西丰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西丰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.
A

B

C

D

2. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
3. 已知a=log 23,b=8﹣0.4,
c=sin
π,则a ,b ,c 的大小关系是( )
A .a >b >c
B .a >c >b
C .b >a >c
D .c >b >a
4. 设函数()(
)2
1,1
41
x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )
A .(][],20,10-∞-
B .(][],20,1-∞-
C .(][],21,10-∞-
D .[][]2,01,10-
5. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )
A .(0,2)
B .(0,3)
C .(0,1)
D .(0,5)
6. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移2π个单位
B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
7. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
8. 已知函数f (x )=x 2
﹣,则函数y=f (x )的大致图象是( )
A
. B
. C
. D

9. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :0
44222
22=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).
A .),3[]1,2(+∞--
B .),3()1,35
(+∞-- C .),3[]1,3
5[+∞-- D .),3()1,2(+∞--
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c
的等差中项,则=( )
A .4
B .3
C .2
D .1
11.矩形ABCD 中,AD=mAB ,E 为BC
的中点,若
,则m=( )
A

B

C .2
D .3
12.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )
A
. B
. C
. D .3
二、填空题
13.若x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.
14.数据﹣2,﹣1,0,1,2的方差是 .
15.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .
16.已知函数
y=log
(x 2
﹣ax+a )在区间(2,+∞)上是减函数,则实数a 的取值范围是 .
17.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= . 18.若x ,y
满足线性约束条件
,则z=2x+4y 的最大值为 .
三、解答题
19.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,
,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
20
.已知=

sinx ,cosx
),=(sinx ,sinx ),设函数f (x )
=


(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;
(2)求f(x)在区间[π,]上的最大值和最小值.
21.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥
A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.
22.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.
(1)若p=,求A∩B;
(2)若A∩B=B,求实数p的取值范围.
23.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD 的中点,求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
西丰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】D
【解析】解:设从第2天起每天比前一天多织d尺布m
则由题意知,
解得d=.
故选:D.
【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.
2.【答案】B
【解析】解:∵C U A={1,5}
∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.
故选B.
3.【答案】B
【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sinπ=sinπ,
∴a>c>b,
故选:B.
【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.
4.【答案】A
【解析】
考点:分段函数的应用.
【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 5.【答案】A
【解析】解:∵f(x)=x3﹣3x2+5,
∴f′(x)=3x2﹣6x,
令f ′(x )<0,解得:0<x <2, 故选:A .
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
6. 【答案】B 【解析】
试题分析:函数()cos ,3f x x π⎛

=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝⎭
,故选B.
考点:函数()sin y A x ωϕ=+的图象变换. 7. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

8. 【答案】A
【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.
∵当x >0时,t=
=在x=e 时,t 有最小值为
∴函数y=f (x )=x 2

,当x >0时满足y=f (x )≥e 2
﹣>0,
因此,当x >0时,函数图象恒在x 轴上方,排除D 选项 故选A
9. 【答案】C
【解析】由已知,圆1O 的标准方程为222
(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222
()()(2)x a y a a ++-=+,∵
2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或1
35
-≤≤-a ,故答案选C
10.【答案】C
【解析】解:由题意可知,


=
=
=

故选C.
【点评】本题考查数列的性质应用,难度不大,解题时要多一份细心.
11.【答案】A
【解析】解:∵AD=mAB,E为BC的中点,
∴=+=+=+,
=﹣,
∵,
∴•=(+)(﹣)=||2﹣||2+=(﹣1)||2=0,
∴﹣1=0,
解得m=或m=﹣(舍去),
故选:A
【点评】本题考查了向量的加减的几何意义和向量的数量积运算,以及向量垂直的条件,属于中档题.12.【答案】A
【解析】解:由,得3x2﹣4x+8=0.
△=(﹣4)2﹣4×3×8=﹣80<0.
所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.
设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0
联立,得3x2﹣4x﹣m=0.
由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,
得m=﹣.
所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.
所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.
故选:A.
【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.
二、填空题
13.【答案】
【解析】
约束条件表示的区域如图,
当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.
答案:1
14.【答案】2.
【解析】解:∵数据﹣2,﹣1,0,1,2,
∴=,
∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,
故答案为2;
【点评】本题考查方差的定义与意义:一般地设n个数据,x
,x2,…x n的平均数,是一道基础题;
1
15.【答案】.
【解析】解:由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.
∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.
在RT△SHO中,OH=OC=OS
∴∠HSO=30°,求得SH=OScos30°=1,
∴体积V=Sh=××22×1=.
故答案是.
【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.
16.【答案】a≤4.
【解析】解:令t=x2﹣ax+a,则由函数f(x)=g(t)=log t 在区间[2,+∞)上为减函数,
可得函数t在区间[2,+∞)上为增函数且t(2)>0,
故有,解得a≤4,
故实数a的取值范围是a≤4,
故答案为:a≤4
【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.
17.【答案】3.
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
18.【答案】38.
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
三、解答题
19.【答案】(1)3
B π
=;(2)[1,2).




20.【答案】
【解析】解:(1)∵=(sinx ,cosx ),=(sinx ,sinx ),
∴f (x )=﹣
=
sin 2x+sinxcosx ﹣=
(1﹣cos2x )+sin2x ﹣
=﹣
cos2x+sin2x ﹣
=sin
(2x ﹣
),
∴函数的周期为T==π,
由2k π﹣
≤2x ﹣
≤2k π+
(k ∈Z )解得k π﹣
≤x ≤k π+

∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);
(2)由(1)知f(x)=sin(2x﹣),
当x∈[π,]时,2x﹣∈[,],
∴﹣≤sin(2x﹣)≤1,
故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.
【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.
21.【答案】
【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,
又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),
设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
22.【答案】
【解析】解:(1)当p=时,B={x|0≤x≤},
∴A∩B={x|2<x≤};
(2)当A∩B=B时,B⊆A;
令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;
当p≤4时,应满足,
解得p不存在;
综上,实数p的取值范围p>4.
23.【答案】
【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.
又因为EF不在平面PCD中,PD⊂平面PCD
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°.
所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF⊂平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.
24.【答案】
【解析】解:(Ⅰ)由题意得,2c=2,=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N的纵坐标为0,
故k2=k1=0,这与k2≠k1矛盾.
当k1≠0时,直线PM:y=k1(x+2);
由得,
(+4)y2﹣=0;
解得,y M=;
∴M(,),
同理N(,),
由直线MN与y轴垂直,则=;
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.。

相关文档
最新文档