人教版五年级数学下册导学案:第三单元第6课时 长方体和正方体的体积公式(精校).doc

合集下载

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

◎教学笔记第2课时长方体和正方体的体积(1)教学内容教科书P29~31的内容,完成教科书P31“做一做”。

教学目标1.经历长方体和正方体体积计算公式的推导过程,理解和掌握长方体和正方体的体积计算方法。

2.通过自主探索和合作交流,培养学生分析、比较、类推、归纳的能力,进一步发展学生的空间观念。

3.能运用长方体和正方体的体积公式解决简单的实际问题,感悟到数学来源于生活,应用于生活。

教学重点理解并掌握长方体和正方体体积的计算方法。

教学难点理解长方体和正方体体积计算公式的推导过程。

教学准备课件,12个棱长为1cm的小正方体。

教学过程一、情境导入,探索新知师:同学们,什么叫体积?常用的体积单位有哪些?你能用手势比画出1cm3、1dm3、1m3的大小吗?【学情预设】学生基本上都能回答出这些问题,教师适当补充。

师:昨天,我到超市买了一箱苹果醋饮料和一块香皂,怎样才能知道它们的体积大小呢?课件出示图片。

师:同学们真聪明,你们有什么好办法测量出它们的体积吗?【学情预设】学生会说到“把香皂切成一个个1cm3的小正方体”“根据苹果醋饮料箱子的长、宽、高估一估大约是多少个1cm3的小正方体”等方法,但还想不到只要知道长方体的长、宽、高,沿长、宽、高摆1cm3的小正方体就可以推算物体的体积。

【设计意图】创设与生活密切相关的问题情境,让学生在观察、猜想、比较的过程中明确了本节课的研究方向和目标。

师:这节课我们一起来研究长方体和正方体的体积。

[板书课题:长方体和正方体的体积(1)]二、动手操作,探究长方体和正方体的体积计算方法1.启发思考。

师:怎样知道长方体的体积呢?【学情预设】有了计算平面图形面积的经验,学生会想到看一个长方体里有多少个1cm3的小正方体,测量长方体的长、宽、高进行计算等方法。

师:我们可以通过实验研究,发现规律。

2.操作实验。

(1)出示课件要求,学生小组合作摆不同形状的长方体。

用12个棱长为1cm的小正方体拼摆不同形状的长方体,它们的长、宽、高各是多少?体积又是多少呢?四人小组一起动手操作并填写表格。

长方体和正方体的体积计算公式

长方体和正方体的体积计算公式

长方体和正方体的体积计算公式
长方体和正方体是几何学中常见的两种立体形状。

它们的体积是通过不同的公式计算得出的。

首先,我们来看一下长方体的体积计算公式。

长方体是由三个相互垂直的长方形面构成的立体。

其体积可以通过将长、宽和高相乘得出。

假设长方体的长为L,宽为W,高为H,则长方体的体积V = L × W × H。

接下来,我们来讨论正方体的体积计算公式。

正方体是指具有6个相等正方形面的立体。

由于正方体的六个面都是相等的,因此我们只需要知道其中一条边的长度即可计算出体积。

假设正方体的边长为a,则正方体的体积V = a × a × a,或者简化为V = a³。

需要注意的是,长方体和正方体的体积都是以立方单位(如立方米、立方厘米等)表示的,因为体积是三个线性尺寸相乘得到的。

通过上述公式,我们可以准确计算出长方体和正方体的体积,无论是在日常生活中还是在工程项目中,这些计算公式都具有重要的实际意义。

无论是装填货物的箱子、建筑物的图纸,还是对道路或电线走廊的规划,计算体积都是必不可少的一步。

总结起来,长方体的体积计算公式为V = L × W × H,而正方体的体积计算公式为V = a³。

这些公式对于准确计算立体形状的体积非常重要,并在实际生活中具有广泛的应用。

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案一. 教材分析《长方体和正方体》是人教版数学五年级下的第三章,主要让学生掌握长方体和正方体的特征,推导它们的体积计算方法,并能够运用到实际问题中。

本章内容既是对之前平面图形的拓展,也是为之后学习立体图形的其他性质和计算打下基础。

二. 学情分析五年级的学生已经掌握了基本的平面图形知识,具有初步的空间想象力。

但长方体和正方体的体积计算较为抽象,需要学生能够将实际物体与数学概念相结合,理解并推导体积计算公式。

三. 教学目标1.了解长方体和正方体的特征,能够识别生活中的长方体和正方体。

2.掌握长方体和正方体的体积计算方法,并能够运用到实际问题中。

3.培养学生的空间想象力,提高解决问题的能力。

四. 教学重难点1.重点:长方体和正方体的特征,体积计算方法的推导。

2.难点:体积计算公式的理解与应用。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、讨论等方式,自主探索并掌握长方体和正方体的体积计算方法。

六. 教学准备1.教具:长方体和正方体模型、体积计算公式海报。

2.学具:学生分组合作用具、练习题。

七. 教学过程1. 导入(5分钟)教师通过展示生活中的长方体和正方体实例,如文具盒、书本、魔方等,引导学生观察并思考:这些物体有什么共同特征?它们是如何计算体积的?2. 呈现(10分钟)教师引导学生观察长方体和正方体的模型,呈现它们的特征,如长、宽、高,并引导学生思考如何计算它们的体积。

3. 操练(10分钟)教师引导学生分组合作,使用给定的学具,如纸板、剪刀等,制作自己的长方体和正方体模型,并尝试计算它们的体积。

4. 巩固(10分钟)教师呈现一些实际问题,如计算教室里书架的体积,让学生运用所学的体积计算方法进行解决,巩固所学知识。

5. 拓展(10分钟)教师引导学生思考:除了长方体和正方体,还有哪些立体图形的体积可以计算?它们各自的计算方法是什么?6. 小结(5分钟)教师引导学生总结本节课所学内容,长方体和正方体的特征、体积计算方法等。

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案

人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案一、教学目标1.掌握长方体和正方体的定义及特点。

2.理解长方体和正方体的体积计算公式。

3.能够推导出长方体和正方体的体积计算方法。

4.进一步理解几何体的立体图形性质。

二、教学重点1.长方体和正方体的定义和特点。

2.长方体和正方体的体积计算方法。

三、教学难点1.推导长方体和正方体的体积计算方法。

2.理解长方体和正方体的关系及应用。

四、教学准备1.板书、彩色粉笔。

2.长方体和正方体的模型。

3.课件PPT。

五、教学过程第一步:导入1.引导学生回顾长方体和正方体的定义,并复习相关特点。

第二步:讲解1.讲解长方体和正方体的体积计算公式。

2.结合实际生活中的例子,说明体积计算的重要性。

第三步:推导1.提问学生如何计算长方体和正方体的体积。

2.引导学生通过立体图形的方式,推导出长方体和正方体的体积计算方法。

第四步:巩固1.给学生发放练习册,让他们在练习中巩固所学知识。

2.师生互动,解答学生在实践中遇到的问题。

第五步:拓展1.引导学生思考长方体和正方体的特殊情况,如正方体是长方体的特殊情况。

2.讨论长方体和正方体在实际生活中的应用。

六、课堂小结1.总结长方体和正方体的体积计算方法。

2.强调掌握数学知识的重要性。

七、作业布置1.完成练习册上相关习题。

2.思考长方体和正方体在日常生活中的应用场景。

八、教学反思1.教师应当注意引导学生从实际问题出发,思考数学问题的应用性与实用性。

2.教师应关注学生的学习兴趣和思维习惯,及时给予指导和帮助。

以上为人教版数学五下第3章《长方体和正方体》(推导长正方体的体积计算方法)教案,希望能帮助学生更好地理解和掌握相关知识。

人教部编版五年级数学下册第6课时《长方体和正方体的体积公式推导》课件

人教部编版五年级数学下册第6课时《长方体和正方体的体积公式推导》课件

1.计算下面长方体和正方体的体积。
(1)
(2)
V=abh =15×12×8 =180×8 =1440(cm3)
V=a3 =8×8×8 =64×8 =512(dm3)
2.看图填表。
长 宽 高 小正方体的数量 长方体的体积
图① 4cm 1cm 1cm
4
4cm3
图② 4cm 3cm 1cm
12
12cm3
3 长方体和正方体
第6课时 长方体和正方体的体积公式推导
RJ 五年级下册
立方厘米 cm³
立方分米 dm³
立方米 m³
物体所占空间的大小叫做物体的体积。
怎样知道一个长方 体的体积是多少呢?
1 长方体体积计算公式
用 12 个棱长为 1 cm 的小正方体拼摆不同形 状的长方体,它们的长、宽、高各是多少?体 积又是多少呢?
48÷4=12(cm2) 12÷2=6(cm) 6×6×(6+2)=288(cm3) 答:原来长方体的体积是288 cm3。
2.计算长方体和正方体的体积。
(1)
(2)
15×12×8=1440(cm3)
8×8×8=512(dm3)
3.修路队要给一条长250 m,宽24 m的水泥路面铺一层 8 cm厚的沥青,一共需要沥青多少方?
8 cm=0.08 m 250×24×0.08=480(m3) 480 m3=480方 答:一共需要沥青480方。
习题
知识点1 长方体和正方体体积公式的推导
1.用12个体积为1 cm3的小正方体摆成不同的长方
体。根据你的摆法填一填。
长/cm
宽/cm
高/cm
小正方体的 数量/个
12
1
1

人教版五年级下册数学教学设计-导长正方体的体积公式

人教版五年级下册数学教学设计-导长正方体的体积公式

(人教新课标)五年级数学教案推导长正方体的体积公式教学目标:1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:长正方体体积公式的推导。

教学难点:运用公式计算。

教学用具:1立方厘米学具。

教学过程:一、复习:1、什么叫物体的体积?2、常用的体积单位有哪些?3、什么是1立方厘米、1立方分米、1立方米?二、导入新课:1、导入:我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

要知道老师手中的这个长方体和正方体的体积?你有什么办法?(用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。

)说明:用拼或切的方法看它有多少个体积单位。

但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱,电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。

(板书课题)2、新课:(!)、请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?(2)、板书学生的:(设想举例)体积每排个数排数排数层数4411842124432(3)、观察:每排个数、排数、层数与体积有什么关系?板书:体积=每排个数排数排数×层数每排个数、排数、层数相当于长方体的什么?因为每一个小正方体的棱长是1厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

(4)如何计算长方体的体积?板书:长方体体积=长×宽×高字母公式:V=abh三、练习:1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?2、导出正方体体积公式:根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?4、看表计算:请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?四、小结:这节课学会了什么?怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》教案

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》教案

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》教案一. 教材分析《长方体和正方体的体积公式》是人教版小学五年级数学下册第六课时内容。

本节课主要让学生掌握长方体和正方体的体积计算公式,并通过实际操作和练习,使学生能够灵活运用这些公式解决实际问题。

教材通过生动的图片和直观的立体图形,引导学生探究长方体和正方体的特征,从而发现体积的计算规律。

二. 学情分析五年级的学生已经具备了一定的空间想象能力和逻辑思维能力。

他们在学习本节课之前,已经掌握了长方体和正方体的基本知识,对立体图形的特征有一定的了解。

但部分学生可能对体积公式的推导和应用还不够熟练。

因此,在教学过程中,教师需要关注学生的学习差异,有针对性地进行教学。

三. 教学目标1.知识与技能目标:使学生掌握长方体和正方体的体积计算公式,能够正确计算长方体和正方体的体积。

2.过程与方法目标:通过观察、操作、探究等方法,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:长方体和正方体的体积计算公式的推导和应用。

2.难点:体积公式的灵活运用和解决实际问题。

五. 教学方法1.情境教学法:通过生动的情景,引导学生主动参与学习,提高学生的学习兴趣。

2.操作教学法:让学生亲自动手操作,观察长方体和正方体的特征,发现体积的计算规律。

3.合作学习法:分组讨论,培养学生的团队协作能力和沟通能力。

4.启发式教学法:引导学生主动思考,发现问题,解决问题。

六. 教学准备1.教具:长方体和正方体的模型、卡片、课件等。

2.学具:每位学生准备一个长方体和正方体模型,用于观察和操作。

七. 教学过程1.导入(5分钟)教师通过课件展示长方体和正方体的图片,引导学生回顾长方体和正方体的特征。

然后提出问题:“你们知道长方体和正方体的体积如何计算吗?”激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现长方体和正方体的体积计算公式,并用具体的例子进行解释。

五年级数学下册第3单元长方体和正方体第6课时长方体和正方体的体积公式和应用教案新人教版

五年级数学下册第3单元长方体和正方体第6课时长方体和正方体的体积公式和应用教案新人教版

第 6 课时长方体和正方体的体积公式和应用【教学目标】结合具体情境和实践活动, 探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。

2. 通过“猜想—验证”的过程, 使学生获取数学活动经验。

3. 在观察、操作、探索的过程中, 提高学生动手操作能力, 进一步发展空间观念, 并解决一些简单的实际问题。

【教学重点】理解长方体和正方体的体积公式的推导过程, 掌握计算方法。

【教学难点】理解长方体和正方体的体积公式的推导过程。

【教学方法】讲授法、讨论法【课前准备】PPT【教学过程】一引入新课物体所占空间的大小叫做物体的(体积)。

计量体积要用体积单位,常用体积单位有(立方厘米)、(立方分米)和(立方米),可以分别写成(cm3)、(dm3)和( m3)。

引出课题。

[板书:长方体和正方体的体积公式和应用]二课前检测师布置任务:1.学生自查、互查预习单。

2.预习存疑,二次探究。

3.通过预习,你收获了什么?还有哪些疑问?针对课前预习的预习单进行简单的梳理,并让全班同学互相解决预习中存在的问题,教师适时引导。

师:看来大部分同学预习得都非常棒!不会的同学也不要灰心,接下来就更深入地探究吧!三探索新知1.长方体体积计算公式。

教师课件出示一块小型长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?引导学生回答:小型长方体积木的体积可以用1立方厘米的正方体去摆,有多少个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1立方厘米或1立方分米去量就比较麻烦。

师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1 cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

长宽高小木块的数量长方体的体积学生拼摆,然后填表,集体汇报。

长宽高小木块的数量长方体的体积8cm 3cm 1cm 24块24cm34cm 3cm 2cm 24块24cm312cm 2cm 1cm 24块24cm36cm 2cm 2cm 24块24cm3说明学生拼摆长方体的样式非常多,这里只列举几个。

五年级下册数学导学案课题长方体和正方体体积的统一公式

五年级下册数学导学案课题长方体和正方体体积的统一公式
根据自主学习的情况明确展示任务,进行展示。
达标检测


7 分钟

一是学生小组内部或小组间互相检查学生完成情况,并作出评价。二是教师对发现的学生中存的共性问题予以及时的点拨或留待辅导时间予以专题讲解。
1、长方体的底面积是24平方厘米,高5厘米。它的体积是多少?
2、一根长方体木料,长4米,横截面的面积是0.025平方米。这根木料的体积是多少?
XX小学五年级下册数学导学案
课题
长方体和正方体体积的统一公式
课时
第三单元第6课时
课型
新授课
执教时间
主备人
XX
审核人
XX
执教人
学习目标
1、在理解了长方体和正方体体积公式,我能运用公式进行计算的基础上,进一步研究求长方体正方体体积的其它计算公式。
2、进一步培养我的空间观念和空间想象能力。
学习方法
五环:自主学习——合作探究——汇报展示——达标检测——拓展延伸
板书设计
长方体和正方体体积的统一公式
长方体的体积=长 ×宽×高 正方体的体积=棱长×棱长×棱长
所以,长方体(或正方体)的体积=×
用字母表示上面的公式可以写作:
课后反思
3、一堆长方体木料,底面积是1.5㎡,高是1.2m,这堆木料的体积是多少?
拓展延伸


6
分钟

教师检查或小组自查,发现问题教师课堂立即订正。
1、把一根长 2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?
2、有一块棱长是80厘米的正方体铁块,要把它熔铸成一个横截面积是200平方厘米的长方体,这个长方体的长是多少厘米?
四步:学、交、练、导

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》说课稿

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》说课稿

人教版小学五年级数学下册第6课时《长方体和正方体的体积公式》说课稿一. 教材分析《长方体和正方体的体积公式》是人教版小学五年级数学下册第六课时的重要内容。

本节课主要让学生掌握长方体和正方体的体积计算公式,培养学生的空间想象力,为后续学习几何图形打下基础。

教材通过生活中的实例引入长方体和正方体的概念,然后引导学生通过观察、操作、思考、交流等方式,探索并得出体积计算公式。

教材内容由浅入深,由具体到抽象,既注重了知识的传授,又重视了学生的探究过程,有利于培养学生的综合素质。

二. 学情分析五年级的学生已经具备了一定的空间想象力,对简单的几何图形有一定的认识。

他们在学习本节课的内容时,能够联系生活实际,理解长方体和正方体的特征。

但是,学生对体积公式的推导过程还较为陌生,需要通过大量的操作活动来加深理解。

此外,学生的学习习惯、知识基础等方面存在差异,教师在教学过程中要关注全体学生,尽量让每个学生都能在课堂上得到锻炼和提高。

三. 说教学目标1.知识与技能目标:学生能够理解长方体和正方体的体积概念,掌握长方体和正方体的体积计算公式,学会运用体积公式解决实际问题。

2.过程与方法目标:学生通过观察、操作、思考、交流等过程,培养空间想象力,提高解决问题的能力。

3.情感态度与价值观目标:学生体验数学与生活的紧密联系,增强对数学学习的兴趣和信心。

四. 说教学重难点1.教学重点:学生掌握长方体和正方体的体积计算公式,能够运用体积公式解决实际问题。

2.教学难点:学生对体积公式的推导过程的理解,以及如何将体积公式应用于实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、启发式教学法等,激发学生的学习兴趣,引导学生主动探究。

2.教学手段:利用多媒体课件、实物模型、操作卡片等辅助教学,使抽象的体积概念具体化、形象化。

六. 说教学过程1.导入新课:通过生活中的实例,引导学生认识长方体和正方体,激发学生的学习兴趣。

人教版五年级下册数学第3单元第6课时 长方体和正方体的体积公式推导和应用授课课件(15张PPT)

人教版五年级下册数学第3单元第6课时 长方体和正方体的体积公式推导和应用授课课件(15张PPT)
答:它的体积是1800立方厘米。
练习巩固
一个体积为60立方米的长方体铁箱,这个铁 箱的高是5米,底面面积是多少平方米?
V = 2平方米。
练习巩固
一个正方体的棱长总和是96厘米,它的体积是 多少立方厘米?
96厘米
96÷12=8(厘米)
V = a³
=8×8×8 = 512(cm³)
答:它的体积是512立方厘米。
知识总结
长方体和正方体的体积
长方体体积? 正
长×宽×高
V =a b h
棱长×棱长×棱长

正方体体积
V = a³
课后作业
课后练习
人教版小学数学五年级下册
谢谢观看
> 12 3

2个

10个

2个
知识讲解
你知道一个纸箱能
装多少龙眼吗?
其实就是求长
长方体体积=长×宽×高方体的体积?
V =abh
知识讲解
1立方厘米
思 求正方体的体积
棱长
3个
棱长
3个
棱长
3个
知识讲解
你知道一个纸箱能
装多少龙眼吗正?方体体积=棱长×棱长其方×实体棱就的长是体求积长?
V =a a a V = a³
知识讲解
长×宽
底面积
棱长×棱长
长方体(正方体)体积=底面积×高
V = sh
知识讲解
计算下面各题。
例1
7cm
V =a b h
=7×4×3 = 84(cm³)
3cm
6cm
V = a³
=6×6×6 = 216(cm³)
练习巩固
一个长方体,长30厘米,宽15厘米,高4厘 米。求它的体积。

五年级下册数学教案-第三单元第六课时长方体和正方体体积的计算人教新课标

五年级下册数学教案-第三单元第六课时长方体和正方体体积的计算人教新课标

第六课时长方体和正方体体积的计算教学内容:义务教育六年制第十册第30 页。

教学目的1、使学生理解长方体和正方体体积公式的推导过程,掌握长方体和正方体体积的计算公式;初步学会计算长方体和正方体的体积;2、通过设疑自探、解疑合探等环节培养学生提出问题能力、实际操作能力、推理能力、运用已学知识解决实际问题的能力,同时发展他们的空间观念;3、在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

教学重点理解长方体和正方体体积计算公式的推导过程,掌握长方体、正方体体积的计算方法,正确计算长方体、正方体的体积。

教学难点长方体体积计算公式的推导。

教学准备多媒体课件,长方体、正方体模型。

每个学生24个棱长为1 厘米的小正方体。

教学过程:、设疑自探(一)(5 分钟)一)基本练习:1、长方形的面积是怎样计算的?长方形面积的大小与它的什么有关?2、什么叫物体的体积?3、常用的体积单位有哪些?4、(1)课件出示1 个1 立方厘米的小正方体,问:体积是多少?2)课件出示4个1立方厘米的小正方体拼成的长方体,问:长、宽、高、体积各是多少?你是怎样知道体积的?3)如果要使体积是6 立方厘米,要用几个1立方厘米的小正方体呢?长、宽、高各是多少?二)设疑引课1、出示一根切成长4 厘米,宽3 厘米,高2 厘米的长方体萝卜。

问:怎样知道这个萝卜的体积呢?(引导学生回答:把萝卜切成一个1 立方厘米大的小正方体,看一共可以切成多少个,就能知道它的体积有多大。

即切割法)学生回答完后,多媒体演示切萝卜的过程,指导学生观察。

教师:在生活中,有许多长方体,是不能切开来数的,也不能直接看出它的体积的大小。

比如最近学校要在操场上修建一个长方体的沙坑,作为运动会跳远的场地。

要求长方体沙坑的体积,能用切割法吗?2、回顾刚才我们所回答的问题,请同学们猜测一下,今天我们要学习的内容是什么?(教师板书课题:长方体和正方体体积的计算)(如果学生只提出要学习长方体体积的计算,教师就只板书长方体体积的计算,当学生在预设问题提到时,教师再顺势加以补充板书。

人教版五年级数学下册导学案第6课时长方体和正方体的体积公式

人教版五年级数学下册导学案第6课时长方体和正方体的体积公式
三、合作互助学习;
1、判断.
① 物体所占空间的大小叫做物体的面积.( )
② 两个体积相等的长方体的长、宽、高一定相等.( )
③ 两个体积相等的正方体,他们的棱长一定相等.( )
④ 一立方米比一平方米大.( )
⑤ 棱长是6厘米的正方体的体积和表面积相等.( )
2、现在动手测量数学书的长、宽、高取整毫米数,并计算数学书的体积.
导学流程
自主空间
一、前置性学习;
1、提问;什么是体积?计量体积的常用单位有哪些?
2、请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)
3、常用的体积单位有哪些?你能想象或比划一下他们个个有多大吗?
4、演示动画;第一组;请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
第二组;同上要求摆出长3厘米,宽3厘米,高2厘米的长方体说出体积.
第三组;想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
通过拼摆发现,每排小正方体的个数相当于下册导学案第6课时长方体和正方体的体积公式
学习内容
第六课时;长方体和正方体的体积公式
编写人
学习目标
1、掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位.2、能正确选择和使用体积的公式以及公示的变式.
重 难 点
重点;能正确选择和使用体积的公式难点;公式变式的灵活应用.
3、光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
四、展示引导学习;
1、分小组展示学习中的疑问和收获.

五年级下册数学课件-第3单元 长方体和正方体 第6课时 长方体和正方体的体积公式推导 人教版

五年级下册数学课件-第3单元 长方体和正方体 第6课时  长方体和正方体的体积公式推导 人教版

不对。改正:50×25×1.8=2250(m3) 答:需要2250 m3的水。
辨析:做题时易选错水的深度这 一条件。
提升点 1 把长方体削成最大的正方体
5.把一个长10 cm,宽8 cm,高15 cm的长方体削成 一个最大的正方体,削去部分的体积是多少立方 厘米?
10×8×15-8×8×8=688(cm3) 答:削去部分的体积是688 cm3。
8 cm=0.08 m 250×24×0.08=480(m3) 480 m3=480方 答:一共需要沥青480方。
易错辨析
4.下面的做法对吗?若不对,请改正。 一个长方体游泳池,长50 m,宽25 m,深2 m。如
果要向游泳池注入1.8 m深的水,需要多少立方 米的水? 50×25×2=2500(m3) 答:需要2500 m3的水。
12
4
3
1
12
3
2
2
12
长方体的 体积/cm3
12
12 12 12
体积
长×宽×高
abh
棱长×棱长
棱长× a3
知识点 2 运用长方体和正方体的体积公式计算
2.计算长方体和正方体的体积。
(1)
(2)
15×12×8=1440(cm3)
8×8×8=512(dm3)
3.修路队要给一条长250 m,宽24 m的水泥路面铺一层 8 cm厚的沥青,一共需要沥青多少方?
提升点 2 运用“等积变形思想”解决问题
6.把一个棱长是0.8 m的正方体钢块,铸造成一根长 0.5 m,宽0.4 m的长方体钢柱。这根钢柱的高是多 少米? 0.8×0.8×0.8÷(0.5×0.4)=2.56(m) 答:这根钢柱的高是2.56 m。

2022五年级数学下册第3单元长方体和正方体第6课时长方体和正方体的体积公式推导新授课件新人教版

2022五年级数学下册第3单元长方体和正方体第6课时长方体和正方体的体积公式推导新授课件新人教版

① ② ③

将摆法不同的长方
小正方体的 长方体的
数量
体积
① 12 1
1
12
12
②4
3
1
12
12
③6
2
1
12
12
④3
2
2
12
12
观察上表,你发现了什么?
长方体所含体积单位的数量 就是长方体的体积。
长方体的体积 = 每行的个数×行数×层数
长方体的体积 = 长 × 宽 ×高
图③ 4cm 3cm 3cm
36
36cm3
3.判断。
(1)棱长是6cm的正方体,体积和表面积相等。( × )
体积和面积是两个不同的 概念,两者单位不同,不能 比较大小。
(2)一个正方体的棱长扩大到原来的2倍,那么它 的体积就扩大到原来的4倍。 ( × )
4.将下面的表格补充完整。
长/dm
长 方
1.计算下面长方体和正方体的体积。
(1)
(2)
V=abh =15×12×8 =180×8 =1440(cm3)
V=a3 =8×8×8 =64×8 =512(dm3)
2.看图填表。
长 宽 高 小正方体的数量 长方体的体积
图① 4cm 1cm 1cm
4
4cm3
图② 4cm 3cm 1cm
12
12cm3
5

6
7
宽/dm 1 5
3
棱长/m
正 方
6

5
4
高/dm 3 4 4
体积/dm3 15 120 84
体积/m3 216 125 64
这节课你们都学会了哪些知识?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习内容
第六课时:长方体和正方体的体积公式
编写人
学习目标
1、掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。2、能正确选择和使用体积的公式以及公示的变式。
重 难 点
重点:能正确选择和使用体积的公式难点:公式变式的灵活应用。
导学流程
自主空间
一、前置性学习:
1、提问:什么是体积?计量体积的常用单位有哪些?
二、独立自主学习:(自学课本P29-30页)
1、长方体的体积公式是什么?字母公式是
2、正方体的体积公式是什么?字母公式是
3、口答填表.



长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
1024正源自方体棱长/米
体积(立方米)
6
30
0.4
3、讨论长方体和正方体的体积计算方法是否相同
三、合作互助学习:
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?
通过拼摆发现,每排小正方体的个数相当于长方体的,牌数相当于长方体的,层数相当于长方体的。
长方体所含小正方体的个数正好等于长方体长、宽、高的。
1、判断。
① 物体所占空间的大小叫做物体的面积。( )
② 两个体积相等的长方体的长、宽、高一定相等。( )
③ 两个体积相等的正方体,他们的棱长一定相等。( )
④ 一立方米比一平方米大。( )
⑤ 棱长是6厘米的正方体的体积和表面积相等。( )
2、现在动手测量数学书的长、宽、高取整毫米数,并计算数学书的体积。
3、光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
四、展示引导学习:
1、分小组展示学习中的疑问和收获。
2、老师对需要强化的知识点进行指导。
五、评价提升学习:
1、一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
教学反思
2、请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)
3、常用的体积单位有哪些?你能想象或比划一下他们个个有多大吗?
4、演示动画:第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体说出体积.
相关文档
最新文档