高思竞赛数学导引 五年级第三讲 质数与合数学生版

合集下载

高思竞赛数学导引-五年级第三讲-质数与合数学生版汇编

高思竞赛数学导引-五年级第三讲-质数与合数学生版汇编

第3讲质数与合数内容概述掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算乘积末尾零的个数.典型问题兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?2.有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.3.请写出5个质数,使得它们正好构成一个公差为12的等差数列.4.请把下面的数分解质因数:(1) 160;(2) 598;(3) 211.5.三个自然数的乘积为84,其中两个数的和正好等于第三个数,请求出这三个数.6.用一个两位数除330,结果正好能整除,请写出所有可能的两位数.7.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?8.请将2、5、14、24、27、55、56、99这8个数分成两组,使得这两组数的乘积相等.9.请问:算式l x2 x3×…×15的计算结果的末尾有几个连续的0?10.请问:连续两个两位数乘积的末尾最多有几个连续的0?拓展篇1.一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.2.9个连续的自然数中,最多有多少个质数?3.(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?4.一请把下面的数分解质因数:(1) 360; (2) 539; (3) 373; (4) 12660.5.有一些最简真分数,它们的分子与分母的乘积都等于140.把所有这样的分数从小到大排列,其中第三个分数是多少?6.冬冬在做一道计算两位数乘以两位数的乘法题时,把一个乘数中的数字5看成了8,由此得乘积为1104.正确的乘积是多少?7.甲、乙、丙三人打靶,每人打三枪.三人各自中靶的环数之积都是60,且环数是不超过10的自然数.把三个人按个人总环数由高到低排列,依次是甲、乙、丙.请问:靶子上4环的那一枪是谁打的?8.975×935×972×□,要使这个连乘积的最后4个数字都是0,方框内最小应填什么数?9.(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?10.把从l开始的若干个连续的自然数1,2,3,…,乘到一起.已知这个乘积的末尾13位恰好都是0.请问:在相乘时最后出现的自然数最小应该是多少?11.168乘以一个大于0的整数后正好是一个平方数.乘的这个整数至少是多少?所得乘积又是多少的平方?12.(1) 60乘以一个三位数后,正好得到一个平方数.这个三位数至少是多少?(2) 72乘以一个三位数后,正好得到一个立方数.这样的三位数一共有多少个?超越篇1.如图3-1,三张卡片上各印有一个数字.从这三张卡片中选取一张或多张(每张最多选1次)拼成质数,一共可以拼成多少个不同的质数?2.用l、2、3、4、5、6、7、8、9这9个数字组成若干质数,要求每个数字恰好使用一次.请问:最多能组成多少个质数?请找出一种满足要求的组法,3.三个质数的乘积恰好等于它们和的5倍,这三个质数分别是多少?4.在射箭运动中,每射一箭得到的环数都是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙各自的总环数.5.两名运动员进行一场乒乓球比赛,采取三局两胜制,每局先得11分者为胜,如果打到10平,则先多得2分者为胜.结果三局比赛下来,单方最高得分都不超过20分,把每人每局得分乘在一起恰为480480.请问:各局的比分分别是多少?(按大比小的方式写出)6.如图3-2,把13、12、15、25、20这5个数依次排列.它们每相邻的两个数相乘得4个数,这4个数每相邻的两个数相乘得3个数,这3个数每相邻的两个数相乘得2个数,这2个数相乘得1个数,请问:最后这个数从个位起向左数,可以连续地数出几个0?7.从l !,2!,3!,…,100!这100个数中去掉一个数,使得剩下各数的乘积是一个完全平方数.请问:被去掉的那个数是什么?8.已知对任意正整数n ,都有公式:6)12()1(21222+⨯+⨯=+++n n n n ,求分数 !100)10021()321()21(1222222222+++⨯⨯++⨯+⨯ 化成最简分数后的分母。

高思竞赛数学导引-五年级和差倍分问题学生版汇编

高思竞赛数学导引-五年级和差倍分问题学生版汇编

学习-----好资料第6讲和差倍分问题内容概述在和差倍问题中引入“分数倍”的概念,并理解其含义。

解题中应合理选取单位“1”,题目中隐藏的不变量或公共量往往是关键。

典型问题兴趣篇5,其余都是手榴弹。

由于遇上敌军伏枚弹药送到前线,其中炮弹占了1、运输连要将450923,而手榴弹只剩下击,炮弹损失了,送到是还剩多少枚弹药?582、学校举行新年自助餐会,一共准备了1000瓶饮料,其中一部分是可乐,剩下的全是果汁。

1,但可乐的数量却没有改变。

如果此时饮料还剩果汁已经减少了872瓶,那一个小时后,5么可乐的数量是多少瓶?11,黄球占总球数的,绿、口袋里装着红、黄、绿三种颜色的球。

其中红球占总球数的334个。

口袋里一共有几个球?球比黄球多505,现在已完成计划的、游戏公司计划生产一批限量版的游戏机。

4如果再生产340台,总121,原计划生产多少台?产量就超过计划的8更多精品文档.学习-----好资料11,第二天完成了剩下部分的,前5、一个工人加工一批机器零件,第一天完成了任务的53 56个。

请问:这批零件共有几个?两天一共完成了1,第二车间的人数、红星机械厂有三个车间,第一车间的人数是第二、三车间人数和的621,第三车间有105是第一、三车间人数和的人。

求该厂工人的总数。

311,丙桶中的水比甲桶中的少。

7、甲桶中的水笔乙桶中的多请问:乙、丙两桶哪桶水多?55如果把三桶水倒入一个大缸里,甲桶中的水占其中的几分之几?35,竹林占圆形的6-1是某市的园林规划图,其中草地占正方形的,正方形和圆形、图847的公共部分是水池。

已知竹林的面积比草地的面积少450平方米。

问:水池的面积是多少平方米?3阿奇的科普书数量是小悦的。

后来小悦送给阿奇11、阿奇和小悦都有很多科普书,9本书84后,阿奇的科普书数量就变成了小悦的。

原来阿奇比小悦少多少本书?7更多精品文档.学习-----好资料2,后来又来了12、课间同学们都在操场上活动,其中女生占总人数的10个女生,使得女93,操场上现在有多少名同学?生人数达到男生人数的7拓展篇1、等候公共汽车的人整齐地排列成一列,阿奇也在其中。

第03讲 质数合数(学生版)-四升五暑期数学奥数培优讲义

第03讲 质数合数(学生版)-四升五暑期数学奥数培优讲义

一、质数与合数(五上)1、质数与合数的概念质数:除了1和它本身外,没有其他因数的数.合数:除了1和它本身,还有其他因数的数.质因数:每个合数都可以写成几个质数相乘的形式,这几个质数都叫做这个合数的质因数.分解质因数:把一个合数写成若干质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.互质数:除了1以外没有其他公因数的两个数叫做互质数.2、质数的特点(1)100以内的质数(25个)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97(2)质数的特点A .有且只有一个偶质数;B .除了2和5,其余质数的末尾只能是1、3、7、9;C .质数中仅有一个数是2、3、5、7、……的倍数.3、质数的应用(1)平方判断法:判断m 是否为质数,首先寻找到不大于m 的最大平方数,然后用1至n 中的所有质数依次去除m ,如果都不能整除,则m 是质数;否则其为合数.(2)分解质因数的常见方法:短除法,分拆相乘(3)平方数性质:分解质因数后,质因数的个数为偶数个;约数个数为奇数个;约数不是成对出现的;个位数字为0、1、4、5、6、9.一、 质数合数1、下面是主试委员会这第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;第3讲 质数与合数 四升五 暑期知识点课堂例题杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.将诗中56个字,从第一行左边第一个字逐字编为1~56号,再将号码中的质数由小到大找出来,将它们对应的汉字依次排成一行,组成一句话,请写出这句话._______________________________________________________________2、设x是正数,x<>表示不超过x的质数的个数,如 5.13<>=,即不超过5.1的质数有3个,那么<<>+<>+<>×<>×<>>的值是__________.19934183、(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出.(2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出.(3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.4、已知P,Q都是质数,并且11932003×=().P Q×−×=,则P QA.1919B.679C.655D.3985、有些三位数,它的各位数字的乘积是质数,这样的三位数最大的为A,最小的为B.则A B−=__________.二、分解质因数6、请把下面的数分解质因数:(1)360;(2)539;(3)373;(4)12660.7、请把下面的数分解质因数:(1)999;(2)10101.8、甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数的和是().A.57B.60C.63D.699、三个自然数的乘积为84,其中两个数的和正好等于第三个数.则这三个数是___________________.10、三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?11、自然数a乘以2376,正好是自然数b的平方.求a的最小值.12、360与一个三位数的乘积是完全平方数,这个三位数最小是__________.三、末尾0的问题13、如图,把13,12,15,25,20这5个数依次排列.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个0?14、算式62417514095×××的计算结果的末尾有多少个连续的0?15、算式123100计算结果的末尾有__________个连续的0.××××1、一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.2、三个互不相同的质数相加,和为52,这三个质数可能是多少?3、(龙校五年级春季)若两个质数的差是95,那么它们的积是多少?4、请把下面的数分解质因数:(1)360;(2)539;(3)373;(4)12660.5、大明的钱数比二明多9元,两人的钱数都是整数元,且他们钱数的积是580,两人的钱数之和是________元.(改自2012年7月29日真题)6、(2009年101中分班)四个连续奇数的乘积是229425,那么这4个奇数的和是( )随堂练习A .86B .88C .90D .927、(2010年四中入学)从1到30这30个连续自然数连乘积的末尾共有________个连续的数码0.1、(2013年首师附入学)若a 是质数,b 是合数,那么下面一定是合数的是( ).A .2a b ++B .()2a b +×C .()2a b +÷D .()2a b −÷2、自然数49,87,101,103,121中,有__________个质数.3、(2013年101中分班)有一个质数是两位数,这两位上的数字相差6,则这个两位数的质数是.4、(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?课后作业5、三个互不相同的质数相加,和为30,这三个质数的乘积最大是__________.6、三个连续自然数的乘积为336,则这三个数的和为__________.7、(2013年首师附入学)大明的钱数比二明多9元,两人的钱数都是整数元,且他们钱数的积是580,两人的钱数之和是________元.××□要使这个连乘积的最后3个数字都是0,方框最小应该填()8、5560A.10B.20C.30D.259、算式12335的计算结果的末尾有__________个连续的0.××××10、(2011年首师附入学)如12345120……的积的××××××××××=,积的尾部有一个零,计算1234540尾部有___________个连续的零.。

《质数与合数》数学教案五年级五篇

《质数与合数》数学教案五年级五篇

《质数与合数》数学教案五年级五篇很多学生都不能区分质数与合数,为让学生更好的接受这个知识点,下面就是小编整理的《质数与合数》数学教案,希望大家喜欢。

《质数与合数》数学教案1教学内容:人教版小学五年级数学质数和合数教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类.2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。

教学重点:能准确判断一个数是质数还是合数.教学难点:找出100以内的质数.教学过程:一、复习导入(加深前面知识的理解,为新知作铺垫)下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.3和154和2449和791和13指名回答。

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1~20各数的因数。

1、观察各数因数的个数的特点。

2、板前填写师出示的表格。

只有一个因数只有1和它本身两个因数除了1和它本身还有别的因数3、师概括:只有1和它本身两个因数,这样的的数叫做质数。

除了1和它本身还有别的因数,这们的数叫做合数。

(板书:质数和合数)4、举例。

你能举一些质数的例子吗?你能举一些合数的例子吗?练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?5。

探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。

想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。

)引导学生明确:1既不是质数也不是合数。

练习:自然数中除了质数就是合数吗?三、给自然数分类。

1、想一想师:按照是不是2的倍数把自然数分为奇数和偶数。

按照因数个数的多少,把非零自然数分为哪几类?生:质数,合数,1。

2、说一说。

既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

五年级下册数学教案-1.3 合数、质数 ︳西师大版

五年级下册数学教案-1.3 合数、质数 ︳西师大版

教案标题:五年级下册数学教案-1.3 合数、质数︳西师大版一、教学目标1. 知识与技能:(1)理解合数、质数的概念,掌握合数、质数的特征;(2)能够运用合数、质数的定义判断一个数是合数还是质数。

2. 过程与方法:(1)通过自主探究、合作交流,培养学生的观察能力、逻辑思维能力;(2)通过实际操作,让学生感受数学与生活的紧密联系。

3. 情感、态度与价值观:(1)培养学生对数学的兴趣和求知欲;(2)培养学生严谨、踏实的科学态度。

二、教学重点与难点1. 教学重点:合数、质数的概念及特征。

2. 教学难点:合数、质数的判断方法。

三、教学准备1. 教学资源:多媒体课件、数学教材、练习本等;2. 教学环境:安静、舒适的教室环境。

四、教学过程1. 导入新课(1)复习因数、倍数的概念;(2)引导学生思考:一个数的因数有哪些特点?如何判断一个数是合数还是质数?2. 探究新知(1)学生自主探究合数、质数的定义;(2)小组合作交流,总结合数、质数的特征;(3)教师引导学生通过实际操作,加深对合数、质数的理解。

3. 深化理解(1)教师出示例题,引导学生运用合数、质数的定义进行判断;(2)学生独立完成练习题,巩固合数、质数的判断方法;(3)师生共同总结合数、质数的判断规律。

4. 实践应用(1)学生运用所学知识,解决实际问题;(2)教师评价学生的解答过程和结果,给予鼓励和指导。

5. 课堂小结(1)学生分享本节课的收获;(2)教师总结本节课的知识点,强调合数、质数的重要性。

6. 布置作业(1)完成练习册上的相关习题;(2)预习下一节课的内容。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。

同时,关注学生的情感态度,激发学生学习数学的兴趣,为学生的全面发展奠定基础。

六、教学评价1. 过程性评价:观察学生在课堂上的参与程度、合作交流情况,了解学生对合数、质数的理解程度;2. 终结性评价:通过练习题、测试等方式,评价学生对本节课知识的掌握情况。

高斯小学奥数五年级上册含答案_质数与合数

高斯小学奥数五年级上册含答案_质数与合数

第三讲 质数与合数什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘以它本身的形式,所以不考虑1作为乘数的情况:623=⨯,824222=⨯=⨯⨯,122634223=⨯=⨯=⨯⨯……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数.而像2,3,7……这些不能拆成若干个不为1的数相乘形式的数,我们称之为质数.如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.注意,1既不是质数也不是合数.我们先来看一个关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位之后还是质数的两位质数._____________________________________________(填写在横线上)相信对100以内的质数比较熟悉的同学,做这个题目会很轻松.质数是我们后面学习的基础,因此同学们一定要牢牢记住常见的质数.请同学们在下面的横线上写出100以内的所有质数:同学们还可以这样做:从大到小....写出100以内的质数.如果你能一个不少地写出来,说明你对100以内的质数确实掌握得很牢固了^_^.当然,同学们写出的这些质数只是质数大军中的冰山一角.在100以上还有无穷多个质数,比如接着100的就有四个质数:101,103,107,109.【分析】1~56以内的质数有哪些?把它们列出来,然后依次找出对应的汉字,这句话就出来了.下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋; 杯赛联谊欢声响,念一笑慰来者多; 九天九霄志凌云,九七共庆手相握; 聚起华夏中兴力,同唱移山壮丽歌.将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字都是质数,这样的自然数有多少个?【分析】对于第1问,依次枚举即可,可知这两个不同的质数一定都是奇数.那么后两问中的质数可以都是奇数吗?如果三个互不相同的质数相加,和为52,这三个质数可能是多少?通过前面的学习,我们对质数已经有了基本了解.下面我们来学习这一讲中最重要的内容:分解质因数.分解质因数是指把一个数写成质因数相乘的形式.如:30235=⨯⨯,1002255=⨯⨯⨯,28022257=⨯⨯⨯⨯.同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.分解质因数的方法一般是短除法,如下图所示,我们将30分解质因数,在计算的过程(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出. (2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出. (3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.中要善用各种特殊数的整除特性.100在分解质因数时也可以写成:2210025=⨯;280在分解质因数时也可以写成3280257=⨯⨯.这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.如何确定一个大数是不是质数呢?我们要判断197是不是质数,难道需要一一验算197以内的所有质数吗?同学们不用担心,数学家们早就为我们准备了简单的方法,只需要试很少的几个就能判断.例如我们要判断197是否为质数,只需要验算15以内的质数就足够了!因为1515225⨯=比197大.类似的,如果我们要判断2011是不是质数,只需要验算45以内的质数,因为45452025⨯=比2011大.有了这个方法,同学们以后判断一个大数是不是质数就非常方便了.「分析」将一个数分解质因数,可以从最小的质数开始,一个一个去试商,写成短除的形式.请把下面的数分解质因数: (1)373;(2)12660.请把下面的数分解质因数:(1)360;(2)539;(3)999;(4)10101.2210025=⨯指数3280257=⨯⨯ 指数2 30 315 5能整除30相除后得在整数问题中,有一类特殊的问题,专求乘积末尾连续0的个数.解决这类问题的方法同样是质因数分解.下面我们来看一个例题.【分析】乘积的末尾要出现一个0,只需要乘数中凑出一个10,那么能凑出来几个10,末尾就有多少个连续的0.注意到1025=⨯,我们只需要计算这个算式中含有的质因数2和5的个数就可以了.算式12330⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?分解质因数是学习数论问题时非常重要的方法,大家一定要能熟练的将一个数分解质因数,这应该作为一项基本的能力来培养.下面我们来看看如何利用分解质因数来解决实际的问题.三个连续自然数的乘积等于39270,那么这三个数的和等于多少?算式123100⨯⨯⨯⨯计算结果的末尾有多少个连续的0?「分析」39270是三个自然数的乘积,于是先将39270分解质因数,再对这些质因数进行适当的组合,凑出题目中的三个连续自然数.由于连续自然数相互之间比较接近,所以凑的时候也必须尽量接近.360与一个三位数的乘积是完全平方数,这个三位数最小是多少?【分析】完全平方数是两个相同数的乘积,那么分解后它的每个质因数的次数都是偶数.而32360235=⨯⨯,它不是一个平方数.它最小再乘上多少,结果就是平方数了?通过上面例题的讲解,相信大家能体会到分解质因数的好处.它就像手术刀一样,把整数解剖开来,让我们把整数的组成结构看得一清二楚.很多看似复杂的问题,如果从分解质因数的角度来看,就会变得非常简单.课堂内外质数有无穷个吗?在正整数里走得越远,我们就发现质数变得越来越稀少.有人可能会问:质数出现频率越来越小,它们会不会在某处终止呢?会不会从某个数开始之后就没有质数了呢?早在公元前300年左右,欧几里得就第一次证明了质数有无穷多个.他用的是如下的反证法:设n代表最后一个质数,那么从2到n的所有质数的积是2357n⨯⨯⨯⨯⨯.将这个积加1称为k,因为2,3,5,7,11,…,n都不能整除k,所以k必然含有一个更大的质因数!这与n代表最后一个质数相矛盾!作业1.(1)如果两个不同的质数相加等于39,那么这两个质数的乘积是多少?(2)三个互不相同的质数相加,和为30,这三个质数的乘积是多少?2.自然数49,87,101,103,121中,哪些是质数?3.请把下面的数分解质因数:(1)240;(2)1080.4.三个连续自然数的乘积为336,则这三个数的和是多少?⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?5.算式12335第三讲质数与合数例题1.答案:少年朋友亲切联欢一九九七相聚中山详解:1~56中的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53共16个.例题2.答案:(1)69、133;(2)46;(3)434详解:(1)26可以拆成3与23的和,或者7与19的和;(2)25只能拆成2和23的和;(3)三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑到质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是7和31.例题3.答案:(1)32360235=⨯;=⨯;(3)3999337=⨯⨯;(2)2539711(4)10101371337=⨯⨯⨯.例题4.答案:24详解:末尾0的个数与算式结果所含质因数2和5的个数有关,结果中质因数的个数又与乘数中质因数的个数有关.因为2的个数要比5的个数多,所以0的个数等于5的个数.乘数中5的倍数有20个,25的倍数有4个,所以质因数5的个数有20424+=个.末尾有24个连续的0.例题5.答案:102详解:3927023571117=⨯⨯⨯⨯⨯.考虑其中最大的质因数17,三个自然数中一定有17的倍数.如果是17,那么一定有16或18.这不可能.如果是34,另外两个数是33和35,正好满足.333435102++=.例题6.答案:160详解:完全平方数的每个质因数的次数一定是偶数.而32=⨯⨯,360235至少要再乘上2510⨯=才是一个平方数.题目要求是三位数,即是一个平方数.可知空格上也要填入一个平方数,最⨯⨯36010____三位数小要填16.要乘的三位数最小是160.练习1. 答案:23、37、53、73简答:一位数中的质数只有2、3、5、7.而N 的个位数字只能是3和7,分类枚举即可. 练习2. 答案:2、3、47或者2、7、43或者2、13、37或者2、19、31简答:三个质数一定是一偶两奇,偶数是2. 练习3. 答案:(1)质数;(2)212660235211=⨯⨯⨯. 练习4. 答案:7简答:1~30中5的倍数有6个,25的倍数有1个,所以其中有7个5.计算结果的末尾有7个连续的0.作业1. 答案:(1)74;(2)230或374简答:(1)39237=+,乘积为74.(2)30252321117=++=++,乘积为230或374.作业2. 答案:101,103.作业3. 答案:(1);(2).作业4. 答案:21简答:,和为21. 作业5. 答案:8个简答:看含有因子5的个数,是5的倍数的数有7个,是25的倍数的数有1个,共8个.4336237678=⨯⨯=⨯⨯ 331080235=⨯⨯ 4240235=⨯⨯。

2017年第八届高思杯(五年级)-数学部分-详细解答

2017年第八届高思杯(五年级)-数学部分-详细解答
x x 8 x 16 x 24 x 32 x 40 372 ,解得 x 82 (人).
答:空心方阵为长方形方阵,空心方阵的最外层一共有 82 人.
【解析】
5

9

5


0.5


0.5

0.56

9
3. 【答案】 1
4 【解析】 原式 3 3 1 1 1 1 1 .
10 10 2 2 2 2 4
4. 【答案】 1
5 【解析】 原式 1 2 3 4 1 .
2345 5
5. 【答案】14
【解析】 原式 24 1 24 1 24 1 12 8 6 14 .
31. 【答案】132
【解析】根据和同近积大,长方形的周长是 50,则长与宽的和是 25.当长=13, 宽=12 时,面积最大是1312 156 ;当宽=1,长=24 时,面积最小是1 24 24 .所 以最大值与最小值的差是156 24 132 .
五、 解答题(本大题共 1 小题,共 6 分) 32. 【答案】5 瓶
10. 【答案】15
【解析】分两部分烙 5 张饼,先烙 2 张饼,然后再烙 3 张饼.
烙前 2 张饼需要的时间: 3 2 2 2 6 分.
烙后 3 张饼,编号为甲、乙、丙.先烙甲、乙的正面,再烙甲的反面和丙的正面, 最后烙乙的反面和丙的反面.共需要 9 分钟. 所以烙 5 张饼至少需要 6 9 15 分钟.
“收=7 或 8”,则“0+成+1=收”,不可能有进位,所以“收=成+1”.又因为“上 +1=5”,所以“上=4”,“收=8”,“学=0”.如图(3)所示.

2010-2015年高思杯数学五年级试题及答案

2010-2015年高思杯数学五年级试题及答案

打开(例如“高思育教”、“高思高思”、“高高思思”等,汉字可以重复使用),一共有()种不
同的“密钥”.
A、24
B、64
C、128
D、256
5. 2012 年的 1 月份和 2 月份,墨莫每隔.2 天来高思上一次课(如果周三墨莫上课,那么下次上课是 在周六),萱萱每隔.3 天来高思上一次课,第一次两人上课都是在 1 月 1 日,那么这两个月中有() 天两人都来高思上课.
三、计算题(每小题 6 分,共 24 分) 9.___5/12____ 10. _12300__ 11. _2012/2013_ 12. __32/15__
四、填空题 I(每小题 7 分,共 28 分) 13.___88___ 14. __10_____ 15. __21.6___ 16. ___1_____
18. 墨莫、萱萱和卡莉娅在比较他们获得的高思积分卡,墨莫比萱萱多 26 分,墨莫的积分比卡莉娅和
萱萱加起来的多
1 6
,卡莉娅的积分比萱萱的少
2 5
,那么墨莫有________分.
A
B
19. 如图,正方形 ABCD 和正方形 CEFG 放在一起,∠BCE 是直角,已
知 AB 9 , IG 12 ,那么三角形 CFI 的面积是________.
钥”打开(例如“高思育教”、“高思高思”、“高高思思”等,汉字可以重复使用),一共有
( )种不同的“密钥”.
A、24
B、64
C、128
D、256
知识点:计数问题
难易度:★★(两颗星)
答案:D.
高思学校 2012 年春季
高思杯五年级试卷解析
年级
5. 2012 年的 1 月份和 2 月份,墨莫每隔.2 天来高思上一次课(如果周三墨莫上课,那么下次上课 是在周六),萱萱每隔.3 天来高思上一次课,第一次两人上课都是在 1 月 1 日,那么这两个月中 有( )天两人都来高思上课.

高思学校竞赛数学导引五年级答案

高思学校竞赛数学导引五年级答案

高思学校竞赛数学导引五年级答案高思学校竞赛数学导引五年级答案一、基础知识(每题2分,共20分)1.若94^2=百位数字,则百位数字是____。

答:88162.设全班有20名同学,则一分钟之内可改变座次的方法有____种。

答:2^20种,即1048576种3.(12-5)×3÷5=____。

答:34.在比赛中,共有100支队伍参加,各自获得535分,那么所有参赛队伍的总分数是____。

答:53500分5.已知25:36=m:n,则m:n=_____。

答:5:76.正方形的四个顶点坐标分别为(2,1)、(2,3)、(4,3)、(4,1),则正方形的面积是____。

答:4平方单位7.若b=-3,c=-4,则a=b-4c=____。

答:-128.若坐标轴上的点A(2,1)与点B(-2,-3)在同一半轴上,则AB的垂直平分线的坐标方程是____。

答:x=0二、应用题(每题4分,共20分)1.表示甲班25名同学的算式是____。

答:25×12.杨洋两篇文章的要点等价,说明它们的差异性可以用____表示。

答:相减法3.将这些数排列成一列,从小到大排序:4、-4、2、-2,则排列之后的数列是____。

答:-4、-2、2、44.给出数字3、5、7、9,这四个数中能被3整除的有____个。

答:2个5.友谊花园小学去年共有140名学生参加数学竞赛,其中甲班有20名学生,则甲班学生在参加数学竞赛的人数占受训学生的比是____。

答:1/76.在三角形ABC中,A(1,4),B(4,1),C(2,2),则该三角形的面积是____。

答:3平方单位7.正方形ABCD的边长为a,则该正方形的面积是____。

答:a^2平方单位8.若n是大于0的偶数,且n+2也是偶数,则n的值可以是____。

高思奥数导引小学五年级含详解答案第01讲:分数计算与比较大小

高思奥数导引小学五年级含详解答案第01讲:分数计算与比较大小

第1讲:分数计算与比较大小内容概述:理解分数的概念,熟练掌握分数四则运算中的通分、约分等技巧,了解分数运算中的一些速算方法;学会比较分数大小的各种方法,包括通分母、通分子、交叉相乘、倒数比较法、间接比较法等等。

典型问题:兴趣篇1.计算:(1)220200373737++;(2)1111220200---。

2.计算:8153 1332114114⎛⎫-+-⎪⎝⎭。

3.计算:1151411 451312⎛⎫-÷⨯+÷⎪⎝⎭。

4.计算:43615416273 7575⨯-⨯+⨯+⨯。

5.计算:8888888888 9999999999 9999999999+++。

6.计算:(1)123403124⨯;(2)113155156⨯。

7.计算:567891234556789⨯⨯⨯⨯-⨯⨯⨯⨯⨯⨯⨯⨯。

8.将下列分数由小到大排列起来:1419,1324,1423,1519,1323。

9.比较下列分数的大小:(1)313与940;(2)79320与2079。

10.比较下列分数的大小:(1)9899与19941995;(2)1111022221与4444388887。

拓展篇:1.计算:12317 36182434320⎛⎫⎛⎫+++⨯-⎪ ⎪⎝⎭⎝⎭。

2.计算:2121 215315353⎛⎫+⨯÷-⎪⎝⎭。

3.要使算式1512(0.7)2467--⨯=成立,方框内应填入的数是多少?4.计算:724 124182525⨯+⨯。

5.计算:111111111111 133557799111113 363636363636⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯+-⨯+-⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭。

6.计算:111111 762353235353762376⎛⎫⎛⎫⎛⎫⨯-+⨯+-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。

7.比较:200420062005⨯与200320052004⨯的大小,并计算它们的差。

高思竞赛数学导引-五年级-直线型计算二学生版汇编

高思竞赛数学导引-五年级-直线型计算二学生版汇编

学习-----好资料第8讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?的面积DEC的3倍,三角形3DC的倍,AC是EC8-33.如图,在三角形ABC中,BC是的面积是多少平方厘米?3平方厘米.请问:三角形ABC是的面积为倍,三角形ABC的ED是AD2是4.如图8-4,EBC上靠近C的三等分点,且BDE 的面积是多少平方厘米?36平方厘水.三角形边上靠近日点的四等AB20BEC的面积等于平方厘米,E是所示,5.如图8-5已知三角形的面积是多少平方厘米?平行四边形分点,三角形AEDDECF的面积是多少平方厘米?BOC的面积为36,三角形AOD8.三角形的面积为,已知平行四边形.如图68-6ABCD的面积为多少?更多精品文档.学习-----好资料7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三的长是多少?的边BE角形的5倍.三角形ABE平方厘米715厘米,结果面积增加了8-9,把一个正方形的相邻两边分别增加3和9.如图.原正方形的面积为多少平方厘米?(阴影部分)厘米,四边形的周,D点到四条边的垂线都是410.如图8-10,四边形ABCD内有一点D 长是36厘米,四边形的面积是多少平方厘米?拓展篇平方、20、8、12、1691.如图8-11,有个小长方形,其中的5个小长方形的面积分别为4 4个长方形的面积分别是多少平方米?米.其余倍,三是AE的3的中点,中三角形8-12ABC的面积是180平方厘米,D是BCAD2.图ABE角形的面积是多少平方厘米?6AE=3EDCD=3DF,,而且三角形BFC的面积为ABCD3.如图8-13,在四边形中,已知的面积是多少?平方厘米.大四边形ABCD7平方厘米,四边形BEDF的面积为的面积倍后得到三角形ABCABC,三角形1DEF8-144.如图,把三角形的各边向外延长为1的面积是多少?.三角形DEF更多精品文档.学习-----好资料面积AECABCD的面积是三角形是AB边上靠近A点的三等分点,梯形5.如图8-15,E 倍.请问:梯形的下底长是上底长的几倍?的5平方厘米,红色三角形的面积是9,一个长方形被分成4个不同颜色的三角形,8-166.如图那么蓝色三角形的面10平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是积是多少平方厘米?个等分点与正方3等分,然后将这8.图8-17中,正方形ABCD的面积为1.把每条边都7个空白的三角形,阴影部分的总面个阴影的四边形和4形内部的某一点P相连接,形成4 积是多少?平方厘米,35是AB的中点.已知梯形ABCD的面积为8-188.如图,在梯形ABCD中,E 平方厘米.三角形的面积为13BCE的面积为多少平方厘米?三角形ABD三.ECFG底边对齐,两个正方形边长分别为6和4和正方形8-199.在图中,正方形ADEB 角形ACG和三角形BDF的面积分别是多少?边平行12AB厘米、8厘米的正方形构成,有一条与厘米、是由边长分别为.图108-2010 BFEF 的直线将此图形分成面积相等的两部分,那么的长度为多少厘米?更多精品文档.学习-----好资料11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?长边上,直角边AC,E点恰好在AB12.如图8-22,直角三角形ABC套住了一个正方形CDEF 12厘米.正方形的边长为多少厘米?厘米,BC长20超越篇厘米,用折线把这个三角形分割成面积相等的96,三角形ABC的每边长都是1.如图8-23和CF的长度之和.四个三角形.请求出CEABCD如果的各边都延长1倍,得到一个新四边形EFGH.-242.如图8 ,把四边形ABCD 5平方厘米,则EFGH的面积是多少平方厘米?的面积是IMABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段3.图8-25中BM 的长度是多少厘米?将五边形EFGHI分成面积相等的两部分.线段边.若边的中点,MD、BCEC都垂直于ABMABC-26.如图48 ,在钝角三角形中,为平方厘米,则三角形的面积是三角形BDE3ABC的面积是多少?更多精品文档.学习-----好资料5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?BC= 24,AB=18AC= 30(分米),(分米).如图68-28,直角三角形ABC的三边长分别为的边长是多少厘米?(厘米).问正方形BFEGAC(分米),ED垂直于,且ED= 95突三百回合大战后,两人不分胜负.争夺武林盟主的地位,7.菜鸟和大虾在武林大会上相遇,然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速的一声,飞镖被劈成了两半,如瞠”抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“.被大虾劈开的刀口如虚线所示,那么较5图8-29,菜鸟的飞镖是正六角星的形状,边长为小的那部分残片占到整体面积的几分之几?的正方形组合在一起,中间的正方形的两个顶点恰好是另外,将三个边长为.如图88-30l两个正方形的中心.请问:图中阴影部分的面积是多少?更多精品文档.。

2016年第七届高思杯五年级数学详细解答

2016年第七届高思杯五年级数学详细解答

7. 【答案】150
【解析】根据一半模型,阴影部分面积等于长方形 ABCD 的面积的一 半.20× 15÷ 2=150.
8. 【答案】150
【解析】a=[2,15,25]=150
9. 【答案】24
【解析】60× 2 =24 张. 5
10. 【答案】18
【解析】设工作总量为 1 份,石老师和张老师的工作效率分别是 合作时工作效率为:
2016 年第七届高思杯(五年级)·数学部分 详细解答
常规知识能力检测部分
一、 计算题 I(本大题共 5 小题,每题 4 分,共 20 分) 1. 【答案】20.16
【解析】 20.09 0.07 20.16
2. 【答案】
1 6 1 1 2 3 5 1 【解析】 15 10 30 30 30 6 4 25 2 5 2 2 4 【解析】 5 2 5 5 25
【解析】 设 a 6x , 其中 x 和 y 互质, 那么 a, b 6 xy 72 , 所以 xy 12 , b 6y , 由于 a 和 b 不成倍数关系,所以 x 和 y 也不成倍数关系,再根据互质的要求, x 和
y 应该分别是 3 和 4,那么 a 和 b 分别是 18 和 24, a b 18 24 42 .
D A 甲 C B 乙
33. 【答案】1507.2
【解析】旋转之后形成的立体图形上半部分是一个圆锥,下半部分是一个圆柱, 梯形的下底长度为 90 2 6 10 20 厘米,所以圆锥的高度是 20 10 10 厘米, 1 整个立体图形的体积是 62 10 62 10 480 1507.2 立方厘米. 3
1 1 1 1 ,所以需要 1 18 分钟. 30 45 18 18 1 1 和 ,两人 30 45

五年级上册数学教案 - 3.5 找质数 北师大版

五年级上册数学教案 -  3.5 找质数  北师大版

五年级上册数学教案 - 3.5 找质数教学目标:1. 让学生理解质数的概念,能够判断一个数是否为质数。

2. 培养学生通过观察、分析、归纳等数学方法解决问题的能力。

3. 培养学生合作学习、分享交流的学习习惯。

教学重点:1. 质数的概念。

2. 判断一个数是否为质数。

教学难点:1. 质数的定义。

2. 判断一个数是否为质数的方法。

教学准备:1. 教学课件。

2. 质数表。

教学过程:一、导入1. 老师出示课件,展示自然数的排列,引导学生观察。

2. 学生发现有些数只能被1和它本身整除,这些数就是质数。

3. 老师引导学生回顾已学的因数概念,为学习质数做铺垫。

二、探究新知1. 老师讲解质数的定义,学生跟随老师一起总结质数的概念。

2. 学生通过观察质数表,发现质数的分布规律,如:质数都是奇数,除了2以外。

3. 老师引导学生探讨判断质数的方法,如:试除法、筛选法等。

4. 学生分组讨论,分享各自的方法,总结出最简单有效的判断质数的方法。

三、巩固练习1. 老师出示一些数,让学生判断是否为质数,并说明理由。

2. 学生独立完成练习题,巩固质数的概念和判断方法。

3. 老师针对学生的错误进行讲解,帮助学生理解掌握。

四、拓展提高1. 老师引导学生探讨质数在实际生活中的应用,如:密码学、加密技术等。

2. 学生分享自己了解的质数应用,提高对质数重要性的认识。

五、课堂小结1. 老师引导学生回顾本节课所学内容,总结质数的概念和判断方法。

2. 学生分享自己的学习收获,巩固所学知识。

六、课后作业(课后自主完成)1. 请学生完成课后练习题,巩固质数的概念和判断方法。

2. 家长签字确认,加强家校合作。

教学反思:本节课通过引导学生观察、分析、归纳等数学方法,让学生掌握了质数的概念和判断方法。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,确保学生对质数的理解。

同时,要注重培养学生的合作学习和分享交流的习惯,提高学生的数学素养。

板书设计:五年级上册数学教案 - 3.5 找质数一、质数的概念:只能被1和它本身整除的自然数。

高思竞赛数学导引-五年级第三讲-质数与合数学生版

高思竞赛数学导引-五年级第三讲-质数与合数学生版

第3讲质数与合数内容概述驾驭质数与合数的概念;熟识常用的质数,并驾驭质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算乘积末尾零的个数.典型问题爱好篇1.(1)假如两个质数相加等于16,这两个质数有可能等于多少?(2)假如两个质数相加等于25,这两个质数有可能等于多少?(3)假如两个质数相加等于29,这样的两个质数存在吗?2.有人说:“任何7个连续整数中肯定有质数.”请你举一个例子,说明这句话是错的.3.请写出5个质数,使得它们正好构成一个公差为12的等差数列.4.请把下面的数分解质因数:(1) 160;(2) 598;(3) 211.5.三个自然数的乘积为84,其中两个数的和正好等于第三个数,恳求出这三个数.6.用一个两位数除330,结果正好能整除,请写出全部可能的两位数.7.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?8.请将2、5、14、24、27、55、56、99这8个数分成两组,使得这两组数的乘积相等.9.请问:算式l x2 x3×…×15的计算结果的末尾有几个连续的0?10.请问:连续两个两位数乘积的末尾最多有几个连续的0?拓展篇1.一个两位质数的两个数字交换位置后,仍旧是一个质数,请写出全部这样的质数.2.9个连续的自然数中,最多有多少个质数?3.(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?4.一请把下面的数分解质因数:(1) 360; (2) 539; (3) 373; (4) 12660.5.有一些最简真分数,它们的分子与分母的乘积都等于140.把全部这样的分数从小到大排列,其中第三个分数是多少?6.冬冬在做一道计算两位数乘以两位数的乘法题时,把一个乘数中的数字5看成了8,由此得乘积为1104.正确的乘积是多少?7.甲、乙、丙三人打靶,每人打三枪.三人各自中靶的环数之积都是60,且环数是不超过10的自然数.把三个人按个人总环数由高到低排列,依次是甲、乙、丙.请问:靶子上4环的那一枪是谁打的?8.975×935×972×□,要使这个连乘积的最终4个数字都是0,方框内最小应填什么数?9.(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?10.把从l起先的若干个连续的自然数1,2,3,…,乘到一起.已知这个乘积的末尾13位恰好都是0.请问:在相乘时最终出现的自然数最小应当是多少?11.168乘以一个大于0的整数后正好是一个平方数.乘的这个整数至少是多少?所得乘积又是多少的平方?12.(1) 60乘以一个三位数后,正好得到一个平方数.这个三位数至少是多少?(2) 72乘以一个三位数后,正好得到一个立方数.这样的三位数一共有多少个?超越篇1.如图3-1,三张卡片上各印有一个数字.从这三张卡片中选取一张或多张(每张最多选1次)拼成质数,一共可以拼成多少个不同的质数?2.用l、2、3、4、5、6、7、8、9这9个数字组成若干质数,要求每个数字恰好运用一次.请问:最多能组成多少个质数?请找出一种满意要求的组法,3.三个质数的乘积恰好等于它们和的5倍,这三个质数分别是多少?4.在射箭运动中,每射一箭得到的环数都是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙各自的总环数.5.两名运动员进行一场乒乓球竞赛,实行三局两胜制,每局先得11分者为胜,假如打到10平,则先多得2分者为胜.结果三局竞赛下来,单方最高得分都不超过20分,把每人每局得分乘在一起恰为480480.请问:各局的比分分别是多少?(按大比小的方式写出)6.如图3-2,把13、12、15、25、20这5个数依次排列.它们每相邻的两个数相乘得4个数,这4个数每相邻的两个数相乘得3个数,这3个数每相邻的两个数相乘得2个数,这2个数相乘得1个数,请问:最终这个数从个位起向左数,可以连续地数出几个0?7.从l !,2!,3!,…,100!这100个数中去掉一个数,使得剩下各数的乘积是一个完全平方数.请问:被去掉的那个数是什么?8.已知对随意正整数n ,都有公式:6)12()1(21222+⨯+⨯=+++n n n n ,求分数 !100)10021()321()21(1222222222+++⨯⨯++⨯+⨯ 化成最简分数后的分母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲质数与合数
内容概述
掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算乘积末尾零的个数.
典型问题
兴趣篇
1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?
(2)如果两个质数相加等于25,这两个质数有可能等于多少?
(3)如果两个质数相加等于29,这样的两个质数存在吗?
2.有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.3.请写出5个质数,使得它们正好构成一个公差为12的等差数列.
4.请把下面的数分解质因数:(1) 160;(2) 598;(3) 211.
5.三个自然数的乘积为84,其中两个数的和正好等于第三个数,请求出这三个数.6.用一个两位数除330,结果正好能整除,请写出所有可能的两位数.
7.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?
8.请将2、5、14、24、27、55、56、99这8个数分成两组,使得这两组数的乘积相等.9.请问:算式l x2 x3×…×15的计算结果的末尾有几个连续的0?
10.请问:连续两个两位数乘积的末尾最多有几个连续的0?
拓展篇
1.一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.
2.9个连续的自然数中,最多有多少个质数?
3.(1)两个质数的和是39,这两个质数的差是多少?
(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?
4.一请把下面的数分解质因数:(1) 360; (2) 539; (3) 373; (4) 12660.
5.有一些最简真分数,它们的分子与分母的乘积都等于140.把所有这样的分数从小到大排列,其中第三个分数是多少?
6.冬冬在做一道计算两位数乘以两位数的乘法题时,把一个乘数中的数字5看成了8,由此得乘积为1104.正确的乘积是多少?
7.甲、乙、丙三人打靶,每人打三枪.三人各自中靶的环数之积都是60,且环数是不超过10的自然数.把三个人按个人总环数由高到低排列,依次是甲、乙、丙.请问:靶子上4环的那一枪是谁打的?
8.975×935×972×□,要使这个连乘积的最后4个数字都是0,方框内最小应填什么数?
9.(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?
(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?
10.把从l开始的若干个连续的自然数1,2,3,…,乘到一起.已知这个乘积的末尾13位恰好都是0.请问:在相乘时最后出现的自然数最小应该是多少?
11.168乘以一个大于0的整数后正好是一个平方数.乘的这个整数至少是多少?所得乘积又是多少的平方?
12.(1) 60乘以一个三位数后,正好得到一个平方数.这个三位数至少是多少?
(2) 72乘以一个三位数后,正好得到一个立方数.这样的三位数一共有多少个?
超越篇
1.如图3-1,三张卡片上各印有一个数字.从这三张卡片中选取一张或多张(每张最多选1
次)拼成质数,一共可以拼成多少个不同的质数?
2.用l、2、3、4、5、6、7、8、9这9个数字组成若干质数,要求每个数字恰好使用一次.请问:最多能组成多少个质数?请找出一种满足要求的组法,
3.三个质数的乘积恰好等于它们和的5倍,这三个质数分别是多少?
4.在射箭运动中,每射一箭得到的环数都是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙各自的总环数.
5.两名运动员进行一场乒乓球比赛,采取三局两胜制,每局先得11分者为胜,如果打到10平,则先多得2分者为胜.结果三局比赛下来,单方最高得分都不超过20分,把每人每局得分乘在一起恰为480480.请问:各局的比分分别是多少?(按大比小的方式写出)
6.如图3-2,把13、12、15、25、20这5个数依次排列.它们每相邻的两个数相乘得4个数,这4个数每相邻的两个数相乘得3个数,这3个数每相邻的两个数相乘得2个数,这2个数相乘得1个数,请问:最后这个数从个位起向左数,可以连续地数出几个0?
7.从l !,2!,3!,…,100!这100个数中去掉一个数,使得剩下各数的乘积是一个完全平方数.请问:被去掉的那个数是什么?
8.已知对任意正整数n ,都有公式:6
)12()1(21222+⨯+⨯=+++n n n n ,求分数 !
100)10021()321()21(1222222222+++⨯⨯++⨯+⨯ 化成最简分数后的分母。

相关文档
最新文档