氢氧化物和铁的氧化物,广泛存在于自然环境中[1]。
其中,α-FeOOH,γ-FeOOH等由于价廉易得,且具有较稳定的物理化学性质,受到研究者的广泛关注。
以α-FeOOH,γ-FeOOH等为非均相Fenton反应催化剂、光催化剂氧化降解废水中的有害有机物,取得了较好的效果[2−3]。
马军等[4]以α-FeOOH为催化剂,研究了在水相中O3氧化痕量硝基苯,研究表明:在α-FeOOH催化下,O3的一级分解速率常数提高了108%。
BiVO4复合材料的制备及应用进展
BiVO4复合材料的制备及应用进展胡佳凯; 罗晓祝; 陈维科; 黄昱; 刘泽华; 陶廷锴; 王雅楠; 张艳; 陈萍华【期刊名称】《《天津化工》》【年(卷),期】2019(033)006【总页数】3页(P1-3)【关键词】BiVO4; 复合材料; 制备; 应用; 进展【作者】胡佳凯; 罗晓祝; 陈维科; 黄昱; 刘泽华; 陶廷锴; 王雅楠; 张艳; 陈萍华【作者单位】南昌航空大学环境与化学工程学院江西南昌330063【正文语种】中文【中图分类】TB3311 引言环境污染和能源危机是一直以来可持续发展必须要解决的两大问题[1,2],其中很重要的一种解决办法就是寻求最佳的半导体光催化材料。
由于TiO2 只能在紫外光波段发生响应,而BiVO4 在可见光波段可以发生响应[3],BiVO4 的禁带宽度约为2.4eV,其对光的利用率远大于TiO2[4]。
虽然BiVO4优点很多,但是纯的BiVO4 的光生电子和空穴电子很容易发生复合[5]并且导电性能差会抑制其光催化效率,因此需要修饰BiVO4 的化学组成和结构,对其进行改性修饰[6~10]。
本文综述了BiVO4 复合材料的制备方法及一些改性研究进展。
2 钒酸铋复合材料的制备方法一般复合材料的制备方法主要有化学方法和物理方法,化学方法主要包括了沉淀法、共沉淀法、溶胶-凝胶法等,而物理的方法主要有球磨法等。
国内外有许多学者致力于BiVO4 复合材料的制备如:水热合成法是利用水溶液中物质的化学反应来制备材料的常用方法,其晶粒按结晶习性生长,制备的产物纯度高、分散性好、粒度可控。
高晓明等 [11] 在不同pH 的BiVO4 前提下加入Ag-NO3,置于不锈钢水热反应釜用水热合成法在180℃反应6h 制备得Ag/BiVO4,结果表明pH=7时,催化剂Ag/BiVO4 的单斜晶相晶型最好,并得到禁带宽度为2.17eV,较纯BiVO4 的禁带宽度(2.40eV)窄,光催化性能良好,模拟汽油的脱硫率高达95%。
GC-MS测定不同采收期酸枣仁中脂肪油成分
检测分析—----------------------------------------------------------------------------------161-—D01:10.12161/j.issn.l005-6521.2021.04.027GC-MS测定不同采收期酸枣仁中脂肪汕成分马东来叫李新蕊U司明东U温子帅U郑玉光U邱峰23(1.河北中医学院河北省中药制技术创新中心,河北050200;2.天津中医药大学中药学院,天津300193)摘要:利用气相色谱-质谱联用(gJK chromatography-mass spectrometry*GC-MS)技术分析经甲酯化的不同采收期酸枣仁的脂肪油成分组成及相对质量分数的变化。
结果表明:3个时期酸枣仁的脂肪油成分总含量增加,经过GC-MS 分析共检测出29种脂肪油成分,包括不饱和脂肪酸类、饱和脂肪酸类、碳氢化合物和醇类化合物这4大类组分。
3个时期酸枣仁中均有其特殊的脂肪油成分,同时各时期也有相同的脂肪油成分,其中亚油酸甲酯(33.01%〜34.27%)和油酸甲酯(43.66%〜45.43%)为各个时期中的主要脂肪油物质。
关键词:酸枣仁;脂肪油t气相色谱-质谱联用技术(GC-MS);采收期t亚油酸甲酯Analysis of Fatty Oil of Different Harvesting Stage in Ziziphi Spinosae Semen by GC-MSMA Dong-lai1'2,LI Xin-rui1,SI Ming-dong1,WEN Zi-shuai1,ZHENG Yu-guang1,QIU Feng2*(1.Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province,Hebei Universityof Chinese Medicine,Shijiazhuang050200,Hebei,China;2.School of Chinese Materia Medica,TianjinUniversity of Traditional Chinese Medicine,Tianjin300193,China) Abstract:Using gas chromatography-mass spectrometry(GC-MS)technology to investigate the fatty oil compositions and relative mass fraction of ziziphi spinosae semen in different harvest periods after methyl esterification.The results showed that the total content of fatty oils in ziziphi spinosae semen increased in three periods.A total of29fatty oils were detected by GC-MS analysis,including unsaturated fatty acids,saturated fatty acids,hydrocarbons and alcohol.In three periods,the ziziphi spinosae semen had its special fatty oil component,and the same fatty oils were found in all parts.Among them,methyl linoleate(33.01%-34.27%) and methyl oleate(43.66%-45.43%)were the main volatile substances in each part.Key words:ziziphi spinosae semen;fatty oil;gas chromatography-mass spectrometry(GC-MS);harvesting stage;methyl linoleate引文格式:马东来,李新蕊,司明东,等.GC-MS测定不同采收期酸枣仁中脂肪油成分[几食品研究与开发,2021,42(4):161-164.MA Donglai,LI Xinrui,SI Mingdong,et al.Analysis of Fatty Oil of Different Harvesting Stage in Ziziphi Spinosae Semen by GC-MS[J].Food Research and Development,2021,42(4):161-164.基金项目:河北省重点研发计划项目(19276414D);河北省属高校基本科研业务项目(YXZ201901,、JTZ2020009);河北省高等学校科学技术研究项目(QN2018065);河北省中医药管理局科研计划项目(No.2018105);河北省现代农业技术体系中药材创新团队项目(HBCT2018060205);河北中医学院研究生创新资助项目(XCXZZSS2020003)作者简介:马东来(1979—),男(汉),副教授,博士,研究方向:中药质量控制及其药效物质基础研究。
二氧化钛表面超强酸化光氧复合降解罗丹明B
第40卷第2期2021年3月Vol.40No.2Mar.2021大连工业大学学报JournalofDalianPolytechnicUniversityDOI:10.19670/ki.dlgydxxb.2021.0210二氧化钛表面超强酸化光氧复合降解罗丹明B温宇,杨大伟(大连工业大学轻工与化学工程学院,辽宁大连116034)摘要:采用共结晶方法制备了锌锆共掺杂的介孔二氧化钛,前驱体用硫酸处理使其具有超强酸性。
将制备的介孔二氧化钛用于降解废水模拟物罗丹明B,测试其光催化与氧催化降解能力。
通过紫外-可见分光光度计、X射线衍射、电镜扫描等对催化剂进行表征,实验结果表明,在强酸修饰二氧化钛前驱体的影响下,掺杂锌锆的介孔二氧化钛具有光催化与氧催化活性。
锌锆共掺杂介孔二氧化钛的光催化与氧催化效率分别达到了72%与25%o硫酸处理后在TiO2与掺杂原子表明形成酸性中心,在无光条件下氧化降解废水效率为30%,提高了降解效率。
关键词:二氧化钛;光催化;酸催化;罗丹明B中图分类号:X703.5文献标志码:A文章编号:1674-1404(2021)02-0136-04Composite degradation of rhodamine B using TiO2withphotocatalytic oxygen and super acidWEN Yu,YANG Dawei(SchoolofLightndustryandChemicalEngineering,DalianPolytechnicUniversity,Dalian116034,China) Abstract:The mesoporous titania doped with zinc oxide,zirconium dioxide,zinc and zirconium were prepared by the co-crystallization method and the precursor of mesoporous titania was pretreated with sulfuric acid to endowed it super acidic.The mesoporous titania was used for degradation of rhodamine B in simulated wastewater and its photocatalytic activity and oxygen catalytic ability was analyzed by UV-visible spectrophotometer,X ray diffraction,scanning electron microscopy.The results showed that the T1O2doped metal oxides and super acid exhibited excellent photocatalytic and oxygen catalytic ability.The degradation rate of rhodamine B photocatalyzed and oxygen catalyzed by the prepared catalysts were72%and25%,respectively.After treatment with sulfuric acid,the acidic centers were formed between the doped atoms and the surface of titanium dioxide,which improved the oxygen degrading efficiency of wastewater to30%.Keywords:TiO2;photocatalytic;acidic catalysis;rhodamine B0引言工业生产中生成的有机废水对环境造成严重污染,国家对废水排放标准执行越来越严格,如何降低或消除有机废水中大分子有机物成为研究的重点。
电解质对光电催化还原CO2的影响
第53卷第4期 辽 宁 化 工 Vol.53,No. 4 2024年4月 Liaoning Chemical Industry April,2024基金项目: 河北省自然科学基金重点项目(项目编号:No.B2020209017)。
收稿日期: 2023-03-04电解质对光电催化还原CO 2的影响高艳,刘利,崔文权*(华北理工大学 化学工程学院,河北省环境光电催化材料重点实验室,河北 唐山 063210)摘 要:光电催化还原CO 2生成燃料或日用化学品是一个应对能源危机和全球变暖的有效途径。
光电催化反应中电解质和催化剂表面间的相互作用影响CO 2还原反应的结果。
因此,深入探究电解质对CO 2光电催化还原的影响,对于设计出高效和高选择性地将CO 2转化为有价值产品的光电催化反应至关重要。
综述了不同阴、阳离子组成的电解质对催化反应产生的影响,尤其是对于反应活性以及选择性的显著影响,并讨论了如何依据这些影响进行光电催化系统的参数设计。
关 键 词:光电催化;电解质;阴离子;阳离子中图分类号:TQ426.1 文献标识码: A 文章编号: 1004-0935(2024)04-0591-04随着能源供应的日益紧缺,以石油、天然气和煤为代表的化石燃料已经表现出储量不足的境况。
化石燃料过度开采与使用,带来能源枯竭和二氧化碳大量排放问题[1]。
2022年全球碳排放量较去年增加1%,达到约366亿t 。
CO 2的大量排放引起了一系列的环境问题,如全球变暖、海洋酸化及荒漠化等[2]。
CO 2催化转化作为一种碳捕集的方法具有巨大的应用前景。
光电催化还原CO 2是一种重要的碳转化方式,是指在电解质溶液中,利用具有光电催化活性的阳极或者阴极为CO 2催化还原提供电子,发生还原反应,进而将其转化成为有机燃料或者化学品,如一氧化碳、甲烷、甲醇、甲酸、甲醛及乙醇等[3-7]。
但是在光电催化中也存在着一些需要解决的问题,通常反应存在过电势高和产物选择性差的情况,同时催化还原的总效率受到析氢反应(HER )的影响。
高效液相色谱-串联质谱法检测泮托拉唑钠原料药中的水合肼
·药物研发·高效液相色谱-串联质谱法检测泮托拉唑钠原料药中的水合肼赵会明 张振洋 樊华军[英格尔检测技术服务(上海)有限公司 上海 201100]摘要建立了泮托拉唑钠原料药中的基因毒性杂质水合肼的高效液相色谱-串联质谱(LC-MSMS)检测方法。
采用反相色谱,以水-乙腈(含0.1%甲酸)为流动相,梯度洗脱,流速0.5 mL/min,以ESI正离子多反应监测(MRM)模式进行质谱检测。
结果显示,水合肼的检测限和定量限可达到0.23、0.47 ng/mL,其在0.47~9.37 ng/mL浓度范围内线性关系良好(r=0.999 9),准确度试验中低、中、高浓度回收率均在81.6%~90.9%之间。
在3批次泮托拉唑钠原料药中均未检出水合肼。
关键词高效液相色谱-串联质谱法基因毒性杂质泮托拉唑钠水合肼痕量检测中图分类号:R917; O657 文献标志码:A 文章编号:1006-1533(2022)11-0072-04引用本文 赵会明, 张振洋, 樊华军. 高效液相色谱-串联质谱法检测泮托拉唑钠原料药中的水合肼[J]. 上海医药, 2022, 43(11): 72-75.Determination of hydrazine hydrate in pantoprazole sodium by high performance liquid chromatography-tandem mass spectrometryZHAO Huiming, ZHANG Zhenyang, FAN Huajun[ICAS Testing Technology Service (Shanghai) CO., LTD., Shanghai 201100, China]ABSTRACT To establish a high-performance liquid chromatography-tandem mass spectrometry (LC-MSMS) method for the determination of hydrazine hydrate in active pharmaceutical ingredient (API) pantoprazole sodium. HPLC was carried out by reverse chromatography using water-acetonitrile containing 0.1% formic acid as flow phase and gradient elution at a flow rate of 0.5 mL/min. Mass spectrometry was performed with multi-reaction monitoring (MRM) in positive ESI mode. The detection and quantitative limits of hydrazine hydrate reached 0.23, 0.47 ng/mL and hydrazine hydrate showed good linear relationship in the range of 0.47-9.37 ng/mL (r=0.999 9). The recoveries of samples at low, medium and high-level concentrations reached81.6% to 90.9% in the accuracy experiment. No hydrazine hydrate was detected in 3 batches of pantoprazole sodium.KEY WORDS HPLC-tandem mass spectrometry; genotoxic impurities; pantoprazole sodium; hydrazine hydrate; trace determination上消化道出血是近年的临床疾病中常见且多发的一种疾病,其临床表现为呕血、黑便等,如得不到及时有效治疗,可能引发失血性休克。
V_(2)O_(5)g
第34卷第1期2021年2月Vol.34No.1Feb.2021投稿网址: 石油化工高等学校学报JOURNAL OF PETROCHEMICAL UNIVERSITIESV2O5/g⁃C3N4催化剂的制备及其模拟油中硫化物的脱除张豪,李秀萍,赵荣祥(辽宁石油化工大学石油化工学院,辽宁抚顺113001)摘要:以三聚氰胺、偏钒酸铵、硼酸为前驱体,通过煅烧法制备V2O5/g⁃C3N4催化剂。
采用XRD、FT⁃IR、XPS、SEM和BET等技术对催化剂的结构与形貌进行表征。
以V2O5/g⁃C3N4为催化剂,乙腈为萃取剂,H2O2为氧化剂对模拟油中二苯并噻吩(DBT)的脱除进行考察。
探究了反应温度、催化剂质量、萃取剂体积、n(H2O2)/n(S)以及不同硫化物等因素对脱硫效果的影响。
在模拟油体积为5.0mL、萃取剂乙腈体积为3.0mL、n(H2O2)/n(S)=8、催化剂质量为0.02g、反应温度为30℃和反应时间为60min的最佳条件下,DBT的脱除率达到91.9%,经过5次催化剂再生后脱硫率仍可以达到85.7%。
关键词:V2O5/g⁃C3N4;氧化脱硫;二苯并噻吩;三聚氰胺中图分类号:TE624文献标志码:A doi:10.3969/j.issn.1006⁃396X.2021.01.002Preparation of V2O5/g⁃C3N4Catalyst and Desulfurization Ability in Model OilZhang Hao,Li Xiuping,Zhao Rongxiang(School of Petrochemical Engineering,Liaoning Petrochemical University,Fushun Liaoning113001,China)Abstract:The V2O5/g⁃C3N4catalyst was prepared by calcination method,using melamine,ammonium metavanadate,boric acid as precursors and methanol as solvent.The structure and morphology of the catalyst were characterized by X⁃Ray Diffraction(XRD), Fourier transform infrared spectroscopy(FT⁃IR),X⁃ray photoelectron spectroscopy(XPS),scanning tunneling microscope(SEM) and brunauer⁃emmett⁃teller(BET).The desulfurization ability of dibenzothiophene(DBT)in model oil was investigated using V2O5/g⁃C3N4as catalyst,acetonitrile as extractant and H2O2as oxidant.The effects of reaction temperature,amount of catalyst and extractant,n(H2O2)/n(S)molar ratio,and different sulfides on desulfurization rate were investigated.Under the optimum conditions: 5.0mL model oil,3.0mL acetonitrile,n(H2O2)/n(DBT)=8,0.02g of catalyst,temperature was30℃and reaction time was60min, the desulfurization rate of DBT can reach91.9%,which can also keep at a higher value at85.7%after5times of catalyst regeneration. Keywords:V2O5/g⁃C3N4;Oxidative desulfurization;Dibenzothiophene(DBT);Melamine随着汽车工业的迅速发展,燃料油燃烧产生的硫化物对环境的污染越来越严重[1⁃2]。
CdS纳米微粒的制备方法、表征及光催化活性
CdS纳米微粒的制备方法、表征及光催化活性刘宗瑞;谢立娟;刘建华;王斌;段莉梅【摘要】以硝酸镉和硫脲为原料,二乙醇胺为模板剂,采用水热合成法制备了CdS 纳米微粒.用XRD、SEM、TEM等方法对催化剂的结构与形貌进行了表征,表明制备的纳米CdS均为纯的六方晶相结构;并通过BET法测定了其比表面积.以甲基橙的降解为模型反应,研究了纳米CdS的光催化活性,实验结果表明,水热120℃、晶化18 h条件下制备的CdS纳米微粒的光催化活性最好,对甲基橙的降解率达到80%.【期刊名称】《内蒙古民族大学学报(自然科学版)》【年(卷),期】2018(033)004【总页数】4页(P292-295)【关键词】CdS纳米微粒;水热合成;光催化【作者】刘宗瑞;谢立娟;刘建华;王斌;段莉梅【作者单位】内蒙古民族大学化学化工学院,内蒙古通辽 028043;内蒙古民族大学化学化工学院,内蒙古通辽 028043;内蒙古民族大学化学化工学院,内蒙古通辽028043;内蒙古民族大学化学化工学院,内蒙古通辽 028043;内蒙古民族大学化学化工学院,内蒙古通辽 028043【正文语种】中文【中图分类】O643.36随着全球工业生产的发展和城市化进程的加快,产生的大量工业废水和城市生活废水未进行有效处理而排放,对人类赖以生存的水资源造成了日益严重的污染,因此水资源污染的净化与处理成为当今人类急需解决的重要问题之一.在对被污染的水资源进行净化处理过程中,有些对人体有害的有机物很难通过过滤等方法除去,而采用半导体光催化技术将有机污染物降解成为无毒、无害的物质是一种很有效的净化污水的方法〔1-3〕.半导体光催化技术是在常温常压下利用太阳能降解废水中多种难降解的有机物质,并在此过程中很少产生二次污染〔4-5〕.许多人研究了二氧化钛型、硫化镉型、钙钛矿型、三氧化二铋型等光催化剂的制备和应用〔6-9〕,其中,CdS具有2.42 eV的能带隙,是一种重要的半导体纳米材料,在电、磁、催化等方面都有许多应用〔10-12〕,特别是CdS纳米微粒粒径小、比表面积大,具有带隙能小、可见光响应等特点,这些特点使CdS纳米微粒有良好的光催化降解有机物的性能,在光催化降解方面有着广泛的应用前景〔13-16〕.研究表明,通过改变CdS晶体的形貌和比表面积可提高其光催化活性〔17-18〕.本文采用水热合成法,以硝酸镉和硫脲为原料合成了CdS纳米微粒,用XRD、SEM、TEM等方法对其结构与形貌进行了表征,并在紫外灯照射下研究了CdS纳米微粒对甲基橙的光催化降解活性,取得了良好的效果.1 实验部分1.1 试剂和仪器试剂:硫脲((NH2)2CS),硝酸镉(Cd(NO3)2·4H2O),无水乙醇(C2H5OH),二乙醇胺(C4H11NO2),甲基橙(C14H14N3NaO3S),过氧化氢30%(H2O2),盐酸(HCl)等所需试剂均为分析纯.主要仪器:反应釜(50 mL,聚四氟乙烯内衬);PHS-3B精密pH计(上海精密科学仪器有限公司);79-1型磁力加热搅拌器(江苏省金坛市荣华仪器制造有限公司);TDZ4-WS低速台式离心机(长沙湘仪离心机仪器有限公司);250 W高压汞灯(长春市亚制照明电器有限公司);D8-FOCUS型X-射线粉末衍射仪(德国BRUKER公司),H-7650透射电子显微镜(日本HITACHIH公司),S-4800冷场发射扫描电子显微镜(日本HITACHIH公司);ASAP 2010型比表面测定仪(美国MICROMERITICS公司);紫外可见分光光度计(TU-1810型,北京普析通用仪器有限责任公司).1.2 纳米硫化镉的制备按n(Cd)∶n(S)=1∶1量取0.012 mol硝酸镉和0.012 mol硫脲加入盛有一定量二乙醇胺和水(体积比为1∶1)作溶剂的烧杯中,并将通过磁力搅拌混合均匀的溶液装入反应釜内,再把反应釜放入电热鼓风干燥箱,通过改变反应温度和反应时间,制备出一系列黄色的CdS沉淀.再将所得黄色沉淀分别用无水乙醇和蒸馏水洗涤,然后在60℃条件下真空干燥6 h,最后制备出黄色CdS粉末.1.3 光催化活性实验采用浓度为20 mg·L-1的甲基橙溶液为降解对象.称量一定量的催化剂加入到甲基橙溶液内,保持反应器恒温,用紫外灯照射,灯距液面10 cm.光照时间为120 min,每隔一段时间取样一次,离心分离,分离出上层清液后,用紫外可见分光光度计测其吸光度A.按下式计算降解率:式中:A0为甲基橙初始吸光度;At为不同时刻甲基橙吸光度.2 结果与讨论2.1 XRD分析图1 CdS样品的XRD图Figure 1 The XRD pattern of sample CdS(a-120℃,10 h;b-120℃,18 h;c-180 ℃,10 h;d-180 ℃,18 h)图2 CdS样品的透射电镜图Figure 2 The TEM image of sample CdS(a-120℃,18 h;b-120℃,10 h;c-180 ℃,10 h;d-180 ℃,18 h)图1是制备的纳米CdS XRD谱图.从图1分析可知,2θ角在20°~30°之间分别出现了三个明显的衍射峰(100、002和101),2θ角在40°~55°之间也分别出现了三个明显的特征峰(110、103和112),而这6个特征峰的位置与标准卡片(JCPDF 41-1049)上六方晶相α-CdS的衍射峰位置一致,并且谱图中无杂质衍射峰出现,表明所合成的样品均为纯的六方晶相CdS(纤锌矿结构).从图1 a 可看出,120℃水热晶化10 h,CdS的XRD衍射峰强度较低;晶化时间延长至18 h,CdS的XRD衍射峰强度略有增强(见图1 b);当水热晶化温度为180℃时,样品的XRD衍射峰强度也略有增强(见图1 c和图1 d).2.2 TEM分析图2是CdS纳米微粒的TEM照片.由图2可知,纳米CdS的形貌均为直径20-50 nm近似球形的小颗粒,粒子直径较小,小颗粒之间发生聚集,由小的纳米粒子聚集成大小不均的大颗粒.可见,制备反应的温度及反应时间不同,影响着颗粒的大小及聚集的程度.当反应温度为120℃、反应时间为18 h和10 h得到的CdS纳米晶,前者比后者分散相对均匀(图2 a和2 b).随着反应温度的升高,聚集明显加重(图2 d),形成大小不均的球体.2.3 SEM分析由图3 CdS纳米微粒的扫描电镜图(SEM)可以看出,以二乙醇胺为模板剂制备的CdS样品是由许多小的纳米级粒子团聚生长成的微米级大颗粒.大颗粒CdS的表面粗糙呈蜂窝状,这样的形貌促使制备的纳米CdS具有较大的比表面积,有利于提高CdS的光催化性能.2.4 比表面积测定结果利用BET法测定样品CdS的比表面积.根据实验研究需要,测定了制备条件为水热温度和加热温度分别为120℃、18 h和120℃、10 h的两个样品的比表面积,前者比表面积为72 g·m-2,后者为68 g·m-2.2.5 光催化活性测试结果纳米CdS光催化活性的实验测试条件是催化剂用量为0.020 g,用盐酸调pH=3.0,保持反应器恒温,在磁力搅拌器的搅拌下紫外灯照射120 min.分别测定催化剂对甲基橙的光催化活性,如图4所示.由图4可知,四种样品在120 min内对甲基橙的降解率均缓慢上升.反应温度为180℃,反应时间为18 h的催化剂在120 min内甲基橙降解率仅达到52%(如图4曲线d);而反应温度为120℃、反应时间为18 h的CdS催化剂在120min时对甲基橙降解率达到80%(如图4曲线a);其它两种催化剂在前60 min 内对甲基橙降解率略有差别,但在60 min后甲基橙的降解率几乎相等(如图4曲线b和c所示).这表明在反应温度为120℃,反应时间为18 h条件下,以二乙醇胺为模板剂,所制备的CdS纳米微粒对甲基橙降解效果最好.图3 CdS样品的扫描电镜图Figure 3 The SEM image of sample CdS(a-120℃,18 h;b-120℃,10 h;c-180 ℃,10 h;d-180 ℃,18 h)图4 不同CdS纳米微粒催化剂对甲基橙的光催化活性Figure 4 Photocatalytic activity of different CdS nanoparticles on methyl orange(a-120℃,18 h;b-120℃,10 h;c-180 ℃,10 h;d-180 ℃,18 h)3 结论本文采用简单、便捷的水热合成法制备出了CdS纳米微粒催化剂,用XRD、TEM、SEM等手段对制备的样品进行了结构表征,并研究了不同制备条件下所得的催化剂对甲基橙的光催化活性.研究结果说明,制备的CdS纳米微粒是六方晶相结构,制备条件为120℃、18 h的纳米CdS催化剂的微粒分散程度相对较好,比表面积大,对甲基橙的催化降解效果最好,在催化120 min时降解率达到80%.参考文献【相关文献】〔1〕Thiruvenkatachari R,Vigneswaran S,Moon I S.A review on UV/TiO2photocatalytic oxidation process〔J〕.Korean J ChemEng,2008,25(1):64-72.〔2〕Tang H X,YanM,ZhangH,et al.Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine〔J〕.Mater Lett,2005,59(8/9):1024-1027.〔3〕Bahnemann D.Photocatalytic water treatment:solar energy Appli-Cations〔J〕.Sol Energy,2004,77(5):445-459.〔4〕刘阳龙,郑玉婴,曹宁宁,等.水热法合成铁掺杂的硫化镉及光催化性能〔J〕.材料工程,2017,4(10):12-17.〔5〕Lu Y B.Highly stable CdS-Modified short TiO2nanotube array electrode for efficient visible-light hydrogen generation〔J〕.International,Journal of Hydrogen Energy,2011,36(1):167-174.〔6〕张金龙,陈锋,田宝柱,等.光催化〔M〕.上海:华东理工大学,2012:10-18.〔7〕宁轲,孙玉梅,陈磊.MOF结构ZnO的制备及其在光催化的应用〔J〕.赤峰学院学报(自然科学版),2017,19:31-34.〔8〕宋冰,程柯,武超,等.CdS量子点的制备和光学性质〔J〕.材料研究学报,2009(1):89-92.〔9〕YingWang,LingXu,ZongruiLiu ,etal.PhotocatalyticdegradationofRhoda-mine-Bonsynthesizednano-hybridCdScatalyst〔J〕.AsianJournalofChe-mistry,2016,28(2):365-368.〔10〕蔡彬.纳米硫化镉的制备与应用研究〔J〕.材料开发与应用,2010(6):62-66.〔11〕陈丰,陈晓,耿丽娟,等.CdS复合光催化材料的研究进展〔J〕.功能材料,2018,49(1):9-16.〔12〕GaoX,LiuXX,ZhuZM,etal.EnhancedvisiblelightphotocatalyticperformanceofCdSsensitizedTiO2nanorodarraysde coratedwith Aunanoparticlesaselectronsinks〔J〕.ScientificReports,2017,7(1):937-947.〔13〕Mi Q,Chen D Q,Hu J C.Nitrogen-doped graphene/CdS hollow spheres nano-compositewithenhancedphotocatalyticperformance〔J〕.Chinese Journal of Catalysis,2013,34(11):2138-2145.〔14〕段莉梅,崔海洋,赵伟强.硫化镉纳米材料对罗丹明B溶液的光催化降解性能〔J〕.内蒙古民族大学学报(自然科学版),2013,28(3):259-261.〔15〕宋锦,田秀君,方莎.硫化镉光催化降解活性染料的研究〔J〕.环境科学与技术,2008,31(2):43-46.〔16〕刘辉,邹继颖,武双双,等.CdS/TiO2复合膜制备及光催化降解罗丹明B的研究〔J〕.化工新型材料,2017,45(11):102-105.〔17〕丁优仙,于迎春,刘建军,等.不同晶型纳米CdS 的合成及光催化活性〔J〕.化学研究,2009,20(2):12-16.〔18〕章伊婷,潘乐玲,钟文武,等.超薄CdS纳米片的制备及光催化性能研究〔J〕.合成材料老化与应用,2018,47(2):75-79.。
p区金属氧化物Ga_(2)O_(3)和Sb_(2)O_(3)光催化降解盐酸四环素性能差异
收稿日期:2020⁃09⁃29。
收修改稿日期:2020⁃12⁃28。
国家自然科学基金(No.21875037,51502036)和国家重点研发计划(No.2016YFB0302303,2019YFC1908203)资助。
*通信联系人。
E⁃mail :***************.cn ,***************第37卷第3期2021年3月Vol.37No.3509⁃515无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYp 区金属氧化物Ga 2O 3和Sb 2O 3光催化降解盐酸四环素性能差异毛婧芸1黄毅玮2黄祝泉1刘欣萍1薛珲*,1肖荔人*,3(1福建师范大学环境科学与工程学院,福州350007)(2福建师范大学生命科学学院,福州350007)(3福建师范大学化学与材料学院,福州350007)摘要:对沉淀法合成的p 区金属氧化物Ga 2O 3和Sb 2O 3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。
最佳制备条件下得到的Ga 2O 3⁃900和Sb 2O 3⁃500样品光催化性能存在巨大差异,通过X 射线粉末衍射、傅里叶红外光谱、N 2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。
结果表明,Ga 2O 3和Sb 2O 3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。
关键词:p 区金属;氧化镓;氧化锑;光催化;盐酸四环素中图分类号:O643.36;O614.37+1;O614.53+1文献标识码:A文章编号:1001⁃4861(2021)03⁃0509⁃07DOI :10.11862/CJIC.2021.063Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p ‑Block Metal Oxides Ga 2O 3and Sb 2O 3MAO Jing⁃Yun 1HUANG Yi⁃Wei 2HUANG Zhu⁃Quan 1LIU Xin⁃Ping 1XUE Hun *,1XIAO Li⁃Ren *,3(1College of Environmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China )(2College of Life and Science,Fujian Normal University,Fuzhou 350007,China )(3College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China )Abstract:The UV light photocatalytic performances of p ⁃block metal oxides Ga 2O 3and Sb 2O 3synthesized by a pre⁃cipitation method for the degradation of tetracycline hydrochloride were explored.The effects of synthesis conditions on the photocatalytic activity were discussed.The Ga 2O 3⁃900and Sb 2O 3⁃500samples prepared under optimal condi⁃tions exhibited a remarkable photocatalytic activity difference,which were characterized by X⁃ray diffraction,Fouri⁃er transform infrared spectroscopy,N 2adsorption⁃desorption tests,fluorescence spectrum,Raman spectrum,electro⁃chemical analysis and trapping experiment of active species.The photocatalytic degradation mechanisms of tetracy⁃cline hydrochloride over the photocatalysts were proposed and the essential factors influencing the difference of pho⁃tocatalytic performance were revealed.The results show that the different photocatalytic activities observed for Ga 2O 3and Sb 2O 3can be attributed to their different electronic and crystal structures,the amount of hydroxyl groupin the surface and the photocatalytic degradation mechanisms.Keywords:p ⁃block metal;Ga 2O 3;Sb 2O 3;photocatalysis;tetracycline hydrochloride无机化学学报第37卷0引言盐酸四环素(TC)作为一种四环素类广谱抗生素,被广泛应用于治疗人体疾病及预防畜禽、水产品的细菌性病害,其在世界范围的大量使用致使其在环境中积累[1]。
硫化铜论文:硫化铜溶剂热法水热法水热-微乳液光催化
硫化铜论文:硫化铜溶剂热法水热法水热-微乳液光催化【中文摘要】本文采用溶剂热法、水热-微乳液法以及水热法,成功合成了不同形貌和尺寸的硫化铜微纳米材料,并分别研究了其光催化性能。
其主要内容如下:以氯化铜和硫脲为原料,乙二醇为溶剂,采用溶剂热法成功制备了直径为2.2~4.8μm由纳米片组成的花状CuS微米球超结构,用XRD、SEM、TEM、HRTEM及SAED等手段对其进行了表征;以氙灯和高压汞灯为光源,亚甲基蓝为目标物评价了硫化铜的光催化性能。
结果表明,所制备的产品是六角相的CuS;反应溶剂、硫源、铜盐以及反应温度、反应时间对产品的形貌都有较大影响;光催化性能测试表明,在35 W氙灯照射下,经30 min降解,亚甲基蓝的降解率可达98.7 %,显示出较强的可见光催化活性。
紫外-可见吸收和荧光光谱结果表明,所得CuS微米球在波长为269 nm和494 nm处均有强的吸收,其能带间隙为2.0 eV;荧光光谱在608 nm左右有发射光谱带。
另外,还讨论了硫化铜微米球超结构可能的形成机理。
以二硫化碳、乙二胺和氯化铜为原料,采用水热-微乳液法合成了刺猬状CuS空心微米球,用XRD、SEM、TEM以及HRTEM等手段对其进行了表征;考察了反应ω0,反应物浓度,反应时间和反应温度等对产品形貌和尺寸的影响;在室温下,通过降解亚甲基蓝研究了CuS空心微米球的光催化活性。
结果表明,所制备的产物为六角相CuS空心球,其直径为0.1~1.0μm。
球壳是由许多纳米片弯曲缠绕而成的,纳米片的边长为200~300 nm,厚度约为10 nm;反应温度、反应时间、ω0及反应物浓度等对产物的形貌和尺寸都有较大的影响。
光催化测试结果表明,在35 W氙灯下仅光照30 min,亚甲基蓝的降解率达91.4 %,表现出良好的光催化性能。
紫外-可见光谱研究表明,所制备的硫化铜在443 nm 处有较强的吸收,其能带间隙Eg约为1.8 eV。
荧光光谱在365 nm和486 nm左右有发射光谱带。
原位红外技术
原位红外技术研究Cux O/TiO2有机污染物光降解的作用摘要:本工作采用改进的溶胶-凝胶法和浸渍法制备了TiO2与另一半导体Cu2O组成的CuxO/TiO2光催化剂,运用XRD、N2吸附脱附、紫外可见漫反射光谱(DRS)、表面光电压谱(SPS)等手段进行表征,同时利用原位红外技术考察了CuxO/TiO2样品光催化降解乙烯、丙酮、苯的气-固相光催化氧化反应,对其光催化降解有机污染物的过程进行了研究。
结果表明,TiO2与另一半导体Cu2O复合后,锐钛矿晶型的含量增加,晶粒度减小,比表面积增大,禁带宽度增加,表面光电压信号增强,光生电子-空穴对有效分离;CuxO/TiO2样品对乙烯、丙酮、苯的光催化性能与纯TiO2相比均有不同程度的改善,乙烯可以被光催化氧化完全矿化生成CO2,而丙酮被光催化氧化可能生成中间产物丙酸,苯被光催化氧化可能生成中间产物苯酚和苯醌。
关键词:TiO2;CuxO/TiO2;光催化氧化;原位红外光谱;有机污染物In Situ FTIR Study on Photocatalytic Degradation of Organic Contaminants over CuxO/TiO2Abstract : The CuxO doped TiO2 photocatalyst was prepared by the improved sol-gel and impregnation method.XRD, N2 adsorption, UV-Vis diffuse reflection spectroscopy and surface photovoltage spectroscopy (SPS) were ap-plied to study the effect of CuxO doping. At the same time, the photocatalytic process of TiO2 and CuxO doped TiO2 catalysts for degradation of ethylene, acetone, benzene were further studied by means of in situ FTIR. The result indicated that CuxO doping could enhance the photocatalytic activities of ethylene, acetone, benzene to some ex-tend as compared with pure TiO2. The increase in photoactivity is probably due to higher content of anatase,smaller particle size , higher specific surface area and lager band gap. In addition, the higher photocatalytic activity of CuxO doped TiO2 may be attributed to the stronger photovoltage signal and the effective separation ofphotogenerated electron-hole pairs. The result also showed that ethylene could be photocatalytically oxidized to CO2.The acetone and benzene may be photocatalytically oxidized to propionic acid and phenol, quinone, respectively. Keywords: TiO2; CuxO doping; photocatalytic oxidation; in situ FTIR; organic contaminants.近年来,随着建筑装饰材料、化学物质的大量使用,汽车、摩托车尾气及工业废气等直接向空气排放,空气污染越来越严重,已经引起人们的广泛重视。
贵金属Au-Ag合金修饰ZnO用于光催化高效降解乙烯
Chinese Journal of Catalysis 41 (2020) 1613-1621催化学报2020年第41卷第10期丨ArticleZnO nanorod decorated by Au-Ag alloy with greatly increased activity for photocatalytic ethylene oxidationHuishan Zhai, Xiaolei Liu, Zeyan Wang, Yuanyuan Liu, Zhaoke Zheng, Xiaoyan Q in, Xiaoyang Zhang, Peng Wang *, Baibiao Huang #State Key Laboratory o f C rystal Materials, Shandong University, Jinan 250100, Shandong, ChinaA R T I C L E I N F OA B S T R A C TArticle history:Received 17 February 2020Accepted 26 March 2020 Published 5 October 2020Keywords:Surface plasmon resonance Au-Ag bimetallic alloy nanoparticles Cooperative action Effective carrier separationIn recent years, the preservation of fruits and vegetables in cold storage has become an issue ofincreasing concern, ethylene plays a leading role among them. W e found ZnO has the effect of degrading gaseous ethylene, however i t s effect i s not particularly satisfactory. Therefore, w e used simple photo-deposition procedure and low-temperature calcination method to synthesize Au, Ag, and AuAg alloy supported ZnO to improve the photocatalytic efficiency. Satisfactorily, after ZnO loaded with sole Au or Ag particles, the efficiency of ethylene degradation was 17.5 and 26.8 times than that of pure ZnO, showing a large increase in photocatalytic activity. However, the photocatal y t i c stability of Ag/ZnO was very poor, because Ag can be easily photooxidized to Ag 2〇. Surprisingl y , when ZnO was successfully loaded with the AuAg alloy, not only the photocatalytic activity was further improved to 94.8 times than that of pure ZnO, but also the photocatalytic stability was very good after 10 times of cycles. Characterization results explained that the Au-Ag alloy NPs modified ZnO showed great visible-light absorption because of the surface plasmon resonance (SPR) e f f e c t . Meanwhile, the higher photocurrent density showed the effective carrier separation ability i n AuAg/ZnO. Therefore, the cooperative action of plasmonic AuAg bimetallic alloy NPs and efficient carrier separation capability result in the outstanding photoactivity of ethylene oxidation. At the same time, the formation of the alloy produced a n e w crystal structure different from Au and Ag, which overcomes the problem of poor stability of Ag/ZnO, and finally obtains AuAg/ZnO photocatalyst with high activity and high st a b i l i t y . This work proposes a ne w concept of using metal alloys to remove ethylene in actual production.© 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.Published by Elsevier B.V. All rights reserved.1. IntroductionIn recent years, the noble metals have attracted great attention because of their outstanding physical, chemical and optical performances, which m a d e t h e m suitable as co-catalysts on s o m e photocatalysts [1-8]. Mos t of t h e m can be used as the electron-transfer active sites in photodegradation of dye [9],photocatalytic H 2 production [10,11], C O 2 reduction [12], transformation of green organic [13], thermocatalytic reduction of nitroaromatics in water [14] and so on. In particular, A u and A g as c o m m o n noble metals in our li f e are also widely investigated in photocatalytic academic research du e to their unique surface plasmon resonance (SPR) [15-19]. T h e Au, A g N P s under SPR-excitation have strong visible-light absorption,* Corresponding author. E-mail: *******************.cn Corresponding author. E-mail: ***************.cnThis work was supported by the National Natural Science Foundation of China (51602179, 21333006, 21573135, and 11374190) and the Taishan Scholars Program of Shandong Province.DOI: S1872-2067(19)63473-X | http://www.sciencedirectcom/science/journal/18722067 | Chin. J . C a t a l ., Vol. 41, No. 10, October20201614H uisha n Z h a i e t al. / Chinese J o u rn a l o f C atalysis 41 (2020) 1613-1621thus they can be applied to solve the challenges in photocata- lytic reactions such as n a r r o w spectral response [15-19]. Furthermore, just like a semiconductor heterojunction can prom o t e carrier separation [20-23], A u or A g N P s can act as the active sites for capturing electrons, improving the separation of electron and hole pairs in photocatalytic system as well. Therefore, the A u or A g supported materials have been also investigated in solving the problem of low q u a n t u m efficiency [24].Bimetallic alloy i s c o m p o s e d of t w o metals by a certain method. Recently, s o m e studies have found that the semiconductors loaded with bimetallic alloy have m a n y superior properties c o m p a r e d to that loaded with sole metal [25-29]. M o r e importantly, they can c o m p l e m e n t each other to achieve a win-win situation. For example, Au-Cu alloy supported on Ti〇2 i s effective on photocatalytic C〇2 reduction [30]. A m o n g them, the selectivity in C H4conformation o w n e d to the C u bonding to C O2on Ti〇2,while the visible light photoresponse w o u l d be due to the surface plasmon ban d of Au, illustrating A u and C u in the A u-Cu alloy have been put to the best utilization from each other [30]. In addition, Au-Pt alloy loaded on W O3w a s used to strengthen hydrogen and oxygen generation o w i n g to the m utual promotion of plasmonic function in A u and catalytic characteristic in Pt [15]. As w e al l know, A g has similar plasmonic property as Au. Therefore the A u and A g in A u-A g alloy exhibit outstanding photocatalytic performances and synergistic effects which are superior to the pure metals under visible-light irradiation [31]. A u-A g alloy loaded semiconductors have been applied to restore C O2 to fuels [32], heighten the photoelectro- catalytic properties [33], oxide of methanol selectively [34], and so on. In particular, w e have found A u-A g alloy played an important role in the degradation of the harmful gas ethylene recently.Ethylene i s produced in natural sources, plants and plant products. I t has s o m e h a r m o n the storage l i f e, development and growth of m a n y ornamental crops, fruits a n d vegetables at extremely low concentration [35,36]. S o m e researchers have already realized the dangers of ethylene and looked for s o m e w a y s to degrade i t to keep fresh of fruits and vegetables. In the field of photocatalysis, m a n y studies w e r e focus on traditional Ti〇2 and Ti〇2-based photocatalysts [37-40], while n e w m a t erials w e r e rarely exploited on ethylene degradation. Actually there w e r e only few n e w semiconductors had ethylene-oxidation function a n d their photocatalytic activity w e r e very poor, such as BiVCU and In2〇3-Ag-Ag3P〇4 [41,42]. Recentl y,w e reported that Fe-doped W O3has the property of degrad- ing ethylene [43], and the activity w a s greatly improved c o mpared with previous studies. However, the ethylene cannot be completely mineralized to C O2. Therefore, i t is urgent to find a highly active substance to deal with the ethylene. In this paper, w e interestingly found Z n O had capability to oxide ethylene, but the activity w a s not so satisfactory. T o improve the photocatalytic reaction rate greatly, A u-A g bimetallic alloy N P s w e r e loaded on the ZnO. W e systematically investigated the perform a n c e of single Au, Ag, and A u-A g alloy decorated on ZnO, and w e found the photocatalytic ethylene-oxidation activity of Z n O decorated by 0.8 w t% of Au-A g alloy w a s 94.8 times higher than that of pure ZnO, while loaded by single 0.8 w t%of A u or A g w a s only 17.5 or 26.8 times higher than that of ZnO. These results confirm the A u-A g alloy is superior to the single metal A u or A g in ethylene-oxidation process. Therefore, the A u-Ag alloy i s the promising cocatalyst for ethylene oxidation to freshen fruits and vegetables in refrigeration storage.2. Experim ental2.1. M a te ria ls synthesis2.1.1. ZnO nanorodsT h e Z n O nanorods w e r e prepared referring to the simple hydrothermal m e t h o d [44]. Particularly, 0.4 g N a O H w a s added to 60 m L ethanol under ultrasonic treatment until forming h om o g e n e o u s 0.17 m o l/L NaOH/ethanol solution. T h e n the solution w a s put into a Teflon tank of 100 m L capacity containing 2 m m o l Zn(CH3COO)2-2H2〇 and stirred for 30 min. Th e tank w a s transferred into a stainless-steel autoclave and heated at 160 °C for 24 h, the white p o w d e r w a s obtained after suction filtration with water a n d dried at 60 °C. T h e n the Z n O p o w d e r w a s calcined at 400°C for 1 h to r e m o v e the adsorbed ethanol.2.1.2. A u o r Ag NPs loaded on ZnO nanorodsT h e deposition of single A u N P s on the Z n O nanorods w a s synthesized via a photo-reduction method. Briefly, 0.15 g Z n O w a s dispersed in 100 m L H2O in a beaker. T h e n different volu m e s of 0.1 m o l/L H A u C U w e r e dripped into the system and stirred for 5 m i n in order to form a h o m o g e n e o u s mixture. B efore irradiation, 1 m L methyl alcohol w a s added as the sacrificial agent. T h e n the mixture w a s irradiated for 30 m i n under the Xe lam p of 300W. Finally, the solid w a s filtered, dried at 60 °C and calcined at 400 °C for 1 h to m a k e the A u NP s have a tightly integrated with the surface of Z n O and r e m o v e the a dsorbed ethanol. T h e deposition of single A g N P s on the Z n O nanorods w a s similar with these processes. T h e only difference w a s that 0.1 m o l/L H A u C U w a s replaced with 0.1 m ol/L A g N〇3.2.1.3. Au-Ag b im e ta llic a llo y NPs loaded on ZnO nanorodsTh e A u-A g bimetallic alloy N P s supported on Z n O nanorods w e r e conducted with a co-photodeposition method. That i s, a certain volume of H A u C U (0.5 w t% Au) and A g N〇3 (0.3 w t% Ag) w e r e put together into the Z n O suspension under continuous stirring, and other reaction conditions w e r e s a m e as single Au/ZnO. T h e optimal A u-A g proportion o n Z n O w a s 0.8 w t%. Therefore, 0.8 w t% A u/Z n O and 0.8 w t% A g/Z n O w e r e also obtained as comparison by using the similar procedure.2.2. C h a rac terizationMorphologies w e r e investigated by S E M(Hitachi S-4800) equipped with an EDS. X R D patterns w e r e conducted on a Bruker A X S D8 diffractometer equipped with C u Ka radiation to reveal the crystal structure. T h e UV-vis D R S analyzes w e r e recorded by Shimadzu U V-2550 spectrophotometer using Ba S〇4 as reflectance standard to explore the optical absorption. T h e T E M and H R T E M tests w e r e performed with a )EOL JEM-2100FH uishan Z h a i e t al. / Chinese J o u rn a l o f C atalysis 41 (2020) 1613-16211615microscope to analyze the nanostructure and composition ofthe as-prepared A u A g/Z n O photocatalyst. X P S measurementsw e r e obtained using a T h e r m o E S C A L A B 250X1, and the peakpositions of various elements w e r e calibrated by C Is (284.8eV). Photoelectrochemical tests w e r e measured by CHI-660Celectrochemical workstation using a three-electrode system.Th e F T O glass coated catalyst w a s served as working electrode,Pt sheet as counter electrode and Ag/AgCl as reference electrode. 0.2 m o l/L Na2S〇4 solution w a s used as the electrolyte. A300 W Xe-arc l a m p (CEL-HXF300, Beijing C E A U Light, China) w a s used for a light illuminant. T h e gas mixture w a s researched by m e a n s of the S h i madzu GC-2014C.2.3. P h o to c atalytic ev alu a tio nPhotocatalytic oxidation of ethylene w a s measured in a quartz-covered reactor with 400 m L volume irradiated by a 300 W X e lamp. 0.12 g photocatalyst w a s dispersed uniformly in the bottom of the container with a rotor. T h e reactor w a s then sealed by the quartz cover and injected into 0.5 m L ethylene under stirring. Before turning on the lights, the container w a s stirred in the dark for 2 h to m a k e ethylene and air in the container mix evenly an d attain the adsorption and desorption balance. W h e n the balance w a s achieved, the reactor w a s illuminated on top of quartz cover and 50 \xL of gas mixture w a s sampled at regular intervals and tested by a gas chromatography. C/Co indicates the degradation percentage of ethylene, w h e r e C is ethylene concentration at a specific time an d Co i s the initial concentration of ethylene. Stability of A u A g/Z n O product w a s also investigated as follows: after each ethylene oxidation reaction, op e n e d the cover and set aside 30 minutes to allow excess C〇2and C2H4 in the container to diffuse out. T h e n the reactor w a s sealed again to degrade a n e w 0.5 m L ethylene for another test under the s a m e irradiation.3. Results and discussion3.1. X-ra y d iffra c tio n research o f a s-prep are d nanocompositesT h e X R D spectra of obtained products are s h o w n in Fig. 1. As can be seen from the left figure, the peaks of pure Z n O match well with the standard Z n O card (JCPDS, No. 70-2551). All of the diffraction peaks of the as-prepared samples after incorporation of noble metals are very identical to that of pristine ZnO, with only small peak displacement in the part of the dotted line.F r o m the magnified figure on the right and the Table 1 below, i t can be seen that the A g/Z n O has t w o peaks at 37.99° and 44.21° while the peaks of A u/Z n O at 38.30° and 44.66°, which are in line with the A g and A u standard cards (Fig. SI). I t should be pointed out, however, the A u A g/Z n O has peak locations (38.22° and 44.39°) different from any one of single A u and Ag, which are located betw e e n the peaks of A u and Ag. Similar consequence of A u-A g alloy peak-displacement w a s also found in Fig. SI. This interesting p h e n o m e n o n concludes that A u-Ag alloy might c o m e into being w h e n A u and A g are co-loaded on the Z n O and calcined at 400°C. Certainly, this conclusion needs to be proved further b y the following results.20 30 40 50 60 70 80 38 40 42 44 462 Theta(deg.)Fig. 1.The X R D patterns of the pure ZnO and Au, Ag, Au-Ag alloy nano- particles decorated on ZnO samples.3.2. EDS a n d e le m e n ta l m aps o f n anocom positesFig. 2a reveals the distribution an d content of C, 0, Zn, A u and Ag. A m o n g them, the source of C might be conductive plastic or the adsorbed C O2.As can be seen from Fig. 2b, the weight percentages of A u an d A g are, respectively, 0.55% an d 0.21%, which are close to the actual loading a m o u n t of 0.5%and 0.3%.F r o m Fig. 2c, w e can see the overall distribution of A u and A g elements are strongly uniform, illustrating that A u an d A g are evenly loaded on the surface of ZnO.3.3. UV-vis diffuse spectroscopyT o understand the different absorption of Au, A g and A u A g loaded ZnO, the UV-vis diffuse reflectance spectra of 0.8 w t% Au/ZnO, 0.8 w t% A g/Z n O and 0.5 w t% A u@0.3 w t% A g/Z n O samples, together with that of pure Z n O nanorods, are investigated and exhibited in Fig. 3.As can be observed in Fig. 3, pure Z n O has no absorption in the visible range, in agree with the reported b a n d gap of 〜3.1 eV. However, the A u or A g loaded Z n O displays increased visible light absorption o w n e d to the surface plasmon resonance (SPR) effect of the metallic A u and A g particles. Especially, there i s a characteristic peak at around 550n m of A u/Z n O while A g/Z n O is approximately at 470 n m; which i s in accordance with the previous article [31,45,46]. Interestingly, w h e n A u or A g is replaced by the s a m e a m o u n t of Au-Ag, i t s h o w s a broader and stronger peak at about 510 n m lying betw e e n the characteristic peaks of single A u and Ag. These data further illustrate that w h e n A u and A g w e r e co-loaded on ZnO, they might form the A u-A g alloy with the synergistic S P R effect, which can enhance the light absorption at 400-800 n m [32,33].A n d i t i s worth putting forward that the p r o m o t e d light absorption generally along with the increased photocatalytic property.Table 1The two X R D peaks in theAu/ZnO samples.range of 37°-45° of Ag/ZnO, AuAg/ZnO andSample20i 〇202(〇)Ag/ZnO37.9944.21AuAg/ZnO38.2244.39Au/ZnO38.3044.66{.n.«r*lsua}ul1616H uisha n Z h a i e t al. / Chinese J o u rn a l o f C atalysis 41 (2020) 1613-1621a )ElementWeight%Atomic%C 3.7711.25o21.3747.89Zn 74.1040.65Au 0.550.18Ag0.210.04T o ta ls100.003.4.S E M a n d T E MFig. 4a and b are typical S E M images of the as-prepared Z n O and A u Ag/ZnO. As can be seen, Z n O are nanorods with an average thickness of around 20 nm. After loaded by A u -A g alloy NPs, w e can see from Fig. 4c that there are s o m e small particles deposited on the surfaces and edges of nanorods. T h e key i s that these nanoparticles have uneven size, s o m e are big and s o m e are small, with an average of 〜6 n m by calculating (see Supporting Information Fig. S2), and they are closely attached to the Z n O surfaces to have a better contact. Fig. 4d, e and f are the corresponding H R T E M images of A u Ag/ZnO. T h e detected lattice fringes of Z n O are matching well with the (002) plane ofFig. 4. (a) S E M of pure ZnO, (b) S E M of AuAg/ZnO, (c) T E M ofAuAg/ZnO, and (d , e , f ] H R T E M images of AuAg/ZnO.0.26 n m (JCPDS, No. 70-2551). After a lot of detection, the d-spacing values of these small metal N P s (3-7 n m ) are 0.235 n m (Au(lll) JCPDS 01-1172) and 0.237 n m (Agflll) JCPDS 01-1164), on e of the pictures i s presented in Fig. 4d. However, the (/-spacing values of these big metal N P s (10-15 n m ) are a l l 0.236 n m (AgAu(lll) ]CPDS 65-8424), presented in Fig. 4e and4f. T h e size of A u A g N P s coated on Z n O i s larger than A u or A g NP s due to A u -A g alloy formation [32].Besides, the information crisply exhibits that the A u A g /Z n O photocatalyst possesses not only a distribution of the Au-Ag alloy NP s but also the coexistence of unalloyed A u and A g NPs. Similar p h e n o m e n o n i s also appeared in Au-Cu alloy loaded on Ti〇2, that i s , A u C u /T i〇2 sample consists of A u-Cu alloy NPs together with independent A u an d C u NPs, which i s difficult to avoid [30]. Anyway, this result further proves the formation of Au-Ag alloy N P s in A u A g /Z n O a n d i t s photo c atalytic activity and stability are both satisfactory in the following tests.3.5.X -ra y photoelectron spectroscopy studyFig. 3. UV-vis diffuse reflectance spectra of ZnO, Au/ZnO, Ag/ZnO andAuAg/ZnO samples.T o obtain the surface chemical status of A u A g /Z n O before and after irradiation, X-ray photoelectron spectroscopy w a s carried out. Fig. 5a is the full spectra of A u A g /Z n O sample before and after degradation, w h e r e the peaks for Zn 2p and 0 Is can be seen clearly. In Fig. 5b, the t w o peaks centered at 1021 eV and 1044 e V are corresponding to the Z n 2p3/2 and Zn 2pi/2. There i s no displacement of the peak position before and after the reaction, indicating that the chemical state of the Zn elem e n t has not changed. Similarly, as seen from Fig. 5c, the peaks of A u A g /Z n O before degradation located at 529.5 e V and 531.4 eV are indexed to lattice oxide and adsorbed oxygen [32]. Afterdegradation, the peak of lattice oxide has no change, indicating Z n Odid not change before and after reaction. However, theHuishan Zhai et a l / Chinese Journal o f C atalysis 41 (2020) 1613-16211617peak of adsorbed oxygen exhibits a slightly negative shift, suggesting the chemical reactions of adsorbed 〇2 might be involved. In Fig. 5d, the diffraction peak located at 83.3 eV and 88.1 eV are corresponded to Au 4/7/2 and Au 4/5/2. It can be seen that the valence state does not change significantly before and after illumination, indicating the alloyed Au and unalloyed Au are very stable. But Fig. 5e shows that before the illumination, the peak positions are located at 367.1 eV and 373.2 eV, respectively, which are features of Ag°. After the illumination, the peak position shifts slightly to the high binding energy at 367.4 eV and 373.5 eV and exists a mixed state. This is because the Ag particles are unstable and easily lose electrons under long-time illumination. The unalloyed Ag particles lose elections and become Ag+ and thus the peaks exhibited a positive shift [47]. However, the most Ag elements in AuAg alloy are still Ag°, which proves the superiority of the AuAg alloy. This result also corresponds to the test results of photocatalytic stability.3.6. Photocatalytic C 2H 4 oxidation and s t a b i l i t y t e s t ofas-obtained samplesEthylene is used as an objective organic pollutant to m easure the photocatalytic activity of the as-prepared products at 15 °C. The total experimental results are shown in Fig. S3 and Fig. 6. Firstly, the blank test of ethylene without photocatalyst is performed and we find that the pure ethylene can hardly be decomposed in the absence of photocatalyst. Therefore, all the following degradation of ethylene is due to the presence of the photocatalyst. Fig. S3a illustrates the degradation curves over pure ZnO and Au decorated ZnO. Fig. S3b and c are the corresponding kinetics curves and reaction rate constants. It is obvious that pure ZnO has a poor reaction rate constant of 0.004 g -^i r r 1. After loading with a small amount of Au, the activityhas been significantly improved and the reaction rate of 0.5% Au/ZnO even reaches up to 0.162 g ^m in 1, which is 40 times that of pure ZnO. It can be seen the existence of noble metal Au has a great role in promoting the activity due to its extended light absorption, which confirms our speculation exactly. Then we study the effect of Au-Ag alloy and the optimal loading amount of Ag (Fig. S3 d-f]. We find that when the precursor of Au (0.5%) and Ag (0.1%-0.7%) are simultaneously added into the ZnO suspension and reduced to Au, Ag and Au-Ag alloy, the activity has been further upgraded. When the ratios of Au and Ag are 0.5% and 0.3% (total amount of noble metal is 0.8%), the reaction rate reaches the highest. Then we also make a comparative experiment of 0.8% Au and 0.8% Ag in Fig. 6, both are less active than AuAg/ZnO. The reaction rate of 0.8% AuAg/ZnO is approximately 5.41 and 3.54 times more than the 0.8% Au/ZnO and 0.8% Ag/ZnO. Hence, it is clear that the synergistic effect of Au and Ag has unmatched superiority.In order to compare the photocatalytic effects of our synthesized photocatalysts with other photocatalysts, the photocatalytic degradation activity of AuAg/ZnO sample was com- pared with that of other photocatalysts such as Pt-Ti 〇2,P t@F e-W 03, Ag/AgCl/TiOz, Ag-ZnO, BiV04/P 25, P 25/B i2W 〇6 and In2〇3-Ag-Ag3P 〇4, the detailed results are shown in Table SI. It can be seen from the roughly calculated reaction rate (ppm g_1 m iir1) that the AuAg/ZnO has the highest activity among many photocatalysts, which proves that AuAg/ZnO sample has a good application prospect. In addition, we have done similar experiments using nanoflower-like ZnO and found that the morphology of ZnO did not affect the experimental rules. That is, the regularity in C2H4 degradation of nanoflow- er-like ZnO was similar to that of the nanorod-like ZnO, indicating that the regularity of AuAg/ZnO in degradation of ethylene is universal. The related comparison experiment results82 8486 88 90 92 94Binding energ>(e\')365 370375Binding enerK>(eV)Fig. 5. (a) XPS survey spectra and (b-e) high-resolution XPS spectra of Zn 2p, O Is, Au 4/and Ag 3d for AuAg/ZnO before and after degradation.400 800Binding encrR>(eV)d )530Binding cnerg>(eV){.n -B ).r 'l s u i ;ul1618Huishan Zhai et al. / Chinese Journal o f C atalysis 41 (2020) 1613-1621cycle timesFig. 6. (a) Comparative photodegradation activities of C 2H 4, (b) the corresponding kinetics curves, (c) the reaction rate constants of the total contrastactivities of pure ZnO, 0.8% AuAg/ZnO, 0.8% Au/ZnO and 0.8% Ag/ZnO under (UV-vis) light illumination, (d) the recyclability for the photocatalytic degradation of C 2H 4 in the presence of 0.8% AuAg/ZnO composite.are presented in Fig. S4.Besides the photocatalytic behavior, the stability of the photocatalyst is another vital character in practical application. To investigate the stability of 0.8% AuAg/ZnO, ten-test cycles w ere conducted under the same condition. In detail, Fig. 6d is photodegradation kinetic constant of C 2H 4 of these ten-time tests. As can be seen, the photocatalytic C 2H 4 oxidation over 0.5%******%Ag/ZnO shows a slight downward trend after one cycle and the rate constant drops from 0.379 g -^i n -1 to 0.343 g ^m irr1. However, there is no significant decrease of activity from the second to the tenth cycle of photocatalytic measurements, that is, the corresponding k constant is 0.343, 0.324, 0.335 and 0.325 g -'m iir1, separately. The reason for this phenomenon, in our opinion, may be due to that part of the separate Ag is oxidized to Ag 2〇. After one-time irradiation, the all or most isolated Ag is become Ag2〇 because of its unstable chemical properties. But the Au-Ag alloy and separate Au have no change because they are quite stable. Thus, after the first little decline, the succeeding photocatalytic activities show littlechanges.In order to verify this conjecture, the stability of single Au/ZnO and Ag/ZnO has also been studied (Fig. 7a and b). It can be seen that the Au/ZnO has very great stable activity. After ten times of circulations, the reaction rates are almost unchanged. However, it is interesting to see that the Ag/ZnO has a relatively poor stability. The reaction rate drops to almost half after the first cycle and attenuates in the following tests. When going to the tenth cycle, the reaction rate is close to one tenth of the first. This result just verifies our conjecture that isolated Ag is not stable while Ag in the Au-Ag alloy is quite stable. These results demonstrate the Au-Ag alloy exhibits good stability compared to the separate Ag and exhibits great activity compared to the separate Au. Above all, the Au-Ag alloy supported on the ZnO nanorods has unparalleled excellence.To examine the mineralization ratio of ethylene oxidation, the photocatalytic measurement over the AuAg/ZnO product is further conducted in Fig. 8. At beginning, the concentration ofC2H4 and CO 2 is 1250 ppm and 0 ppm (the 0 ppm is after de-12344 (10)cycle times210Fig. 7. The recyclability for the photocatalytic degradation of C 2H 4 in the presence of (a) single Au and (b) single Ag under (UV-visible) light illumination.Huishan Zhai et al. / Chinese Journal o f C atalysis 41 (2020) 1613-162116190 50 100150 200250 300time (sec.)Fig. 9. Transient photocurrent response of pure ZnO, Au/ZnO, Ag/ZnOand the AuAg/ZnO composites under (UV-visible) light illumination.Fig.8. Photocatalytic C 2H 4 degradation and CO 2 generation ofAuAg/ZnO.ducting the CO2 content in the air), respectively. When the light is turned on, the concentration of C2H4 rapidly decreases to zero in 1 h, meanwhile, the concentration of CO2 increases with two times of C2H4 reducing. Finally, the concentration of CO2 is 2467 ppm (about 2500 ppm). The result confirms that ethylene oxidation is truly driven by a photocatalytic process, and C=C bond in C 2H 4 is almost broken into two times of 0=C =0 bond. The mineralization ratio of ethylene is about 100% in this reaction.3.7. Photoelectrochemical measurementsThe strong capacity of charge migration can be certified by the enlarged photocurrent [49,50]. Just like the results of photocatalytic activities, the photocurrents of these products have the same discipline. As shown in Fig. 9, pure ZnO has a very poor photoelectric response, which means that the electrons and holes in ZnO are easily recombined under light irradiation. Surprisingly, Au/ZnO and Ag/ZnO all have the enhanced photocurrent as expected, which signifies that Au and Ag acting as electroniccapturecentersarebeneficialtoeffectivecharge-transfer process. On the other hand, by combining Au and Ag NPs with ZnO, the plasmon-excited electrons can be injected into ZnO and make it visible light active, resulting in stronger photocurrent. Then just as we thought, the photocurrent intensity of AuAg/ZnO is futher increased compared with that of single Au or Ag deposited on ZnO, indicating the synergy effect of Au-Ag alloy can excite more electrons and they havethe function to accelerate the separation of charge carriers further more. The above results show that the Au-Ag alloy has good synergy effect to have a prolonged recombination time and enhanced photocurrent density.3.8. Mechanism studyBased on the above results, a feasible reaction mechanism is proposed in Fig. 10. As we know, ZnO is a semiconductor with a wide band gap of 3.1 eV, which can only absorb the UV light. Thus, the ZnO cannot be excited by visible light. Nevertheless,Au and Ag have good absorption in the visible light area due to their special surface plasmon resonance (SPR) [15-19]. Because the conduction band position of ZnO (-0.31 eV vs NHE) is more negative than E 〇(〇2/*〇2~) (-0.046 eV vs NHE), the process of the single-electron reduction of oxygen can proceed and generate *〇2~ [50]. Hence, the plasmon-induced electrons in the Au, Ag and Au-Ag alloy NPs can migrate to the CB of ZnO through the metals-ZnO interface. These electrons can produce•〇2~ and be used for the degradation of C2H4. Details of themineralization process of ethylene and the reactions are given in Fig. 10. It is worth mentioning that the reaction efficiency under visible light is very low because the number of plasmon-induced electrons is very small compared to those photo- excited electrons in ZnO. The corresponding irradiations were performed with filtered visible light (A > 420 nm) in Fig. S5. We find that there is no capacity of pure ZnO to degradate C2H4 under the visible light while the AuAg/ZnO has a certain performance that can degrade half of the ethylene in 24 h. When the light source is UV-visible light, the AuAg/ZnO can absorb both visible and UV light. On the one hand, Au, Ag and Au-Ag can absorb the visible light and induce the plasmon-excited electrons e-A u A g . On the other hand, the ZnO body can be excited by ultraviolet light to produce photogenerated electrons e~cB. More importantly, the Au, Ag and Au-Ag NPs serve as electronic capture center, which can receive electrons from the conduction band of ZnO and prolong the life of electrons. These two types of electrons work together so that the reaction rate at full arc light is much greater than that under visible light. In addition, the synergy of Au and Ag is another important reason ofFig. 10. Pictographic representation and the possible mechanisms ofthe excitation of surface plasmon and electron transfer process during the irradiation of UV-visible light.ht :c /3s d p }u a J J n 30}o qQ.。
复合高级氧化法处理聚丙烯酰胺
第41卷 第2期2009年2月哈 尔 滨 工 业 大 学 学 报JOURNAL OF HARB I N I N STI T UTE OF TECHNOLOGYVol 141No 12Feb .2009复合高级氧化法处理聚丙烯酰胺尤 宏,刘 婷,罗辉辉,王美玲(哈尔滨工业大学市政环境工程学院,哈尔滨150090)摘 要:为处理聚驱采油废水中的聚合物,研制出可工业放大的新型多光源化学反应器,并采用O 3/H 2O 2/UV 联用技术,于此反应器内对聚丙烯酰胺(P AM )溶液进行降解研究,考察影响降解P AM 速率的主要因素.结果表明,该反应体系对P AM 有较好的去除率,且在任何特定反应条件下,P AM 的降解速率均与P AM 的质量浓度成正比.O 3与H 2O 2均有最优投加量,当O 3超过最优投加量时,表观速率常数不会有所增加,而H 2O 2一旦超过最佳投加量,表观速率常数会迅速下降,当H 2O 2投加量大于2718mg/m in 时,O 3/H 2O 2/UV 法降解P AM 的表观速率常数甚至低于O 3/UV 法.并且表观速率常数随光辐射强度的增大而增大,随pH 的增大而减小.关键词:O 3/H 2O 2/UV;高级氧化;聚丙烯酰胺;水处理中图分类号:X741文献标识码:A 文章编号:0367-6234(2009)02-0137-04D egrada ti on of polyacryl am i de by com b i n ed advanced ox i da ti on processY OU Hong,L IU Ting,LUO Hui 2hui,WANG Mei 2ling(School of Munici pal and Envir on mental Engineering,Harbin I nstitute of Technol ogy,Harbin 150090,China )Abstract:I n order t o treat poly mers in oil recovery waste water fr om poly fl ooding,a batch react or with numer 2ous la mp -houses was devel oped,and the degradati on of polyacryla m ide (P AM )by O 3/H 2O 2/UV p r ocesses was studied in this react or .Besides,the effects of operating para meters were investigated .It was found thatP AM was degraded efficiently by O 3/H 2O 2/UV p r ocesses,and the degradati on rate of P AM was in direct p r o 2porti on t o the P AM concentrati on .I n additi on,both O 3and H 2O 2had op ti m um dosages,and the degradati on rate didn ’t increase when O 3exceeded its op ti m u m dosage,but the degradati on rate decreased rap idly when H 2O 2exceeded its op ti m u m dosage .W hen the H 2O 2dosage exceeded 2718mg/m in,the degradati on rate of P AM by O 3/H 2O 2/UV was less than that by O 3/UV.Moreover,the apparent reacti on rate increased with the increasing UV dosage,and decreased al ong with the increasing pH.Key words:O 3/H 2O 2/UV p r ocess;advanced oxidati on p r ocesses (AOPs );polyacryla m ide (P AM );water treat m ent收稿日期:2007-07-04.基金项目:国家重点基础研究发展计划资助项目(973-2004CB418505);哈工大跨学科交叉性研究基金资助项目(H I T .MD2003.02).作者简介:尤 宏(1961—),男,博士,教授. 聚合物驱(简称聚驱)采油技术是一种有效提高石油采收率的强化采油方法,在保证我国油田原油稳产中发挥着不可替代的重要作用.但是聚驱采油污水与一般采油污水相比,废水中含有大量聚合物(部分水解聚丙烯酰胺,简称为HP AM ),利用油田常规污水处理工艺处理难以达到回注水的水质要求,其处理已经成为一个亟待解决的问题.近几年来,已有一些物理[1-2]、化学[3]和生物[4]方法用于处理聚合物.高级氧化法是化学法的一种,自90年代以来就被广泛地应用于水处理方面.其机理是基于产生的羟基自由基对有机物的氧化,由于羟基自由基具有强氧化性和无选择性,可以用来处理生物难降解有机物.已有研究将UV /H 2O 2、O 3/H 2O 2技术用于处理印染废水中的染料[5-8].将高级氧化法作为预处理方法降解聚驱采油废水中的聚丙烯酰胺是一种行之有效的方法,但高级氧化法对聚合物降解的研究国内外鲜见报道[9].实验表明,采用O 3/H 2O 2/UV 联用技术可以有效地降解聚丙烯酰胺(P AM )[10].本文对该技术做了深入研究,设计了可工业放大的新型多光源化学反应器,详细讨论了各种反应条件对反应体系降解P AM 速率常数的影响,并对反应体系的反应动力学进行了初步研究.1 实 验111 仪器与试剂732型分光光度计(上海分析仪器总厂);DHX -SS -03B 实验用臭氧发生器(哈尔滨久久电化学工程技术有限公司);PHS -3C 型数字pH计(上海雷磁仪器厂);8W 低压汞灯(德国飞利浦照明电器厂);聚丙烯酰胺(AR,天津永大化学试剂开发中心,相对分子质量:500万);双氧水(AR,天大化学试剂厂,浓度30%),其余试剂均为分析纯.水样:模拟废水由一定量的P AM 加入去离子水配置而成,搅拌24h,放置7d 后进行实验.112 实验装置采用的反应体系如图1所示.该体系包括气体发生装置、进水装置、光化学反应装置和尾气吸收装置.反应体系的核心部分为课题组研制的多光源光化学反应器,反应器整体结构为长方形,总高度为620c m ,有效体积9L,反应器筒体内侧设有挡板,P AM 废水及稀释后的双氧水经水泵进入反应器内.反应器下封头中间设有曝气板,由臭氧发生器提供含臭氧气体,通过调节进入臭氧发生器的氧气质量浓度来控制气体中臭氧含量.12根石英管纵向贯穿于反应器的筒体内,12根8W 低压汞灯置于石英管内.图1 反应装置图113 实验过程采用半静态实验.取质量浓度为100mg/L 的P A M 溶液9L 注入反应器内,开启实验装置,双氧水与臭氧分别通过蠕动泵和气泵持续加入.每间隔一定时间取样,测定溶液中P A M 的质量浓度.分别对初始P A M 质量浓度、臭氧投加量、双氧水投加量、光辐射强度、溶液的pH 等影响因素进行研究.P AM 质量浓度的测定采用淀粉-碘化铬分光光度法,于580n m 进行测定,pH 由pHS -3C 型数字pH 计进行测定.2 结果与讨论在O 3/H 2O 2/UV 反应体系中,·OH 的产生和淬灭可以归结为如下反应[11-14]:O 3+H 2O +hν→H 2O 2+O 2,(1)H 2O 2+hν→2·OH,(2)2O 3+H 2O 2→3O 2+2·OH,(3)2·OH +H 2O 2→2H 2O +O 2.(4) P AM 则主要通过如下反应降解:PAM +·OH →中间产物→降解产物.(5)实验表明,双氧水的质量浓度、臭氧的质量浓度、光辐射强度等对反应速率有较大的影响,但在任何特定反应条件下,P AM 的降解速率均与P AM 的质量浓度成正比,即-d ρAd t=k ρA .(6)式中k 为表观速率常数,包含了双氧水质量浓度、臭氧质量浓度、光辐射强度等影响因素,ρA 为反应时间t 时P AM 质量浓度.211 初始质量浓度对聚丙烯酰胺降解的影响在不同P AM 初始质量浓度下,降解率随时间的变化关系如图2,从图2中可以看出,P AM 初始质量浓度对于降解率有较大影响,在固定曝气量为01004m 3/m in 、双氧水投加量1318mg/m in 、臭氧投加量25mg/m in 情况下,P AM 的降解率随初始质量浓度的增大而降低,且均服从式(6),线性拟合的相关系数大于0199(图3).图2 初始质量浓度对降解率的影响·831·哈 尔 滨 工 业 大 学 学 报 第41卷 图3不同初始质量浓度下ln (ρ0/ρ)与时间t 的关系图212 臭氧投加量对聚丙烯酰胺降解的影响在固定曝气量为01004m 3/m in 、双氧水投加量1318m g /m in 的情况下,臭氧投加量与表观速率常数的关系如图 4.从图中4可以看出,当臭氧投加量小于25m g /m in 时,表观速率常数随臭氧投加量的增大而增大.当臭氧投加量进一步增大时,反应速率不再上升.一方面液相臭氧质量浓度的增加会受到传质动力的限制,另一方面过量的臭氧也可能会参与·OH 淬灭的反应.图4 O 3投加量对表观速率常数的影响213 双氧水投加量对聚丙烯酰胺降解的影响固定臭氧投加量25mg/m in,双氧水投加量与表观速率常数的关系如图5.从图5中可以看出,当双氧水投加量在0~1318mg/m in 时,表观速率常数k 随双氧水投加量的增加而迅速增加,显然是双氧水参与反应(2)和(3)产生·OH,使降解P AM 的表观速率常数有了较大的提高.进一步增加双氧水的投加量,P AM 的降解速率迅速减小,当H 2O 2投加量大于2718mg/m in 时,O 3/H 2O 2/UV 法降解P AM 的表观速率常数甚至低于O 3/UV 系统.这是因为过量的H 2O 2会参与·OH 的淬灭反应(4),导致表观速率常数迅速下降.只有H 2O 2的适当加入才能使O 3/H 2O 2/UV法的去除率高于O 3/UV 法.图5 H 2O 2投加量对表观速率常数的影响214 光强对聚丙烯酰胺降解的影响固定曝气量为01004m 3/m in 、双氧水投加量1318mg/m in 、臭氧投加量25mg/m in,光辐射强度(通过紫外灯开启个数改变光强)与表观速率常数的关系如图6所示.表观速率常数与光辐射强度成正比.光强越大,臭氧与双氧水的光分解速率越大,产生的OH ·就越多,P AM 的降解速度越快,即表观反应速率常数就越大.图6 光辐射强度对表观速率常数的影响215 pH 对聚丙烯酰胺降解的影响固定曝气量为01004m 3/m in 、双氧水投加量1318mg/m in 、臭氧投加量25mg/m in,pH 与表观速率常数的关系如图7.从图7中可以看出,随着pH 的增大,表观速率常数逐渐减小,即pH 的升高不利于P AM 的降解.Xi w ang Zhang [15]研究也发现在H 2O 2/UV 反应体系中,pH 由3升到11,脱色率从01106m in -1降到了010662m in -1,M.Mu 2ruganandham [14]认为随着pH 的升高,H 2O 2更易光解为H 2O 和O 2,H 2O 2光解为OH ·的质量浓度就降低了,使表观反应速率常数下降.·931·第2期尤 宏,等:复合高级氧化法处理聚丙烯酰胺图7 pH对表观速率常数的影响3 结 论1)于新型多光源化学反应器内,采用O3/ H2O2/UV联用技术,可以有效地降解聚驱采油废水中的P AM.2)在任何特定反应条件下,P AM的降解速率均与P AM的质量浓度成正比.且P AM初始质量浓度、O3投加量、H2O2投加量、光强和pH对反应体系降解P AM的表观速率常数均有影响.表观速率常数随初始质量浓度的增大而减小,随光辐射强度的增强而增大,随pH的升高而降低.3)O3与H2O2均有最优投加量,H2O2一旦超过最优投加量,表观速率常数会迅速下降,H2O2增大到一定程度会致使O3/H2O2/UV法对P AM的去除率低于O3/UV法.参考文献:[1]V I JAY ALAKSH M I S P,GI R I D HAR M.Ther mal degra2dati on of water s oluble poly mers and their binary blends [J].App lied Poly mer Science,2006,101:233-240.[2]STERL I N G W J,KI M Y C,MCC OY B J.Per oxide en2hance ment of poly(α-methylstyrene)ther mal degrada2 ti on[J].I ndustrial and Engineering Che m istry Re2 search,2001,40:1811-1821.[3]V I JAY ALAKS HM I S P,GI R I D HAR M.Phot ocatalyticdegradati on of poly(ethylene oxide)and polyacrylam ide[J].App lied Poly mer Science,2006,100:3997-4003.[4]SI V AL I N G AM G,CHATT OP ADHY AY S,MADRAS G.Solvent effects on the li pase catalyzed bi odegradati on of poly(e-cap r olact one)in s oluti on[J].Poly mer Degra2 dati on and Stability,2003,79:413-418.[5]BEHNAJADY M A,MOD I RSHAHLA N,F ATH I H.Kinetics of decol orizati on of an azo dye in UV al one and UV/H2O2p r ocesses[J].Hazardous M aterials,2006, B136:816-821.[6]SHU H Y,CHANG M C.Pil ot scale annular p lug fl owphot oreact or by UV/H2O2f or the decol orizati on of azo dye waste water[J].HazardousMaterials,2005,B125: 244-251.[7]SHU H Y,HSI EH W P.Treat m ent of dye manufactur2ing p lant effluent using an annular UV/H2O2react or with multi-UV la mp s[J].Separati on and Purificati on Technol ogy,2006,51:379-386.[8]OG UZ E,KESKI N LER B,CE L I K C,et a l.Deter m ina2ti on of the op ti m u m conditi ons in the re moval of Boma2 p lex Red CR-L dye fr o m the textile waste water using O3,H2O2,HC O3-and P AC[J].Hazardous M aterials, 2006,B131:66-72.[9]CAT ALDO F,ANGE L I N I G.S ome as pects of the ozonedegradati on of poly(vinyl alcohol)[J].Poly mer Degra2 dati on and Stability,2006,91:2793-2800.[10]RE N Guang2meng,S UN De2zhi,CHUNK J S.Ad2vanced treat m ent of oil recovery waste water fr om poly2 mer fl ooding by UV/H2O2/O3and fine filtrati on[J].Envir on mental Sciences,2006,18(1):29-32. [11]PEYT ON G R,G LAZE W H.M echanis m of phot olyticozonati on-phot oche m istry of enivir on mental aquaticsystem s[J].American Che m ical Society Sy mposiu m-Series,1987,327:76-88.[12]BUXT ON G V,GREE NST OCK W,HE LMAN P,eta l.Critical review of rate constants f or reacti ons of hy2drated electr ons,hydr ogen at om s and hydr oxyl radicalsin aqueous s oluti on[J].Phys Che m Ref,1988,17:513-886.[13]ST AEHE L I N J,HO I G NE J.Decompositi on of ozone inwater:Rate of initiati on by hydr oxide i ons and hydr o2gen per oxide[J].Envir on mental Science&Technol o2gy,1982,16:676-681.[14]MURUG ANANDHAM M,S WAM I N AT HAN M.Phot o2che m ical oxidati on of reactive azo dye with UV—H2O2p r ocess[J].Dyes Pig ments,2004,62:269-275. [15]Z HANG Xi w ang,WANG Yizhong,L I Guoting,et a l.Oxidative decompositi on of azo dye C.I.Acid O range7(AO7)under m icr owave electr odeless la mp irradia2ti on in the p resence of H2O2[J].Hazardous Materi2als,2006,B134:183-189.(编辑 刘 彤)·41·哈 尔 滨 工 业 大 学 学 报 第41卷 。
环氧乙烷尾气处理工艺
环氧乙烷尾气处理工艺环氧乙烷尾气处理工艺1. 背景介绍•环氧乙烷是一种重要的有机化工原料,但其生产过程中产生的尾气对环境造成严重影响。
•尾气中含有大量有害物质,包括挥发性有机物、氮氧化物和颗粒物等。
•因此,开发高效的环氧乙烷尾气处理工艺至关重要,既可以保护环境,也能降低企业运营风险。
2. 常见环氧乙烷尾气处理工艺催化氧化法•催化氧化法是一种常用的环氧乙烷尾气处理工艺。
•通过将尾气中的有机物与催化剂接触,在催化剂作用下将有机物氧化转化为无害物质。
•这种工艺具有高效、经济的特点,但对催化剂的选择和管理有一定要求。
吸附法•吸附法是另一种常见的环氧乙烷尾气处理工艺。
•通过吸附剂将尾气中的有机物吸附固定,从而达到净化的目的。
•这种工艺器件简单,成本较低,但吸附剂的选择和再生成为工艺优化的关键。
3. 创新环氧乙烷尾气处理工艺生物处理法•生物处理法是一种新兴的环氧乙烷尾气处理工艺。
•利用微生物对尾气中的有机物进行分解和转化,达到净化的效果。
•这种工艺对环境友好,但对微生物的选择和培养有一定难度。
光催化法•光催化法是另一种创新的环氧乙烷尾气处理工艺。
•利用特定的催化剂和光能,使尾气中的有机物发生光催化反应,从而净化尾气。
•这种工艺具有高效、无污染的特点,但催化剂的选择和反应条件的控制是关键。
4. 工艺选择与优化•在选择环氧乙烷尾气处理工艺时,需要综合考虑工艺技术、经济性和环境影响等因素。
•不同的场景和要求可能适用不同的处理工艺,需要根据实际情况进行优化和选择。
•此外,工艺的稳定性、安全性以及与其他设备的配合也需要考虑。
5. 结语•环氧乙烷尾气处理工艺的研究和创新是保护环境、可持续发展的重要举措。
•不断地探索新的处理工艺和技术,优化传统工艺,对于减少工业生产对环境的影响具有重要意义。
•希望通过相关研究和实践,能够找到更加高效、经济、环保的环氧乙烷尾气处理工艺。
6. 参考文献•Smith, (2019). Environmental Impact and Risk Assessment of Ethylene Oxide Emissions. Environmental Science andPollution Research International, 26(23), .•Xu, Q., & Chen, J. (2020). Recent Advances in Ethylene Oxide Wastewater Treatment Technologies. Chemosphere,242, 125187.•Liu, T., et al. (2018). Biological Treatment of Ethylene Oxide Gas Discharged From SterilizationIndustry: Performance and Microbial Responses.Environmental Science and Pollution ResearchInternational, 25(31), .•Chen, X., et al. (2021). Recent Advances inPhotocatalytic Degradation of Ethylene Oxide: AComprehensive Review. Journal of Environmental Chemical Engineering, 9(4), 105263.以上是一些相关研究的参考文献,可以作为进一步了解和深入研究环氧乙烷尾气处理工艺的参考资料。
零价铁活化过硫酸钠降解甲基橙
零价铁活化过硫酸钠降解甲基橙马国峰;叶永庆;张丽卓;董世柱;贺春林【摘要】利用零价铁活化过硫酸钠产生的硫酸根自由基作氧化剂降解偶氮染料甲基橙.研究了不同因素对目标污染物降解效率的影响,其中包括零价铁的加入量、过硫酸钠的浓度、温度、pH等.实验结果表明:当单独投加零价铁的甲基橙溶液,其甲基橙的降解率只有2.99%;而单独加入过硫酸钠时,降解率达到51.81%,在酸性和中性的条件下过硫酸钠都会发生水解,生成硫酸根基使溶液的氧化性增强,从而使甲基橙褪色.当pH值为3.0时、温度为30℃、铁的加入量为11.2mg/L、过硫酸钠的浓度2.0mol/L时,在60min降解率达到最大约为94%.同时还比较了零价铁、过硫酸钠、温度和不同pH条件对甲基橙降解效率的影响大小,结果表明前30min时温度和零价铁的量对降解的影响最大,其影响大小为:温度>铁的加入量>pH>过硫酸钠浓度.而在后30min时,降解的速率缓慢,温度和pH成为主要影响因素,影响大小为:温度>pH>过硫酸钠浓度>铁的加入量.【期刊名称】《沈阳大学学报》【年(卷),期】2017(029)003【总页数】6页(P173-178)【关键词】零价铁;活化;过硫酸钠;甲基橙;降解率【作者】马国峰;叶永庆;张丽卓;董世柱;贺春林【作者单位】沈阳大学辽宁省先进材料制备技术重点实验室,辽宁沈阳 110044;沈阳大学辽宁省先进材料制备技术重点实验室,辽宁沈阳 110044;沈阳大学辽宁省先进材料制备技术重点实验室,辽宁沈阳 110044;沈阳大学辽宁省先进材料制备技术重点实验室,辽宁沈阳 110044;沈阳大学辽宁省先进材料制备技术重点实验室,辽宁沈阳 110044【正文语种】中文【中图分类】X703.1偶氮染料含有偶氮基连接芳香基分子结构,是用于纺织印染行业的主要着色剂[1]从这些行业释放的污水含有各种高度着色的偶氮染料[2].如果污水处理的不适当,它会对水环境造成不良的影响[3-4].大多数的偶氮染料由于其复杂的结构和较好的稳定性而难以降解,因此,传统的生物处理工艺处理染料废水可能不再符合严格的污水排放标准[5-6].目前,物理化学脱色法被广泛使用,如Anouar[7]等利用活性炭的吸附作用处理偶氮类染料活性紫5废水.研究发现,室温、pH值为2的实验条件下,活性炭对10 mg/L活性紫5吸附处理10 min,偶氮类染料活性紫5 的脱色率达到98%.然而,化学污泥产生、吸附剂再生以及薄膜分离[8-9]等可能引发二次污染.如今,过硫酸盐(PDS)氧化技术已被证明是难以降解有机污染物去除的一个有效的技术[10-13].而氧化的过程通常与具有较强的反应性硫酸根自由基(S·)[14-15]有关.硫酸根基来源于过硫酸盐(E=2 102 V)[16],它是一个强大而稳定的氧化剂,具有较高的水溶解度和室温下高的稳定性与过氧化氢(E=1 170 V)相比.硫酸根基可由过渡金属(Mn+)[17-18]与过硫酸盐阴离子(S2)的反应混合物中产生.反应方程式为S2+Mn+S·+M(n+1)+S.也可以由加热[19-21]、紫外线[22-23]、微波、超声波和强碱溶液的方式产生.由于铁作为过渡金属催化剂在活化时相对无毒、廉价和方便操作等特点,用它活化过硫酸盐氧化污染物得到广泛研究.根据多种类型的铁的形态,发现零价铁作为催化剂活化过硫酸盐产生了良好的效果.本实验以含有偶氮结构的甲基橙为研究目标,以此研究零价铁活化过硫酸钠降解甲基橙的影响因素,以期为进一步探索处理废水提供理论依据.铁屑(天津市科密欧试剂有限公司,分析纯);过硫酸钠(天津市大茂化学试剂厂,分析纯);750型紫外-可见分光光度计;PHS-25 pH计;恒温水浴锅;JJ-1电动搅拌器.称取50 mg的甲基橙,放入烧杯中加入100 mL蒸馏水搅拌溶解,然后将溶液移到1 000 mL的容量瓶中用蒸馏水定容.采用750型紫外-可见分光光度,以蒸馏水作为参照,于波长为473.2 nm处测定滤液的吸光度,通过标准曲线换算成C(甲基橙).甲基橙的去除率为CE= (C0-Ct)/Ct×100%.式中:CE为甲基橙的去除率,%; t为反应时间,min;C0和Ct分别为初始和t时刻的C(甲基橙),mol/L;pH值采用pH计测定.采用Excel 2010进行数据处理,采用Origin 8.6进行数据处理.在研究实验前,分别取相应体积的甲基橙溶液置于恒温水浴锅中预热到30 ℃,粗调pH为弱酸性.每隔一段时间取样,加入甲醇终止反应,用0.45 μm滤膜过滤.2.1 空白实验选取质量浓度为50 mg/L的甲基橙溶液,分别单独加入Fe和过硫酸钠进行空白实验,结果如图1所示.由图1可以看出单独加Fe或过硫酸钠有很大的区别.单独加入过硫酸钠时,甲基橙的去除率达到51.81%.这是因为在酸性或中性条件下过硫酸钠会水解产生硫酸根基,使得溶液的氧化能力增强,而碱性时过硫酸钠氧化水或氢氧根生成羟基基团,增加了氧化能力使甲基橙褪色.在酸度不高时,还会水解生成H2O2,使反应体系氧化能力增强.涉及的反应方程式如下:单独加入零价铁时,甲基橙的去除率只有2.99%.由于铁具有还原性,所以直接将甲基橙的显色集团(非芳香性π键的类苯醌式结构)还原成芳香胺类化合物,破坏其π键共轭系统结构,进而被降解褪色.反应方程式如下:2.2 Fe的量对降解甲基橙的影响取质量浓度为50 mg/L的甲基橙溶液100 mL,加入浓度为2.0 mmol/L的过硫酸钠47.6 mg,Fe的加入量分别为每L 2.8、5.6、11.2、22.4和44.8 mg.研究Fe的用量对降解甲基橙的影响.由图2可见,当Fe的投入量为每L 11.2 mg时,甲基橙的降解率达到91.18%,达到最高.原因可能是二价铁与过硫酸钠初始反应过快,产生了大量的硫酸根基[24],消耗了二价铁,使降解率提高.但当加入铁的量为22.4 mg/L时其甲基橙的降解率为68.56%,反而低于初始加入的铁的量每L 2.8 mg的82.56%.根据曲线,前30 min 时反应的速率几乎成直线,而后速率开始逐渐缓慢.甲基橙的降解率出现先增加后降低的现象.可能由于零价铁直接与过硫酸钠反应生成了硫酸根基.同时,发生自我淬灭[25];而溶液中过量的二价铁可以与硫酸根基生成沉淀降低硫酸根基的浓度,抑制了甲基橙的降解.涉及的反应方程式如下:2.3 过硫酸钠的浓度对甲基橙降解的影响取质量浓度为50 mg/L的甲基橙溶液100 mL,加入11.2 mg/L的Fe,分别加入0.5、1.0、2.0、4.0和8.0 mmol/L等不同浓度的过硫酸钠溶液.考察过硫酸钠的浓度对甲基橙降解的影响,结果如图3所示.图3可见,随着过硫酸钠浓度的增加,甲基橙的降解率也随之增加,分为快速和慢速两个阶段.当过硫酸钠的浓度为2.0 mmol/L时,甲基橙的降解率达到90%以上,但是当过硫酸钠浓度为4.0 mol/L时甲基橙的降解效率反而下降.由于过硫酸钠浓度的增加并没有使体系中去除率明显增加,可以知道投加铁的加入量有限是影响甲基橙降解的主要因素.从图4的曲线看,当过硫酸钠的浓度为2.0和8.0 mol/L时,过硫酸钠的质量浓度下降的最快,反应速率加快,而反应的量最多的是浓度为2.0 mol/L,为最佳浓度.从反应速率和相关系数表明:过硫酸盐的浓度对脱色的效果有很大的影响,其中脱色最好的浓度为2.0 mol/L时.2.4 pH对甲基橙降解的影响取质量浓度为50 mg/L的甲基橙溶液100 mL,在加入11.2 mg零价铁和47.6 mg/L过硫酸钠的条件下,考察不同pH对甲基橙降解效果的影响,结果如图5所示. 如图5所示,当pH值为3.0的时候,甲基橙的去除率最高达到94.20%.随着pH值的升高,甲基橙的降解效率反而降低.说明在酸性条件下,零价铁会快速被酸化生成二价铁,加快和过硫酸钠的反应,进而产生大量过硫酸根基,使得反应速率加快.由表观反应速率k值可知,酸性条件使得反应的速率大大提高.同时酸性环境也会加快过硫酸钠的酸化,使体系中的硫酸根基增多,氧化性增强.而在碱性或中性条件,甲基橙的降解率下降可能是因为过量的二价铁发生水解生成沉淀[26],使得体系中的二价铁减少,阻碍了二价铁和过硫酸钠之间的反应,同时生成的沉淀对过硫酸钠的催化性较低,过硫酸根基的量减少,氧化性降低,所以不能继续降解甲基橙.涉及的反应方程式如下: 2.5 温度对甲基橙降解的影响取质量浓度为50 mg/L的甲基橙溶液100 mL,在加入11.2 mg/L的Fe,47.6mg/L的过硫酸钠,pH值为7.0的条件下,考察不同温度对甲基橙降解影响,结果如图6所示.由图6可见,在一定的范围内,甲基橙的降解率会随着温度的升高而增加.原因是升高温度可以加快分子的运动,进而提高反应物分子间的碰撞速率,加快反应的进行[27],过硫酸盐产生的硫酸根基增加,降解的速率也随之增加.但当温度在30~40 ℃之间时,甲基橙的降解率并没有明显的提高.可能是因为反应物前期消耗的太快,随着反应物的减少,温度对反应的速率影响就不太大了.同时由于体系的反应已经达到了极限,温度的升高只会缩短反应的时间,并不会使体系中的降解率增加.由表格中的相关系数和速率可知,温度在30和40 ℃时的差别不是很大,说明单独热活化提高完全降解的程度不是很高. 反应方程式如下:从上述的实验结果中选取最佳条件,将其进行对比,结果如图7所示.从图中可以看出反应初始时影响降解效率最大是铁的加入量和温度,但温度的影响并不太稳定,可能与环境的温度的影响有关,使溶液的温度下降,影响了反应的进行.而过硫酸钠和pH 值在前30 min内对甲基橙的降解成线性,而后趋势开始减慢.零价铁量在30 min 时速率也开始减慢.所以降解甲基橙最好的时间点是当时间在30 min时,影响最大的是温度.由于温度过高时,分子的运动速率加快,加快反应的进行,降解率提高.铁和过硫酸钠对甲基橙的降解效果相似,差别不大,且两者的量存在着一定的关系,过高过低都对降解效果有影响.通过对比发现前30 min时其影响大小为:温度>铁的加入量>pH>过硫酸钠浓度.而在后30 min时,降解的速率缓慢,温度和pH成为主要影响因素,影响大小为:温度>pH>过硫酸钠的浓度>铁的加入量.(1) 当溶液为弱酸性时、无活化的状态下,单独加11.2 mg/L零价铁时降解率只有2.99%;但当加入过硫酸钠的浓度2.0 mol/L时,其降解率达到51.81%.(2) 零价铁的量、过硫酸钠浓度、pH和温度在反应的30 min内对甲基橙的降解有较大的影响.初期时,零价铁的量增加和温度的升高均能使甲基橙的去除率提高;pH较低时对降解的效率也有很大的影响.当pH=3时,在60 min时的降解效率达90%以上,当铁的加入量为11.2 mg/L时达到91.18%.原因是pH值较低时加快了活化的过程,使过硫酸根基的量增多,从而提高了甲基橙的降解率,所以升高过硫酸钠的浓度也会使降解的效果增加.(3) 实验中甲基橙对的降解符合反应动力学,会产生大量过硫酸根基降解污染物.同时反应还研究了不同条件的影响大小,发现在前期时铁的加入量和温度的影响很大,反应后期pH的效果更加明显一些,而温度仍是主要因素.(4) 最后发现:甲基橙溶液在反应温度为30 ℃、pH值为3.0、过硫酸钠浓度2.0 mol/L、零价铁加入量11.2 mg/L、质量浓度为50 mg/L的条件下降解的效果最好,降解率达94%.[ 1 ] DURRUTY I,FASCE D,GONZLEZ J F,et al. A kinetic study of textiledyeing wastewater degradation by Penicillium chrysogenum[J]. Bioprocess and Biosystems Engineering, 2015,38(6):1-13.[ 2 ] SUBRAMONIAN W,WU T Y. Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue[J]. Water Air & Soil Pollution, 2014,225(4):1-15.[ 3 ] 林茂森,王殿武,刘玉珍,等. 城市河流健康威胁与生态修复[J]. 沈阳大学学报(自然科学版), 2015(3):197-200. (LIN M S,WANG D W,LIU Y Z,et al. Urban river health and ecological restoration[J]. Journal of ShenyangUniversity(Natural Science), 2015,27(3):197-200.)[ 4 ] 周彦波,郭少鹏,鲁军,等. Fenton试剂氧化法深度处理含氰废水[J]. 沈阳大学学报(自然科学版), 2012,24(2):18-22. (ZHOU Y B,GUO S P,LU J,et al. Advanced treatment of cyanide wastewater using fenton reagent[J]. Journal of Shenyang University(Natural Science), 2012,24(2):18-22.)[ 5 ] 俞洁,张海涛,陆泉芳,等. 坡缕石/聚乙二醇/丙烯酸水凝胶的表征及其对阳离子染料的吸附性能[J]. 化工进展, 2015,34(4):1115-1121. (YU J,ZHANG H T,LU Q F,et al. Characterization of palygorskite/poly(ethylene glycol)/acrylic acid hydrogel and its application as an adsorbent for cationic dyes[J]. Chemical Industry and Engineering Progress, 2015,34(4):1115-1121.)[ 6 ] 汤善康,耿启金,刘刚,等. 光催化降解活性染料K-GL的动力学及其盐效应[J]. 化工进展, 2014,33(7):1908-1912. (TANG S K,GENG Q J,LIU G,et al. Investigation into salt effect and kinetics of photocatalytic degradation of reactive dye K-GL[J].Chemical Industry and Engineering Progress, 2014,33(7):1908-1912.)[ 7 ] ANOUAR H,ELHOURCH A,ELKACEMI K,et al. Removal of violet 5R azodye by adsorption on powdered activated carbon[J]. International Journal of Innovation and Applied Studies, 2014,9(3):1368-1372.[ 8 ] CONG W,XIANG H,ZHANG G L. Dyeing wastewater treatment and reutilization through ultrafiltration and nanofihration integrated membrane processes[J]. Technology of Water Treatment, 2008,8(10):75-78. [ 9 ] FERSI C,DHAHBI M. Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse[J]. Desalination, 2008,222(1):263-271.【相关文献】[10] XU X R,LI X Z. Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation & Purification Technology, 2010,72(1):105-111.[11] TAN C,GAO N,DENG Y,et al. Heat-activated persulfate oxidation of diuron in water[J]. Chemical Engineering Journal, 2012,203(5):294-300.[12] JIANG X,WU Y,WANG P,et al. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion[J]. Environmental Science and Pollution Research, 2013,20(7):49474953.[13] PETERNEL I,KUSIC H,MARIN V,et al. UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013,108(1):17-39.[14] ANIPSITAKIS G P,DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004,38(13):3705.[15] KUSIC H,PETERNEL I,UKIC S,et al. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix[J]. Chemical Engineering Journal,2011,172(1):109-121.[16] LIANG C J,BTUELL C J,MARLEY M C. Thermaity activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1 trichloroethane (TCA) in aqueous systems and soil slurries[J]. Soil and Sediment Contamination: An International Journal, 2003,12(2):207-228.[17] CAO J,ZHANG W X,BROWN D G,et al. Oxidation of lindane with Fe(Ⅱ)-Activated Sodium Persulfate[J]. Environmental Engineering Science, 2008,25(2):221-228.[18] LIANG C,BMELL C J,MARLEY M C. Persulfate oxidation for in situ remediation of TCE.I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J].Chemosphere, 2004,55(9):l213-1223.[19] WALDEMER R H,TRATNYEK P G,JOHNSON R L,et al. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology, 2007,41(3):1010-1015.[20] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1962,62(3):185-203.[21] HORI H,MURAYAMA M,INOUE N,et al. Efficient mineralization of hydroperfluorocarboxylic acids with persulfate in hot water[J]. Catalysis Today,2010,151(1/2):131-136.[22] LAU T K,CHU W,GRAHAM N J D. The aqueous degradation of butylated hydroxyanisole by UV/S20: study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007,41(2):613-619.[23] SALARI D,NIAEI A,ABER S,et al. The photooxidative destruction of C.I. Basic Yellow 2 using UV/S 2082-, process in a rectangular continuous photoreactor[J]. Journal of Hazardous Materials, 2009,166(1):61-66.[24] HAMDAOUI O,NAFFRECHOUX E,TIFOUTI L,et al. Effects of ultrasound on adsorption-desorption of p-chlorophenol on granular activated carbon[J]. Ultrasonics Sonochemistry, 2003,10(2):109-114.[25] HAMDAOUI O,NAFFRECHOUX E. Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound[J]. Ultrasonics Sonochemistry, 2009,16(1):15-22.[26] AND B S S,YANG R T. Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin[J]. Industrial & Engineering Chemistry Research, 2001,40(22):4912-4918.。
硫化铜论文:硫化铜溶剂热法水热法水热-微乳液光催化
硫化铜论文:硫化铜溶剂热法水热法水热-微乳液光催化硫化铜论文:硫化铜溶剂热法水热法水热-微乳液光催化【中文摘要】本文采用溶剂热法、水热-微乳液法以及水热法,成功合成了不同形貌和尺寸的硫化铜微纳米材料,并分别研究了其光催化性能。
其主要内容如下:以氯化铜和硫脲为原料,乙二醇为溶剂,采用溶剂热法成功制备了直径为2.2~4.8μm由纳米片组成的花状CuS微米球超结构,用XRD、SEM、TEM、HRTEM及SAED等手段对其进行了表征;以氙灯和高压汞灯为光源,亚甲基蓝为目标物评价了硫化铜的光催化性能。
结果表明,所制备的产品是六角相的CuS;反应溶剂、硫源、铜盐以及反应温度、反应时间对产品的形貌都有较大影响;光催化性能测试表明,在35 W氙灯照射下,经30 min降解,亚甲基蓝的降解率可达98.7 %,显示出较强的可见光催化活性。
紫外-可见吸收和荧光光谱结果表明,所得CuS微米球在波长为269 nm和494 nm处均有强的吸收,其能带间隙为2.0 eV;荧光光谱在608 nm左右有发射光谱带。
另外,还讨论了硫化铜微米球超结构可能的形成机理。
以二硫化碳、乙二胺和氯化铜为原料,采用水热-微乳液法合成了刺猬状CuS空心微米球,用XRD、SEM、TEM以及HRTEM等手段对其进行了表征;考察了反应ω0,反应物浓度,反应时间和反应温度等对产品形貌和尺寸的影响;在室温下,通过降解亚甲基蓝研究了CuS空心微米球的光催化活性。
结果表明,所制备的产物为六角相CuS空心球,其直径为0.1~1.0μm。
球壳是由许多纳米片弯曲缠绕而成的,纳米片的边长为200~300 nm,厚度约为10 nm;反应温度、反应时间、ω0及反应物浓度等对产物的形貌和尺寸都有较大的影响。
光催化测试结果表明,在35 W氙灯下仅光照30 min,亚甲基蓝的降解率达91.4 %,表现出良好的光催化性能。
紫外-可见光谱研究表明,所制备的硫化铜在443 nm 处有较强的吸收,其能带间隙Eg约为1.8 eV。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO2 NanoparticlesMurid Hussain,†,‡Samir Bensaid,†Francesco Geobaldo,†Guido Saracco,†and Nunzio Russo*,†Department of Materials Science and Chemical Engineering,Politecnico di Torino,Corso Duca degli Abruzzi24,10129Torino,Italy,and Department of Chemical Engineering,COMSATS Institute of Information TechnologyLahore Campus,M.A.Jinnah Building,Defence Road,Off Raiwind Road,Lahore54000,PakistanThe photocatalytic degradation of ethylene(emitted by fruits)by novel TiO2nanoparticles(TNPs),at3°C,has been investigated to consider the possibility of its use for the cold storage of fruits.TNP exhibits a highspecific surface area,a good anatase-to-rutile mixed phase ratio,and more surface OH groups than commerciallyavailable Degussa P25,as characterized by nitrogen adsorption,static light scattering,energy dispersiveX-ray spectroscopy,X-ray diffraction,Fourier transform infrared spectroscopy,and X-ray photoelectronspectroscopy.TNPs,tested in an ad-hoc designed Pyrex glass photocatalytic reactor,showed higherphotodegradation activity of ethylene than Degussa P25.The superior characteristics of TNPs,compared toDegussa P25,might induce the adsorption of ethylene and water and the generation of OH groups which actas oxidizing agents on the TNP surface,leading to higher photocatalytic activity.In the absence of water thephotocatalytic degradation of ethylene reduced significantly.Moreover,a positive effect was observed whenUV light was converged on the catalyst and an increase in ethylene degradation was achieved when UV lightconverging pipes and lens were used.1.IntroductionEthylene(C2H4)is an odorless and colorless gas which exists in nature and is generated by human activities as a petrochemical derivative,transportation engine exhausts,and thermal power plants.1,2However,naturally it is produced by plant tissues and biomass fermentation and occurs along the food chain,in packages,in storage chambers,and in commercial big refrigera-tors.3The effect of ethylene on fruit ripening and vegetable senescence is of significant interest for the scientific community. Ethylene confers both positive and negative effects during fruit ripening.1Among the positive effects,ethylene stimulates the ripening process of climacteric fruits(apples,apricots, avocados,bananas,peaches,plums,and tomatoes),resulting in desirableflavors,colors,and texture(quality characteristics). In these kinds of fruits,negative effects can be found during postharvest storage,due to an acceleration of the ripening process(overripe fruits),leading to fruit quality loss.4-7During the postharvest storage of fruits and vegetables,ethylene can induce negative effects such as senescence,overripening, accelerated quality loss,increased fruit pathogen susceptibility, and physiological disorders.Fruits,vegetables,andflowers have ethylene receptors on their surface.Their actuation promotes ethylene production by the fruit itself and accelerates its ripening and aging.2Thus,preventing postharvest ethylene action is an important goal.Literature shows some conventional as well as commercial techniques and technologies to control the action of ethylene. The most common are ethylene scavengers,especially the potassium permanganate(KMnO4)oxidizer.8However,KMnO4 cannot be used in contact with food products due to its high toxicity.Ozone(O3)is also an alternative oxidant,9but it is highly unstable and decomposes into O2in a very short time. Carbons and zeolites are used as ethylene adsorbers and play a key role in the control of ethylene.3,10,11This technique only transfers the ethylene to another phase rather than destroying it.Hence,additional disposal or handling steps are needed.There are also some other alternative,attractive,but expensive materials12or techniques,13but the problem is cost effectiveness. Photocatalytic degradation of hazardous materials is one of the most desirable and challenging goals in the research of the development of environmentally friendly catalysts.14,15It in-volves the actual destruction of organic contaminants rather than just the transfer of a contaminant from one phase to another. In the present work,we have focused on the use of novel TiO2nanoparticles(TNPs)photocatalyst for ethylene degrada-tion in fruits and vegetable cold storage,at low temperature, with the help of the new fabricated photocatalytic reaction system.An efficient way of utilizing this photocatalyst,which has superior characteristics for the target application,has been developed.Materials characterizations have been performed through specific surface area analysis,X-ray diffraction(XRD), static light scattering(SLS),energy dispersive X-ray spectros-copy(EDX),Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy(XPS)in order to analyze the reaction.The photocatalytic activity of the TNP has also been compared with that of Degussa P25TiO2.2.Experimental Section2.1.TNP Photocatalyst Synthesis.New TNPs were syn-thesized at a large scale(2L of gel)by controlling the optimized operating parameters using the vortex reactor(VR)according to the procedure outlined in our previous work.16In details, two different solutions,one of titanium tetraisopropoxide(TTIP; Sigma-Aldrich)in isopropyl alcohol and the other of water (Milli-Q)in isopropyl alcohol were prepared separately under a nitrogenflux to control the alkoxide reactivity with humidity. Hydrochloric acid(HCl;Sigma Aldrich)was added to the second solution as a hydrolysis catalyst and deagglomeration agent.A TTIP/isopropyl alcohol concentration was taken as1 M/L to obtain the maximum TiO2yield(1M),W([H2O]/[TTIP])*To whom correspondence should be addressed.Tel.:+39-011-0904710.Fax:+39-011-5644699.E-mail:nunzio.russo@polito.it.†Politecnico di Torino.‡COMSATS Institute of Information Technology Lahore Campus.Ind.Eng.Chem.Res.XXXX,xxx,000A10.1021/ie1005756 XXXX American Chemical Society)4,whereas the [H +]/[TTIP]ratio or H was set at 0.5.TTIP and water in isopropyl alcohol solutions were stored in two identical vessels and then pressurized at 2bar with analytical grade nitrogen at inlet flow rates of 100mL/min with two Rota meters.Equal volumes of reactant solutions (i.e.,1L)were mixed at equal flow rates,at 25°C,and the solutions exiting the VR were collected in a beaker thermostated at 25°C and gently stirred.The obtained gel was then dried with a rotary evaporator.After complete drying at 150°C overnight,the dried powder was eventually calcined at 400°C for 3h.The Degussa P 25TiO 2was purchased from Aerosil.2.2.Characterization of the Photocatalyst.The Brunaer -Emmett -Teller (BET)specific surface area measurement was carried out on powders previously outgassed at 150°C,by N 2sorption at 77K on a Quantachrome Autosorbe 1C instrument.The XRD patterns were recorded on an X’Pert Phillips diffrac-tomer using Cu K R radiation,under the following conditions:2θ)10-90;2θstep size )0.02.Moreover,quantification of anatase:rutile phases was performed by X’Pert database library.The size distribution of the particles was measured by the SLS (Coulter LS 230),which was possible for particles ranging from 0.4to 2000µm.The SLS was also equipped with a polarization intensity differential scattering (PISD)device,which provided information in the 40-400nm size range.The elemental composition of TNPs was checked by EDX analysis equipped with a high-resolution FE-SEM instrument (LEO 1525).The total UV light intensity was measured by Field Master Power Meter Head from COHERENT (Auburn,CA,USA)with a sensor of 3cm inner diameter and capacity to measure from 10mW to 100W.The nature of the OH groups was obtained with a Perkin-Elmer FT-IR spectrophotometer equipped with an MCT detec-tor.The XPS spectra were recorded using a PHI 5000Versa Probe with a scanning ESCA microscope fitted with an X-ray source of Al monochromatic (1486.6eV,25.6W),a beam diameter of 100µm,a neutralizer at 1.4eV and 20mA,and a FAT analyzer mode.All the binding energies were referencedto the C1s peak at 284.6eV of the surface carbon.The individual components were obtained by curve fitting.2.3.Ethylene Photocatalytic Reaction.The ethylene pho-tocatalytic degradation was performed in a Pyrex glass reactor with a total volume of 2L.A schematic of the experimental setup is depicted in Figure 1.The setup includes a Pyrex glass reactor (transparent to UV light)placed in ice at 3°C,connectors,mass flow controllers (MFC,Bronkhorst high tech),a UV lamp (Osram ULTRA-VITALUX 300W;has a mixture of light of UVA with a range of 320-400nm and UVB with 290-320nm wavelength which produces 13.6and 3.0W radiations,respectively;is ozone-free and radiations are pro-duced by a mixture of quartz burner and a tungsten wire filament,as provided in manufacturer’s information)with light converging pipes and lens,gas cylinders (1000ppm ethylene,air),and a gas chromatograph (GC,Varian CP-3800)equipped with a capillary column (CP7381,fused silica)and a flame ionization detector (FID),which was used for the product gas analysis.A 1g amount of the photocatalyst sample was spread homogeneously through hands inside the Pyrex glass reactor.A 100ppm amount of ethylene was continuously flushed in the reactor,with the help of the MFC,at a constant flow rate of 100mL/min.After achieving a steady-state in the peak intensity,the UV light was turned on and the reaction products were analyzed by GC.The degradation of ethylene C (%)was calculated as follows:where C i is the inlet concentration and C o the outlet concentra-tion of ethylene at steady state.3.Results and Discussion3.1.Characteristics of TNP.The TNP,which was obtained by drying in a rotary evaporator and calcining at 400°C/(3h),Figure 1.Ethylene photocatalytic reaction system.C )(C i -C o )C i×100B Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXXshowed a mixed anatase:rutile (80:20)phase,16as can be seen in Figure 2a.However,the Degussa P 25also showed a mixed anatse:rutile (70:30)rutile phase but with a relatively larger rutile amount than the TNPs,as shown in Figure 2b with anatase (A)and rutile (R)peaks.TNPs,as can be seen from the results of the BET analysis,have shown a larger specific surface area of 151m 2/g and porosity.Degussa P 25has a three times smaller specific surface area,of 53m 2/g,than TNPs,with a nonporous structure.Figure 3shows the particle size distribution of the synthesized TNPs.It was found that a large number of particles were in the 1-10µm range in the gel,as can be seen in Figure 3a.The TNP gel might show the aggregation of the small nanoparticles due to the presence of water.As the TNPs dried,a segregation of the particles took place due to the heat treatment and water evaporation,and the particles mostly showed a 40-100nm size,as shown in Figure 3b.Similar results were also observed in Figure 3c for the dried powder after the high-calcination treatment of the TNP.These SLS results of the TNP were obtained by using the solutions of the respective dried powders in water.Hence,these are actually the secondary particles which might be formed by the aggregates of the primary particles in water.The primary particles of the calcined TNP powder were in the 10-20nm range and those of the Degussa P 25in the 60-80nm range.16Figure 4shows the EDX analysis of the TNPs.This figure demonstrates that the main components are O and Ti with smallCl impurity.This Cl impurity is from the HCl that was added during the synthesis and is usually favorable for the photocata-lytic reaction.17The FT-IR spectra of the TNPs calcined at different temper-atures,showing the difference in surface hydroxyl groups,are shown in Figure 5a.The broad peak centered at 3400and the peak at 1650cm -1correspond to the surface-adsorbed water and hydroxyl groups.The increase in temperature to 800°C significantly reduced the hydroxyl groups as a consequence of very small surface area (5m 2/g)exposed.The FT-IR spectra of the optimized TNPs and the Degussa P 25are showninFigure 2.XRD patterns of (a)TNPs calcined at 400°C/3h and (b)commercial TiO 2Degussa P25.Figure 3.SLS results showing the number of particles and their size distribution:(a)TNP gel,(b)TNPs dried at 150°C/overnight,and (c)TNPs calcined at 400°C/(3h).Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXX CFigure 5b.The optimized TNPs,with a larger surface area than Degussa P 25,have in fact shown higher bands at 3400and 1650cm -1.3.2.Ethylene Photocatalytic Degradation.The photocata-lytic degradation of ethylene was performed in the reaction system shown in Figure 1,at 3°C,using ice,an artificial temperature atmosphere that is very close to that commonly used for the cold storage of fruits.Air was used instead of conventional oxygen for the photocatalytic reaction to obtainmore representative data of practical application conditions,for commercialization purposes.Figure 6shows the percentage degradation of ethylene as a function of illumination time at the low temperature of 3°C,obtained using TNP and Degussa P 25photocatalysts.After a preliminary saturation of the sample under the ethylene flow,there was no degradation in the dark in any of the experiments even in the presence of the catalyst or in the presence of UV light without the catalyst.Therefore,it can be concluded that the reaction results reported hereafter have only been photocatalytically induced.Figure 6a shows the effect of surface hydroxyl groups on ethylene degradation.The ethylene degradation reduced very significantly as the surface hydroxyl groups decreased by increasing calcination temperature.The optimized TNP photocatalyst has shown better ethylene degradation than the Degussa P 25material (Figure 6b).This is due to the superior characteristics of the TNPs,the nanopar-ticles,the higher surface area,the amenable anatase-to-rutile phase ratio,and the larger amount of OH groups on the TNPs than on the Degussa P 25.UV light intensity is an important factor in photocatalytic reactions.18,19Figure 6shows this effect clearly when the UV lamp was kept low and the distance between the lamp and the reactor was 75cm,compared to the initial 100cm distance.The total UV intensity was increased to 57mW/cm 2at 75cm compared to 35mW/cm 2at 100cm distance.It can clearly be seen that the ethylene degradation is increased significantly due to the increased UV light intensity by lowering the lamp.It seems reasonable to conjunctive that the stronger the UV light intensity,the deeper the penetration of the UV light into the photocatalyst.Consequently,the degradation amount also in-creased.18To utilize the UV light intensity in a positive way,light converging pipes and lens have been used to prevent UV light scattering and enhance its intensity in order to increase the ethylene degradation.Figure 7shows the effect of the converg-ing pipes and the lens on the ethylene degradation at a low temperature.It has been observed that by lowering the UV lamp to a level of 87cm and then converging the UV light by the tall converging pipe (87cm)significantly increased the ethylene degradation (Figure 7)due to the increased total UV light intensity (740mW/cm 2),in comparison to the case without the pipe (Figure 6).A further increase in the degradation was obtained by lowering the lamp to 12cm and using thesmallFigure 4.EDX analysis ofTNPs.Figure 5.FT-IR absorbance spectra (a)after different calcination treatments of TNPs;(b)comparison of optimized TNPs and Degussa P 25,showing the difference in the surface OH groups.D Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXXconverging pipe (12cm)where the total UV light intensity was increased to 2476mW/cm 2.The TNP photocatalyst again showed a better performance than the Degussa P 25due to its superior characteristics.It has also been seen that the light converging pipes have significantly improved the ethylene degradation.The scattered UV light was only converged to the TiO 2reaction part using the short and the tall converging pipes.It has also been observed that there is a gradual increase in the ethylene degradation as the illumination time increases,due to the low temperature at which the production of OH is comparatively more problematic than at room temperature.After attaining the required level of the OH groups,the degradation becomes constant.This effect was further studied using the combined form,the short converg-ing pipe,and the lens,in order to obtain better results due to the further increase in the total UV light intensity (2548mW/cm 2).It has been observed by Figure 7that the combined effect significantly improved the gradually increasing trend in degra-dation to the maximum stable limit even after the initial illumination time.TNPs,as usual,again showed a better performance than Degussa P 25.It has been observed that water has a significant effect on the photocatalytic degradation of ethylene,as shown in Figure 8.After complete drying of the titania,the ethylene degradation reduced significantly.It becomes very low at the initial illumination time due to a lack of water to proceed the reaction.However,there is a little improvement with the passage of illumination time which might be due to the water produced during reaction.This was confirmed when the fully dried titania was kept in a closed vessel with water for 12h.After 12h contact time,the titania showed much higher activity compared to the fully dried samples.However,there was a littleimprove-Figure 6.(a)Effect of OH groups on ethylene degradation at 100ppm,100mL/min flow rate,3°C using ice,and 1g of photocatalyst:(0)TNP(400°C/(3h))/UV lamp turned down to 75cm;(O )TNP(600°C/(3h))/UV lamp turned down to 75cm;(∆)TNP(800°C/(3h))/UV lamp turned down to 75cm.(b)Ethylene degradation over optimized TNP(400°C/(3h))and Degussa P 25photocatalysts at 100ppm,100mL/min flow rate,3°C using ice,and 1g of photocatalyst:(9)TNPs/UV lamp turned down to 75cm;(0)Degussa P 25/UV lamp turned down to 75cm;(b )TNPs/UV lamp turned up to 100cm;(O )Degussa P 25/UV lamp turned up to 100cm;(()TNPs/UV lamp turned off;())Degussa P 25/UV lamp turned off;(right pointed filled triangle)no photocatalyst/UV lamp turnedon.Figure 7.Ethylene degradation over TNPs and Degussa P 25photo-catalysts at 100ppm,100mL/min flow rate,3°C using ice,and 1g of photocatalyst:(9)TNPs/UV lamp turned down to 12cm/(short converging pipe +lens);(0)Degussa P 25/UV lamp turned down to 12cm/(short converging pipe +lens);(b )TNPs/UV lamp turned down to 12cm/(short converging pipe);(O )Degussa P 25/UV lamp turned down to 12cm/(short converging pipe);(()TNPs/UV lamp turned down to 87cm/(tall converging pipe);())Degussa P 25/UV lamp turned down to 87cm/(tall convergingpipe).Figure 8.Water effect on ethylene degradation over TNPs and Degussa P 25photocatalysts at 100ppm,100mL/min flow rate,3°C using ice,and 1g of photocatalyst,UV lamp turned down to 12cm/(short converging pipe +lens):(9)TNP kept with 1g of water for 12h before reaction;(0)Degussa P 25kept with 1g of water for 12h before reaction;(b )TNP fully dried in oven at 150°C for 12h and then kept with water for 12h before reaction;(O )Degussa P 25fully dried in oven at 150°C for 12h and then kept with water for 12h before reaction;(()TNP fully dried in oven at 150°C for 12h and immediate reaction;())Degussa P 25fully dried in oven at 150°C for 12h and immediate reaction.Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXX Ement in ethylene degradation by keeping the normal titania with water.In all of these cases TNPs showed better ethylene degradation than Degussa P 25which might be due to the higher surface area of TNPs for adsorption of water and ethylene.Figure 9shows the reaction mechanism of the TNP photo-catalyst for ethylene photodegradation.The first main step should be the adsorption of water,O 2,and ethylene on the surface of the TNPs,followed by the formation of hole -electron pairs which need sufficient energy to overcome the band gap between the valence band (VB)and the conduction band (CB).The TNP catalyst derives its activity from the fact that when photons of a certain wavelength hit its surface,electrons are promoted from the valence band and transferred to the con-ductance band.This leaves positive holes in the valence band,which then react with the hydroxylated surface to produce OH •radicals,the true oxidizing agents.In the absence of a suitable electron and hole scavengers,the stored energy is dissipated in a few nanoseconds through recombination.If a suitable scav-enger or a surface defect state is available to trap the electron or hole,their recombination is prevented and a subsequent redox reaction may occur.15The synergistic effect of the anatase -rutile mixed phase in the TNP material,which is similar to the Degussa P 25one,acts as a scavenger.The conduction band electron of the anatase part jumps to the less positive rutile part,reducing the recombination rate of the electrons and the positive holes in the anatase part.These •OH and •O 2-,which are produced,further react with ethylene to produce carbon dioxide and water 20through the following overall equation:TNPs have shown a better activity than Degussa P 25because they have several superior characteristics.They have small nanoparticles with a higher surface area and porosity than the nonporous Degussa P 25.16TNPs has a more amenable anatase-to-rutile ratio (80:20)compared to Degussa P 25.Moreover,TNPs have more surface OH groups than Degussa P 25,which might play a major role at low-temperature ethylene conversion.A further confirmation is therefore here provided from the results of the direct XPS measurements that were conducted to evaluate the hydroxyl groups and the evolution of the valence state of titanium on the TiO 2surfaces.Figure 10shows the oxygen O1s XPS spectra and the deconvolution results of TNPs and Degussa P 25from a quantitative point of view.The O1s spectrum displayed peaks at 529.6eV associated with Ti -O bonds in TiO 2,at 530.8eV,which correspond to the hydroxyl Ti -OH,21,22whereas,at 532eV,it shows Ti -OH 2,23which can be observed in the XPS spectra in Figure 10(a,Degussa P 25;b,TNPs).TNPs clearly show more OH groups and OH 2on the surface than Degussa P 25.The quantitative results are given in Table1.The mass fraction of O1s,the hydroxyl groups,and the water of the two samples were calculated from the results of the curve fitting of the XPS spectra for the O1s region.The O1s values for the TNP and Degussa P 25were 70.57and 69.87%,respectively,and are similar.However,the O -H species for TNPs (22.59%)and Degussa P 25(11.10%)are different.The water attached with Ti for TNPs (5.38%)and Degussa P 25(2.29%)is also comparable.The higher OH groups on the surface of the TNPs than Degussa P 25might play a major role in obtaining superior photocatalytic activity in ethylene photo-degradation at low temperature.Comparison of Ti2p spectra for TNPs and Degussa P 25shows Ti2p 3/2peak at 458.5and Ti2p 1/2at 464eV,as shown in Figure 11a.However,the Ti species peaks,which are at binding energies of 456.7(Ti 3+)and 458.5eV (Ti 4+),21are shown in Figure 11for Degussa P 25(b)and TNPs (c).It is clear that TNPs have more Ti 3+species than Degussa P 25.After proper calculation through curve fitting,Table 1shows that the TNP and Degussa P 25catalysts have similar Ti2p values,but different Ti species.The TNP material has 17.77%Ti 3+,while Degussa P 25only shows 8.93%.The Ti 3+species are responsible for oxygen photoadsorption,which results in the formation of O -ads ,and which,together with the OH radical,is essential for photocatalytic oxidation.24-26The presenceofFigure 9.Ethylene photocatalytic reaction mechanism over TNPs.C 2H 4+3O 2f 2CO 2+2H 2OFigure 10.XPS analysis showing the OH and O -H 2comparison by O1s:(a)Degussa P 25;(b)TNPs.Table 1.Atomic Concentrations (%)of TiO 2Using XPS catalystO1sTi2p 3/2,1/2Ti -O O -H O -H 2Ti 3+Ti 4+Degussa P 2569.8730.1386.6111.10 2.298.9391.07TNP 70.5729.4372.0322.595.3817.7782.23F Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXXsurface Ti 3+causes distinct differences in the nature of the chemical bonding between the adsorbed molecule and the substrate surface.4.ConclusionsTNP photocatalyst has successfully been used for the degradation of ethylene during tests conducted in an ad-hoc designed Pyrex glass photocatalytic reactor with a controlled atmosphere at low temperatures for commercial cold storage application.The TNP showed higher ethylene degradation results than the conventional Degussa P 25photocatalyst.Besides the amenable anatase-to-rutile mix phase,the higher surface OH groups and more Ti 3+species,the small nanoparticles of the TNP with porosity showed large specific surface area which was three time higher than Degussa P 25.The large surface area of TNP helped to enhance the adsorption of water and ethylene to proceed the photocatalytic degradation.In the absence of water the photocatalytic degradation of ethylene was significantly reduced.Specifically designed pipes and lens helped to produce the required surface OH groups by converging UV light efficiently at the reaction place,and this in turn significantly enhanced the degradation of ethylene.The TNP photocatalyst has produced encouraging results in this study and has shown characteristics and the ability to be efficiently used for the degradation of ethylene produced in the cold storage of fruits.The proposed method with TNP for the ethylene photodegradation is simple and potentially economical to be applied commercially.Further research in this field would be useful.AcknowledgmentM.H.is grateful to the Regione Piemonte and the Politecnico di Torino,Italy for his postdoctoral fellowship grant.Literature Cited(1)Saltveit,M.E.Effect of Ethylene on Quality of Fresh Fruits and Vegetables.Posthar V est Biol.Technol.1999,15,279.(2)Kartheuser,B.;Boonaert,C.Photocatalysis:A Powerful Technology for Cold Storage Applications.J.Ad V .Oxid.Technol.2007,10,107.(3)Martinez-Romero,D.;Bailen,G.;Serrano,M.;Guillen,F.;Valverde,J.M.;Zapata,P.;Castillo,S.;Valero,D.Tools to Maintain Postharvest Fruit and Vegetable Quality through the Inhibition of Ethylene Action:A Review.Crit.Re V .Food Sci.2007,47,543.(4)Maneerat,C.;Hayata,Y.;Egashira,N.;Sakamoto,K.;Hamai,Z.;Kuroyanagi,M.Photocatalytic Reaction of TiO 2To Decompose Ethylene in Fruit and Vegetable Storage.Trans.ASAE 2003,46,725.(5)Ye,S.-Y.;Tian,Q.-M.;Song,X.-L.;Luo,S.-C.Photoelectrocatalytic Degradation of Ethylene by a Combination of TiO 2and Activated Carbon Felts.J.Photochem.Photobiol.,A 2009,208,27.(6)Saltveit,M. E.Is it Possible to Find an Optimal Controlled Atmosphere.Posthar V est Biol.Technol.2003,27,3.(7)Stow,J.R.;Dover, C.J.;Genge,P.M.Control of Ethylene Biosynthesis and Softening in ‘Cox’s Orange Pippin’Apples during Low-Ethylene,Low-Oxygen Storage.Posthar V est Biol.Technol.2000,18,215.(8)Vermeiren,L.;Devlieghere, F.;van Beest,M.;de Kruijf,N.;Debevere,J.Developments in the Active Packaging of Foods.Trends Food Sci.Technol.1999,10,77.(9)Guzel-Seydim,Z.B.;Greene,A.K.;Seydim,e of Ozone in the Food Industry.Lebensm.-Wiss.Technol.(1968-2004)2004,37,453.(10)Bailen,G.;Guillen,F.;Castillo,S.;Serrano,M.;Valero,D.;Martinez-Romero,e of Activated Carbon inside Modified Atmosphere Packages To Maintain Tomato Fruit Quality during Cold Storage.J.Agric.Food Chem.2006,54,2229.(11)Liu,Z.-X.;Park,J.-N.;Abdi,S.H.R.;Park,S.-K.;Park,Y.-K.;Lee,C.W.Nano-Sized Carbon Hollow Spheres for Abatement of Ethylene.Top.Catal.2006,39,221.(12)Terry,L.A.;Ilkenhans,T.;Poulston,S.;Rowsell,L.;Smith,A.W.J.Development of New Palladium-Promoted Ethylene Scavenger.Posthar V est Biol.Technol.2007,45,214.(13)Kim,J.-O.Degradation of Benzene and Ethylene in Biofilters.Process Biochem.2003,39,447.(14)Peral,J.;Domenech,X.;Ollis,D.F.Heterogeneous Photocatalysis for Purification,Decontamination and Deodorization of Air.J.Chem.Technol.Biotechnol.1997,70,117.(15)Bhatkhande,D.S.;Pangarkar,V.G.;Beenackers,A.A.C.M.Photocatalytic Degradation for Environmental Applications s A Review.J.Chem.Technol.Biotechnol.2001,77,102.(16)Hussain,M.;Ceccarelli,R.;Marchisio,D.L.;Fino,D.;Russo,N.;Geobaldo,F.Synthesis,Characterization,and Photocatalytic Application of Novel TiO 2Nanoparticles.Chem.Eng.J.2010,157,45.(17)Guo,J.;Mao,L.;Zhang,J.;Feng, C.Role of Cl -Ions in Photooxidation of Propylene on TiO 2Surface.Appl.Surf.Sci.2010,256,2132.(18)Yu,H.;Zhang,K.;Rossi,C.Theoretical Study on Photocatalytic Oxidation of VOCs using Nano-TiO 2Photocatalyst.J.Photochem.Pho-tobiol.,A 2007,188,65.(19)Yamazaki,S.;Tanaka,S.;Tsukamoto,H.Kinetic Studies of Oxidation of Ethylene over a TiO 2Photocatalyst.J.Photochem.Photobiol.,A 1999,121,55.(20)Zorn,M.;Tompkins,D.T.;Zeltner,W.A.;Anderson,M.A.Catalytic and Photocatalytic Oxidation of Ethylene on Titania-Based Thin Films.En V iron.Sci.Technol.2000,34,5206.(21)Kumar,P.M.;Badrinarayanan,S.;Sastry,M.Nanocrystalline TiO 2Studied by Optical,FTIR and X-ray Photoelectron Spectroscopy:Correlation to Presence of Surface States.Thin Solid Films 2000,358,122.(22)Hou,Y.D.;Wang,X.C.;Wu,L.;Chen,Z.X.;Ding,X.X.;Fu,X.Z.N-Doped SiO 2/TiO 2Mesoporous Nanoparticles with Enhanced Photocatalytic Activity under Visible-Light Irradiation.Chemosphere 2008,72,414.Figure 11.XPS analysis showing the comparison between Ti2p 3/2and Ti2p 1/2(a),and the Ti species comparison:(b)Degussa P 25;(c)TNPs.Ind.Eng.Chem.Res.,Vol.xxx,No.xx,XXXX G。