最新锂电池隔膜基础知识

合集下载

锂离子电池隔膜基础知识共33页

锂离子电池隔膜基础知识共33页
锂离子电池隔膜基础知 识
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
1、最灵繁的人也看不见自己的背脊。——非洲 2、最雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

锂电池隔膜知识详解

锂电池隔膜知识详解

锂电池隔膜知识详解
隔膜主要的功能是阻止电池中正极和负极之间直接接触,从而防止电池发生短路,同时允许锂离子在电池中自由移动。

锂离子电池的正极材料一般是锂的氧化物,负极材料是碳基材料,两者之间如果直接接触会导致短路。

隔膜通过孔隙调整锂离子的传输速率,从而保证电池的性能稳定。

锂电池隔膜的性能对整个电池的性能有很大影响。

首先,隔膜需要具有较高的电导率,以便锂离子可以在正负极之间快速传输。

其次,隔膜需要具有较高的机械强度和热稳定性,以承受电池的运行过程中产生的压力和温度变化。

此外,隔膜还需要具有较低的电介质常数和较高的电化学稳定性,以减少电池的内阻和提高电池的循环寿命。

隔膜的制备方法主要有拉伸、压延和湿法涂覆等。

其中,拉伸法是最常用的制备方法,通过拉伸聚合物薄膜,使其形成具有一定孔隙结构的隔膜。

压延法和湿法涂覆法则是通过挤压和覆盖混合材料来制备隔膜。

除了传统的聚合物隔膜,目前还有一种新型的锂电池隔膜,无机固体电解质薄膜。

这种隔膜主要由氧化物或硅酸盐等无机材料制成,具有更高的热稳定性、机械强度和电导率。

无机固体电解质薄膜可以解决传统隔膜在高温或高电流工况下存在的问题,提高电池的安全性能。

在锂电池隔膜的应用中,隔膜的性能优势和稳定性对电池的性能和安全性有着重要影响。

因此,隔膜的研发和改进是提高锂离子电池性能的重要方向之一、未来,随着电动汽车和可再生能源的需求增加,对高性能隔膜的需求也将不断增加,这将进一步推动隔膜技术的创新和发展。

锂离子电池隔膜基础

锂离子电池隔膜基础

锂离子电池隔膜基础
隔膜在锂离子电池中起着非常重要的作用,它是电解液在阳极和阴极间的隔离物,允许正负电流通过,但又阻止它们的完全混合。

隔膜的性能会对电池的性能产生非常重要的影响,它必须具有良好的稳定性、良好的水分保护,同时还应具有良好的导电性和柔性。

隔膜的主要功能是防止电解质的渗透,保持正负极的电离状态,并能够有效地抵抗电池内部的氧的析出。

隔膜应具有柔软性,可以使电极表面平坦,无缺洞,并且能够有效地抑制电池内的氢气充放。

隔膜的常见材料有聚合物、金属薄膜和纳米纤维。

1.聚合物隔膜
聚合物隔膜是目前应用最广泛的类型,它的主要成分是石墨烯、碳纳米管、聚酰胺和乙烯基丙烯酸酯。

石墨烯和碳纳米管具有很好的导电性和绝缘性,对电解液渗透具有一定的阻挡性。

聚酰胺和乙烯基丙烯酸酯具有良好的柔韧性,以及很好的抗拉强度和抗撕裂性能,可以提高隔膜的耐湿性能。

2.金属薄膜隔膜
金属薄膜主要由铝、锌、锡和铜等金属组成,它具有较高的导电性,可以有效防止电解液的渗透,而且能够有效地抑制氢气的生成和放出。

3.纳米纤维隔膜。

锂离子电池隔膜

锂离子电池隔膜

主要应用领域
电动汽车
锂离子电池隔膜在电动汽车领域的应用最为广泛,主要作为电池组件的核心材料之一,用于隔开正负极材料,防止短 路和电池爆炸等安全问题。
储能领域
储能领域是锂离子电池隔膜的另一个重要应用领域,主要涉及电力、通信、智能电网等领域。在这些领域中,锂离子 电池隔膜用于储存电能,并在需要时释放出来。
产品特点
干法工艺制备的隔膜具有机械强度高、耐高温、热稳定性好等优点,同 时干法工艺可以生产出厚度较大的隔膜,适用于高功率密度的锂离子电 池。
工艺比较与优化
生产成本
湿法工艺使用的是水溶剂,生产成本较低;而干法工艺使用的是有机溶剂,生产成本较高。因此,在考虑生产成 本的前提下,湿法工艺更具优势。
产品性能
市场竞争
随着市场规模的不断扩大,锂离子电池隔膜领域的竞争也 越来越激烈。新进入者和现有企业之间的竞争将进一步加 剧。因此,企业需要不断提高产品质量和服务水平,加强 品牌建设和市场推广,以保持竞争优势。
05
锂离子电池隔膜的环保与可持续发展
生产过程中的环保要求
02
01
03
原材料选择
使用环保材料,如可再生资源,减少对环境的破坏。
作用
隔膜在锂离子电池中起到至关重要的作用,它决定了电池的容量 、内阻、安全性以及电池的寿命。
隔膜的组成与结构
组成
锂离子电池隔膜主要由聚烯烃材 料制成,其表面涂有陶瓷涂层以 增强其热稳定性。
结构
隔膜的结构通常呈现出多孔性, 这些孔隙允许锂离子通过,却阻 止了电子的直接流通,从而实现 了正负极之间的隔离。
06
研究与发展趋势
研究现状与成果
聚烯烃隔膜
聚烯烃隔膜具有高孔隙率、低成 本和良好的热稳定性,是锂离子 电池的主要隔膜类型。目前,研 究者通过优化隔膜的孔径、厚度 和拉伸强度等参数,提高了隔膜 的电化学性能和安全性。

锂离子电池隔膜基础ppt课件

锂离子电池隔膜基础ppt课件

Ls d
tGur
5.18
L d
式中:τ-孔的曲折度,Ls-气体或液体实际 通过的路程,d-隔膜的厚度
式中:tGur-Gurley值;τ-孔的曲折度;L膜厚(cm); ε-孔隙率;d-孔径
用压降仪来测量电池隔膜的透气率
东燃16u 东然20u celgard20u celgard25u
隔膜空气渗透性/s
械性能的耐久性; 7. 隔膜不含有电解液能溶解的颗粒和金属及对电池
有害的物质。
.
隔膜作用
1. 将电池的正负极隔离以防止短路 2. 吸附电池中电化学反应进行必须的的电解质
溶液,确保有高的离子电导率 3. 保证在电池发生异常时为提高电池的安全性
而附加的使电池反应停止的功能
.
对隔膜的要求:
a.有一定的机械强度,保证在电池变形条件下不破 裂;
下,隔膜的厚度越薄越好。现在,新型的高能电池大都采用膜厚 20μm或 16μm的单层隔膜;电动汽车(EV)和混合电动汽车(HEV)所用电池的隔膜在 40μm左右,这是电池大电流放电和高容量的需要,而且隔膜越厚,其机械强 度就越好,在组装电池过程中不易短路。
隔膜 构造 厚度
Celgard2320 PP/PE/PP 25/20/16
采用单轴拉伸时,膜在拉伸方向与垂直拉伸方向强度不同,而采用双轴拉伸制备的隔 膜其强度在两个方向上基本一致。
东然-16u 东燃-20u Celgard-20u Celgard-25u
抗拉强度均值/Mpa 132.2 141.7 199.6 205.9
伸长率均值/% 89.64 107.96 48.06 77.16
.
(3)孔隙率。
透过性可用在一定时间和压力下通过隔膜气体的量的多少来表征,主要反 映了锂离子透过隔膜的通畅性。孔隙率对膜的透过性和电解液的容纳量 非常重要。大多数商用锂离子电池隔膜的孔隙率在40%- 50%之间。

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识锂离子电池是一种广泛应用于手机、平板电脑、电动汽车等领域的电池。

而隔膜是锂离子电池中极为重要的组成部分,起到分隔正负极的作用。

本文将围绕锂离子电池隔膜展开详细介绍。

一、锂离子电池隔膜的作用隔膜是锂离子电池中的重要组成部分,不仅要分隔正负极,而且要能够让锂离子通过。

它的主要作用有以下几个方面:1.防止正负极之间短路,以免电池发生故障。

2.热量不均匀时,隔膜还可以阻止热流向正负极传递,保护电池安全性。

3.能够防止电池内部严重的化学反应发生,保证电池寿命。

4.通过调整隔膜孔径和孔隙度的大小,可以影响电池中锂离子的传输性能,达到增加电池容量的目的。

二、锂离子电池隔膜的种类锂离子电池隔膜的种类一般有以下三种:1.聚丙烯隔膜聚丙烯隔膜具有良好的热稳定性和化学稳定性,使用寿命长,且在电池过充和过放时不易熔化。

它是目前应用最广泛的隔膜。

2.聚酰胺隔膜聚酰胺隔膜在电池的容量和寿命上相对聚丙烯隔膜有更好的表现,但其价格相对较高。

3.陶瓷隔膜陶瓷隔膜具有良好的化学稳定性,耐高温,耐电化学腐蚀,且有良好的防火性能。

但其价格较高,制造难度也较大。

三、锂离子电池隔膜的发展趋势锂离子电池技术的不断升级,为研发更加稳定、高效、安全的电池隔膜提供了宝贵的机遇。

近年来,一些新型材料,如锂离子导体和多层复合膜,已经应用在电池隔膜中,可以有效提高电池的性能和安全性。

此外,目前锂离子电池的生产已逐步向智能化、自动化方向发展。

通过引入大数据分析、人工智能等技术,优化锂离子电池的生产流程和制造质量,将成为未来隔膜发展的一大趋势。

四、锂离子电池隔膜应该如何选择在选择锂离子电池隔膜时,应该从以下几个方面考虑:1. 电池容量和寿命根据电池的容量和使用的环境选择对应的隔膜。

2. 安全性和可靠性选择具有良好化学稳定性和耐高温、耐电化学腐蚀性、防火性能良好的隔膜。

3. 成本对于普通的使用场合,选择价格相对较低的聚丙烯隔膜即可。

总之,锂离子电池隔膜是锂离子电池的关键组成部分之一,其质量和性能直接影响到电池的使用寿命和安全性。

锂电池隔膜知识介绍

锂电池隔膜知识介绍
术壁垒最高的一种高附加值材料,约占电池成本的20%30%。 隔膜的主要作用是使电池的正、负极分隔开来,防止两极 接触而短路,此外还具有能使电解质离子通过的功能。
锂电池隔膜
二、锂电池隔膜行业情况
迅猛发展:新能源汽车的发展带动了隔膜行业的迅猛发展, 且毛利率很高的巨大诱惑,使2010年以来国内涌现了锂电 池隔膜的投资热潮,现已达到40多家隔膜企业。
原理: 小分子物质和聚烯烃均匀混合后,在铸片冷却过程中产生固液
相分离,液态小分子物质在片材中填充成孔,待拉伸萃取后就 形成了贯通的孔结构。
湿法工艺流程及特点
小分子物质和聚烯烃混合挤出→铸片→纵向拉伸→横向拉 伸→萃取→热处理→牵引切边→收卷→大分切→小分切
产品特点: 1、隔膜孔径比较小而均匀; 2、隔膜性能呈现各向同性; 3、机械强度更高,安全性更好; 4、厚度更薄,电池能量密度更高。
2020年10月10日
目录
一、锂电池隔膜定义 二、锂电池隔膜行业情况 三、传统锂电池隔膜种类 四、新能源汽车对隔膜的要求 五、新型锂电池隔膜应运而生 六、锂电池隔膜性能指标
一、锂电池隔膜定义
隔膜是一种具有纳米级微孔的高分子功能材料。 在锂电池的结构中,隔膜是关键的4大组件之一,也是技
产品特点: 1、微孔结构很不均匀 2、各向异性:纵向强度大,横向强度小,纵向收缩大,横向收
缩小
湿法工艺
湿法又称相分离法或热致相分离法,将液态烃或一些小分子物 质与聚烯烃树脂混合,加热熔融后,形成均匀的混合物,然后 降温进行相分离,制得片材,再将片材加热至接近熔点温度, 进行双向拉伸使分子链取向,随后用易挥发物质洗脱残留的溶 剂,可制备出相互贯通的微孔膜材料。
特点: 1、具有扁长的微孔结构 2、各向异性

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知识培训手册第一章:引言(200字)随着现代社会对便携式电子设备和电动汽车等的需求不断增加,锂离子电池作为一种高能量、高功率储能装置得到了广泛应用。

而隔膜作为其中的一个重要组成部分,对电池的性能和安全性起到至关重要的作用。

本手册旨在对锂离子电池隔膜的基础知识进行培训,帮助读者深入了解隔膜的原理、分类、性能要求以及应用等方面的知识。

第二章:锂离子电池隔膜的原理与结构(400字)2.1锂离子电池隔膜的作用2.2锂离子电池隔膜的结构锂离子电池隔膜通常由微孔膜、隔膜保护层和粘结剂组成。

其中,微孔膜是隔膜的主要结构,其特点是具有一定的孔径和孔隙率,能够促进离子的传输。

隔膜保护层用于改善隔膜的化学和机械稳定性,降低隔膜的热收缩性。

粘结剂则用于固定微孔膜和隔膜保护层。

第三章:锂离子电池隔膜的分类(300字)3.1根据材料根据材料的不同,锂离子电池隔膜主要可以分为聚烯烃隔膜和陶瓷隔膜两类。

聚烯烃隔膜通常由聚丙烯(PP)或聚乙烯(PE)等高分子材料制成,具有较高的电导率和较低的成本,广泛应用于电池领域。

陶瓷隔膜则具有较高的热稳定性和机械强度,适用于高温和高功率应用场景。

3.2根据结构根据结构的不同,锂离子电池隔膜可以分为单层隔膜和复合隔膜两类。

单层隔膜通常由一层微孔膜制成,其优点是电池内部电阻较低。

复合隔膜则由两层或多层微孔膜通过层间粘结剂粘合而成,具有较好的机械强度和热稳定性。

第四章:锂离子电池隔膜的性能要求(400字)4.1电导率隔膜的电导率是衡量其性能的重要指标之一、较高的电导率能够降低电池的内阻,提高电池的功率性能。

因此,锂离子电池隔膜应具有较高的电导率,以确保电池的正常工作和性能的发挥。

4.2热稳定性4.3机械强度第五章:锂离子电池隔膜的应用(200字)锂离子电池隔膜广泛应用于各种领域,包括便携式电子设备、电动汽车、储能系统等。

在便携式电子设备中,隔膜能够确保电池的安全性和稳定性,提供持久的电力支持。

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识

锂离子电池隔膜相关知识锂离子电池隔膜是电池中非常重要的一个部件,主要作用是隔离正、负极,防止电解质在两极之间短路,从而影响电池的正常运行。

除此之外,隔膜还具有控制电池内部反应速率、稳定电压和提高电池寿命等重要作用。

下面就来介绍一下锂离子电池隔膜的相关知识。

一、隔膜的类型目前,锂离子电池隔膜的类型主要有以下几种:1.聚合物隔膜:是目前用得最多的一种隔膜,具有较高的热稳定性、较小的内阻和良好的电解液湿润性。

2.玻璃纤维隔膜:通常用于高温应用,具有较高的耐热性,但对于电解质的湿润性较差。

3.陶瓷隔膜:是目前最新研发的一种隔膜,具有优异的耐高温性和机械性能。

4.晶格氧化物隔膜:通过在金属箔上沉积氧化物陶瓷保护层制成,具有优异的抗渗透性和高电导率。

二、隔膜的材料及制造工艺隔膜的材料主要有聚合物、陶瓷、玻璃纤维和晶格氧化物等。

其中,聚合物材料由于其良好的湿润性、塑性和热稳定性,成为了制造锂离子电池隔膜的主要选择。

聚合物隔膜的制造工艺可以分为两种:一种是湿法制造,利用溶剂交联等方法制备;另一种是干法制造,通过高压和高温的方法制造而成。

三、隔膜的性能参数1.厚度:隔膜厚度对于电池的内阻、容量和性能具有重要影响。

一般隔膜的厚度为10-50um。

2.孔径:隔膜的孔径可以影响电解液的传导及电池的实际性能表现。

3.热稳定性:隔膜的热稳定性主要指在高温环境下,隔膜的变形率、气泡、缩孔等,越低越好。

4.抗渗透性:隔膜的渗透性指隔膜对电解液的耗损程度,抗渗透性越好,电池的寿命越长。

5.氧化还原性能:隔膜的氧化还原性能能够影响电池的负荷承载能力和寿命。

综上所述,锂离子电池隔膜作为电池中至关重要的一个部件,对于电池的安全性、性能和寿命等方面有着至关重要的影响。

在电池生产中,应该根据实际需求和使用环境选择适当的隔膜材料和制造工艺,并注意控制隔膜的厚度、孔径、热稳定性、抗渗透性和氧化还原性能等关键性能指标,以进一步提高锂离子电池的性能和可靠性。

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识

锂离子电池隔膜基础知识锂离子电池是一种广泛应用于便携式电子设备和电动汽车等领域的重要能量存储装置。

而隔膜作为锂离子电池的关键组成部分之一,起着分隔正负极电解液,防止短路和通电性能的调控等重要作用。

下面将针对锂离子电池隔膜的基础知识进行详细介绍。

锂离子电池隔膜的基本结构包括基材和涂层两部分。

基材主要由聚乙烯(PE)、聚丙烯(PP)等高分子材料构成,它们具有良好的化学稳定性、物理性能和导电性能。

涂层则主要由聚丙烯酸(PPA)等材料构成,它们能提供一定的离子导电性。

1.隔离正负极电解液:锂离子电池隔膜能有效地分隔正负极电解液,阻止锂离子的直接接触。

这样可以避免正负极短路,减少电池的安全风险。

2.调控通电性能:锂离子电池隔膜的孔径大小和形状可以影响锂离子的传输速率和电池的内阻。

通过调控隔膜的孔径大小和形状,可以提高电池的输出功率和循环寿命。

3.限制电解液的扩散:锂离子电池隔膜可以限制电解液中的溶剂和盐类的扩散,防止电解液的流失和混合,维持电池的稳定性和可靠性。

1.良好的机械强度:锂离子电池隔膜需要具有足够的机械强度,以抵抗外界的挤压和变形。

2.优异的热稳定性:锂离子电池运行时会产生较高的温度,因此隔膜需要具备良好的热稳定性,以避免隔膜的热退化和电池性能的下降。

3.良好的离子导电性:隔膜要具备良好的离子传输性能,以保证锂离子的快速传输,提高电池的输出功率。

4.优异的化学稳定性:隔膜需要具备良好的化学稳定性,以避免与电解液中的溶剂和盐类发生反应,导致隔膜的化学降解和电池性能的下降。

5.适当的孔径和孔隙率:隔膜的孔径大小和孔隙率会影响锂离子的传输速率和电池的内阻。

孔径和孔隙率过大会导致电池容量下降,而孔径和孔隙率过小会导致电池内阻过高。

隔膜的制备方法:1.干法制备:干法制备的隔膜是利用电解纸或高分子薄膜的物理和化学性质进行制备。

常见的干法制备方法有水热法、吹膜法、拉伸法等。

2.液相制备:液相制备的隔膜是利用溶液中的高分子材料通过涂覆、浸渍等方法形成的。

锂离子电池隔膜及粘结剂基础知识

锂离子电池隔膜及粘结剂基础知识

锂离子电池隔膜及粘结剂基础知识首先,我们来了解一下锂离子电池隔膜的作用和特点。

隔膜主要用于隔离正负极之间的电解液,防止直接接触造成短路,同时能允许锂离子的传输。

隔膜一般由聚合物材料制成,具有较好的电解质浸透性、电解质阻挡特性和机械稳定性等特点。

目前市场上主要使用的隔膜材料包括聚丙烯膜(PP)、聚乙烯膜(PE)、聚砜膜等。

其中,聚丙烯膜是最常用的隔膜材料,因其具有较好的化学稳定性、热稳定性和机械强度。

隔膜的关键性能包括电导率、孔隙率、耐热性和耐化学腐蚀性等。

电导率是指电解质在隔膜中传导的性能,高电导率可以提高锂离子电池的放电性能。

孔隙率指隔膜中的孔隙比例,较高的孔隙率可以增加电解液的浸透性,提高锂离子的传输速率。

耐热性是指隔膜在高温环境下的抗变形能力,耐化学腐蚀性则是指隔膜具有较强的耐腐蚀性,能够抵御主要成分为六氟磷酸锂的锂离子电池电解液的腐蚀。

接下来,我们来了解一下锂离子电池粘结剂的作用和特点。

粘结剂主要用于固定正负极材料和隔膜,确保它们之间的稳固连接,同时提供一定的机械支撑性。

一般来说,锂离子电池使用的粘结剂主要有聚合物粘结剂和无机粘结剂两种。

聚合物粘结剂具有较好的粘结性能和柔韧性,能够提供较好的机械支撑性,而无机粘结剂则具有较好的导电性能和耐高温性能。

粘结剂的关键性能包括黏度、粘结强度、导电性和耐化学腐蚀性等。

黏度是指粘结剂的流动性,越低代表越容易涂布在材料表面。

粘结强度是指粘结剂与正负极材料和隔膜之间的黏结程度,强的粘结强度可以确保电池组件的稳固连接。

导电性是指粘结剂能否良好地导电,较好的导电性能能提高锂离子电池的放电性能。

耐化学腐蚀性是指粘结剂具有较强的耐腐蚀性,能够抵御锂离子电池电解液的腐蚀。

总之,锂离子电池隔膜和粘结剂是保证锂离子电池性能稳定与安全的关键部件。

优质的隔膜可以提高电池的性能表现,如电导率和孔隙率等;而优质的粘结剂则可以确保电池组件的稳固连接和较好的导电性能。

因此,在锂离子电池的研制过程中,对于隔膜和粘结剂的选择和优化是十分重要的。

锂离子电池隔膜精品文档

锂离子电池隔膜精品文档

商品化隔膜的典型特征参数
本技术制作工艺
挤出机
精密计量泵
模头
纵拉
横拉
生产车间
The End!
谢谢大家
Gurley 数 :一定体积的气体,在一定压力条件下通过 一定面积的隔膜所需要的时间。与隔膜装配的电池的内阻 成正比,即该数值越大,则内阻越大。
单纯比较两种不同隔膜的 Gurley 数是没有意义的,因 为可能两种隔膜的微观结构完全不一样;但同一种隔膜的 Gurley 数的大小能很好的反应出内阻的大小,因为同一 种隔膜相对来说微观结构是一样的或可比较的。
采用该法的具有代表性的公司有日本旭化成、东燃及美 国Entek等,目前主要用于单层的PE隔膜。
湿法 PE 的微孔结构 (20,000倍)
虽然孔隙率和透气性 可控范围大,但由于 湿法工艺需要消耗大 量的有机溶剂,一方 面要考虑溶剂的回收 利用,工艺复杂度增 加,使成本增加,另 一方面,污染环境。
从干、湿两种方法上看,干法双向拉伸工艺生 产的隔膜在物理性能、机械性能方面更占优势, 能够满足动力电池大电流充放电的要求。所以, 干法双向拉伸工艺生产的隔膜更适合应用于电 动汽车用动力电池。
干法双拉 PE 的微孔结构 (20,000倍)
微孔尺寸分布均匀 膜厚度范围宽 横向拉伸强度好 抗穿刺强度高 更适合动力电池
造孔工程技术
湿法
湿法又称相分离法或热致相分离法,将高沸点小分子作 为致孔剂添加到聚烯烃中,加热熔融成均匀体系,然后降 温发生相分离,拉伸后用有机溶剂萃取出小分子,可制备 出相互贯通的微孔膜材料。
目前所使用的电极颗粒一般在 10 微米的量级,而所使 用的导电添加剂则在 10 纳米的量级,不过很幸运的是 一般碳黑颗粒倾向于团聚形成大颗粒。一般来说,亚微 米孔径的隔膜足以阻止电极颗粒的直接通过,当然也不 排除有些电极表面处理不好,粉尘较多导致的一些诸如 微短路等情况。

一文带你看懂锂电池隔膜

一文带你看懂锂电池隔膜

1隔膜的定义厦门8月252023锂电新能源技术与新材料发展研讨会隔膜是离子电池的重要组成部分,它位于电池内部正负极之间,保证理离子通过的同时,阻碍电子传输。

隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。

2对隔膜的要求根据特定的电池和应用选择隔膜时,必须考虑几点因素,权衡每种隔膜的特点和使用要求,基本要求隔膜具有如下特点:①电子绝缘性;②易被电解液浸润,且电解液浸润后的电阻最小;③力学性能和结构稳定性好;④对电解液、杂质、正负极反应物具有很好的化学稳定性:⑤能够有效阻止两极间粒子、胶体或可溶物的迁移。

此外根据电池应用不同,可调整要求,总之是性能良好、安全性高和成本低。

3隔膜的种类锂离子电池隔膜的分类根据物理、化学特性的差异,电池隔膜可以分为:织造膜、非织造膜(无纺布)、微孔膜、复合膜、隔膜纸、碾压膜等几类。

虽然类型繁多,至今商品化理电池隔膜材料主要采用聚乙烯、聚丙烯微孔膜。

由于锂在水溶剂会发生反应,且非水电解质在高电压下稳定,故所有钾电池采用的都是非水电解质,鲤离子二次电池可分为三类,其对应的隔膜材质大致如下:1.液态电解液型电池(聚烯烃PE、PP、PP/PE/PP)2.凝胶电解质(聚合物和液态混合型)型电池(聚偏氟乙烯或聚烯烃)3.固态电解质型电池(局环氧乙烷-锂盐)PP/PE/PP的设计优点由于聚烯烃出色的力学性能、化学稳定性及成本不高,被广泛使用其中以PP、PE及两者混合PP/PE/PP使用较多。

其厚度约20~几百um,孔径在0.05~0.5μm。

PE:熔点低使其具有热保险的作用。

当温度接近聚合物熔点时,隔膜的孔闭合,能完全或部分切断电池内部电流,阻止电池内部继续产生焦耳热,提高电池安全性。

PP:熔点165C较PE(135C)高,即使PE融化闭孔,电流阻断,高熔点的PP扔保持了隔膜的结构完整性。

陶瓷隔膜的特点将柔韧的聚烯烃隔膜和具有化学、热力学电阻等优势的亲水陶瓷材料结合在一起就形成了陶瓷隔膜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档.电池隔离膜1.功用:(1)阻隔电池正负极2)让离子电流(ionic current )通过,但阻力要尽可能地小。

因此,吸收电解液之后所表现出来的离子导电度便与(1)隔离膜孔隙度(porosity )、(2)孔洞弯曲度(tortuosity )、(3)电解液导电度、(4)隔离膜厚度、及(5)电解液对隔离膜的润湿程度等因素有关系隔离膜的引入而对离子传导所额外产生之电阻,应该是隔离膜吸收电解液之后的电阻减去与隔离膜相同面积和厚度之纯电解液的电阻,亦即R (隔离膜) = R (隔离膜 +电解液) – R (电解液) 电阻R 的定义为:Aσ1R ⨯=( 是离子传导途径的长度,A 是离子传导的有效面积,σ是离子导电度(比电阻ρ的倒数))多孔薄膜的孔洞弯曲度d s T =s 是离子经由隔离膜所必须行经之长度,d 则是隔离膜的厚度。

多孔薄膜的孔隙度P 之定义为孔洞的体积和隔离膜外观几何体积的比值Ad A P s s =(其中A s 代表隔离膜负责离子传导的有效面积)所以得T P A A s ⨯= ⎪⎪⎭⎫ ⎝⎛-⨯=1 R 2P T R 電解液隔離膜 吸收了电解液之后的隔离膜,其电阻是原先没有隔离膜存在时的 (T 2/P) 倍。

当孔洞弯曲度T 愈大,薄膜孔隙度P 愈小时,隔离膜的电阻就愈大2. 隔离膜之材质与制备隔离膜具多孔性的结构,孔径范围约在0.1 μm 或100 nm ,表面积非常大,受到电解液侵蚀的机率也当然跟着提高,材料的选择重要。

材质有塑料类、玻璃类、和纤维素(cellulose )类等,以塑料类为最大宗,最常见的有聚氯乙烯(polyvinyl chloride ;PVC )、聚醯胺(polyamide )、聚乙烯(polyethylene ;PE )、及聚丙烯(polypropylene ;PP )。

塑料类隔离膜之所以应用地最广,除了是因为它比较易于控制厚度之外,也跟1960年代开始日益成熟的高分子科学及加工技术有密不可分的关系.目前, 商业化的锂离子电池都是采用聚烯烃类(polyolefin )的多孔高分子薄膜(如表1.1)作为隔离膜,有的是PP ,有的是PE ,也有用PP/PE/PP 三层合一的。

聚烯烃类的隔离膜不仅成本较低廉,而且有优良的机械强度和化学稳定度。

关于高分子隔离膜的生产方法则可分为干式和湿式两种,其中干式制程中虽不使用溶剂,具有不污染电池的优点,但实际上现在却是以湿式法较为普遍。

此外,两种制程最后均采取至少一个方向的拉伸(orientation )动作,以便提升孔隙度与薄膜强度[]。

若以多孔性聚乙烯隔离膜为例,其湿式法的制造程序(如)就是先将超高分子量的PE (23%)、二氧化硅(silica ;60%)、矿油(mineral oil ;12%)、和其它如抗氧化剂的加工助剂(processing aids ;2%)混合在一起,待均匀之后进行挤出程序(extrusion ),所得的膜再压延(calendaring )到所要的厚度,通常是25 μm 左右。

此时,膜的内部还含有很多矿油,所以呈现亮黑色。

接着,再利用三氯乙烯(trichloroethylene )当作萃取液将矿油从PE 膜里萃取(extract )出来,以便留下孔洞结构[]。

最后,成品中仍旧有绝大部份的SiO 2和少量的矿油(9-15%),前者的功用是在巩固孔洞以避免崩塌,而后者则有助于成品保持柔软性。

精品文档表1.1 现今锂离子二次电池系统常用之隔离膜产品[错误!未找到引用源。

3.隔离膜之安全机制多孔性的PE 或PP 隔离膜有一项有利于电池安全性的特点,一般称之为「关闭机制」(shut-down mechanism ),亦即万一电池内部温度接近、甚至超过隔离膜的熔点T m (melting point )时,PE 或PP 结构中的结晶相(crystalline phase )将会瓦解,大部份的孔洞会因为塌陷(collapse )而被阻塞,负责离子传导的信道突然中断,电池的内电阻于是急速上升,从而抑制甚至完全阻绝电池做进一步的电极反应,藉此达到安全保护的目的。

前一小节(1.1.2节)中曾经提及的PP/PE/PP 三合一设计,其动机即是希望中间的那一层PE 被熔解后(约140 o C ),外层熔点较高的PP (约165 o C )还能够继续保持原有的机械强度,以避免隔离膜在进一步被熔解之后所可能导致两极接触而发生内部短路的状况[, 。

作者观点:目前为止,除了对现行已经在商品上采用的隔离膜有在孔洞结构和热性质上的分析之外锂电池系统的探讨仍然不多首先,对锂电池系统而言,因聚烯烃类材料的极性(polarity )低,而锂电池常用的电解液成份多半是内含能够促进锂盐溶解的高介电系数(dielectric constant )、高极性的有机溶剂,除非有扮演「润湿剂」(wetting agent )角色的溶剂存在,否则这两者之间的亲合性(affinity )在许多状况下可能会不尽理想。

影响所及,即是电解液很可能因为对隔离膜的润湿效果不好,所以整体所表现出来的离子导电度就远不如原电解液的本质(intrinsic )导电度,而且下降程度还依电解液种类而有很大的差异]。

为了提升隔离膜的可润湿性,近年来已经出现对PP 隔离膜进行表面改质的研究],希望藉由把例如丙烯酸(acrylic acid )或DEGDM (diethyleneglycol-dimethacrylate )等之亲水性单体(hydrophilic monomer )接枝(graft )到PP 主干来改善润湿效果。

针对改良润湿性的另一个解决之道,就是将隔离膜的材质直接改为和溶剂之间有某种程度亲合力的材料,只不过这一个想法在无形之中已经将传统电池隔离膜和新型胶态(gel-type )高分子电解质两系统之间的界线模糊化,许多问题需要进一步探讨,而这也正是本研究的出发点之一。

再者,我们知道在负极为锂金属的锂二次电池有可能会在反复充放电之过程中产生锂的树枝状结晶,从而导致电池的内部短路。

事实上,对于充电条件不佳或循环次数够多的锂离子二次电池,类似的情形亦有可能发生。

为了避免树枝状的锂金属轻易地透过隔离膜的孔洞而碰触到另外一极,隔离膜的孔径大小最好能够再降低。

另外,合理程度的孔洞弯曲度和更大的孔隙度以利达到更均匀的电流分布,应该也有助于降低枝晶锂的成长。

三:高分子电解质简介1. 1978年Armand 等人发现分别由锂盐或钾盐和PEO (poly(ethylene oxide))所形成的结晶性错合物(complex )有离子导电的功能,并宣称这种错合物能够应用在电池中作为固态电解质归纳使用高分子电解质的好处1. 抑制枝晶锂的产生:这是使用高分子电解质最早的动机。

,以锂金属作为负极的锂二次电池,锂离子在充电过程还原出来的锂,其形态多半呈现树枝状。

一般所使用的隔离膜都是多孔性材料,其内的孔洞纵然不大(~0.1 μm ),制造商 材料(暨商标) Hoechst Celanese Corp. PP 、PE 、或PP/PE/PP 三层,商标为Celgard ®Tonen Corp. PE ,商标为Setela ®Asahi Chemical Industries PE ,商标为HiPore ®MitsubishiPE ,商标为Exepol ® Ube Industries Ltd.PP Pall RAIPE但却因相互连通,往往成为枝晶锂成长的最佳空间和途径,最后可能导致电池短路,甚至还会引发危险。

如果我们使用非多孔性,或是孔径更小的高分子薄膜来作为隔离膜,预期应该是抑制枝晶锂扩展的一种有效办法[错误!未找到引用源。

]。

2.更能承受电极体积的周期性变化:电池在充放电过程中,因为锂离子来回进出电极内部,所以电极的体积也就跟着膨胀与收缩。

由于高分子电解质本身较柔软,可挠性佳,比其它无机固态电解质更能承受电极体积的周期性变化。

3.反应性比液态电解质低:以热力学观点来说,到目前为止还没有任何一种溶剂可以和锂金属稳定并存,即便是部份碳极材料也是一样[,]。

高分子电解质外观呈固态,内含液体的量亦较少,所以比起原液态电解质来说,其反应性自然下降甚多。

4.提升电池安全性:「安全性」是锂离子电池和锂高分子电池发展上的最重要诉求[错误!未找到引用源。

]。

以固态高分子作为电解质,其电池较能承受如撞击、振动、和变形等在运送、处理、及使用过程中不可预测或抗拒的外在因素。

此外,此类电池因为不会有过大内压的累积,也就不会有发生爆炸的危险,所以可以包装在薄薄的真空袋里,不必像液态电解质系统的电池必须放置在金属罐。

5.形状因子佳,生产程序一致性提高:在电子产品一片要求轻薄短小的趋势中,产品内部空间的使用效率成为诉求重点,于是乎电池的形状就变成一项相当重要的设计参数。

薄片状的高分子电池本质上的条件,在这方面显然占尽优势[,]。

另外一项好处就是它的生产程序一致性提高,也就是说,包括正负极和电解质的制造程序都可以一同使用类似的涂布方式进行,连续生产的可行性逐渐提高[]。

导电机制:虽然高分子电解质被归纳成「固态电解质」的一支,但它的导电机制却和无机材料相差甚远,反而是比较接近液态的传导方式。

其中的主因是a高分子比无机固态电解质要柔软,离子传导受限较少b高分子的主链运动(segmental motion)也会帮助离子的传导。

这和离子只靠在无机电解质内部数目、位置固定的传导基地中跳跃(hopping)的机制完全不同。

所以,高分子电解质的离子传导原理是介于固体(缺陷晶体)和液体(溶液或熔融盐)的[,]。

表1.2列出固态、液态、和高分子电解质的一些导电行为模式和特性[],以资相互比较。

表1.2各种离子传导媒体导电行为模式之比较[]。

电解质的要求:1.离子导电度:一般锂离子电池常用的电解液,其室温离子导电度多半在10-3到10-2 S cm-1内。

因此,若高分子电池亦想达到原使用液态电解质下的充放电特性,则高分子电解质的室温导电度理想上也应该要接近于10-3 S cm-1左右,最低亦不应低于10-4 S cm-1。

2.迁移系数(transference number):无论何种电解质系统,理想上的锂离子迁移系数应愈接近1.0愈好。

就现今已发表的许多电解质系统来说,不论液态或高分子,其迁移系数多半不到0.5,亦即只有不到一半的电荷才是真正经由锂离子传送,其余部份则分别由阴离子团和各式各样的离子对(ion pairs)来负责传导[]。

若迁移系数能够提高,则电解质在电池充放电过程中的浓度极化(concentration polarization)情形就愈轻微,电池的输出功率自然就得以提升。

相关文档
最新文档