2018年厦门市七年级数学质量检测试卷(含答案)
最新—(下)厦门市七年级数学质量检测
2017—2018学年(下)厦门市七年级数学质量检测一.选择题(相交线单元卷第2题)1.如图1,直线a ,b 被直线c 所截,则2∠的内错角是A.1∠B.3∠C.4∠D.5∠ (期末模拟1第1题)2.在平面直角坐标系中,点(-1,1)在 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限(期末模拟1第2题)3.下列调查中,最适合采用全面调查的是 A.对厦门初中学生每天的阅读时间的调查B.对厦门端午节期间市场上粽子质量情况的调查C.对厦门周边水质情况的调查D.对厦门某航班的旅客是否携带违禁物品的调查(期末模拟1第3题)4.若a b >,则下列结论中,不成立的是 A.11a b +>+ B.22a b> C.2121a b ->- D.11a b ->- (练过无数遍)5.下列命题是真命题的是 A.同位角相等B.两个锐角的和是锐角C.如果一个数能被4整除,那么它能被2整除D.相等的角是对顶角(练过无数遍)6.实数12a -有平方根,则a 可以取的值为 A.0 B.1 C.2 D.3 (练过无数遍)7.下面几个数:-1,3.14,0,5π,13,0.2018,其中无理数的个数是A.1B.2C.3D.4 (期末模拟1第6题)8.如图2,点D 在AB 上,BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是 A.线段AE 的长度是点A 到直线BE 的距离 B.线段CE 的长度是点C 到直线BE 的距离 C.线段FE 的长度是点F 到直线AC 的距离 D.线段FD 的长度是点F 到直线AB 的距离(期中模拟第9)9.小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系.规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是A.(1500,-1000)B.(1500,1000)C.(1000,-1000)D.(-1000,1000) (26页复习材料第21页类型3)10.在平面直角坐标系中,点A (a ,0),点B (2a -,0),且点A 在B 的左边,点C (1,-1),连接AC ,BC .若在AB ,BC ,AC 所围成的区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为A.10a -<≤B.01a ≤<C.11a -<<D.22a -<<a二.填空题(练过无数遍)11.计算下列各题(1)12-= ;(2)63-÷= ;(3)()22-= ; (4)= ;(5)= ;(6)= . (练过无数遍)12.不等式10x +<的解集是 ;(期末模拟2第18题(2))13.如图3,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ;(期末模拟2第14题)14.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组.(期末模拟2第15题)15.在平面直角坐标系中,O 为原点,A (1,0),B (-3,2).若BC OA∥b ,c ,2a b +=,1c a -=,若2a b ≥-,则a b c ++的最大值为 . 三.解答题17.(本题满分8分,其中每小题4分) (练过无数遍)(1)解方程:241x x -=-(期末模拟1和期末模拟2第17题)(2)解方程组:32321x y x y +=⎧⎨-=⎩18. (本题满分8分)如图4,已知直线AB ,CD 相交于点O .(1)读下列语句,并画出图形:点P 是直线AB ,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E ; (2)请写出第(1)小题图中所有与COB ∠相等的角.(期末模拟1的第18题(2))19.(本题满分8分)解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出该不等式组的正整数解.A(期末模拟1和期末模拟2的第20题)20.(本题满分8分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问甲、乙二人各带了多少钱?(26页复习材料第20页第2题)21.(本题满分8分)关于x ,y 的方程组1331x y mx y m -=+⎧⎨+=+⎩(1)当2y =时,求m 的值;(2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.22.(本题满分9分)根据厦门市统计局公布的2017年厦门市常住人口相关数据显示,厦门常住人口首次突破400万大关,达到了401万人,对从2013年的人口数据绘制统计图表如下:2017年厦门市常住人口各年龄段人数统计图2013、2017年厦门市常住人口中受教育程度情况统计表(人数单位:万人)请利用上述统计图表提供的信息回答下列问题:(1)从2013年到2017年厦门市常住人口增加了多少万人?(2)在2017年厦门市常住人口中,少儿(0~14岁)人口约为多少万人?(结果精确到万位)2013年、2017年厦门市常住人口数统计表3403603804004202013年2017年年份人数(3)请同学们分析一下,假如从2017年到2021年与从2013年到2017年的人口增长人数相同,而大学程度人数的增长率相同,那么到了2021年厦门的大学程度人数的比例能否超过人口的20%?请说明理由.(期中模拟的第23题)23.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有(1)李大叔以折扣价购买大牛和小牛是第 次;(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?(期末模拟2的第16题,期中模拟第24题)24.(本题满分10分)如图5,点E 在四边形ABCD 的边BA 的延长线上,CE 与AD 交于点F ,DCEAEF ∠=∠,B D ∠=∠. (1)求证:AD BC ∥;(2)如图6,若点P 在线段BC 上,点Q 在线段BP 上,且FQP QFP ∠=∠,FM 平分EFP ∠,试探究MFQ ∠与DFC ∠的数量关系,并说明理由.BPBQ(期末模拟1的第25题)25.(本题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,2a ),点C (12-,1a -),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F .(1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;(2)若点F 刚好落在直线l 上,F 的纵坐标为a b ,点E 落在x 轴上,且三角形MFD 的面积为112,试判断点B 是否是直线l 的“伴侣点”?请说明理由.。
2017-2018学年(下)厦门市七年级质量检测数学参考答案及评分标准
2017—2018学年(下) 厦门市七年级质量检测数学参考答案及评分标准一、选择题(本大题有10小题,每小题4分,共40分)二、填空题(本大题有6小题,其中第11题每空2分,其余每题4分,共32分) 11.(1)-1 (2)-2 (3)4 (4) (5)-3 (6)12. x <-1 13. 35° 14. 915.(-5,2),(-1,2)(填对一个给2分) 16. 7三、解答题(本大题9小题,共78分) 17. (本题满分8分)(1)2x -x =-1+4...........2分 (2) ①+ ②得: 4x =4.................1分x =3.........4分 x =1 ................2分把x =1代入②得:y =0. ..................3分⎩⎨⎧==.0,1y x 所以该方程组的解是..............4分 18. (本题满分8分)(1)如图,正确画出点P ......1分,正确画出平行线........3分, 正确标注点E ...........5分;(2)∠AOD , ∠PEO , ∠CEF ...............................8分19. (本题满分8分)解不等式①,得3x ≤...........2分, 解不等式②,得2->x ...............4分,所以该不等式组解集为32-≤<x ............................................6分, 所以该不等式组的正整数解为:x = 1,2,3.....................8分 20. (本题满分8分)解:设甲有x 钱,乙有y 钱,依题意有 ⎪⎪⎩⎪⎪⎨⎧=+=+5032502y x y x ...........4分解得⎪⎩⎪⎨⎧==25275y x ..............7分答:甲有275钱,乙有25钱。
2018-19学年厦门市七学年(上)期末数学质检试卷(附解析)
a
0 C 错,D 错
b
【考点】本题主要考查数轴上比较大小,有理数的加减乘除
【问题剖析】对于数轴上右边的数比左边的数大不够清楚
7.一个角的补角为 138 ,那么这个角的余角是(
A. 32
B. 42
C. 48
)
D. 132
【答案】 C
【解析】一个角的补角为 138 ,改角为 180-138 = 42 ,改角的余角为 90-42=48
【答案】 B
【解析】由科学计数法的定义,只能保留一位整数位,以本题答案为 B 。
【考点】本题主要科学计数法的表示方式。
【问题剖析】对于科学计数法的表示方式掌握得不够扎实。
3. 单项式 − xy 3 z 4 的系数及次数分别是
A.系数是 0,次数是 7
C.系数是-1,次数是 7
B.系数是 0,次数是 8
数学试题
第6 页
18. (本题满分 7 分)
(
)
先化简,再求值: 2 x 2 + 2 x − 2 − 2 x 2 − 5 x ,其中 x = −
1
2
【答案】解:原式
2
= 2 x + 4 x − 4 − 2 x 2 − 5x
= −x − 4
当x = −
1
7
1
时,原式= − x − 4 = − − − 4 = −
【答案】 1
【解析】是解就代入,方程的解使得方程成立,代入即可求出参数
【考点】方程的解
【问题剖析】
未准确理解方程的解;代入求解出错。
15.用火柴棍按如图 4 所示的方式摆大小不同的“F”,第 1 个“F”需要 4 根,第 2 个“F”需要 7
2018-2019学年(下)厦门市初一年期末教学质量检测数学参考答案及评分标准1(1)
A(0,a),B(0,b)的对应点分别为
D(a, 1 a), E(m b, 1 a 4).
2
2
a m b①..............................................5分
可得, a
1 2
a
b
(
1 2
a
4)②..............................................6分
因此,当 20≤x<50 时, y 1.6x 1250 ,当 50≤x≤60 时, y 1500 3.4x .
24.(满分 10 分) (1) 证明:
DE平分ADC, CDE ADE. 又ADE AED, CDE AED....................................................1分 CD∥AB..............................................................2分 B C 180................................................3分 又A C, B A 180. AD∥BC............................................................4分
解:将①代入②,得
2x x 3 6.....................................................1分
3x 9
x 3....................................................2分
最新—学年(下)厦门市七年级数学质量检测
2017—2018学年(下)厦门市七年级数学质量检测一.选择题(相交线单元卷第2题)1.如图1,直线a ,b 被直线c 所截,则2∠的内错角是A.1∠B.3∠C.4∠D.5∠ (期末模拟1第1题)2.在平面直角坐标系中,点(-1,1)在 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限(期末模拟1第2题)3.下列调查中,最适合采用全面调查的是 A.对厦门初中学生每天的阅读时间的调查B.对厦门端午节期间市场上粽子质量情况的调查C.对厦门周边水质情况的调查D.对厦门某航班的旅客是否携带违禁物品的调查(期末模拟1第3题)4.若a b >,则下列结论中,不成立的是 A.11a b +>+ B.22a b> C.2121a b ->- D.11a b ->- (练过无数遍)5.下列命题是真命题的是 A.同位角相等B.两个锐角的和是锐角C.如果一个数能被4整除,那么它能被2整除D.相等的角是对顶角(练过无数遍)6.实数12a -有平方根,则a 可以取的值为 A.0 B.1 C.2 D.3(练过无数遍)7.下面几个数:-1,3.14,0,5π,13,0.2018,其中无理数的个数是A.1B.2C.3D.4 (期末模拟1第6题)8.如图2,点D 在AB 上,BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是 A.线段AE 的长度是点A 到直线BE 的距离 B.线段CE 的长度是点C 到直线BE 的距离 C.线段FE 的长度是点F 到直线AC 的距离 D.线段FD 的长度是点F 到直线AB 的距离(期中模拟第9)9.小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系.规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是A.(1500,-1000)B.(1500,1000)C.(1000,-1000)D.(-1000,1000) (26页复习材料第21页类型3)10.在平面直角坐标系中,点A (a ,0),点B (2a -,0),且点A 在B 的左边,点C (1,-1),连接AC ,BC .若在AB ,BC ,AC 所围成的区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为A.10a -<≤B.01a ≤<C.11a -<<D.22a -<<a二.填空题(练过无数遍)11.计算下列各题(1)12-= ;(2)63-÷= ;(3)()22-= ; (4)= ;(5)= ;(6)= . (练过无数遍)12.不等式10x +<的解集是 ;(期末模拟2第18题(2))13.如图3,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ;(期末模拟2第14题)14.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组.(期末模拟2第15题)15.在平面直角坐标系中,O 为原点,A (1,0),B (-3,2).若BC OA ∥b ,c ,2a b +=,1c a -=,若2a b ≥-,则a b c ++的最大值为 . 三.解答题17.(本题满分8分,其中每小题4分) (练过无数遍)(1)解方程:241x x -=-(期末模拟1和期末模拟2第17题)(2)解方程组:32321x y x y +=⎧⎨-=⎩18. (本题满分8分)如图4,已知直线AB ,CD 相交于点O .(1)读下列语句,并画出图形:点P 是直线AB ,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E ; (2)请写出第(1)小题图中所有与COB ∠相等的角.(期末模拟1的第18题(2))19.(本题满分8分)解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出该不等式组的正整数解.A(期末模拟1和期末模拟2的第20题)20.(本题满分8分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问甲、乙二人各带了多少钱?(26页复习材料第20页第2题)21.(本题满分8分)关于x ,y 的方程组1331x y mx y m -=+⎧⎨+=+⎩(1)当2y =时,求m 的值;(2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.22.(本题满分9分)根据厦门市统计局公布的2017年厦门市常住人口相关数据显示,厦门常住人口首次突破400万大关,达到了401万人,对从2013年的人口数据绘制统计图表如下:2017年厦门市常住人口各年龄段人数统计图2013、2017年厦门市常住人口中受教育程度情况统计表(人数单位:万人)请利用上述统计图表提供的信息回答下列问题:(1)从2013年到2017年厦门市常住人口增加了多少万人?(2)在2017年厦门市常住人口中,少儿(0~14岁)人口约为多少万人?(结果精确到万位)(3)请同学们分析一下,假如从2017年到2021年与从2013年到2017年的人口增长人数相同,而2013年、2017年厦门市常住人口数统计表3403603804004202013年2017年年份人数大学程度人数的增长率相同,那么到了2021年厦门的大学程度人数的比例能否超过人口的20%?请说明理由.(期中模拟的第23题)23.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有(1)李大叔以折扣价购买大牛和小牛是第 次;(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?(期末模拟2的第16题,期中模拟第24题)24.(本题满分10分)如图5,点E 在四边形ABCD 的边BA 的延长线上,CE 与AD 交于点F ,DCE AEF∠=∠,B D ∠=∠. (1)求证:AD BC ∥;(2)如图6,若点P 在线段BC 上,点Q 在线段BP 上,且FQP QFP ∠=∠,FM 平分EFP ∠,试探究MFQ ∠与DFC ∠的数量关系,并说明理由.BPBQ(期末模拟1的第25题)25.(本题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,2a ),点C (12-,1a -),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F .(1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;(2)若点F 刚好落在直线l 上,F 的纵坐标为a b ,点E 落在x 轴上,且三角形MFD 的面积为112,试判断点B 是否是直线l 的“伴侣点”?请说明理由.。
2017—2018学年(下)厦门市七年级数学质量检测
2017—2018学年(下)厦门市七年级数学质量检测一.选择题(相交线单元卷第2题)1.如图1,直线a ,b 被直线c 所截,则2∠的内错角是A.1∠B.3∠C.4∠D.5∠ (期末模拟1第1题)2.在平面直角坐标系中,点(-1,1)在 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限(期末模拟1第2题)3.下列调查中,最适合采用全面调查的是 A.对厦门初中学生每天的阅读时间的调查B.对厦门端午节期间市场上粽子质量情况的调查C.对厦门周边水质情况的调查D.对厦门某航班的旅客是否携带违禁物品的调查(期末模拟1第3题)4.若a b >,则下列结论中,不成立的是 A.11a b +>+ B.22a b> C.2121a b ->- D.11a b ->- (练过无数遍)5.下列命题是真命题的是 A.同位角相等B.两个锐角的和是锐角C.如果一个数能被4整除,那么它能被2整除D.相等的角是对顶角(练过无数遍)6.实数12a -有平方根,则a 可以取的值为 A.0 B.1 C.2 D.3(练过无数遍)7.下面几个数:-1,3.14,0,5π,13,0.2018,其中无理数的个数是A.1B.2C.3D.4 (期末模拟1第6题)8.如图2,点D 在AB 上,BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是 A.线段AE 的长度是点A 到直线BE 的距离 B.线段CE 的长度是点C 到直线BE 的距离 C.线段FE 的长度是点F 到直线AC 的距离 D.线段FD 的长度是点F 到直线AB 的距离(期中模拟第9)9.小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系.规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是A.(1500,-1000)B.(1500,1000)C.(1000,-1000)D.(-1000,1000) (26页复习材料第21页类型3)10.在平面直角坐标系中,点A (a ,0),点B (2a -,0),且点A 在B 的左边,点C (1,-1),连接AC ,BC .若在AB ,BC ,AC 所围成的区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为A.10a -<≤B.01a ≤<C.11a -<<D.22a -<<a二.填空题(练过无数遍)11.计算下列各题(1)12-= ;(2)63-÷= ;(3)()22-= ; (4)= ;(5)= ;(6)= . (练过无数遍)12.不等式10x +<的解集是 ;(期末模拟2第18题(2))13.如图3,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ;(期末模拟2第14题)14.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组.(期末模拟2第15题)15.在平面直角坐标系中,O 为原点,A (1,0),B (-3,2).若BC OA∥b ,c ,2a b +=,1c a -=,若2a b ≥-,则a b c ++的最大值为 . 三.解答题17.(本题满分8分,其中每小题4分) (练过无数遍)(1)解方程:241x x -=-(期末模拟1和期末模拟2第17题)(2)解方程组:32321x y x y +=⎧⎨-=⎩18. (本题满分8分)如图4,已知直线AB ,CD 相交于点O .(1)读下列语句,并画出图形:点P 是直线AB ,CD 外的一点,直线EF 经过点P 且与直线AB 平行,与直线CD 相交于点E ; (2)请写出第(1)小题图中所有与COB ∠相等的角.(期末模拟1的第18题(2))19.(本题满分8分)解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出该不等式组的正整数解.A(期末模拟1和期末模拟2的第20题)20.(本题满分8分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问甲、乙二人各带了多少钱?(26页复习材料第20页第2题)21.(本题满分8分)关于x ,y 的方程组1331x y mx y m -=+⎧⎨+=+⎩(1)当2y =时,求m 的值;(2)若方程组的解x 与y 满足条件2x y +>,求m 的取值范围.22.(本题满分9分)根据厦门市统计局公布的2017年厦门市常住人口相关数据显示,厦门常住人口首次突破400万大关,达到了401万人,对从2013年的人口数据绘制统计图表如下:2017年厦门市常住人口各年龄段人数统计图2013、2017年厦门市常住人口中受教育程度情况统计表(人数单位:万人)请利用上述统计图表提供的信息回答下列问题:(1)从2013年到2017年厦门市常住人口增加了多少万人?(2)在2017年厦门市常住人口中,少儿(0~14岁)人口约为多少万人?(结果精确到万位) (3)请同学们分析一下,假如从2017年到2021年与从2013年到2017年的人口增长人数相同,而大学程度人数的增长率相同,那么到了2021年厦门的大学程度人数的比例能否超过人口的20%?请2013年、2017年厦门市常住人口数统计表3403603804004202013年2017年年份人数说明理由.(期中模拟的第23题)23.(本题满分8分)养牛场的李大叔分三次购进若干头大牛和小牛.其中有(1)李大叔以折扣价购买大牛和小牛是第 次;(2)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折相同),且总价不低于8100元,那么他共有哪几种购买方案?(期末模拟2的第16题,期中模拟第24题)24.(本题满分10分)如图5,点E 在四边形ABCD 的边BA 的延长线上,CE 与AD 交于点F ,DCEAEF ∠=∠,B D ∠=∠. (1)求证:AD BC ∥;(2)如图6,若点P 在线段BC 上,点Q 在线段BP 上,且FQP QFP ∠=∠,FM 平分EFP ∠,试探究MFQ ∠与DFC ∠的数量关系,并说明理由.BPBQ(期末模拟1的第25题)25.(本题满分11分)在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M (1,0),过点M 作直线l 平行于y 轴,点A (-1,a ),点B (b ,2a ),点C (12-,1a -),将三角形ABC 进行平移,平移后点A 的对应点为D ,点B 的对应点为E ,点C 的对应点为F .(1)试判断点A 是否是直线l 的“伴侣点”?请说明理由;(2)若点F 刚好落在直线l 上,F 的纵坐标为a b ,点E 落在x 轴上,且三角形MFD 的面积为112,试判断点B 是否是直线l 的“伴侣点”?请说明理由.。
【期末试卷】2017-2018学年(上)厦门市七年级数学质量检测试卷
2017-2018学年(上)厦门市七年级质量检测数 学(试卷满分:150分 考试时间:120分)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列运算结果为-2的是A. ()2-+B. )2(-- C .+2- D. 2-(+) 2.下面几何体,从左面看到的平面图形是A. B.C .D.3.()32-表示的意义为A .()()()222-⨯-⨯-B .222-⨯⨯C .()()()222-+-+-D .()23-⨯ 4.下列式子中,与22x y 不.是.同类项的是 A .23x y - B .22xy C .2yx D .23x y5.下列四个图中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的是6.已知点C 在线段AB 上,下列各式中:①AC =12AB ;②AC =CB ;③AB =2AC ;④AC +CB =AB ,能说明点C 是线段AB 中点的有 A .①B .①②C .①②③D .①②③④BO A1BOA1BOA1CBOA1A.B.C .D .7.若a a=,b b=-,则ab的值不可能...是A.-2 B.-1 C.0 D.18.如图1,有理数a,b,,d在数轴上的对应点分别是A,B,C,D.若a,c互为相反数,则下列式子正确的是A.a b+>0 B. da+>0 C.cb+<0 D.9.某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店A.不盈不亏B.亏损10元 C.盈利9.6元 D. 盈利10元10.若关于x的方程()()20182016620181k x x--=-+的解是整数,则整数k的取值个数是A.2 B.3 C.4 D.6二、填空题(本大题有6小题,第11题12分,其它各小题每题4分,共32分)11.计算下列各题:(1)2(1)+-= ;(2)310-= ;(3)(2)3-⨯= ;(4)12(3)÷-= ;(5)()2539-⨯ = ;(6)1÷5×15⎛⎫- ⎪⎝⎭= .12.若OC是∠AOB的平分线,∠AOC=30°,则∠AOB= °.13. 身穿“红马甲”的志愿者是厦门市最亮丽的一道风景.据统计,截至 2017年11月,厦门市网上实名注册志愿者人数约为60万名.60万用科学记数法表示为.14.若∠A=°3530',则∠A的余角为°.15.观察右边图形,其中第1个图形由1个正方形和2个三角形组成,第2个图形由2个正方形和4个三角形组成,第3个图形由3个正方形和6个三角形组成,……,以此类推.请写出第4个图形共有条线段;第n个图形共有条线段(用含n的式子表示).16.我们知道,在数轴上,点M,N分别表示数m,n,则点M,N之间的距离为m n-.已知点A,B,C,D在数轴上分别表示数a,b,c,d,且132=-=-=-adcbca(a≠b),则线段BD的长度为.第1个第2个第3个三、解答题(本大题有9小题,共78分) 17.(本题满分24分)(1)计算: 4.2 5.7 5.810.-+-+ (2)化简:2322235()(2).a b ab ab a b +-+ (3)计算:()()2311121.236⎛⎫-+-⨯-÷⎪⎝⎭ (4)解方程:35202.x x -=- 18.(本题满分6分)求多项式222(2)251x x x x --+-的值,其中1.2x = 19.(本题满分6分) 按要求作答:(1)画图,使得∠AOC —∠BOC=∠AOB ;(2)在(1)中,若∠AOC =80°,∠BOC 比2∠AOB 少10°,求∠AOB 的度数.20.(本题满分6分)当x 为何值时,整式112x ++和24x-的值互为相反数?21.(本题满分6分)《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则相差45文钱;若每人出7文钱,则仍然相差3文钱.求买羊的人数和这头羊的价格.22.(本题满分6分)已知点C ,D 在线段AB 上(点C ,D 不与线段AB 的端点重合),AC+DB =13AB .(1)若AB=6,请画出示意图并求线段CD 的长;(2)试问线段CD 上是否存在点E ,使得CE =21AB ,请说明理由.23.(本题满分7分)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,具体标准如下:若每月用水量不超过18吨,按2元/吨收费;若每月用水量超过18吨,但不超过40吨,超过部分按3元/吨收费;若每月用水量超过40吨,超过部分按6元/吨收费. (1)若小红家某月用水30吨,则该月应交水费 元; (2)若小红家某月交水费192元,求该月用水的吨数.24.(本题满分7分)小东同学在解一元一次方程时,发现这样一种特殊现象:11110,12222x x +==--=-的解为而; 422420 2.3333x x +==--=-的解为,而 于是,小东将这种类型的方程作如下定义:若一个关于x 的方程0(0ax b a +=≠)的解为x b a =-,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若1a =-,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x 的方程0(0ax b a +=≠)为奇异方程,解关于y 的方程:1()2().2a ab y b y -+=+25.(本题满分10分)在数轴上,点A ,B ,C 表示的数分别是﹣6,10,12.点A 以每秒3个单位长度的速度向右运动,同时线段BC 以每秒1个单位长度的速度也向右运动. (1)运动前线段AB 的长度为 ;(2)当运动时间为多长时,点A 和线段BC 的中点重合? (3)试探究是否存在运动到某一时刻,线段12AB AC =?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.。
2018年度福建九地市数学质检试卷及答案解析9份
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查图1ED CBA方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查C.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584p6. 如图2,在Rt △ACB 中,∠C =90°,∠A =37°,AC =4, 则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本图2ABC9. 已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是A. 因为a>b+c,所以a>b,c<0B. 因为a>b+c,c<0,所以a>bC. 因为a>b,a>b+c,所以c<0 D . 因为a>b,c<0,所以a>b+c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到M处,测得山顶P、竹竿顶点B及M在一条直线上;(2)将该竹竿竖立在射线QA上的C处,沿原方向继续走到N处,测得山顶P,竹竿顶点D及N(3)设竹竿与AM,CN的长分别为l,a1,a2,可得公式:PQ=d·la2-a1+l.则上述公式中,d表示的是A.QA的长B. AC的长C.MN的长D.QC的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:m2-2m= .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是 .图4OA BCD图3湖泊CDNPM ABQ水平线13.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°,AC=1,则AB的长为 .14.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时搬运x kg化工原料,根据题意,可列方程__________________________.15.已知a+1=20002+20012,计算:2a+1= .16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C重合,则∠BAC的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x-1)+1=x.18.(本题满分8分)如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)l图5FEA B C D如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.项目交通工具交通工具使用燃料交通工具维修 市内公共交通城市间交通 占交通消费的22%13%5%p26%图7EABCD比例相对上一年的价格的涨幅1.5% m% 2% 0.5% 1%(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22 BD,求∠DCE的度数.23.(本题满分11分)图8OAB CDE已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
厦门市2017-2018 学年(下)七年级数学质量检测及其答案
厦门市2017-2018 学年(下)七年级质量检测数学(试卷满分:150 分考试时间:120 分)一、选择题(本大题有 10 小题,每小题 4 分,共 40 分)1. 如图 ,直线 a 、b 被直线 c 所截,则∠2 的内错角是--------------------( )A .∠1B .∠3C .∠4D .∠52. 在平面直角坐标系中,点(-1,1)在---------------------------------------( )A .第一象限B .第二象限C .第三象限D .第四象限 3. 下列调查中,最适合采用全面调查的是A .对学生每天的阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对周边水质情况的调查D .对某航班的旅客是否携带违禁物品的调查 4. 若 a>b ,则下列结论中,不.成.立.的是--------------------------------------------------------------------------( ) A . a +1 > b +1 B . a/2 > b/2 C . 2a -1>2b -1 D .1—a >1—b 5. 下列命题是真命题的是---------------------------------------------------------------------------------------------( )A .同位角相等B .两个锐角的和是锐角C .如果一个数能被 4 整除,那么它能被 2 整除D .相等的角是对顶角6. 实数 1-2a 有平方根,则 a 可以取的值为----------------------------------------------------------------------( )A .0B .1C .2D .37. 下面几个数:-1, 3.14 ,2 ,327-,π/5,0.2018,其中无理数的个数是------( )A .1B .2C .3D .48. 如图 ,点 D 在 AB 上, BE ⊥AC ,垂足为 E ,BE 交 CD 于点 F , 则下列说法错.误.的是( ) A .线段 A E 的长度是点 A 到直线 B E 的距离B .线段C E 的长度是点 C 到直线 B E 的距离 C .线段 F E 的长度是点 F 到直线 A C 的距离D .线段 F D 的长度是点 F 到直线 A B 的距离9. 小刚从学校出发往东走 500 m 是一家书店,继续往东走 1000 m ,再向南走 1000 m 即可到家.若选书店所在的位置为原点,分别以正东、正北方向为 x 轴,y 轴正方向建立平面直角坐标系.规定一个单位长度代表 1 m 长,点 A 表示小刚家的位置,则点 A 的坐标是( )A .(1500,-1000)B .(1500,1000)C .(1000,-1000)D .(-1000,1000) 10. 在平面直角坐标系中,点 A (a ,0),点 B (2 - a ,0),且 A 在 B 的左边,点 C (1,-1),连接 AC ,BC 。
(汇总3份试卷)2018年厦门某实验名校初中七年级下学期期末教学质量检测数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是合同三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°.下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.【答案】C【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.【详解】解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使C组的两个三角形重合必须将其中的一个翻转180°;而其它组的全等三角形可以在平面内通过平移或旋转使它们重合.故选:C.【点睛】此题考查了平移、旋转、轴对称的图形变化,学生的阅读理解能力及空间想象能力,较灵活.认真读题,透彻理解题意是正确解决本题的关键.2.线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD上的对应点Q的坐标是()A.(a﹣1,b+3)B.(a﹣1,b﹣3)C.(a+1,b+3)D.(a+1,b﹣3)【答案】D【解析】根据图形的变化首先确定如何将AB 平移到CD ,再将P 点平移到Q 点,便可写出Q 点的坐标.【详解】根据题意可得将AB 平移到CD ,是首先将AB 向右平移一个单位,再向下平移3个单位,已知P 点的坐标为(a ,b ),所以可得Q (a+1,b ﹣3),故选D.【点睛】本题主要考查图形的平移,根据图形的平移确定点的平移,关键在于向右平移是加,向左平移是减,向下平移是减,向上平移是加.3.化简2211444a a a a a --÷-+-,其结果是( ) A .22a a -+ B .22a a +- C .22a a +- D .22aa 【答案】C【解析】原式=()()()2221·12a a a a a +----=22a a +-, 故选C.4.某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠,小红同学准备为班级购买奖品,需买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x 支钢笔才能享受打折优惠,那么以下正确的是( )A .15ⅹ6 + 8x >200B .15ⅹ6 + 8x = 200C .15ⅹ8 + 6x >200D .15ⅹ6 + 8x≥ 200 【答案】A【解析】超过200,即为“>200”,钢笔购买x 支,根据不等关系:影集费用+钢笔费用>200即可【详解】根据不等关系:影集费用+钢笔费用>200即:1568x +>200故选:A【点睛】本题考查不等式的应用,需要注意,不大于或不小于,用“≤或≥”表示,多于或少于用“>或<”表示 5.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是( )A .140或44或80B .20或80C .44或80D .80°或140【答案】A【解析】另一个角是x ,表示出一个角是2x-20°,然后分①x 是顶角,2x-20°是底角,②x 是底角,2x-20°是顶角,③x 与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x ,表示出一个角是2x-20°,①x 是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,所以,顶角是44°;②x 是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,所以,顶角是2×50°-20°=80°;③x 与2x-20°都是底角时,x=2x-20°,解得x=20°,所以,顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故选A.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.6.要使式子2x -有意义,则的取值范围是( )A .x 0>B .x 2≥-C .x 2≥D .x 2≤【答案】D 【解析】根据二次根式被开方数必须是非负数的条件,要使2x -在有意义,必须2x 0x 2-≥⇒≤. 故选D.7.下列计算结果正确的是( )A .2+4=6B .C .3+3=3D .÷=3 【答案】D【解析】根据同类二次根式可判断A 、C ,根据二次根式的性质判断B ,根据二次根式的运算判断D .【详解】解:A 、不是同类二次根式,不能合并,此选项错误; B 、,此选项错误; C 、不是同类二次根式,不能合并,此选项错误; D 、,此选项正确;故选:D .【点睛】本题主要考查同类二次根式、二次根式的性质、二次根式的运算,熟练掌握二次根式的性质和运算法则是解题的关键.8.下列说法正确的个数有()⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个【答案】A【解析】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故选A.9.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是A.30×10-9米B.3.0×10-8米C.3.0×10-10米D.0.3×10-9米【答案】B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,30纳米=30×10-9=3.0×10-8米.故选B.10.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题题11.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=_____【答案】30°.【解析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【详解】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点睛】此题考查线段垂直平分线的性质,等腰三角形的性质,解题关键在于得到∠ACE=∠A=40°.12.如图,AB∥CD,试再添一个条件,使∠1=∠2成立,_____、_____、_____(要求给出三个以上答案)【答案】CF//BE∠E=∠F∠FCB=∠EBC【解析】此题是条件探索题,结合已知条件和要满足的结论进行分析.【详解】//AB CD ,∴BCD CBA ∠=∠,要使12∠=∠成立,则根据等式的性质,可以直接添加的条件是FCB EBC ∠=∠,再根据平行线的性质和判定,亦可添加//CF BE 或E F ∠=∠.故答案为:(1)//CF BE ;(2)E F ∠=∠;(3)FCB EBC ∠=∠.【点睛】考查了平行线的性质,此类题要首先根据已知条件进行推理,再结合结论和所学过的性质进行推导. 13.不等式2x +1>3x -2的非负整数解是______.【答案】0,1,2【解析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x ,合并同类项得,3>x ,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义。
[试卷合集3套]厦门某实验名校初中2018年七年级下学期期末调研数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在这些汽车标识中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解析】本题可利用中心对称图形和轴对称图形定义,逐一分析即可得到答案.【详解】观察A即使轴对称图形又是中心对称图形,D是中心对称图形但不是轴对称图形,B和C是轴对称图形,但不是中心对称图形,故选A.【点睛】本题考查中心对称图形和轴对称图形的概念,中心对称图形是寻找对称中心,旋转180°之后与原图形重合.轴对称图形是寻找对称轴,图形两部分沿着对称轴可以重合.学生吗掌握以上定义即可.2.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。
如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°【答案】C【解析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.如果关于x,y的二元一次方程组39x y ax y a+=⎧⎨-=⎩的解是二元一次方程2x-3y+12=0的一个解,那么a的值是()A.34B.-47C.74D.-43【答案】B【解析】试题解析:39x y ax y a+⎧⎨-⎩=①=②,①+②得:2x=12a,即x=6a,①-②得:2y=-6a,即y=-3a,把x=6a,y=-3a代入方程得:12a+9a+12=0,解得:a=-47,故选B.4.在下列多项式中,与-x-y相乘的结果为x2-y2的多项式是A.-x+y B.x+y C.x-y D.-x-y【答案】A【解析】根据平方差公式即可求解.【详解】∵(-x+y)( -x-y)= (-x)2-y2= x2-y2故选A.【点睛】此题主要考查平方差公式的运算,解题的关键是熟知平方差公式的运用.5.下列运算正确的是( )A.a2+a4=a6B.3(a-b)=3a-b C.(a2)4=a6D.a2-2a2=-a2【答案】D【解析】根据合并同类项法则、单项式乘多项式法则和幂的乘方计算法则进行计算后,再进行判断. 【详解】A选项:不是同类项,不能直接相加,故错误;B选项:3(a-b)=3a-3b,故错误;C选项:(a2)4=a8,故错误;D选项:a2-2a2=(1-2)a2=-a2,故正确;故选:D.【点睛】考查了幂的乘方和合并同类项,掌握运算法则是解答本题的关键.6.将50个数据分成五组,编成组号为①~⑤的五个组,频数分布如下表:则第3组的频数是()组号① ② ③ ④ ⑤ 频数12 4 16 10 A .8B .0.8C .16D .0.16【答案】A 【解析】根据频数的性质:一组数据中,各组的频数和等于总数,可以求出第③组的频数.根据频率、频数的关系:频率=频数÷数据总和,可以求出第③组的频率.【详解】根据统计表可知:第③组的频数是:50-12-4-16-10=8,故选A .【点睛】本题考查了频数的计算方法.用到的知识点:各组的频数之和等于数据总数7.如图,AE ∥BF ,∠1=110°,∠2=130°,那么∠3的度数是( )A .40°B .50°C .60°D .70°【答案】C 【解析】延长AC 交FB 的延长线于点D ,根据平行线性质定理即可解答.【详解】解:如图,延长AC 交FB 的延长线于点D ,∵AE ∥BF ,∴∠4=180°﹣∠1=70°,∴∠3=∠2﹣∠4=60°.故选:C .【点睛】本题考查平行线性质定理,两直线平行,同旁内角互补.8.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )A .①②③B .①②④C .①③④D .②③④【答案】B 【解析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x ,代入方程组得:31x k x k -=⎧⎨-=-⎩,即k=3k-1, 解得:12k =, 则存在实数12k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩, 解不等式组得:321x k y k=-⎧⎨=-⎩, ∵1y x ->-,∴1(32)1k k --->-,解得:1k <,此选项错误;④x+3y=3k-2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.9.某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )~分的人数最多B.该班的总人数为40A.得分在7080≥分)的有12人D.人数最少的得分段的频数为2C.得分及格(60【答案】C【解析】根据统计图提供的信息逐个分析即可.【详解】根据统计图可得:~分的人数最多,本选项正确;A. 得分在7080B. 该班的总人数为4+12+14+8+2=40,本选项正确;≥分)的有12+14+8+2=36人,本选项错误;C. 得分及格(60D. 人数最少的得分段的频数为2,本选项正确..故选C【点睛】本题考核知识点:频数分布直方图.解题关键点:从统计图获取信息.10.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户【答案】D【解析】解:根据题意,参与调查的户数为:64÷(10%+35%+30%+5%)=80(户),其中B 组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选D .二、填空题题11.方程231546a b x y ---=是关于x ,y 的二元一次方程,则a =___________,b =__________.【答案】2 2【解析】题干中“二元一次方程”,“二元”指的是含有两个未知数, “一次”是指未知数的最高次数是1.即x 的次数2a-3和y 的次数b-1都等于1,然后分别求解得到ab 的值.【详解】因为方程231546a b xy ---=,是关于x ,y 的二元一次方程所以2a-3=1,b-1=1解得a=2,b=2故答案为(1). 2 (2). 2【点睛】本题主要考查二元一次方程的概念,弄清“二元”与“一次”的含义是解题关键.12.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点.若△ABC 的面积为m ,则△BEF 的面积为_____.【答案】14m . 【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12m , ∴S △BCE =12S △ABC =12m , ∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×12m=14m .故答案为14m . 【点睛】 本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.13. (2017·湖南永州) 满足不等式组21010x x -≤⎧⎨+⎩>的整数解是________________. 【答案】1 【解析】21010x x ①②-≤⎧⎨+>⎩,解不等式①得x≤12,解不等式②得x>−1,所以这个不等式组的解集是−1<x≤12,其整数解是1.【考点】解一元一次不等式组.14.如图所示,一条街道的两个拐角∠ABC 和∠BCD ,若∠ABC =150°,当街道AB 和CD 平行时,∠BCD 的度数是_____【答案】150°【解析】由AB 和CD 平行,根据两直线平行,内错角相等,可得∠BCD 的度数.【详解】∵AB ∥CD,∠ABC=150°∴∠BCD=∠ABC=150°(两直线平行,内错角相等).故答案为150°.【点睛】本题考查平行线的性质,解题关键在于根据两直线平行,内错角相等;求出∠BCD 的度数.15.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.【答案】1【解析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=1°.故答案为1.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.16.若a-b=5,ab=14,则(a+b)2的值为_______.【答案】81【解析】直接利用完全平方公式将原式变形进而得出答案.【详解】∵a-b=5,ab=14,∴(a+b)2=a2+2ab+b2= a2-2ab+b2+4ab=(a-b)2+4ab=52+4×14=81,故答案为:81.【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.17.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自己动手给妈妈钉一个三角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是__________.【答案】0.4(或25)【解析】由五根木棒能与4cm,7cm的木棒组成三角形的有:6cm,10cm,直接利用概率公式求解即可. 【详解】设第三根木棒的长度是xcm,∵7-4<x<7+4,∴3cm<x<11cm,∴在桌上的五根木棒中,只有6cm,10cm这两根能与4cm,7cm的木棒组成三角形,∴能钉成三角形相框的概率是25=0.4,故答案为:0.4(或2 5 ).【点睛】此题考查三角形的三边关系,概率的计算公式,根据三角形的三边关系确定第三根木棒的长度范围由此得到符合的木棒是解题的关键.三、解答题18.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。
2017-2018学年福建省厦门市七年级上期末数学试卷((有答案))
2017-2018学年福建省厦门市七年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)下列运算结果为﹣2的是()A.+(﹣2)B.﹣(﹣2)C.+|﹣2|D.|﹣(+2)|2.(4分)如图,下面几何体,从左边看到的平面图形是()A.B.C.D.3.(4分)(﹣2)3表示的意义为()A.(﹣2)×(﹣2)×(﹣2)B.﹣2×2×2C.(﹣2)+(﹣2)+(﹣2)D.(﹣2)×34.(4分)下列式子中,与2x2y不是同类项的是()A.﹣3x2y B.2xy2C.yx2D.5.(4分)下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B.C.D.6.(4分)已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④7.(4分)若|a|=a,|b|=﹣b,则ab的值不可能是()A.﹣2B.﹣1C.0D.18.(4分)如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D.若a,c互为相反数,则下列式子正确的是()A.a+b>0B.a+d>0C.b+c<0D.b+d<09.(4分)某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店()A.不盈不亏B.亏损10元C.盈利9.6元D.盈利10元10.(4分)若关于x的方程(k﹣2018)x﹣2016=6﹣2018(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.6二、填空题(本大题有6小题,第11题12分,其它各小题每题4分,共32分)11.(12分)计算下列各题:(1)2+(﹣1)=;(2)3﹣10=;(3)(﹣2)×3=;(4)12÷(﹣3)=;(5)=;(6)1÷5×=.12.(4分)若OC是∠AOB的平分线,∠AOC=30°,则∠AOB=°.13.(4分)身穿“红马甲”的志愿者是厦门市最亮丽的一道风景.据统计,截至2017年11月,厦门市网上实名注册志愿者人数约为60万名.60万用科学记数法表示为.14.(4分)若∠A=35°30',则∠A的余角为°.15.(4分)观察如图图形,其中第1个图形由1个正方形和2个三角形组成,第2个图形由2个正方形和4个三角形组成,第3个图形由3个正方形和6个三角形组成,……,以此类推.请写出第4个图形共有条线段;第n个图形共有条线段(用含n的式子表示).16.(4分)我们知道,在数轴上,点M,N分别表示数m,n,则点M,N之间的距离为|m ﹣n|.已知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=1(a≠b),则线段BD的长度为.三、解答题(本大题有9小题,共78分)17.(24分)(1)计算:﹣4.2+5.7﹣5.8+10.(2)化简:5(a2b3+ab2)﹣(2ab2+a2b3).(3)计算:.(4)解方程:3x﹣5=20﹣2x.18.(6分)求多项式2(x2﹣2x)﹣2x2+5x﹣1的值,其中.19.(6分)按要求作答:(1)画图,使得∠AOC﹣∠BOC=∠AOB;(2)在(1)中,若∠AOC=80°,∠BOC比2∠AOB少10°,求∠AOB的度数.20.(6分)当x为何值时,整式和的值互为相反数?21.(6分)《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则相差45文钱;若每人出7文钱,则仍然相差3文钱.求买羊的人数和这头羊的价格.22.(6分)已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.23.(7分)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,具体标准如下:若每月用水量不超过18吨,按2元/吨收费;若每月用水量超过18吨,但不超过40吨,超过部分按3元/吨收费;若每月用水量超过40吨,超过部分按6元/吨收费.(1)若小红家某月用水30吨,则该月应交水费元;(2)若小红家某月交水费192元,求该月用水的吨数.24.(7分)小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.25.(10分)在数轴上,点A,B,C表示的数分别是﹣6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.2017-2018学年福建省厦门市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)下列运算结果为﹣2的是()A.+(﹣2)B.﹣(﹣2)C.+|﹣2|D.|﹣(+2)|【分析】根据绝对值的性质和相反数的性质逐一计算可得.【解答】解:A、+(﹣2)=﹣2,此选项符合题意;B、﹣(﹣2)=2,此选项不符合题意;C、+|﹣2|=2,此选项不符合题意;D、|﹣(+2)=2,此选项不符合题意;故选:A.【点评】本题主要考查绝对值和相反数,解题的关键是熟练掌握绝对值和相反数的性质.2.(4分)如图,下面几何体,从左边看到的平面图形是()A.B.C.D.【分析】根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.【解答】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选:C.【点评】本题主要考查了画实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3.(4分)(﹣2)3表示的意义为()A.(﹣2)×(﹣2)×(﹣2)B.﹣2×2×2C.(﹣2)+(﹣2)+(﹣2)D.(﹣2)×3【分析】根据有理数的乘方即可求出答案.【解答】解:原式=(﹣2)×(﹣2)×(﹣2),故选:A.【点评】本题考查有理数的乘方,解题的关键是正确理解乘方的意义,本题属于基础题型.4.(4分)下列式子中,与2x2y不是同类项的是()A.﹣3x2y B.2xy2C.yx2D.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:2xy2与2x2y中相同字母的指数不相同,不是同类项.故选:B.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.5.(4分)下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B.C.D.【分析】根据角的表示方法和图形进行判断即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠AOB不能用∠O表示,故本选项错误;C、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;D、图中的∠AOB不能用∠O表示,故本选项错误;故选:C.【点评】本题考查了角的表示方法的应用,角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.6.(4分)已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④【分析】如果线段上有一点,把线段分成相等的两条线段,这个点叫做这条线段的中点,依据线段中点的概念进行判断即可.【解答】解:∵点C在线段AB上,∴当①AC=AB或②AC=CB或③AB=2AC时,点C是线段AB中点;当④AC+CB=AB时,点C不一定是线段AB中点;故选:C.【点评】本题主要考查了两点间的距离,如果线段上有一点,把线段分成相等的两条线段,这个点叫做这条线段的中点.7.(4分)若|a|=a,|b|=﹣b,则ab的值不可能是()A.﹣2B.﹣1C.0D.1【分析】根据绝对值的性质判断出a和b,再根据有理数的乘法运算法则判断.【解答】解:∵|b|=﹣b,∴b≤0,∵|a|=a,∴a≥0,∴ab的值为非正数.故选:D.【点评】本题考查了有理数的乘法,绝对值的性质,熟记性质并判断出a、b的情况是解题的关键.8.(4分)如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D.若a,c互为相反数,则下列式子正确的是()A.a+b>0B.a+d>0C.b+c<0D.b+d<0【分析】根据数轴和题目中的条件可以判断a、b、c、d的正负和它们的绝对值的大小,从而可以求得a+b、a+d、b+c、b+d的正负情况,本题得以解决.【解答】解:由数轴可得,a<b<0<c<d,∵a、c互为相反数,∴|a|=|c|,∴|d|>|b|,∴a+b<0,a+d>0,b+c>0,b+d<0,故选:B.【点评】本题考查了数轴,相反数,掌握数轴,相反数的性质是解题的关键.9.(4分)某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店()A.不盈不亏B.亏损10元C.盈利9.6元D.盈利10元【分析】设盈利的进价是x元,亏损的是y元,根据某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,可列方程求解.【解答】解:设盈利的进价是x元.120﹣x=20%x,解得x=100.设亏本的进价是y元.y﹣120=20%y,解得y=150.120+120﹣100﹣150=﹣10元.故亏损了10元.故选:B.【点评】此题主要考查了一元一次方程的应用,关键是根据利润=售价﹣进价,求出两个商品的进价,从而得解.10.(4分)若关于x的方程(k﹣2018)x﹣2016=6﹣2018(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.6【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【解答】解:(k﹣2018)x﹣2016=6﹣2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点评】本题考查了一元一次方程的解法,解决本题的关键是根据方程kx=b的根是整数,确定k的值.二、填空题(本大题有6小题,第11题12分,其它各小题每题4分,共32分)11.(12分)计算下列各题:(1)2+(﹣1)=1;(2)3﹣10=﹣7;(3)(﹣2)×3=﹣6;(4)12÷(﹣3)=﹣4;(5)=5;(6)1÷5×=﹣.【分析】(1)根据加法法则计算可得;(2)减法转化为加法,再根据加法法则计算可得;(3)根据乘法法则计算可得;(4)根据除法法则计算可得;(5)先计算乘方,再计算乘法即可得;(6)除法转化为乘法,再计算乘法即可得.【解答】解:(1)2+(﹣1)=+(2﹣1)=1,故答案为:1;(2)3﹣10=3+(﹣10)=﹣(10﹣3)=﹣7,故答案为:﹣7;(3)(﹣2)×3=﹣2×3=﹣6,故答案为:﹣6;(4)12÷(﹣3)=﹣12÷3=﹣4,故答案为:﹣4;(5)=9×=5,故答案为:5;(6)1÷5×=1××(﹣)=﹣,故答案为:﹣.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.12.(4分)若OC是∠AOB的平分线,∠AOC=30°,则∠AOB=60°.【分析】根据题意,利用角平分线定义求出所求即可.【解答】解:∵OC是∠AOB的平分线,∠AOC=30°,∴∠AOB=60°,故答案为:60【点评】此题考查了角平分线的定义,熟练掌握角平分线的定义是解本题的关键.13.(4分)身穿“红马甲”的志愿者是厦门市最亮丽的一道风景.据统计,截至2017年11月,厦门市网上实名注册志愿者人数约为60万名.60万用科学记数法表示为6×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将60万用科学记数法表示为:6×105.故答案为:6×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)若∠A=35°30',则∠A的余角为54.5°.【分析】根据互余的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=35°30′,∴∠A的余角=90°﹣35°30′=54.5°.故答案为:54.5.【点评】本题考查了余角的定义,熟记互余的两个角的和等于90°是解题的关键.15.(4分)观察如图图形,其中第1个图形由1个正方形和2个三角形组成,第2个图形由2个正方形和4个三角形组成,第3个图形由3个正方形和6个三角形组成,……,以此类推.请写出第4个图形共有29条线段;第n个图形共有7n+1条线段(用含n的式子表示).【分析】结合图形得出每个图形中线段的数量为7的序数倍与1的和,据此可得.【解答】解:∵第1个图形中线段的条数为1+7=8,第2个图形中线段的条数为1+7×2=14,第3个图形中线段的条数为1+7×3=22,……∴第4个图形中线段的条数为1+7×4=29,第n个图形中线段的条数为7n+1,故答案为:29、7n+1.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.16.(4分)我们知道,在数轴上,点M,N分别表示数m,n,则点M,N之间的距离为|m ﹣n|.已知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=1(a≠b),则线段BD的长度为0.5或3.5.【分析】根据两点之间的距离,画出数轴即可解答.【解答】解:∵|a﹣c|=|b﹣c|=1,∴点C在点A和点B之间,点A与点C之间的距离为1,点B与点C之间的距离为1,∵|d﹣a|=1,∴|d﹣a|=1.5,∴点D与点A之间的距离为1.5,如图(1)线段BD的长度为3.5;如图(2)线段BD的长度为0.5,故答案为0.5或3.5.【点评】本题考查了数轴,解决本题的关键是结合数轴进行解答.三、解答题(本大题有9小题,共78分)17.(24分)(1)计算:﹣4.2+5.7﹣5.8+10.(2)化简:5(a2b3+ab2)﹣(2ab2+a2b3).(3)计算:.(4)解方程:3x﹣5=20﹣2x.【分析】(1)原式结合后,相加即可求出值;(2)原式去括号合并即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)方程移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=﹣10+10+5.7=5.7;(2)原式=5a2b3+5ab2﹣2ab2﹣a2b3=4a2b3﹣3ab2;(3)原式=4﹣1=3;(4)移项合并得:5x=25,解得:x=5.【点评】此题考查了解一元一次方程,有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.18.(6分)求多项式2(x2﹣2x)﹣2x2+5x﹣1的值,其中.【分析】先去括号,再合并同类项化简原式后,再将x的值代入计算可得.【解答】解:原式=2x2﹣4x﹣2x2+5x﹣1=x﹣1,当x=时,原式=﹣1=﹣.【点评】本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19.(6分)按要求作答:(1)画图,使得∠AOC﹣∠BOC=∠AOB;(2)在(1)中,若∠AOC=80°,∠BOC比2∠AOB少10°,求∠AOB的度数.【分析】(1)根据题意即可画出图形(2)设∠AOB的度数为x,根据题意列出方程即可求出答案.【解答】解:(1)如图所示,(2)设∠AOB=x°,则∠BOC=(2x+10)°,∵∠AOB+∠BOC=∠AOC,∴x+2x﹣10=80∴3x=90∴x=30∴∠AOB=30°【点评】本题考查角度计算问题,解题的关键是熟练运用图中的数量关系,本题属于基础题型.20.(6分)当x为何值时,整式和的值互为相反数?【分析】利用相反数性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得: +1+=0,去分母得:2x+2+4+2﹣x=0,解得:x=﹣8.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.21.(6分)《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则相差45文钱;若每人出7文钱,则仍然相差3文钱.求买羊的人数和这头羊的价格.【分析】设买羊的人数为x人,则这头羊的价格是(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设买羊的人数为x人,则这头羊的价格是(7x+3)文,根据题意得:5x+45=7x+3,解得:x=21,∴7x+3=150.答:买羊的人数为21人,这头羊的价格是150文.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.(6分)已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.【分析】(1)求出AC+DB的长,即可求出CD;(2)求出CD=AB,CE=AB,再比较即可.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB,∴CD=AB﹣(AC+DB)=AB,∵CE=AB,∴CD>CE,∴线段CD上存在点E,使得CE=AB.【点评】本题考查了线段的中点和求两点之间的距离,能根据图形得出CD=AB﹣(AC+DB)是解此题的关键.23.(7分)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,具体标准如下:若每月用水量不超过18吨,按2元/吨收费;若每月用水量超过18吨,但不超过40吨,超过部分按3元/吨收费;若每月用水量超过40吨,超过部分按6元/吨收费.(1)若小红家某月用水30吨,则该月应交水费72元;(2)若小红家某月交水费192元,求该月用水的吨数.【分析】(1)分两档求出费用即可.(2)首先判断所以小红家某月交水费用水量超过40吨,设用水量为x吨,根据题意列出方程即可解决问题;【解答】解:(1)18×2+(30﹣18)×3=72(元).所以若小红家某月用水30吨,则该月应交水费72元,故答案为72(2)当用水量为40吨时,水费18×2+22×3=102(元),192>102,所以小红家某月交水费用水量超过40吨,设用水量为x吨,由题意:102+6(x﹣40)=192,解得x=55,答:该月用水55吨.【点评】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数,寻找等量关系构建方程解决问题.24.(7分)小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.【分析】(1)把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a﹣b)=b,方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【解答】解:(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点评】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b ﹣a,则称之为“奇异方程”.25.(10分)在数轴上,点A,B,C表示的数分别是﹣6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为16;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.【分析】(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y秒,分两种情况:①当点A在点B的左侧时,②当点A在线段AC上时,列出方程求解即可.【解答】解:(1)运动前线段AB的长度为10﹣(﹣6)=16;(2)设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有﹣6+3t=11+t,解得t=.故当运动时间为秒长时,点A和线段BC的中点重合;(3)存在,理由如下:设运动时间为y秒,①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,﹣6+3×7=15;②当点A在线段AC上时,依题意有(3y﹣6)﹣(10+y)=,解得y=,﹣6+3×=19.综上所述,符合条件的点A表示的数为15或19.【点评】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
(完整)2018厦门市初中数学质检试卷
(完整)2018厦门市初中数学质检试卷2018年厦门市初中总复习教学质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号一、选择题(本大题有10小题,每小题4分,共40分.) 1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠A B . ∠B C . ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D . 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4B . 3.0C . 3.2D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点图1ED CB A图2ABC8. 把一些书分给几名同学,若;若每人分11本则不够. 依题意,设有x 名同学,可列不等式9x +7<11x ,则横线上的信息可以是A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本 9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式:PQ =d ·la 2-a 1+l . 则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长二、填空题(本大题有6小题,每小题4分,共24分) 11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是 . 13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°, AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________.图4图315.已知a+1=20002+20012,计算:2a+1=.16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C重合,则∠BAC的度数应满足的条件是.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x-1)+1=x.18.(本题满分8分)如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A (0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式. 20.(本题满分8分)l图6图5FEA B C D如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.图7 E A B C D如图8,在矩形ABCD 中,对角线AC ,BD 交于点O ,(1)AB =2,AO =5,求BC 的长;(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD ,求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.图8OABCDE已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.图9 A l C B DP 图10 l A M E C B D P已知二次函数y=ax2+bx+t-1,t<0,(1)当t=-2时,①若函数图象经过点(1,-4),(-1,0),求a,b的值;②若2a-b=1,对于任意不为零的实数a,是否存在一条直线y =kx+p(k≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A(-1,t),B(m,t-n)(m>0,n>0)是函数图象上的两点,且S△AOB=12n-2 t,当-1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年(上)厦门市七年级质量检测数 学(试卷满分:150分 考试时间:120分)注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列运算结果为-2的是A. ()2-+B. )2(-- C .+2- D. 2-(+) 2.下面几何体,从左面看到的平面图形是A. B.C .D.3.()32-表示的意义为A .()()()222-⨯-⨯-B .222-⨯⨯C .()()()222-+-+-D .()23-⨯ 4.下列式子中,与22x y 不.是.同类项的是 A .23x y - B .22xy C .2yx D .23x y5.下列四个图中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的是6.已知点C 在线段AB 上,下列各式中:①AC =12AB ;②AC =CB ;③AB =2AC ;④AC +CB =AB ,能说明点C 是线段AB 中点的有 A .①B .①②C .①②③D .①②③④7.若a a =,b b =-,则ab 的值不可能...是 A .-2 B .-1 C .0 D .1BO A1BOA1BOA1CBOA1A.B.C .D .DC BA8.如图1,有理数a ,b ,,d 在数轴上的对应点分别是A ,B ,C ,D .若a ,c 互为相反数,则下列式子正确的是A. a b +>0B. d a +>0 C .c b +<0 D. d b +<09. 某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店A.不盈不亏B.亏损10元 C .盈利9.6元 D. 盈利10元10.若关于x 的方程()()20182016620181k x x --=-+的解是整数,则整数k 的取值个数是 A .2 B .3 C .4 D .6二、填空题(本大题有6小题,第11题12分,其它各小题每题4分,共32分) 11.计算下列各题:(1)2(1)+-= ; (2)310-= ; (3)(2)3-⨯= ; (4)12(3)÷-= ; (5)()2539-⨯= ; (6)1÷5×15⎛⎫- ⎪⎝⎭= . 12.若OC 是∠AOB 的平分线,∠AOC =30°,则∠AOB = °.13. 身穿“红马甲”的志愿者是厦门市最亮丽的一道风景.据统计,截至 2017年11月,厦 门市网上实名注册志愿者人数约为60万名.60万用科学记数法表示为 . 14.若∠A =°3530',则∠A 的余角为 °.15.观察右边图形,其中第1个图形由1个正方形和2个三角形组成,第2个图形由2个正方形和4个三角形组成,第3个图形由3个 正方形和6个三角形组成,……,以此类推.请写出第4个图形 共有 条线段;第n 个图形共有 条线段(用含n 的式子表示).16.我们知道,在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为m n -.已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且132=-=-=-a d c b c a (a ≠b ),则线段BD 的长度为 .三、解答题(本大题有9小题,共78分)图117.(本题满分24分)(1)计算: 4.2 5.7 5.810.-+-+ (2)化简:2322235()(2).a b ab ab a b +-+ (3)计算:()()2311121.236⎛⎫-+-⨯-÷⎪⎝⎭ (4)解方程:35202.x x -=- 18.(本题满分6分)求多项式222(2)251x x x x --+-的值,其中1.2x = 19.(本题满分6分) 按要求作答:(1)画图,使得∠AOC —∠BOC=∠AOB ;(2)在(1)中,若∠AOC =80°,∠BOC 比2∠AOB 少10°,求∠AOB 的度数.20.(本题满分6分)当x 为何值时,整式112x ++和24x-的值互为相反数?21.(本题满分6分)《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则相差45文钱;若每人出7文钱,则仍然相差3文钱.求买羊的人数和这头羊的价格.22.(本题满分6分)已知点C ,D 在线段AB 上(点C ,D 不与线段AB 的端点重合),AC+DB =13AB .(1)若AB=6,请画出示意图并求线段CD 的长;(2)试问线段CD 上是否存在点E ,使得CE =21AB ,请说明理由.23.(本题满分7分)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,具体标准如下:若每月用水量不超过18吨,按2元/吨收费;若每月用水量超过18吨,但不超过40吨,超过部分按3元/吨收费;若每月用水量超过40吨,超过部分按6元/吨收费.(1)若小红家某月用水30吨,则该月应交水费 元; (2)若小红家某月交水费192元,求该月用水的吨数.24.(本题满分7分)小东同学在解一元一次方程时,发现这样一种特殊现象:11110,12222x x +==--=-的解为而; 422420 2.3333x x +==--=-的解为,而 于是,小东将这种类型的方程作如下定义:若一个关于x 的方程0(0ax b a +=≠)的解为x b a =-,则称之为“奇异方程”.请和小东一起进行以下探究: (1)若1a =-,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由; (2)若关于x 的方程0(0ax b a +=≠)为奇异方程,解关于y 的方程:1()2().2a ab y b y -+=+25.(本题满分10分)在数轴上,点A ,B ,C 表示的数分别是﹣6,10,12.点A 以每秒3个单位长度的速度向右运动,同时线段BC 以每秒1个单位长度的速度也向右运动. (1)运动前线段AB 的长度为 ;(2)当运动时间为多长时,点A 和线段BC 的中点重合? (3)试探究是否存在运动到某一时刻,线段12AB AC =?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.2017-2018学年(上)厦门市七年级质量检测数学试题参考答案及评分标准二、填空题(本大题共6小题,每题4分,共24分)11. (1)1 (2)﹣7 (3)﹣6 (4)﹣4 (5)5 (6)﹣12512. 60°. 13. 6×105 .14. 54 .5°. (写成54°30′ 给2分) 15. 29 , 7n +1 . (填对一个给2分) 16. 12或72 . (填对一个给2分)17. (1)原式107.5)8.52.4(++--=…………………………………………………2分 7.51010++-=…………………………………………………………4分 7.5=………………………………………………………………………6分(2)原式322232255b a ab ab b a --+=…………………………………………2分)25()5(223232ab ab b a b a -+-=……………………………………4分23234ab b a +=…………………………………………………………6分(3)原式66114⨯⨯-=………………………………………………………………4分 14-=………………………………………………………………………5分 3=…………………………………………………………………………6分 (4)解:52023+=+x x …………………………………………………2分255=x …………………………………………………………4分5=x ……………………………………………………………6分18. 解:原式1524222-+--=x x x x ……………………………………………………2分 1)54()22(22-+-+-=x x x x1-=x …………………………………………………………………………5分 当21=x 时,原式12=-………………………………………………………………6分19. (1)如图所示……………………………………2分(2)设∠AOB =x °,则∠BOC =(2x -10)°……3分 ∵∠AOB +∠BOC =∠AOC∴x +2x -10=80………………………………5分 ∴3x =90 ∴x =30∴∠AOB =30°…………………………………6分 20. 解:由题意得042121=-+++xx ………………………………………………2分 0)2(4)1(2=-+++x x …………………………………………3分 02422=-+++x x ……………………………………………4分 08=+x ……………………………………………………………5分 8-=x ………………………………………………………………6分21. 解法一:设买羊的人数为x 人,则这头羊的价格为(455+x )文……………1分 依题意,37455+=+x x ……………………………………………………3分 解得,21=x …………………………………………………………………5分 150455=+x答:买羊的人数为21人,这头羊的价格为150元。
…………………………………6分 解法二:设羊的价格为x 文,则买羊的人数为545-x 人……………………1分 依题意,73545-=-x x …………………………………………………………3分 解得,150=x ………………………………………………………5分21545=-x 答:买羊的人数为21人,羊的价格是150文.……………………………………6分22. 解:(1)如图所示……………………………1分 ∵AB DB AC 31=+,6=AB ∴2=+DB AC …………………………2分 ∴()4=+-=DB AC AB CD …………3分(3)线段CD 上存在点E ,使得AB CE 21=…………………………………4分 理由如下: ∵ AB DB AC 31=+ ()DB AC AB CD +-=∴==-AB AB 31AB 32……………………………5分∵AB CE 21=∴CE CD >∴线段CD 上存在点E ,使得AB CE 21=………………………………………6分23. (1)应交水费 72 元………………………………………………………………2分 (2)当该月用水量为40吨时,水费为1023)1840(218=⨯-+⨯元,因192>102,故小红家该月用水量超过40吨;…………………………………4分 设小红家该月用水量为x 吨192)40(6102=-+x ………………………………………………………………6分解得,55=x答:小红家该月用水55吨.……………………………………………………………7分24. (1)没有符合要求的“奇异方程”,……………………………………………1分理由如下:当a = -1时,原方程可化为0=+-b x ,解为b x =…………………………2分 若为奇异方程,则1+=b x∵1+≠b b∴不符合“奇异方程”的定义,故不存在.……………………………………3分(2)∵)0(0≠=+a b ax 是“奇异方程” ∴a b x -=是该方程的解∴0)(=+-b a b a …………………………………………………………4分 ∴b a b a -=-)(……………………………………………………………5分 ∴b b a a =-)(∴方程y b y b a a ⎪⎭⎫ ⎝⎛+=+-212)(可化为y b by ⎪⎭⎫ ⎝⎛+=+212 ∴y by by 212+=+ ∴y 212=.…………………………………………………………………6分 解得,4=y ………………………………………………………………7分25. (1)运动前AB 的长度为16………………………………………………………2分(2)设运动了t 秒后,点A 和线段BC 的中点重合. 依题意,得t t +=+-1136……………………………………………………………………3分解得,217=t ………………………………………………………………………4分(3)存在.…………………………………………………………………………5分 理由如下:设运动时间为t 秒,则符合条件的点A 表示的数为)63(-t ; ① 当点A 在点B 的左侧时,12AB AC =∵, 2BC =又∵,2.AB =∴2)63()10(=--+t t ……………………………………………………………6分解得,7=t …………………………………………………………………………7分 ②当点A 在线段BC 上时,∵AC AB 21= ∴3231==BC AB依题意,得∴32)10()63(=+--t t …………………………………………………………8分 解得,325=t ………………………………………………………………………9分 ③当点A 在点C 右侧时,此时AB >AC 恒成立,故不存在满足条件的点.综上所述:符合条件的点A 表示的数为15和19.………………………………10分。