材料科学基础基本第五章 材料的相结构及相图

合集下载

材料科学基础(第2版)石德珂-第5章材料的相结构及相图

材料科学基础(第2版)石德珂-第5章材料的相结构及相图
第五章 材料的相结构与相图
THE PHASE STRUCTURE AND PHASE DIAGRAMS OF MATERIALS
材料的相结构 二元相图及其类型 复杂相图分析 相图的热力学基础 三元相图及其类型
1
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
12
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
4. 固溶体中溶质原子的偏聚与有序
1) 溶质原子分布的微观不均匀性
A, B原子 间结合能
13
E AB
1 2 (EAA
EBB )
EAB
1 2
(EAA
EBB )
3. 陶瓷材料中的固溶方式
可间隙方式固溶 也可置换方式固溶
如: Mg[CO3]→(Mg,Fe)[CO3]→(Fe,Mg)[CO3]→Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿
8
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
24
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
第二节 二元相图及其类型
THE BINARY PHASE DIAGRAM AND ITS TYPE
相图的基本知识 一元系相图 二元系相图 材料性能与相图的关系
一些溶质元素在一价Cu中的最大溶解度
溶质元素

大学材料科学基础 第五章材料的相结构和相图(1)

大学材料科学基础 第五章材料的相结构和相图(1)

弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

相和相平衡
Байду номын сангаас四、自由度与相律
1、自由度:平衡系统中独立可变的因素
自由度数:独立可变的强度变量的最大数目
(强度变量与广度变量的区别)
2、相律:自然规律
在平衡系统中由于受平衡条件的制约,系统内
存在的相数有一定限制。 组元数 相数P≥1
吉布斯相律:不可为负数
f=c-p+n
外界影 响因素
通常外界影响因素只考虑T、P,所以f=c-p+2
• 掌握匀晶,包晶,共晶相图的特点,进而了解二元合金的一些平衡凝固,固 相转变的规律。
• 重点难点: • 二元系相图的建立,杠杆定律 • 包晶相图,共晶相图,共晶合金 • 相图分析,各种液固,固相转变的判断
材料的性能决定于内部的组织结构,而组织结构
又由基本的相所组成。
相:均匀而具有物理特性的部分,并和体系的其他 部分有明显界面。
晶型转变过程都是在恒温下进行,并伴随有体 积、密度的变化。 2、SiO2系统相图 α-石英与β-石英相变相当慢, β-石英常因冷却过快而被保留 到室温,在常压下,低于573℃
单元系相图
β-石英很稳定,所以自然界或低温时最常见的是 β-石英。晶型转变时,体积效应特别显著。 Al2O3、ZrO2也具有多晶型转变。 3、聚合物相图 (1)状态由分子间作用力决定,分子间约束力弱
共晶相图,平衡凝固,共晶合金,包晶相图,形成化合物的相图,含有双液 共存区的相图,熔晶相图等 ,二元相图的几何规律 ,单相,双相及三相共 存区,相图特征 ,二元系相图的分析,分析的方法与步骤,分析举例。
• 教学目的: • 学习相平衡与相图的基本知识,了解相图在材料科学学习中的重要性,学会
相图的使用。

第五章 材料的相结构及相图

第五章 材料的相结构及相图

11924F
第一节
材料的相结构
表5-4 钢中常见的间隙化合物
表5-5 钢中常见间隙化合物的硬度及熔点
11924F
第一节
材料的相结构
图5-7 MgCu结构
11924F
第一节
材料的相结构
图5-8 拉弗斯相中B原子分布和四面体堆垛方式
11924F
第二节
二元相图及其类型
一、相图的基本知识 1.相律 2.二元相图的成分表示方法与相图的建立
11924F
第一节
材料的相结构
图5-5 铜金合金电阻率与成分的关系
11924F
第一节
材料的相结构

图5-6 Ni-Mn合金的饱和磁矩
11924F
第一节
二、中间相 1.正常价化合物 2.电子化合物
材料的相结构
表5-2 铜合金中常见的电子化合物
3.尺寸因素化合物
11924F
第一节
材料的相结构
表5-3 简单结构的间隙化合物成分范围
11924F
第三节
复杂相图分析
图5-35 Cu-Sn相图
11924F
第三节
复杂相图分析
图5-36
Mg2SiO4-SiO2系相图
11924F
第三节
复杂相图分析
图5-37 ZrO2-SiO2系相图
11924F
第三节
复杂相图分析
三、铁-碳合金相图
图5-38 铁-碳相图
11924F
第三节
复杂相图分析
11924F
第三节
复杂相图分析
一、分析方法 1)相图中若有稳定中间相,可依此把相图分为几个部分, 根据需要选取某一部分进行分析。 2)许多相图往往只标注单相区,为了便于分析相图,应 根据“相区接触法则”填写各空白相区,也可用组织 组成物填写相图。 3)利用典型成分分析合金的结晶过程及组织转变,并利 用杠杆定律分析各相相对量随温度的变化情况。 二、复杂相图分析举例 1. Cu-Sn合金系相图(图5-44) 2. Mg2SiO4-SiO2系相图

第五章材料相结构和相图

第五章材料相结构和相图
材料科学基础材料的相结构固溶体中间相置换固溶体间隙固溶体正常价化合物电子化合物尺寸因素化合物间隙化合物置换固溶体间隙固溶体有限固溶体无限固溶体无序固溶体有序固溶体间隙相间隙化合物理解重点理解重点影响置换固溶体溶解度的因素陶瓷与金属固溶体的差别中间相和固溶体的区间隙固溶体间隙相间隙化合物的区别典型材料的相结构的辨别材料科学基础陶瓷与金属固溶体的差别形成弗兰克尔空位的可能性较小形成肖脱基空位时移出的正负离子总电价为零
一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础

第五章材料的相结构及相图

第五章材料的相结构及相图

电子浓度为21/13时,为复杂立方结构,或称γ黄铜结构
电子浓度为21/12时,为密排六方结构,或称ε黄铜结构。 其他影响因数:尺寸因素及组元的电负性差。 例:电子浓度21/14的电子化合物,当组元原子尺寸差较小时,倾向于形成密排六方 结构;当尺寸差较大时,倾向于形成体心立方结构;若电负性差较大,则倾向于形 成复杂立方及密排六方结构。 性能:结合键为金属键,具有明显的金属特性。电子化合物的熔点及硬度较高 ,脆性较大
有些与金属固溶体类似,如原子半径差越小,温度越高,电负性差越小,离子间的 代换越易进行 ,其固溶度也就越大。当两化合物的晶体结构相同,且在其他条件 有利的情况下 ,相同电价的离子间有可能完全互换而形成无限固溶体 。
此外,必须考虑以下情况 (1) 保持晶格的电中性 ,代换前后离子的总电价必须相等 若相互代换的离子间电价相等,称为等价代换, 例 钾 长 石 K [AlSi303]与钠长石Na [AlSi303〕中的K+与Na+的代换及上例中Si4+代 换 Ti4+, Mg2+与Fe2+的互换等。
eC、eA分别为在非电离状态下正离子及负离子的价电子数
类型:一般有AB、A2B(或AB2)等类型 特点:种类繁多,晶体结构十分复杂,包括从离子键、共价键过渡到 金属键为主的一系列化合物 如: Mg2Si 电负性影响大,较强的离子键
Mg2Sn 电负性差减小,共价键为主,呈半导体特征 Mg2Pb 金属键占主导地位
之差超过14%~15%,则固溶度(摩尔分数)极为有限;
原因:点阵畸变导致能量升高,Δ r越大,点阵畸变能越高
2
r
rA rB rA
按弹性力学方法计算
2 3 r rB 3 8 G rB A 8 G rB r rA

材料科学基础-第五章 材料的相结构及相图

材料科学基础-第五章 材料的相结构及相图

相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。

1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)

材料科学基础(讲稿5章)

材料科学基础(讲稿5章)

Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度


超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。

不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。

材料科学基础 第五章 5.1-5.4相图

材料科学基础 第五章 5.1-5.4相图

5.2.3 杠杆定律
设成份为 X的合金的总重量为1,液相的相对重量为 QL,其 成份为 X1,固相相对重量为Qα,其成份为X2,则 :
5.2.4 相图的类型和结构 根据组元的多少,可分为单元系、二元系、三元 系 …. 相图。
二元系相图的类型有:
① 液态无限溶解,固态无限溶解 -匀晶相图; ②液态无限溶解,固态有限溶解 -共晶相图和包晶
共晶组织:共晶转变产物。(是两相混合物)
共晶合金的特殊性质: ①比纯组元熔点低,简化了熔化和铸造的操作; ②共晶合金比纯金属有更好的流动性,其在凝固之 中防止了阻碍液体流动的枝晶形成,从而改善铸造 性能; ③恒温转变(无凝固温度范围)减少了铸造缺陷, 例如偏聚和缩孔; ④共晶凝固可获得多种形态的显微组织,尤其是规 则排列的层状或杆状共晶组织可能成为优异性能的 原位复合材料(in-situ composite )。
5.2.2 相律
相律(phase rule)是表示在平衡条件下,系统的自 由度数、组元数和相数之间的关系,是系统的平 衡条件的数学表达式。 相律数学表达式:f = C – P + 2 式中 P—平衡相数 C—体系的组元数 f—体系自由度(degrees of freedom) 数 2-温度和压力 自由度数 f:是指不影响体系平衡状态的独立可 变参数(温度、压力、浓度等)的数目。 在恒压下,相律表达式: f = C – P + 1
相律的应用
① 利用它可以确定系统中可能存在的最多平衡相数 单元系,因f ≥0,故 P≤1-0+1=2,平衡相最大为二个。 注意:这并不是说,单元系中能够出现的相数不能超过二 个,而是说,某一固定 T下,单元系中不同的相只能有两 个同时存在,而其它相则在别的条件下存在。

石德珂《材料科学基础》配套题库-章节题库(材料的相结构及相图)【圣才出品】

石德珂《材料科学基础》配套题库-章节题库(材料的相结构及相图)【圣才出品】

第5章材料的相结构及相图一、选择题三元系统相图中,若存在有n条界线,则此系统相图中能连接出()条连线。

A.3B.n-1C.nD.n+1【答案】C【解析】三元系统相图中,存在几条界线就能在相图中连接出几条连线。

二、填空题1.Fe-Fe3C相图中含碳量小于______为钢,大于______为铸铁;铁碳合金室温平衡组织均由______和______两个基本相组成;奥氏体其晶体结构是______,合金平衡结晶时,奥氏体的最大含碳量是______;珠光体的含碳量是______;莱氏体的含碳量为______;在常温下,亚共析钢的平衡组织是______,过共析钢的平衡组织是______;Fe3CⅠ是从______中析出的,Fe3CⅡ是从______中析出的,Fe3CⅢ是从______中析出的,它们的含碳量为______。

【答案】2.11%C;2.11%C;铁素体(a);渗碳体(Fe3C);FCC;2.11%;0.77%;4.3%;铁素体和珠光体;珠光体和Fe3CⅡ;液相;奥氏体;铁素体;6.69%2.置换固溶体的溶解度与原子尺寸因素、______、电子浓度因素和______有关。

【答案】电负性;晶体结构三、判断题1.中间相只是包括那些位于相图中间且可以用一个分子式表示的化合物相。

()【答案】×【解析】凡是位于相图中间的各种合金相结构都统称为中间相,这其中当然包括一个分子式表示的化合物相以及一些固溶体相。

2.三元相图中的三元无变量点都有可能成为析晶结束点。

()【答案】×【解析】三元相图中三条界线的交点是三元无变量点,也是低共熔点,它的液相同时对三种晶相饱和。

低共熔点也是存在液相的最低温度点。

通过低共熔点平行于底面的平面称为固相面或结晶结束面。

固相面之下全部是固相。

四、名词解释1.中间相答:中间相是指合金中组元之间形成的、与纯组元结构不同的相。

在相图的中间区域。

2.间隙固溶体答:间隙固溶体是指若溶质原子比较小时可以进入溶剂晶格的间隙位置之中而不改变溶剂的晶格类型所形成的固溶体。

材料科学基础第五章 材料的相结构及相图

材料科学基础第五章 材料的相结构及相图

SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学 2)尺寸因素
化学与材料科学学院
溶质原子溶入溶剂晶格会引起晶格点阵畸变,使晶体能量升高。 晶格畸变能
能量越高,晶格越不稳定。
单位体积畸变能的大小与溶质原子溶入的数量及溶质原子的相对尺寸有关:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
1)晶体结构因素
溶质与溶剂的晶格结构相同→固溶度大。 例如:具有面心立方结构的Mn、Co、Ni、Cu,在γ-Fe中 固溶度较大,而在α-Fe中固溶度较小。 溶质与溶剂的晶格结构相同是形成无限固溶体的必要条件。
贵州师范大学
化学与材料科学学院
1)无限固溶体
无限固溶体都是置换固溶体? 2)有限固溶体 间隙固溶体只能是有限固溶体?
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
按溶质原子分布分类 1)有序固溶体 2)无序固溶体
贵州师范大学
化学与材料科学学院
基本概念
组元:组成材料的最基本的、独立的物质,简称元。
金属元素:Cu、Al、Fe 非金属元素:C、N、O 化合物: Al2O3, MgO, Na2O, SiO2 单一组元组成:纯金属、 Al2O3晶体等 材料: 二元合金 多组元组成,含合金 三元合金
组元:
纯元素
合金:指由两种或两种以上的金属或金属与非金属 经熔炼或其它方法制成的具有金属特性的物质。

材料科学基础-第五章-材料的相结构及相图-PPT

材料科学基础-第五章-材料的相结构及相图-PPT
相图上为一条垂直线。
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素
形成的金属化合物。
不遵守化合价规律,晶格类型随化合物电子浓度而
变化。
电子浓度为3/2时: 呈体心立方结构(b相);
电子浓度为21/13时:呈复杂立方结构(g相);
电子浓度为21/12时。呈密排六方结构(e相);
体。
III. 电负性差因素
IV. 两元素间电负性差越小,越易形成固溶体,且形
成的固溶体的溶解度越大;随两元素间电负性差
增大,固溶度减小。


1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体
2)ΔX>0.4~0.5,倾向于形成稳定的化合物
IV. 电子浓度因素
V. 电子浓度的定义是合金中各组成元素的价电子数总
子的价电子数恰好使负离子具有稳定的电子层
结构。
金属元素与周期表中的ⅣA,ⅤA,ⅥA元素
形成正常价化合物。
有较高的硬度,脆性很大。
例如:Mg2Si、Mg2Sn、Mg2Pb、MgS、MnS等
(1)正常价化合物
正常价化合物的分子式只有AB,A2B或AB2两种。
常见类型:
NaCl型
CaF2型
Cu原子形成四面体(16个)。
每个镁原子有4个近邻镁原子和12个近邻铜原子;
每个铜原子有6个近邻的铜原子和6个近邻的镁原子

Cu
Mg
II. 拉弗斯(Laves)相
②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。
每个Mg原子有4个近邻Mg原子和12个近邻Zn原
子。
每个Zn原子有6个近邻Zn原子和6个近邻Mg原子

5. 材料的相结构及相图

5. 材料的相结构及相图

相律在相图中的应用
组元数(C) 相数(P) f=C–P+1
含义 单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有一 个是独立变量 四相平衡所有因素都确定不变
<2>晶体结构因素 组元间晶体结构相 同时,固溶度一般都较大,而且有可能形成 无限固溶体。若不同只能形成有限固溶体。 <3>电负性差因素 两元素间电负性差 越小,越易形成固溶体,而且形成的固溶体 的溶解度越大;随两元素间电负性差增大, 固溶度减小,当溶质与溶剂的电负性差很大 时,往往形成比较稳定的金属化合物。
(1)不同成分的材料在不同温度下存 在哪些变化 (2)各稳定相的相对量是多少
(3)成分与温度变化时所可能发生的变 化
了解相图的分析和使用方法后,就可以 了解合金的组织状态,进而预测合金的 性能。另外,可以根据相图来制订合金 的锻造和热处理工艺。 组元——组成材料最基本的、独立的物 质。
合金——有两种或两种以上的金属、或 金属与非金属经熔炼或用其它方法制成 的具有金属特性的物质。
Lc m n ●共晶反应:
tc
固相线: amcnb
●组成
液相线: acb
me 的溶解度变化线
nf 的溶解度变化线
●凝固过程: L 合金1:L 合金2 : L L
●不平衡凝固
<4>电子浓度因素 电子浓度的定义是 合金中各组成元素的价电子数总和与原 子总数的比值,记作e/a。电子浓度有 一极限,超过这一极限,固溶体就不稳 定,会形成新相。 二、间隙固溶体

5 《材料科学基础》第五章 相平衡和相图

5 《材料科学基础》第五章 相平衡和相图

( p -T 图)
自由
一、水的相图
冰的熔融曲线 水的饱和蒸汽压曲线(蒸发曲线)
3个相区:
p=1, f=2 ,双变量系统(T、P) 3条界线: p=2 , f= 1,单变量系统(T或P) 1个无变量点(三相点):
T
p=3 , f=0 ,无变量系统
冰的饱和蒸汽压曲线(升华曲线)
??
注意:
•冰点和三相点O
第五章
第五章
§5.1
相平衡和相图
基本知识
§5.2
§5.3
单元系统
二元系统
§5.4
三元系统
§5.1
相平衡与相图的基本知识
一、相平衡的基本概念 二、相律 三、相平衡的研究方法
一、相平衡的基本概念
相平衡:是研究一个多组分(或单组分)多相系统中相的平
衡问题,即多相系统的平衡状态(包括相的个数、各相的状态、
二、二元凝聚系统相图的基本类型
三、复杂二元相图的分析步骤
四、二元系统专业相图
要求
一、二元系统相图的表示方法及杠杆规则
1、作为特种陶瓷的重要原料
由于7%~9%的体积效应,常加适量CaO或Y2O3稳定剂。
在>1500℃以上与四方型ZrO2形成立方晶型固溶体,称稳定
化立方ZrO2 。
2、熔点高(2680℃),作耐火材料 3、利用导氧导电性能,作氧敏传感器元件 4、利用体积效应,对陶瓷材料进行相变增韧。
增韧机理: 微裂纹增韧
实线部分: 四个单相区: 五条界线:
两个无变量点:
晶体的升华曲线(或延长线)与液体的蒸发曲线(或延长线) 的交点是该晶体的熔点。 两种晶型的升华曲线(或延长线)的交点是两种晶型的晶型转 变点。

材料科学基础材料的相结构与相图

材料科学基础材料的相结构与相图
第6页/共270页
共析钢:由F(铁素体相)+ Fe3C(渗碳体相)双相构成, 为双相合金。
第7页/共270页
4、合金的显微组织
在显微镜下,合金中各相的 形状、大小和分布所构成的综 合体称合金组织。
第8页/共270页
“相构成组织、组织决定性能”
第9页/共270页
例1:钢中的珠光体(P) 组织:
第65页/共270页
如果外界压力保持恒定(例如一个标 准大气压),那么单元系相图只要一个 温度轴来表示。 根据相律,在汽、水、冰的各单相区 内(f=1),温度可在一定范围内变动。 在熔点和沸点处,两相共存,f=0, 故温度不能变动,即相变为恒温过程。
第66页/共270页
在单元系中,除了可以出现气、 液、固三相之间的转变外,某些物 质还可能出现固态中的同素异构转 变。
第17页/共270页
2、溶解度(C):
固溶体在一定温度和压力下, 溶于溶质原子的极限浓度。 当溶质浓度小于溶解度时, 溶质浓度增加将导致固溶强化;
第18页/共270页
当溶质浓度大于溶解度时, 将析出第二相起作第二相强 化作用; 当析出的第二相非常细小时, 称弥散强化。
第19页/共270页
3、固溶体分类
第60页/共270页
在两相区,两相的质量比可以 用杠杆定律求得,即:
QL / Qα = bc/ab 即QL / Qα恰好与它们的杠杆 臂成反比关系。 杠杆定律只适用于两相区。
第61页/共270页
二、单元系相图
单元系相图:是通过几何图形描 述由单一组元构成的体系在不同温 度和压力条件下所可能存在的相及 多相的平衡。 现以水为例说明单元系相图的表 示和测定方法。
例2、合金渗碳体(Fe、

材料的相结构及相图

材料的相结构及相图
的膨胀与收缩导致晶体能量升高,这种升高的能量称为晶 格畸变能。溶质原子引起的点阵畸变能越大,固溶体的溶 解度就越小。
(2) 晶体结构因素 组元间晶体结构相同时,固溶度较大,而且有可能形成
无限固溶体。组元间晶体结构不同,便只能形成有限固溶 体。
(3) 电负性差因素 两元素间电负性差越小,则越易形成固溶 体,而且所形成的固溶体的溶解度也就越大;溶质与溶剂 的电负性差很大时,往往形成比较稳定的金属化合物。
空位时必须是电价总和为零的正、负离子同时移
弗兰克尔空位
出晶体,在晶体中形成正、负离子的空位对。
2) 为了保持电中性,离子间数量不等的置换会在晶体 内部形成点缺陷。
如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变时,也
会在晶体中产生空位。
如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 生阴同离理子,空T缺iO。2中,部分Ti4+被还原为Ti3+时,产
溶剂——摩尔分数大于50%,
溶质——小于50%的组元
3. 按溶质与溶剂原子相对分布分类:
无序固溶体——溶质原子统计式地或概率地分布在溶 剂的晶格中。
有序固溶体——溶质原子在溶剂晶格的结点位或溶剂 晶格的间隙中,有规律的排列。
1.置换固溶体
影响置换固溶体溶解度的因素:
(1) 尺寸因素 溶质原子溶入溶剂晶格引起晶格的点阵畸变。 溶质点阵
第一节 材料的相结构
相——合金中具有同一聚集状态、同一晶 体结构和性质并以界面相互隔开的均匀组 成部分。材料的性能与各组成相的性质、 形态、数量直接有关。
根据相的结构特点分类: 固溶体 中间相

材料科学基础_第5章_二元相图

材料科学基础_第5章_二元相图
不大时,它们不仅可以在液态或熔融状态完全互溶,而且 在固态也完全互溶,形成成分可变的连续固溶体,称为无 限固溶体或连续固溶体,它们形成的相图即为匀晶相图或 互溶相图。 ➢ 由液相结晶出单相固溶体的过程称为匀晶转变。液固态完 全互溶的体系不多,但是包含匀晶转变部分的相图却不少 ,几乎所有的二元系统都含有匀晶转变部分。
Cu
18 20
30 40
66 60 80
Ni 相对质量为1/4。溶体合金的平衡凝固及组织
➢ 平衡凝固是指凝固过程中每个阶段都能达到平衡,因此 平衡凝固是在极其缓慢的冷速下实现的。现以30%Ni和 70%Cu的铜镍合金为例来说明固溶体的平衡冷却过程及其 组织的。
11
冷却曲线 t Ⅱ
23
X2合金结晶过程分析
L
(共晶合金)
T,C
183
L
L+
L+
c
d
e
+
T,C
(+ )
围内凝固,具有变温凝固的特征 ②还需要成分起伏
15
5.3.2 二元共晶相图 两组元在液态无限互溶,固态有限溶解,通过共晶反
应形成两相机械混合物的二元合金称为二元共晶相图。共 晶反应是液相在冷却过程中同时结晶出两个结构不同的固
相的过程。 L
16
Ta,tb分别是Pb,Sn的熔点 M:锡在铅中的最大溶解度。N:铅在锡中的最大溶解度 E:为共晶点,具有该点成分的合金在恒温183℃发生共 晶转变LE→aM+ΒN,共晶转变是具有一定成分的液相在恒 温下同时转变为两个具有一定成分和结构的固相的过程。 F:室温时锡在铅中的溶解度;G:室温时铅在锡中的溶 解度
之间一定是由这两个相组成的两相区。如铁区(线)区(

东南材料科学基础 第5章-II 三元相图提纲

东南材料科学基础 第5章-II   三元相图提纲

A B C O b b' c C ’a a ’ 第5章-II 三元相图5.10 基本概念三元系: 三个组元组成的合金系独立变量:温度T 组元浓度 X A 、X B (X C =1-X A -X B )三元相图的几何形状 :完整的三元相图: 空间三维模型,实用三元相图: 平面图(截面面图和投影图)5.10.1三元相图的成分表示方法1. 等边三角形表示法 (图1) ● 成分三角形 ● 三角形中的点如何表示成分 X A =Ca , X B =Ab , X C =Bc, 可证: X A +X B +X C =100% ●网格三角形 (图2)图1图2用途:相当于坐标纸。

已知三角形中某一点的位置,可用网格三角形测出该点对应的材料的成分 ● 成分三角形中的特殊的点和线 (图3) ➢ 顶点: 纯组元➢ 平行于三角形某边的直线: 此材料中和边相对的组元含量相等 ➢ 过三角形顶点的直线:对应的材料中两组元浓度比相等ABCaa ’CPb图3 图4 2. 直角三角形表示法 (图4)P 点的成分:X B =Ab, X C =Ac, X A =1-X B -X C 3、 3. 其它表示法如:等腰成分三角形 局部图形5.10.2 自由能-成分曲面和公切面法则1.三元相图中的相律f=C-P+1 ∵ C=3 ∴ f=0 时, P=4最多只能是四相平衡;P=1时, f=3, 有三个自由度 因此自由能与成分的关系要用空间曲面表示。

(图5) 2.公切面法则 ● 两相平衡图5公切面可在自由能-成分曲面上滚动, 得到一对共轭曲线,这对曲线上的点是一一对应的,对应点之间的连线称之为连接线。

(图6)● 三相平衡 公切面是唯一的 (图7) ● 四相平衡 有公切面,四点共面5.10.3 杠杆定理和重心法则1.杠杆定理aboaabob==%%βα%100⨯=PMOMWα%100⨯=QRORWβ%100⨯=STOTWγA BCabo .图6 图7(1)共线法则当三元系处于两相平衡时,此两相的成分点和材料的成分点位于成分三角形的同一直线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TiC 2850 3080
ZrC 2840 3472±20
VC 2010 2650
NbC 2050 3608±20
WC 1370 2785±5
MoC 1840 2527
复杂结构 间隙化合物
Cr23C6 Fe3C 1650 ~800
1577 1227
第二节 二元相图及其类型
一、相平衡与相律 (一)相平衡
在指定的温度和压力下,若多相体系的各相中每一组元的浓度均不随时间 而变化,则体系达到了相平衡。若体系内不发生化学反应,则相平衡的条 件是各组元在它存在的各相中的化学位相等。实际上相平衡是一种动态平 衡,从系统内部看,分子和原子在相界处仍在不停地转换,只不过各相之 间的转换速度相同而已。
(二)相律 吉布斯(Gibbs)相律是表示处于热力学平衡状态下,系统的自由度、组 元数和相数之间的关系。
图4-8 结晶过程示意图
晶核的形成有两种方式。在液体内部,存在大量时聚时散的近程有序的大小 不等的原子集团即晶胚。在过冷的情况下,借助液体中的能量起伏,某些晶胚 的尺寸有可能大于临界尺寸,这些晶胚可自发生长,成为结晶核心,所以这种 形核方式叫自发形核或均匀形核。另一种形核方式为结晶时,依附过冷液相中 的高熔点固态杂质形成晶核,所以称非自发形核或非均匀形核。非均匀形核所 需能量比均匀形核低得多,所以实际金属结晶大多是非均匀形核。 由晶核长成的小晶体叫晶粒,晶粒之间的交界叫晶界。晶粒的二维平衡形貌 为多边形块状,三叉晶界,晶界夹角为120℃。
决定系统平衡状态的变量主要包括成分、温度、压力等。 相律的表达式为 f=c-p+n
对于凝聚系统,可以略去压力这一变数, 此时相律的表达式为f=c-p+1
f自由度, c为组元数, n为影响系统平衡状 态的外界因素数目,
p为平衡相数
二、相图的基本知识
(一)相图的表示方法 对于凝聚系统,相图测量过程中主要控制温度和成分,因此常见的相 图大都以温度和成分为坐标。对于二元系,独立的成分变数只有一个, 所以二元系只需用一个横坐标表示成分,纵坐标为温度,所以二元相图 为一个平面图形;对于三元系,成分变数有两个,所以其成分必须用一 个平面图形来表示,加上温度轴,所以三元相图是一个三维的立体图形。
(二)电子化合物
表4-1 合金中常见的电子化合物 电子浓度
合金系 Cu-Zn
体心立方
3 21 相 2 14
CuZn
Cu-Sn
Cu5Sn
Cu-Al
Cu3Al
Cu-Si
Cu5Si
注:表中分数表示电子浓度
复杂立方
13 相
21
Cu5Zn8
Cu31Sn8
Cu9Al4
Cu31Si8
密排六方
7 21 相
相。中间相的结合键主要为金属键,兼有离子键和共价键。因此中间相 又称金属间化合物。
形成合金相 时起主导的 控制因素
主要受电负性控制的正常价化合物 以原子尺寸因素为主要控制因素的间隙相、间隙化合物和拓扑密堆相 以电子浓度为主要控制因素的电子化合物
(一)正常价化合物
负电性差别较大的组元可能形成与离子化合物点阵相同的中间相。这种化合物符 合化合价规律,所以叫正常价化合物。例如,Mg2Si、Mg2Sn、MnS等,其成分 可以用化学式表示。正常价化合物一般有AB、A2B(或AB2)两种类型。其晶体 结构与相应的离子键晶体结构相同。AB型正常价化合物的晶体结构可以是NaCl 型结构、立方ZnS结构或六方ZnS结构。A2B(或AB2)具有CaF2型结构(或反 CaF2型结构)。正常价化合物具有较高的硬度和脆性。在以固溶体为基的合金中, 正常价化合物如果合理分布,可使合金得到强化。
(三)固溶体的微观不均匀性
图4-2 固溶体中溶质原子分布示意图 a)无序分布 b)偏聚分布 c)短程有序分布 图4-3 有序固溶体的晶体结构 a)CuAu b)Cu3Au
二、金属间化合物
• A、B组元间组成合金时,可形成晶体结构不同于A、B两组元的化合物相 。这种相的成分处在A在B中和B在A中的最大溶解度之间,因此也叫中间
4 12
CuZn3
Cu3Sn
Cu5Al3
Cu3Si
决定电子化合物结构的主要因素是电子浓度,但并非唯一因素,其它因 素,特别是尺寸因素仍起一定作用。
(三)复杂结构间隙化合物与间隙相
类型
化学式 硬度 Fe3C晶体结构
表4-2 钢中常见碳化物的熔点和硬度
间隙相
分类
溶质原子在固溶体 中所占的位置
置换固溶体 间隙固溶体
固溶度的大小
有限固溶体 无限固溶体
固溶体中 原子的排 列情况
有序固溶体 无序固溶体
(一)置换固溶体
形成固溶体时,溶质原子置换了溶剂点阵中的溶剂原子,占据了溶剂晶格的结点 位置,以此种方式所形成的固溶体叫置换固溶体。
图4-1形成无限固溶体时两组元原子置换过程示意图
(二)二元相图的建立
热分析法 图4-6 Cu-Ni二元相图的测定
原理:将体系 均匀冷却或加 热,当无相变 发生时,冷却 曲线将连续变 化。当体系内 发生相变时, 冷却曲线上会 出现折点或停 歇点。根据所 测的临界点就 可以绘出相图。
(三)杠杆定律 杠杆定律是相图分析的重要工具,适用于两相区,可用来确定两平衡相的 成分和相对量。在相图中,任意一点都叫“表象点”一个表象点的坐标值 反映一个给定合金的成分和温度。
图4-7 杠杆定律的证明及力学比喻
三、二元匀晶相图
由液相结晶出均一固相的过程称为匀晶转变,具有单一的匀晶转变的相 图称为匀晶相图。现以Cu-Ni二元相图为例进行分析。
(一)相图分析与典型合金结晶过程
1. 相图分析
2. 结晶过程分析
(1)纯组元的结晶
液态纯组元冷至理论结晶温度Tm(熔点)以下某一温度Tn,就要发生结晶。 结晶是由液态的短程有序状态转变为固态的长程有序状态。结晶过程包括生 核和长大过程,如图4-8。
第五章 材料的相结构及相图
第一节 材料的相结构 第二节 二元相图及其类型 第三节 复杂相图分析
第一节 材料的相结构
工业上应用的金属材料主要是合金。合金中的相结构是多种多样的, 但可分为两大类:固溶体和化合物。
一、固溶体
溶质原子完全溶入固态溶剂中,所生成的合金相与溶剂的晶格结构相同, 该合金相叫固溶体。固溶体的成分一般可在一定范围内连续变化,随溶质 的溶入,将引起溶剂晶格畸变,使合金强度硬度升高这便是固溶强化。
显然晶体结构相 同是形成无限固 溶体的必要条件。
(二)间隙固溶体
一些原子半径小于0.1nm的C、N、H、B等非金属元素因受尺寸因素影响,不能 与过渡族金属元素形成置换固溶体,却可固溶于溶剂晶格的间隙位置,形成间隙固溶 体。一般间隙半径比较小,所以形成间隙固溶体时,晶胞要涨大,造成严重的点阵畸 变,使能量增高,故固溶度受到限制。
相关文档
最新文档