速度瞬心例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章平面机构的运动分析
基本要求
了解平面机构运动分析的目的和方法,以及机构位置
图、构件上各点的轨迹和位置的求法。掌握速度瞬心位置
的确定。了解用速度瞬心求解速度的方法。掌握用相对运
动图解法作机构的速度和加速度的分析。熟练掌握影像法
的应用。搞清用解析法中的矩阵法作机构的速度和加速度
的分析,最后要达到会编程序上机作习题的程度。
基本概念题与答案
1.什么是速度瞬心,机构瞬心的数目如何计算
答:瞬心:两个构件相对速度等于零的重合点。 K = N (N-1) / 2
2.速度瞬心的判定方法是什么直观判定有几种
答:判定方法有两种:直观判定和三心定理,直观判定有四种:
(1)两构件组成转动副的轴心。
(2)两构件组成移动副,瞬心在无穷远处。
(3)纯滚动副的按触点,
(4)高副接融点的公法线上。
3.速度瞬心的用途是什么
答:用来求解构件的角速度和构件上点的速度,但绝对不能求加速度和角加速度,在四杆机构中用瞬心法求连杆和从动件上任一点的速度和角速度最方便。
4.平面机构运动分析的内容、目的和方法是什么
答:内容:构件的位置、角位移、角速度、角加速度、构件上点的轨迹、位移、速度、加速度。
目的:改造现有机械的性能,设计新机械。
方法:图解法、解析法、实验法。
5.用相对运动图解法求构件的速度和加速度的基本原理是什么
答:基本原理是理论力学中的刚体平面运动和点的复合运动。
6.什么是基点法什么样的条件下用基点法动点和基点如何选择
答:基点法:构件上某-点的运动可以认为是随其上任选某一点的移动和绕其点的转动所合成的方法。
求同一构件上两点间的速度和加速度关系时用基点法,动点和基点选在运动要素己知多的铰链点。
7 用基点法进行运动分析的步骤是什么
答:(1)选长度比例尺画机构运动简图
(2)选同一构件上已知运动要素多的铰链点作动点和基点,列矢量方程,标出已知量的大小和方向。
(3)选速度和加速度比例尺及极点P、P′按已知条件画速度和加速度多边形,
求解未知量的大小和方向。
(4)对所求的量进行计算和判定方向。
8 .什么是运动分析中的影像原理又称什么方法注意什么
答:影像原理:已知同-构件上两点的速度或加速度求另外-点的速度和加速度,则这三点速度或加速度矢端所围成的三角形与这三点在构件上围成的三角形相似,这就称作运动分析中的影像法,又称运动分析中的相拟性原理。
注意:三点必须在同一构件上,对应点排列的顺序同为顺时针或逆时针方向。
9.什么是速度和加速度极点
答:在速度和加速度多边形中绝对速度为零或绝对加速度为零的点,并且是绝对速度或绝对加速度的出发点。
10.速度和加速度矢量式中的等号,在速度和加速度多边形中是哪一点
答:箭头对顶的点。
11.在机构运动分析中应用重合点法的基本原理是什么
答:点的复合运动。
12.重合点法在什么倩况下应用
答:两个活动构件有相对运动时,求重合点的速度和加速度。
13.应用重合点进行运动分析时,什么情况下有哥氏加速度
答:当牵连角速度和重会点间相对速度不等于零时,有哥氏加速度,若其中之一等于零,则哥氏加速度等于零。
大小为: a k B1B2= 2ω2V B1B2
方向为:V B1B2的矢量按牵连角速度ω2方向旋转 900。
14.应用重合点法进行运动分析时的步骤是什么
答:(1)选择比例尺画机构运动简图。
(2)选运动要素已知多的铰链点为重合点,列速度,加速度矢量方程。
(3)选速度比例尺和速度极点画速度多边形。
(4)选加速度比例尺和加速度极点画加速度多边形图。
(5)回答所提出的问题。
典型例题
例3-1 图(a)和(b)分别为移动导杆机构和正切机构的运动简图,其长度比例尺μL=2 mm/mm。图中的构件1均为原动件,且已知ω1=10rad/s 。试分别求出其全部瞬心点,并用瞬心法分别求出:构件3的速度V3、构件2上速度为零的点I2和构件2的角速度ω2。
解这两个机构均为含有两个移动副的四杆机构,各有六个瞬心点。但因导路的形状不同,故瞬心点的位置不尽相同。
(1)移动导杆机构
其六个瞬心点的位置如图(a)所示。其中:P14在A点,P12在B点;P23在导路的曲率中心O处(而不是在无穷远处!这点应该注意),P∞34在与导路垂直的无穷远处;根据三心定理,P13在P14和P∞34连线与P12和P23连线的交点处,P24在P14和P12连线与P23和P∞34连线的交点处。
例 3-1 图μL=2 mm / mm,μv=0.04 m /s / mm
因为构件1的角速度ω1已知,而构件3为平移运动,所以可利用P13求出构件3的速度 v3=v p13=ω1L AP13=ω1AP13μL=10×30×2=600mm/s 方向:向右。
(a)(b)
构件2上速度为零的点I2,就是构件 2 与机架 4 的瞬心点 P24(v P24=0)。
在图示位置上,构件2绕P24(I2)点作瞬时定轴转动,其角速度ω2可通过瞬心点P12的速度v P12求出,即:
v P12= v B=ω1L AB=ω1ABμL= 10×22×2 = 440 mm / s ∴ω2= v P12 / L I2B= v P12 / ( I2B×μL)= 440 /( 20×2) = 11 rad /s
方向:逆时针。
(2)正切机构
六个瞬心点的位置如图(b)所示。请注意利用三心定理求P13和P24 的方法。
构件3的平移速度 v3,可利用瞬心点P13求出
v3= v P13=ω1L Ap13=ω1AP13μL= 10×38×2 = 760 mm / s
方向:向下。
构件 2上速度为零的点I2,即为瞬心 P24。
由于构件 2与构件 1构成移动副,二者之间没有相对转动,因此
ω2=ω1= 10 rad / s 逆时针方向
例3-2 在图(a)所示的机构中,已知:L AB=38mm,L CE=20mm,L DE = 50mm,x D =150 mm,y D=60mm;构件1以逆时针等角速度ω1=20 rad / s转动。试求出此机构的全部瞬心点,并用向量多边形法求出构件 3 的角速度ω3和角加速度ε3,以及点 E 的速度v E和加速度 a E。
解(1)求速度瞬心
P14在A点,P12在B点,P34在 D点,P∞23在与导路 CE 相垂直的无穷远处,这四个瞬心容易求出,如图(a)所示。根据三心定理,P13既在P14和P34的连线上,又在P12和P ∞
23的连线上,因此,过B(P12)点作导路CE的垂线,与AD连线的交点即为P13点;同理,过 D(P34)点作导路 CE 的垂线,与 AB 连线的延长线的交点即为 P24点。
(2)速度分析
取长度比例尺μL = 4 mm/mm,按给定条件作出机构运动简图,如图(b)所示。在