基于matlab的一级倒立摆自适应仿真
基于Matlab的一级倒立摆模型的仿真
基于Matlab的一级倒立摆模型的仿真一.倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想的实验平台。
对倒立摆系统的研究能有效的反应控制中的典型问题:如非线性问题、鲁莽性问题、镇定问题等。
通过对倒立摆的控制,用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
二.倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆上(细杆质量不计),细杆和质量为M的小车铰链相接分析过程如下:如图所示,设细杆摆沿顺时针方向转东伟正方向,水平向右为水平方向上的正方向。
当细杆白顺时针想要运动时水平方向施加的里应该是水平相应。
对方程组进行拉普拉斯变化,得到摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车加速度之间的传递函数:位移X对外力F的传递函数:三.在Matlab中输入得到的反馈矩阵:采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。
首先,在M A T L A B的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。
然后运行仿真程序。
得到的仿真曲线从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在θ=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。
四.总结由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。
当然我们调节出来的只是一个理想模型,在实际中会更加复杂,稳定性也会更难获得。
在这次实验中掌握了倒立摆仿真的整个过程,熟悉了MATLAB仿真软件Simulingk的使用,也对系统有了更好的理解。
一阶倒立摆控制系统设计matlab
一阶倒立摆控制系统设计matlab一、控制系统简介控制系统是指通过对某些物理系统或过程的改变以获取期望输出或行为的一种系统。
其中涉及到了对系统的建模、分析以及控制方法的选择和设计等多方面的问题。
控制系统可以通过标准的数学和物理模型来描述,并可以通过物理或者仿真实验进行验证。
本文将围绕一阶倒立摆控制系统设计和仿真展开。
主要内容包括:1.一阶倒立摆系统简介2.系统建模3.系统分析4.设计控制器5.仿真实验及结果分析一阶倒立摆(controlled inverted pendulum)是一种比较常见的控制系统模型。
它的系统模型简单,有利于系统学习和掌握。
一般而言,一阶倒立摆系统是由一个竖直的支杆和一个质量为$m$的小球组成的。
假设球只能在竖直方向上运动,当球从垂直平衡位置偏离时,支杆会向相反的方向采取动作,使得小球可以回到平衡位置附近。
为了控制一阶倒立摆系统,我们首先需要对其进行建模。
由于系统并不是非常复杂,所以建模过程相对简单。
假设支杆长度为$l$,支杆底端到小球的距离为$h$,支杆与竖直方向的夹角为$\theta$,小球的质量为$m$,地球重力为$g$,该系统的拉格朗日方程可以表示为:$L =\frac{1}{2}m\dot{h}^{2}+\frac{1}{2}ml^{2}\dot{\theta}^{2}-mgh\cos{\theta}-\frac{1}{2}I\dot{\theta}^{2}$$I$表示支杆的惯性矩,它可以通过支杆的质量、长度以及截面积等参数计算得出。
$h$和$\theta$分别表示小球和支杆的位置。
我们可以通过拉格朗日方程可以得出系统的动力学方程:$b$表示摩擦系数,$f_{c}$表示对支杆的控制力。
由于一阶倒立摆会发生不稳定的倾斜运动,即未受到外部控制时会继续倾斜。
我们需要对系统加上控制力,使得系统保持在稳定的位置上。
在进行控制器设计之前,我们需要对系统进行分析,以便更好地了解系统在不同条件下的特性表现。
基于MATLAB-GUI的一级倒立摆控制仿真软件设计
基于MATLAB-GUI的一级倒立摆控制仿真软件设计基于MATLAB/GUI的一级倒立摆控制仿真软件设计摘要:本文介绍了一种基于MATLAB/GUI的一级倒立摆控制仿真软件的设计方法。
倒立摆是一个经典的控制系统问题,通过控制摆杆使其保持垂直状态。
本文使用MATLAB作为仿真平台,并通过GUI界面设计,使得用户可以方便地输入参数、观察系统状态和结果。
通过该仿真软件,可以有效地学习和研究控制系统的设计与应用。
关键词:MATLAB;倒立摆;控制系统;仿真软件;GUI一、引言倒立摆是一种非线性、强耦合且不稳定的控制系统,是控制理论中经典的问题之一。
倒立摆控制系统受到广泛的研究关注,其在机器人、飞行器、自动驾驶等领域有着重要的应用。
为了帮助学习者理解控制系统的原理和特点,设计了一种基于MATLAB/GUI的一级倒立摆控制仿真软件。
二、仿真软件设计1. 系统模型建立使用MATLAB工具箱中的Simulink建立倒立摆的系统模型。
系统包含两个部分:摆杆和电机控制器。
摆杆模型包括质量、长度、角度等参数;电机控制器模型包括电压、电流、转速等参数。
连接两个模块,构建完整的倒立摆控制系统。
2. GUI界面设计使用MATLAB的GUI工具进行界面设计,用户可以通过界面方便地输入参数、选择控制算法和观察系统状态。
界面包括输入参数框、按钮、图表等控件。
3. 控制算法设计通过GUI界面,用户可以选择不同的控制算法,如PID控制、模糊控制、自适应控制等。
根据选择的算法,修改Simulink模型中的控制器参数,并进行仿真分析。
4. 仿真结果可视化在GUI界面中添加图表,可以实时显示倒立摆的角度、位置等参数。
用户可以通过修改参数和算法,观察系统的响应结果并进行分析。
三、应用实例以PID控制算法为例,进行系统仿真。
用户可以通过GUI界面输入摆杆的质量、长度、角度等参数。
选择PID控制算法后,可以调节PID参数的值,观察系统响应和稳定性。
基于MATLAB的一级倒立摆控制系统仿真与设计
基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。
杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。
设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。
在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。
我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。
然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。
一级倒立摆的数学模型可以通过牛顿第二定律得到。
假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。
为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。
在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。
我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。
在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。
2. 设计反馈控制器。
我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。
3. 对控制系统进行仿真。
通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。
基于MATLAB的一级倒立摆控制系统仿真与设计
《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。
任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。
设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。
设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。
仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。
基于MATLAB矩阵实验室的倒立摆控制系统仿真
基于MATLAB矩阵实验室的倒立摆控制系统仿真基于MATLAB的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。
倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都能够经过倒立摆直观地表现出来。
本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,经过MATLAB仿真软件的方法来实现。
关键词:一级倒立摆 PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment。
基于一阶倒立摆的matlab仿真实验
成都理工大学工程技术学院基于一阶倒立摆的matlab仿真实验实验人员: --------------学号:-----------------实验日期:20150618摘要本文主要研究的是一级倒立摆的控制问题,并对其参数进行了优化。
倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文首先简单的介绍了一下倒立摆以及倒立摆的控制方法,并对其参数优化算法做了分类介绍。
然后,介绍了本文选用的优化参数的状态空间极点的配置和PID控制。
接着建立了一级倒立摆的数学模型,并求出其状态空间描述。
本文着重讲述的是利用状态空间中极点配置实现方法。
最后,用Simulink对系统进行了仿真,得出在实际控制中是两种比较好的控制方法。
目录1 引言 (4)1.1 倒立摆介绍以及应用 (4)1.2 倒立摆的控制方法 (5)2单级倒立摆数学模型的建立 (6)2.1传递函数 (8)2.2状态空间方程 (9)3系统Matlab 仿真和开环响应 (10)4 系统设计 (15)4.1极点配置与控制器的设计 (15)4.2系统仿真: (16)4.3仿真结果 (17)4.4根据传递函数设计第二种控制方法-----PID串级控制 (18)5结论 (19)1 引言1.1 倒立摆介绍以及应用倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
通过对它的研究不仅可以解决控制中的理论和技术实现问题,还能将控制理论涉及的主要基础学科:力学,数学和计算机科学进行有机的综合应用。
其控制方法和思路无论对理论或实际的过程控制都有很好的启迪,是检验各种控制理论和方法的有效的“试金石”。
基于Matlab的一级倒立摆模型的仿真
深圳大学考试答题纸(以论文、报告等形式考核专用)二○○九~二○○一零学年度第 2 学期课程编号课程名称计算机控制系统主讲教师李东评分学号姓名专业年级2007级光电工程学院测控技术与仪器教师评语:题目:一级倒立摆模型的仿真一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
故其研究意义广泛。
二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。
由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。
在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。
当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。
现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得F= (M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为 F’cosθ -mg=m(lcosθ)’’=-mlθ’’sinθ-mlcosθ(θ’)^2即F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2 (c)由(b)、(c)两式得cosθx’’ =gsinθ- lθ’’ <2>故可得以下运动方程组:F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2cosθx’’ =gsinθ- lθ’’以上方程组为非线性方程组,故需做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’’≈0 故线性化后运动方程组简化为F= (M+m)x ’’ +ml θ’’ x ’’ =g θ- l θ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-Mmg x1+M 1F故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010MmgMlg m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 用MATLAB 将状态方程转化成传递函数,取M=2kg m=0.1kg l=0.5m 代入得 >>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0] >>B=[0;-1;0;0.5] >>C=[1 0 0 0;0 0 1 0]>>D=[0;0]den =1.0000 0 -20.5800 0 0由上可以得出角度 对力F 的传递函数:位移X 对外力F 的传递函数:三、用MATLAB 的Simulink 仿真系统进行建模1、没校正之前的θ-F 控制系统由于未加进控制环节,故系统输出发散58.201)()(2--=Φs s F s 24258.208.95.0)()(s s s s F s X --=2、加进控制环节,实现时域的稳定控制给系统加入PID 控制,设置系统稳定值为0,给系统一个初始干扰冲击信号采用试凑法不断调整PID 参数,使系统达到所需的控制效果当系统Kp=-100,Ti=Td=0时输出如下:不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1,Td=-40时Transfer Fcn-1s +-20.582ScopePulseGeneratorIntegrator 1s Gain 3-40Gain 11Gain -K-Derivative du/dt Constant 0可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。
直线一级倒立摆MATLAB仿真报告
1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。
本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。
1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。
主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。
便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。
2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。
∅g=0当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。
根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。
小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。
在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。
基于MATLAB(矩阵实验室)的倒立摆控制系统仿真
基于MATLAB的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。
倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。
关键词:一级倒立摆PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1倒立摆的控制方法 (1)1.2 MATLAB/Simulink简介 (2)1.3 主要内容 (3)2一级倒立摆 (3)2.1 实验设备简介 (3)3直线一级倒立摆的数学模型 (4)3.1直线一级倒立摆数学模型的推导 (4)3.1.1 微分方程模型 (6)3.1.2 传递函数模型 (7)3.1.3 状态空间数学模型 (8)3.2系统阶跃响应分析 (10)4 直线一级倒立摆PID控制器设计 (14)4.1 PID控制分析 (14)4.2PID控制参数设定及MATLAB仿真 (17)5直线一级倒立摆状态空间极点配置控制器设计 (20)5.1 状态空间分析 (21)5.2极点配置及MATLAB仿真 (22)6总结 (26)致谢 (27)参考文献 (28)1 绪论倒立摆起源于20世纪50年代,是一个典型的非线性、高阶次、多变量、强耦合、不稳定的动态系统,能有效地反映诸如稳定性、鲁棒性等许多控制中的关键问题,是检验各种控制理论的理想模型。
基于matlab的一级倒立摆自适应仿真资料
第一章绪论1.1倒立摆系统的简介1.1.1倒立摆系统的研究背景及意义倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。
倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。
通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。
近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。
因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。
倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。
随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体现的。
非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。
在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。
无论哪种类型的倒立摆系统都具有如下特性[2]:(1)非线性倒立摆是一个典型的非线性复杂系统。
基于MATLAB的单级倒立摆控制系统设计
基于MATLAB的单级倒立摆控制系统设计单级倒立摆是一种常见的控制系统,其结构简单,但具有较强的动态控制性能。
本文基于MATLAB对单级倒立摆控制系统进行设计,并详细介绍了设计过程和结果。
首先,我们需要了解单级倒立摆的结构和动力学模型。
单级倒立摆由轴、电机和旋转杆组成,电机通过轴和旋转杆相连。
倒立摆的目标是使旋转杆竖直,即使旋转杆的角度保持为0°。
为了实现倒立摆的控制,我们借助PID(Proportional-Integral-Derivative)控制器。
PID控制器是一种常用的线性控制系统,其中,比例系数(P)、积分系数(I)和微分系数(D)能够根据系统的需求进行调整。
接下来,我们需要确定系统的控制目标。
倒立摆的目标是使旋转杆的角度保持为0°。
因此,我们需要设计一个控制器,使得当旋转杆角度发生偏差时,控制器能够迅速响应,并产生相应的控制信号。
首先,我们需要获取倒立摆的角度信息。
我们可以通过连接传感器获取角度信息,并将其输入到MATLAB中进行处理。
然后,我们需要设计PID控制器来控制倒立摆。
在MATLAB中,可以使用pid函数来创建PID控制器对象,然后使用tune函数来调整PID控制器对象的参数。
调整PID控制器参数的过程通常可以通过试验和观察实现。
我们可以将倒立摆设置为初始状态,并控制器输出控制信号,然后观察倒立摆的响应。
根据实际观察,我们可以逐步调整PID控制器的参数,以达到系统的稳定性和响应速度的要求。
在完成PID控制器的参数调整后,我们可以进行仿真实验。
在MATLAB中,可以使用sim函数来进行仿真实验。
通过仿真实验,我们可以观察倒立摆的控制效果,并根据需要进行进一步的调整。
通过在MATLAB中进行控制器设计和仿真实验,我们可以对单级倒立摆进行控制系统设计。
该设计可以帮助我们理解控制系统的工作原理,并为实际应用提供参考。
同时,我们还可以根据具体需求对设计进行进一步调整和优化。
基于adams和matlab的一级倒立摆联合仿真
基于PRO/E,ADAMS和MATLAB/SIMULINK 的双回路PID控制一级倒立摆联合仿真目录一、倒立摆简介1、概述2、倒立摆分类3、倒立摆控制方法二、联合仿真流程三、基于PRO/E的一级倒立摆三维建模四、基于ADAMS的一级倒立摆模型设计五、ADAMS和MATLAB/SIMULINK的联合仿真六、一级倒立摆的双回路PID控制策略1、一级倒立摆的角度控制2、一级倒立摆的双闭环控制3、一级倒立摆摆杆长度参数对控制策略的影响七、问题总结参考文献一、倒立摆简介1、概述倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
图1.1一级倒立摆2、倒立摆分类(1)直线型倒立摆它是最常见倒立摆系统,也称车摆装置,根据目前的研究它又分为1,2,3,4级车摆,典型结构图如图11.2所示,图中以三级车摆为例,它是由可以沿直线导轨运动的小车以及一端固定于小车之上的匀质长杆组成的系统,小车可以通过转动装置由力矩电机、步进电机、直流电机或者交流伺服电机驱动,车的导轨一般有固定的行程,因而小车的运动范围都是受到限制的。
图1.2直线型倒立摆(2)环型倒立摆环型倒立摆也称摆杆式倒立摆,如图1.3所示,图中以二级为例,一般是由水平放置的摆杆和连在其端接的自由倒摆组成,原理上也可以看成是车摆的轨道为圆轨情况,摆杆是通过传动电机带动旋转的。
一级倒立摆课程设计--倒立摆PID控制及其Matlab仿真
一级倒立摆课程设计--倒立摆PID控制及其Matlab仿真倒立摆PID控制及其Matlab仿真学生姓名:学院:电气信息工程学院专业班级:专业课程:控制系统的MATLAB仿真与设计任课教师:2014 年 6 月 5 日倒立摆PID控制及其Matlab仿真Inverted Pendulum PID Control and ItsMatlab Simulation摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID 控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:倒立摆;PID控制器;MATLAB仿真设计报告正文1.简述一级倒立摆系统的工作原理;倒立摆是一个数字式的闭环控制系统,其工作原理为:角度、位移信号检测电路获取后,由微分电路获取相应的微分信号。
这些信号经A/D转换器送入计算机,经过计算及内部的控制算法解算后得到相应的控制信号,该信号经过D/A变换、再经功率放大由执行电机带动皮带卷拖动小车在轨道上做往复运动,从而实现小车位移和倒立摆角位移的控制。
2.依据相关物理定理,列写倒立摆系统的运动方程;2lO1小车质量为M ,倒立摆的质量为m ,摆长为2l ,小车的位置为x ,摆的角度为θ,作用在小车水平方向上的力为F ,1O 为摆杆的质心。
毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]
摘要倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新型控制理论和方法有效性的典型装置。
近年来,许多学者对倒立摆系统进行广泛地研究。
本文研究了直线一级倒立摆的控制问题。
首先阐述了倒立摆系统控制的研究发展过程和现状,接着介绍了倒立摆系统的结构并详细推导了一级倒立摆的数学模型。
本文分别用极点配置、LQR最优控制设计了不同的控制器,极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足要求的瞬态和稳态性能指标。
最优控制理论主要是依据庞特里亚金的极值原理,通过对性能指标的优化寻找可以使目标极小的控制器。
若取状态变量的二次型函数的积分做为系统的性能指标,则称为线性系统二次型性能指标的最优控制。
通过比较和MATLAB仿真,验证了所设计的控制器的有效性、稳定性和抗干扰性。
关键词:单级倒立摆;MATLAB;控制器设计;极点配置;LQRABSTRACTInverted pendulum is a typical multi-variable, non-linear, strong coupling and rapid movement of high-end system instability, It is testing various new control theory and methods of the effectiveness of the typical devices. In recent years, many scholars of the inverted pendulum extensive study.In this paper, a straight two inverted pendulum control on the inverted pendulum control of the development process and the status quo, then introduced the inverted pendulum system and the detailed structure of the two inverted pendulum is derived a mathematical model. In this paper, with pole placement, LQR optimal control design a different controller, By comparing and MATLAB simulation, verified the effectiveness ,stability and anti-jamming of the controller.Pole-zero configuration can configure the closed-loop system poles of multi-variable system in the desired position, by designing of the state feedback controller,so that to make the system meets the requirements of the transient and steady state performance indicators.Optimal control theory is mainly based on the Pontryagin maximum principle, by the optimization of the performance indicators to find the minimal goal of the taking the integral of the quadratic function of state variables as the system of performance indicators, called the as the linear quadratic performance index of optimal control.Key words : Single stage Inverted pendulum; MATLAB; Controller design; Zero-pole ; LQR目录摘要 (1)ABSTRACT (2)1 绪论 0控制理论的发展 0倒立摆系统简介及其研究意义 0倒立摆研究的发展现状及其主要控制方法 (1)研究目标 (2)2 直线一阶倒立摆数学模型的建立 (4)倒立摆系统的物理结构与建模 (4)系统参数设定 (7)系统能控性与能观性 (8)3 极点配置控制方案的设计 (9)极点配置理论 (9)极点配置算法 (10)极点配置控制方案的设计 (11)4 线性二次型最优控制(LQR)方案的设计 (15)最优控制的起源和发展 (15)线性二次型最优控制原理 (15)最优控制矩阵的设计 (18)5 控制系统的MATLAB仿真 (22)MATLAB软件介绍 (22)极点配置控制方案的仿真 (23)线性二次型最优控制(LQR)方案的仿真 (26)干扰条件下控制系统的仿真 (27)S函数模拟动画设计 (28) (31)6 总结与展望 (32)参考文献 (35)致谢 (36)附录 (37)1 绪论控制理论的发展控制理论发展至今已有100多年的历史,随着现代科学技术的发展,它的应用也越来越广泛。
直线一级倒立摆MATLAB仿真报告
1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。
本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。
1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1 便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。
主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。
便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。
2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。
当输入量为理想摆角,即∅∅=0时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。
根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。
小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。
在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。
一阶倒立摆系统建模与仿真研究
一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。
在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。
因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。
ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。
在仿真过程中,需要设定摆杆的初始位置和速度。
一般而言,初始位置设为0,初始速度设为0。
边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。
利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。
通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。
在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。
在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。
在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。
然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。
因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。
为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。
例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。
可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。
本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.1倒立摆系统的简介1.1.1倒立摆系统的研究背景及意义倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。
倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。
通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。
近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。
因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。
倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。
随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体现的。
非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。
在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。
无论哪种类型的倒立摆系统都具有如下特性[2]:(1)非线性倒立摆是一个典型的非线性复杂系统。
实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。
(2)不确定性主要是指建立系统数学模型时的参数误差、量测噪声以及机械传动过程中的减速齿轮间隙等非线性因素所导致的难以量化的部分。
(3)欠冗余性一般的,倒立摆控制系统采用单电机驱动,因而它与冗余机构,比如说冗余机器人有较大的不同。
之所以采用欠冗余的设计是要在不失系统可靠性的前提下节约经济成本或者节约有效的空间。
研究者常常是希望通过对倒立摆控制系统的研究获得性能较为突出的新型控制器设计方法,并验证其有效性及控制性能。
(4)耦合特性倒立摆摆杆和小车之间,以及多级倒立摆系统的上下摆杆之间都是强耦合的。
这既是可以采用单电机驱动倒立摆控制系统的原因,也是使得控制系统的设计、控制器参数调节变得复杂的原因。
(5)开环不稳定性倒立摆系统有两个平衡状态:垂直向下和垂直向上。
垂直向下的状态是系统稳定的平衡点(考虑摩擦力的影响),而垂直向上的状态是系统不稳定的平衡点,开环时微小的扰动都会使系统离开垂直向上的状态而进入到垂直向下的状态中。
(6)约束限制由于实际机构的限制,如运动模块行程限制,电机力矩限制等。
为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立摆的摆起尤为突出,很容易出现小车的撞边现象。
倒立摆的以上特性增加了倒立摆的控制难度,也正是由于倒立摆的这些特性,使其更具有研究价值和意义[3]。
1.1.2 倒立摆系统的分类倒立摆系统诞生之初为单级直线形式,即仅有的一级摆杆一端自由,另一端铰接于可以在直线导轨上自由滑动的小车上。
在此基础上,人们又进行拓展,产生了多种形式的倒立摆。
按照基座的运动形式,主要分为三大类:直线倒立摆、环形倒立摆和平面倒立摆,每种形式的倒立摆再按照摆杆数量的不同可进一步分为一级、二级、三级及多级倒立摆等[4]。
摆杆的级数越多,控制难度越大,而摆杆的长度也可能是变化的。
多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
目前,直线型倒立摆作为一种实验仪器以其结构相对简单、形象直观、构件参数易于改变和价格低廉等优点,已经广泛运用于教学[5]。
关于直线倒立摆的控制技术已经基本趋于成熟,在该领域所出的成果也相当丰富。
尽管环形倒立摆的基座运动形式与直线倒立摆有所差异,但二者相同之处是基座仅有一个自由度,可以借鉴比较成熟的直线倒立摆的研究经验,所以近几年来也产生了大量的理论成果。
平面倒立摆是倒摆系统中最复杂的一类,这是因为平面倒立摆的基座可以在平面内自由运动,并且摆杆可以沿平面内的任一轴线转动,使系统的非线性、耦合性、多变量等特性更加突出,从而增加了控制的难度,而且机械和电子器件发展遇到瓶颈性的困难,给平面倒立摆的工程实现也带来了一定的难度。
按摆杆的材质不同,倒立摆系统分为刚体摆杆倒立摆系统和柔性倒立摆系统。
在柔性倒立摆系统中,摆杆本身己经变成了非线性分布参数系统。
根据研究的目的和方法不同,倒立摆系统又分为悬挂式倒立摆、球平衡系统和平行式倒立摆。
其中,研究比较多的是悬挂式倒立摆。
这种倒立摆开始工作时,摆杆处于自由下垂状态。
控制开始时,首先使摆杆按自由振荡频率摆动,随着摆杆振荡幅度的加大,当摆杆接近于倒立摆竖直倒立位置时,自动转换控制方法,使其稳定于倒置状态。
根据导轨的形状小同,倒立摆的运动轨道可以是水平的,也可以是倾斜的。
倾斜倒立摆对实际机器人的步行稳定控制研究非常有意义。
尽管倒立摆系统的结构形式多种多样,但是无论属于哪一种结构,就其本身而言,都是一个非线性、多变量、强耦合、绝对不稳定性系统[6]。
1.1.3 倒立摆系统的研究现状倒立摆系统的研究具有重要的理论意义和应用价值,对其控制研究是控制领域研究的热门课题之一,国内外的专家学者对此给予了广泛的关注。
倒立摆系统研究最早始于上世纪50年代,麻省理工学院(MIT)机电工程系的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验装置[7]。
1966年Schaefer和Cannon应用Bang—Bang控制理论将一个曲轴稳定于倒置位置。
其实,正式提出倒立摆概念的是60年代后期。
在此基础上,世界各国专家和学者对倒立摆进行了拓展,产生了直线二级倒立摆、三级倒立摆、多级倒立摆、柔性直线倒立摆、环形倒立摆、平面倒立摆、环形并联多级倒立摆以及斜坡倒立摆等实验设备,并用不同的控制方法对其进行了控制,使研究成为了具有挑战性的课题之一。
1976年Mori etc.首先把倒立摆系统在平衡点附近线性化,利用状态空间方法设计比例微分控制器实现了一级倒立摆的稳定控制。
1980年,Furuta etc.等人基于线性化方法,实现了二级倒立摆的控制。
1984年,Furuta等人应用最优状态调节器理论首次实现双电机三级倒立摆实物控制;Wattes研究了LQR(Linear Quadratic Regulator)方法控制倒立摆。
80年代后期开始,较多的研究了倒立摆系统中的非线性特性,提出了一系列的基于非线性分析的控制策略。
1992年,Furuta等人提出用变结构控制来控制倒立摆。
1993年,Wiklund等人应用基于李亚普诺夫的方法控制了环形一级倒立摆。
Bouslama 利用一个简单的神经网络来学习模糊控制器的输入输出数据,设计了新型控制器。
1995年,Fradkov等人提出的基于无源性的控制;Yamakita等人给出了环形二级倒立摆的实验结果;Li利用两个并行的模糊滑模来分别控制小车和摆杆偏角;Deris利用神经网络的自学习能力来整定PID控制器参数。
1997年,Gordillo比较了LQR方法和基于遗传算法的控制方法,结论是传统控制方法比遗传算法控制效果更好[8]。
国内对倒立摆的研究始于80年代,虽然起步较晚但发展迅速,取得了可喜的成果。
对于单级倒立摆口钉和二级倒立摆系统的研究已经历了很长的历程,并且有很多控制成功的报道。
在此基础上,三级倒立摆b53及多级倒立摆的研究也取得了很大进展,不仅在系统仿真方面,而且在实物实验中,都出现了控制成功的范例。
尹征琦等成功的以模拟的降维观测器实现了二级倒立摆的控制。
梁任秋等针对二级倒立摆系统给出了三种实用的数字控制器和降维观测器。
1994年,北京航空航天大学教授张明廉将人工智能与自动控制理论相结合,提出“拟人智能控制理论”,实现了用单电动机控制三级倒立摆实物以及后来实现对二维单倒立摆控制。
张乃尧等用双闭环模糊控制方法对倒立摆进行了控制。
李祖枢等人利用拟人智能控制理论研究了二级倒立摆的起摆和控制问题。
李德毅教授利用反映语言值中蕴涵的模糊性和随机性,给出云发生器的生成算法,解释多条定性推理规则同时被激活时的不确定性推理机制,利用这种智能控制方法有效地实现了单电机控制的一、二、三级倒立摆的多种不同动平衡姿态,显示其鲁棒性,并给出了详细试验结果。
北京师范大学李洪兴教授领导的模糊系统与模糊信息研究中心暨复杂系统实时智能控制实验室采用变论域自适应模糊控制理论,分别于2001年6月和2002年8月完成了四级倒立摆系统的仿真和实物实验。
朱江滨等人提出了一种基于专家系统及变步长预测控制的实时非线性系统控制方法,仿真实现了二级倒立摆的摆起及稳定控制侧。
王永等通过对多级倒立摆动力学分析,得到了任意级旋转倒立摆的数学模型。
2005年国防科学技术大学的罗成教授等人利用基于LQR的模糊插值实现了五级倒立摆的控制。
总之,倒立摆系统是检验各种控制算法、研究控制理论很有效的实验设备[9]。
目前应用在倒立摆上的算法主要有以下几类:(1)经典控制理论:PID控制。
通过对倒立摆物理模型的分析,建立倒立摆系统的动力学模型,设计PID控制器实现控制。
(2)现代控制理论:状态反馈。
通过对倒立摆系统物理模型的分析,建立系统的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈,实现对倒立摆的控制。
常见的方法有:1)极点配置,2)线性二次型最优控制,3)鲁棒控制,4)状态反馈控制[10]。
(3)模糊控制理论:主要是确定模糊规则,克服系统的非线性和不确定性实现对倒立摆的稳定控制。
(4)神经网络控制理论。
利用神经网络能够充分逼近复杂的非线性关系,学习与适应严重不确定系统的动态特性,与其他控制方法结合实现对倒立摆的稳定控制。
(5)拟人智能控制理论。
不需要了解被控对象的数学模型,凭借人的知识与直觉经验并借助计算机快速模拟控制经验,把人的思维中的定性分析与控制理论中的定量计算相互结合,从而实现对倒立摆的控制。
(6)云模型控制理论。
用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
这种方法不要求给出对象的精确的数学模型,而仅依据人的经验、感受和逻辑判断,将人用自然语言表达的控制经验,通过语言原子和云模型转换到语言控制规则器中,就能解决非线性问题和不确定性问题。