2020年高考数学知识点大全(文科版)

合集下载

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0数指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高考文科数学所有知识点总结

高考文科数学所有知识点总结

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳数学已成为许多国家及地区的教育范畴中的一部分。

它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。

这次小编给大家整理了高三文科数学常考知识点,供大家阅读参考。

一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益问题3)面积、体积最(大)问题二、推理与证明1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

高三数学文科学习知识点

高三数学文科学习知识点

高三数学文科学习知识点高三数学文科学习知识点11.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.高三数学文科学习知识点2一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

高考文科数学总复习知识点

高考文科数学总复习知识点

高考文科数学总复习知识点高三文科数学总复集合:集合的元素具有确定性、互异性和无序性特征。

常用的数集包括自然数集(或非负整数集)记为N,正整数集记为N或N+,整数集记为Z,实数集记为R,有理数集记为Q。

集合还有重要的等价关系,即A∩B=A当且仅当A∪B=B当且仅当A是B的子集。

一个由n个元素组成的集合有2个不同的子集,其中有2n-1个非空子集,也有2n-1个真子集。

函数:函数单调性的证明可以通过取值、作差、变形、定号和得出结论等步骤完成。

常用的结论包括:若f(x)为增(减)函数,则-f(x)为减(增)函数;增+增=增,减+减=减;复合函数的单调性是“同增异减”;奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

函数的奇偶性定义为f(-x)=f(x)时为偶函数,f(-x)=-f(x)时为奇函数。

需要注意的是,函数为奇偶函数的前提是定义域在数轴上关于原点对称;奇函数的图像关于原点对称,偶函数的图像关于y轴对称;若奇函数f(x)在x=0处有意义,则f(0)=0.基本初等函数:指数函数的一般形式为x=a^n,其中n>1且n为自然数。

负数没有偶次方根,任何次方根都是正数,当n是奇数时,a^n=a,当n是偶数时,a^n=|a|。

对数的定义为若a=N,则b=log_a N,其中a为对数的底数,b为以a为底的N的对数,N为真数。

需要注意的是,负数和零没有对数,log_a 1=0且log_a a=1(a>0且a≠1)。

对数的运算法则包括log_a (MN)=log_a M+log_a N,log_a (M/N)=log_a M-log_a N,log_a M^n=nlog_a M,换底公式为log_a b=log_c b/log_c a。

指数函数和对数函数是互逆的,即a^log_a N=N。

b=(a。

a≠1,c。

c≠1,b>),利用换底公式推导以下结论:logc a = 1n(1) loga bn = loga b (2) loga b = logb am改写为:假设b=(a。

文科高考数学导数知识点

文科高考数学导数知识点

文科高考数学导数知识点导数是高中数学中重要的知识点之一,它是微积分的基础。

掌握导数的概念和运算规则,对于理解数学的发展和应用具有重要意义。

本文将对文科高考中与导数相关的知识点进行探讨和总结。

一、导数的定义与计算导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。

对于一个函数f(x),其在点x处的导数可以用极限的概念表示为:f'(x) = lim(h→0)(f(x+h) - f(x))/h其中h为接近于0的一个无限小的实数。

在计算导数时,常用的求导法则包括常数法则、幂法则、和差法则、积法则和商法则等。

这些法则在导数的计算中提供了方便的方法,使我们能够快速准确地求得函数的导数。

二、导数的几何意义导数的几何意义体现在函数曲线上的切线斜率上。

函数曲线在某一点上的切线斜率等于该点的导数值。

这意味着导数可以告诉我们函数在某一点上是上升还是下降,以及上升或下降的速率。

利用导数的几何意义可以解决很多与函数变化率相关的问题,例如求极大值和极小值点、确定函数在某个区间上的单调性以及判定函数的凸凹性等。

三、导数的应用导数不仅仅是一种数学工具,它还在实际问题的建模和求解中具有广泛的应用。

例如,在经济学中,导数可以用来解决边际成本、边际效益和最优决策等问题;在物理学中,导数可以用来描述物体的运动状态、速度和加速度等;在生物学中,导数可以用来研究物种的增长和衰退规律等。

导数在各个领域的应用都展示了它的重要性和实用性。

四、导数与其他数学概念的联系导数与其他数学概念之间存在着紧密的联系,它们相互依存、相互推进,共同构成了数学学科的核心。

在微积分中,导数与积分是密切相关的。

导数可以通过积分来求解,而积分则可以通过导数来解释和解决问题。

导数与函数的极限、连续性以及泰勒级数展开等概念也有紧密的关联。

掌握导数的知识,有助于我们更好地理解和运用这些数学概念。

五、导数在解决实际问题中的应用举例最后,我们通过举例来说明导数在解决实际问题中的应用。

高三文科数学2020重要知识点归纳

高三文科数学2020重要知识点归纳

高三文科数学2020重要知识点归纳已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。

接下来是小编为大家整理的高三文科数学2020重要知识点归纳,希望大家喜欢!高三文科数学2020重要知识点归纳一第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

高考文科数学知识点总结

高考文科数学知识点总结

高考文科数学知识点总结集合与简易逻辑在集合理论中,我们需要了解基本概念,如集合、元素、有限集、无限集、空集、全集以及符号的使用。

集合的表示法有列举法、描述法和图形表示法,而集合元素具有确定性、互异性和无序性的特征。

在解决含绝对值不等式和一元二次不等式时,我们可以采用公式法、定义法和几何法。

特别是在解决一元二次不等式时,需要讨论其根的情况,即有两相异实根、有两相等实根和无实根的情况。

除此之外,我们还需要了解简易逻辑,其中命题是可以判断真假的语句。

逻辑联结词包括“或”、“且”、“非”,简单命题是不含有逻辑联结词的命题,而由简单命题和逻辑联结词构成的命题是复合命题。

在四种命题形式中,原命题、逆命题、否命题和逆否命题都需要进行真假判断。

最后,如果已知p可以推出q,那么我们说p是q的充分条件,而q是p的必要条件。

函数知识回顾:一)映射与函数映射是指一个元素通过某种规则对应到另一个元素的过程。

如果对于集合A中的每一个元素a,都能唯一地找到集合B中的一个元素b与之对应,则称这个映射为从A到B的映射,并记作f:A→B。

如果对于A中的不同元素a1和a2,它们所对应的B中的元素不同,即f(a1)≠f(a2),则称这个映射是一一映射。

函数是一种特殊的映射,它的定义域和值域都是实数集合。

函数的三要素是定义域、对应法则和值域,其中定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。

二)函数的性质1.函数的单调性定义:对于函数f(x)的定义域I内某个区间[a,b]上的任意两个自变量的值x1,x2,若当x1f(x2),则说f(x)在这个区间上是减函数。

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间。

此时也说函数是这一区间上的单调函数。

2.函数的奇偶性定义:对于函数f(x),若对于定义域内的任意x,都有f(-x)=f(x),则称函数为偶函数;若对于定义域内的任意x,都有f(-x)=-f(x),则称函数为奇函数;若既不是偶函数也不是奇函数,则称函数为既非奇函数也非偶函数。

2020年高考数学(文科)一轮复习 第41讲直线 平面平行的判定与性质

2020年高考数学(文科)一轮复习    第41讲直线 平面平行的判定与性质

听课手册 第41讲 直线 平面平行的判定与性质1.直线与平面平行的判定与性质类别语言表述图形表示 符号表示 应用判定一条直线与一个平面 ,则称这条直线与这个平面平行a ∩α=⌀⇒a ∥α证明直线与平面平行 平面外 平行,则该直线与此平面平行a ⊄α,b ⊂α,且a ∥b ⇒a ∥α性质 一条直线与一个平面平行,则过这条直线的任一平面与此平面的 与该直线a ∥α,a ⊂β,α∩β=b ⇒a ∥b 证明直线与直线平行2.平面与平面平行的判定与性质类别语言表述图形表示符号表示应用判定 一个平面内的两条 与另一个平面平行,则这两个平面平行a ⊂α,b ⊂α,a ∩b=P ,a ∥β,b ∥β⇒α∥β证明平面与平面平行如果一个平面内有两条 分别平行于另一个平面内的两条 ,那么这两个平面平行a ⊂α,b ⊂α,a ∩b=P ,a ∥a',b ∥b',a'⊂β,b'⊂β,a'∩b'=P'⇒α∥β垂直于 的两个平面平行a ⊥α,a ⊥β⇒α∥β(续表)类别语言表述图形表示符号表示应用 性质两个平面平行,则其中一个平面内的直线必 于另一个平面α∥β,a ⊂α⇒a ∥β证明直线与平面平行如果两个平行平面同时和第三个平面相交,那么它们的 平行α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b 证明直线与直线平行常用结论1.垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.2.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.3.三种平行关系的转化:线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想,解题中既要注意一般的转化规律,又要看清题目的具体条件,选择正确的转化方向.题组一常识题1.[教材改编]已知直线a∥平面α,P∈α,那么过点P且平行于直线a的直线有条.2.[教材改编]如图7-41-1,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB= .图7-41-1图7-41-23.[教材改编]如图7-41-2所示,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面ACE的位置关系为.4.[教材改编]在正方体ABCD-A1B1C1D1中,下列结论正确的是.(填序号)图7-41-3①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.5.[教材改编]图7-41-3是一个长方体被一个平面截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为.题组二常错题◆索引:对空间平行关系的相互转化条件理解不够,忽略线面平行、面面平行的条件.6.设m,l表示两条直线,α表示平面,若m⊂α,则“l∥α”是“l∥m”的条件.7.(1)若直线a与平面α内无数条直线平行,则a与α的关系是.(2)已知两条直线a,b和两个平面α,β,若a⊂α,b⊂α,a∥β,b∥β,则α与β的关系是.(3)若平面α∥平面β,直线a∥α,则a与β的关系是.8.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线有条.9.下列条件中,能判断两个平面平行的是.(填序号)①一个平面内的一条直线平行于另一个平面;②一个平面内的两条直线平行于另一个平面;③一个平面内有无数条直线平行于另一个平面;④一个平面内任何一条直线都平行于另一个平面.探究点一平行关系的基本问题例1(1)[2018·厦门质检]如图7-41-4,图7-41-4在正方体ABCD-A1B1C1D1中,M,N,G分别是C1D1,BC,A1D1的中点,则下列结论正确的是()A.MN∥AGB.MN∥BD1C.MN∥平面BB1D1DD.MN∥平面BDG(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α[总结反思]解决空间中线面、面面平行的基本问题要注意以下几个方面:(1)判定定理与性质定理中易忽视定理成立的条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)举反例否定结论.变式题(1)[2018·泉州质检]已知两条直线a,b,两个平面α,β,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件图7-41-5C.充要条件D.既不充分也不必要条件(2)如图7-41-5所示,在四面体ABCD中,点M,N分别是△ACD,△BCD的重心,则四面体的四个面中与直线MN平行的是.探究点二线面平行的判定与性质例2[2018·吉林延边州模拟]如图7-41-6所示,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.图7-41-6(1)求证:DE∥平面PBC;(2)求三棱锥E-PBC的体积.[总结反思](1)证明线面平行的常用方法:①利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),使用这个定理的关键是在平面内找到一条与已知直线平行的直线,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行;②利用面面平行的性质(α∥β,a⊂α⇒a∥β),即若两平面平行,则其中一个平面内的任意一条直线平行于另一个平面. (2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.变式题如图7-41-7,在三棱柱ABC-A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=2AC.3,求AA1的长;(1)若三棱锥A1-C1ME的体积为√26(2)证明:CB1∥平面A1EM.图7-41-7探究点三面面平行的判定与性质例3[2018·烟台一模]如图7-41-8①,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图7-41-8②所示,E,F分别为PC,CD的中点,求证:平面OEF∥平面PAD.图7-41-8[总结反思]证明面面平行的常用方法:(1)利用面面平行的判定定理;(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β);(3)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).变式题[2018·新乡一模]如图7-41-9,几何体ABC-A1DC1是由一个正三棱柱截去一个三棱锥而得的,AB=4,A1D=1,AA1⊥平面ABC,M为AB的中点,E为棱AA1上一点,且EM∥平面BC1D.若N在棱BC上,且BN=2NC,证明:EN∥平面BC1D.图7-41-9完成课时作业(四十一)。

高三文科数学知识要点总结

高三文科数学知识要点总结

高三文科数学知识要点总结无论你是理科生还是文科生,数学公式,你必须掌握。

接下来是小编为大家整理的高三文科数学知识要点总结,希望大家喜欢!高三文科数学知识要点总结一1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

高三文科数学知识要点总结二【一、《集合与函数》】内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

【二、《三角函数》】三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

高考文科数学知识点归纳

高考文科数学知识点归纳

高考文科数学知识点归纳高考文科数学必考考点有哪些呢?那么,下面是小编为大家整理的关于高考文科数学知识点归纳,希望对您有所帮助。

欢迎大家阅读参考学习!2020高考文科数学知识点第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

2020高考文科数学知识点:文科数学高频必考考点第一部分:选择与填空1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);2.常用逻辑用语(充要条件,全称量词与存在量词的判定);3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);4.幂、指、对函数式运算及图像和性质5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);6.空间体的三视图及其还原图的表面积和体积;7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;12.向量数量积、坐标运算、向量的几何意义的应用;13.正余弦定理应用及解三角形;14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;15.线性规划的应用;会求目标函数;16.圆锥曲线的性质应用(特别是会求离心率);17.导数的几何意义及运算、定积分简单求法18.复数的概念、四则运算及几何意义;19.抽象函数的识别与应用;第二部分:解答题第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;第18题:(文)概率与统计(概率与统计相结合型)(理)离散型随机变量的概率分布列及其数字特征;第19题:立体几何①证线面平行垂直;面与面平行垂直②求空间中角(理科特别是二面角的求法)③求距离(理科:动态性)空间体体积;第20题:解析几何(注重思维能力与技巧,减少计算量)①求曲线轨迹方程(用定义或待定系数法)②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)③求定点、定值、最值,求参数取值的问题;第21题:函数与导数的综合应用这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

高考2020文科数学知识难点整理

高考2020文科数学知识难点整理

高考2020文科数学知识难点整理高考2020文科数学知识难点整理一1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.高考2020文科数学知识难点整理二导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。

寻找已知的函数在某点的导数或其导函数的过程称为求导。

实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

天津文科高考数学知识点

天津文科高考数学知识点

天津文科高考数学知识点数学是文科高考中不可忽视的一门科目,无论是综合科目还是理论科目,数学都占有重要的地位。

天津文科高考中的数学知识点主要包括以下几个方面:1. 函数与方程函数与方程是高中数学的基础,也是文科高考的重点内容之一。

其中包括一次函数、二次函数、三角函数、指数函数、对数函数等,并要求学生了解函数的性质与图像的变化规律。

方程方面主要包括一元一次方程、一元二次方程、二元一次方程组、二元二次方程组等。

2. 三角与向量三角与向量是文科高考中的另一大板块,其中主要包括三角函数的性质与应用,平面向量的基本概念与运算,向量的数量积与叉积等。

在考试中,要求学生能够熟练掌握三角函数的基本公式,能够灵活运用向量的运算法则解决相关的几何问题。

3. 几何与立体几何几何与立体几何是文科高考数学中的重要内容,包括平面几何的基本性质与定理,立体几何的基本概念与理论。

要求学生能够熟练掌握平面几何的基本定理,如勾股定理、相似定理等,并能够灵活运用理论解决相关几何问题。

4. 概率与统计概率与统计是文科高考数学的另一个重要部分。

概率主要包括事件的概念与运算、样本空间与事件的概率计算等,要求学生能够灵活运用概率计算相关问题。

统计方面主要包括数据的收集与整理、频率分布表的制作与分析等,要求学生能够熟练运用统计方法进行数据分析。

5. 导数与微分导数与微分是文科高考数学的难点部分,要求学生熟练掌握导数的基本概念与性质,并能够运用导数解决相关问题。

微分方面主要包括微分的定义与计算、微分中值定理等,要求学生能够理解微分的概念与意义,并能够应用微分解决实际问题。

除了以上几个方面的重点知识点之外,还有其他一些细节内容需要考生注意。

例如,数列与数列的概念与性质、排列与组合的基础知识与应用、二次函数与二次曲线的基本特点与性质等。

这些知识点虽然不是数学中的重点内容,但在文科高考中也有一定的考查频率。

总的来说,天津文科高考中的数学知识点众多而繁杂,要求考生具备扎实的基础知识,能够熟练掌握各种数学概念与性质,并能够灵活运用知识解决实际问题。

2020高考数学全套知识点

2020高考数学全套知识点

2020高考数学全套知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真∧p q p q∨若为真,当且仅当、至少有一个为真p q p q⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]>->=+-())()()0义域是如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x_。

2020高考文理科数学必考知识点

2020高考文理科数学必考知识点

2020 高考文理科数学必考知识点高考临近,你的数学基础知识掌握的怎么样,学知识要学会总结,下面就是小编给大家带来的,希望大家喜欢!1.【数列】&【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 2014、2015 年大题第一题考查的是数列,2016 年大题第一题考查的是解三角形,故预计 2017 年大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。

解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3.【概率】高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4.【解析几何】高考在第 20 题的位置考查一道解析几何题。

主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5.【导数】高考在第 21 题的位置考查一道导数题。

主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。

坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。

第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2020年高考文科科数学知识点--整理版

2020年高考文科科数学知识点--整理版
第五章 数 列................................................................................................................................................................................................................ 15 第一节数列的概念与简单表示法 ......................................................................................................................................................................... 15 第二节等差数列及其前 n 项和 ............................................................................................................................................................................. 16 第三节等比数列及其前 n 项和 ............................................................................................................................................................................. 16 第四节数列求和 ...................................................................................................................................................................................................... 17

2020年高考课标版高考文科数学 §9.4 双曲线及其性质

2020年高考课标版高考文科数学    §9.4 双曲线及其性质

= c = a
1
b2 a2
=2,故选D.
答案 D
考向二 求双曲线的渐近线方程
例4 (2019届广东佛山第一中学9月月考,3)已知双曲线 x2 - y2 =1(m>0)
16 m
的焦点在圆x2+y2=25上,则双曲线的渐近线方程为 ( )
A.y=± 5 x B.y=± 4 x
4
5
C.y=± 3 x D.y=± 4 x
答案 B
考向二 求双曲线的标准方程 x2 y2
例2 (2015天津,5,5分)已知双曲线 a2 - b2 =1(a>0,b>0)的一个焦点为F(2,
0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为 ( )
A. x2 - y2 =1
9 13
B. x2 - y2 =1
13 9
C. x2 -y2=1
4
3
解析 由双曲线 x2 - y2 =1(m>0)知其焦点在x轴上,∴可设焦点坐标为
16 m
(±c,0)(c>0),∴(±c)2=25,解得c=5.又知c2=16+m,∴m=9.∴双曲线的渐近线
方程为y=± 3 x,故选C.
4
答案 C
考点三 直线与双曲线的位置关系
考向基础 1.直线与双曲线的位置关系:①无交点;②有一个交点,可能相切,也可能 相交;③有两个交点,在一支上或在两支上. 2.研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程, 消元,得关于x或y的方程,当二次项系数等于0时,直线与双曲线相交于某 支上一点;当二次项系数不等于0时,用判别式Δ来判定.
考向突破
考向 弦中点问题
例5 已知直线y=1-x与双曲线ax2+by2=1(a>0,b<0)的渐近线交于A、B两

文科高考数学必背知识点

文科高考数学必背知识点

文科高考数学必背知识点一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档