《数列单元检测》追踪教师版
数列检测试题
《数列》单元检测题一、选择题(本大题共8小题,每小题5分,共40分) 1.下列有四个命题:①如果已知一个数列的通项公式,那么可以写出这个数列的任何一项 ②数列23 ,34 ,45 ,56 ,…的一个通项公式为a n =nn +1③数列的图象是一些孤立的点④数列1,-1,1,-1,1,…和数列 -1,1,-1,1,-1,…是同一数列 其中,正确命题的个数是( )A .1B .2C .3D .42.已知数列{a n }满足a n +1-3a n =0,且首项a 1=2,则a 4的值为( )A .11B .27C .54D .1623.已知在等差数列{a n }中,a 6=9, a 9=6,则a 15等于( )A .0B .1C .2D .34.若等比数列{a n }的通项公式为a n =(-2)n ,则它的首项和公比分别为( )A .2, 2B .-2, 2C .2, -2D .-2,-25.已知{a n }是各项为正数的等比数列,若a 1·a 9=16,则a 2·a 5·a 8的值为( )A .16B .32C .48D .646.在等比数列{}n a 中,若13245,10a a a a +=+=,则7a =( )A .20B .12C .64D .1287.已知数列{}n a 的前n 项和(1)(31)n n S n =-+,则a 10+a 11=( )A .-6B .6C .-3D .38.已知等比数列{a n }的前n 项和为S n ,公比q =2,则S 4a 2=( )A .2B .4C .152D .172二、填空题(本大题共4小题,每小题5分,共20分) 9.数列23 ,432 ,633 ,834 ,…的一个通项公式为 . 10.若数列{a n }的前n 项和S n =n 2+n ,则a 4= .11.已知数列{a n }为等差数列,公差d =-2,且S 10=S 11,则a 1= . 12.若数列{a n }的前n 项和S n =32 a n -3,则这个数列的通项公式为 .选择题答题卡三、解答题(本大题共2小题,每小题15,共30分) 13.解答下列问题:(1)已知无穷数列{}n a 的前5项依次为2481632,,,,34567,写出{}n a 的一个通项公式;(2)设等差数列{}n b 的前n 项和为S n ,且b 5=b 4+2, S 7-S 5=20,求通项公式及S n ; (3)设各项均为正数的等比数列{}n c 的前n 项和为T n ,已知c 2c 4=64, T 4=T 2+24,求c 5及T 5.14.已知S n 是等差数列{a n }前n 项的和,且a 7=3,在下列两个条件中任选一个,补充在问题中,问是否存在正整数k ,使得S k -1>S k ,且S k <S k +1,若存在,求出k 的值,若不存在,说明理由.条件:①a 4+a 5=-4,②S 7=14。
人教版高中数学选修二第一单元《数列》检测(包含答案解析)
一、选择题1.若数列{}n a 满足12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈),则2018a 等于( ) A .12B .2C .3D .232.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则201kk a=∑的值不可能是( )A .2B .4C .10D .143.如果函数*()1(0,)f x kx k x N =-≠∈,(1)(2)()n S f f f n =++⋅⋅⋅+,若(1)f ,(3)f ,(13)f 成等比数列,则( )A .275()n S f n -≤B .275()n S f n +≤C .275()n S f n -≥D .275()n S f n +≥4.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .325.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n = C .13(1)n a n n =--D .{}3n S 是等比数列7.已知数列{}n a 是等比数列,数列{}n b是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A.B .1-C.-D8.设n S 是等差数列{}n a 的前n 项和,若535,9a a =则95SS =( )A .1B .1-C .2D .129.函数()2cos 2f x x x =-{}n a ,则3a =( )A .1312πB .54π C .1712πD .76π 10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 11.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.已知数列{}n a 为等差数列,1351a a a ++=,n S 表示数列{}n a 的前n 项和,若当且仅当20n =时,n S 取到最大值,则246a a a ++的取值范围是________ 14.已知正项数列{}n a 中,21129n n a a +=+,若对于一切的*n N ∈都有1n n a a +>成立,则1a 的取值范围是________.15.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.16.已知数列{}n a 的前n 项和22n S n =,*n N ∈.求数列{}n a 的通项公式为______.设2(1)n n n n b a a =+-,求数列{}n b 的前2n 项和n T =______.17.等差数列{}n a 的前n 项和为n S ,且131413140,0,a a a a ><>,若10k k S S +<,则k =_________.18.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求数列{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n n a b 的前n 项和n S .23.已知n S 为等差数列{}n a 的前n 项和,给出以下三个条件:①17914,81a a S +==;②1141,++==n n n a a a ;③2111,41n n a a a n +=⋅=-.从上面①②③三个条件中任选一个解答下面的问题. (1)求n a 及n S ; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:1132n T ≤<. 24.已知数列{}n a 的前n 项和为n S ,且对任意*n N ∈,n a ,n S ,2n 成等差数列. (1)求数列{}n a 的通项公式;(2)设数列n b 是首项为1,公比为q 的正项等比数列.(i )求数列{}n b 的前n 项和n T .(ii )若数列1{2}n n b a +-为单调递增数列,求q 的取值范围.25.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 26.已知数列{}n a 前n 项和为n S ,12a =,13(1)2n n n S S n a n +⎛⎫=+++ ⎪⎝⎭. (1)求数列{}n a 的通项公式;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先由题设求得数列{}n a 的前几项,然后得到数列{}n a 的周期,进而求得结果. 【详解】因为12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈), 所以23132a a a ==,34231232a a a ===, 453112332a a a ===, 564123132a a a ===,67523213a a a ===,7862323a a a ===,,所以数列{}n a 是周期为6的周期数列, 所以20183366223a a a ⨯+===, 故选:C. 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下:(1)根据题中所给的前两项以及递推公式,逐项写出数列的前几项; (2)根据规律判断出数列的周期;(3)根据所求的数列的周期,求得20182a a =,进而求得结果.2.B解析:B 【分析】先由题中条件,得到21221i i i a a a +-=+,由累加法得到202211221k k a a ==-∑,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.【详解】由11i i a a +=+得()2221121i i i i a a a a +=+=++,则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以20221211220k k a a a ==--∑,又00a =,所以2120211a a a =++=,则202211221k k a a ==-∑,因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或2,所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或21±,因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,所以221122a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,170,210;则201kk a=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,即ACD 都有可能,B 不可能.故选:B. 【点睛】 关键点点睛:求解本题的关键在于将题中条件平方后,利用累加法,得到20221211220k k a a a ==--∑,将问题转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.3.D解析:D 【分析】根据等比中项求出2k =,()21f x x =-,*x ∈N ,根据等差数列的求和公式求出n S 2n =,然后作差比较可知D 正确.【详解】因为(1)f ,(3)f ,(13)f 成等比数列,所以[]2(3)(1)(13)f f f =⋅,即2(31)(1)(131)k k k -=--,即220k k -=,因为0k ≠,所以2k =.所以()21f x x =-,*x ∈N ,5()5(21)105f n n n =-=-,2(121)2n n n S n +-==, 22275()271052102n S f n n n n n --=--+=--22(51)n n =--,当5n ≤时,275()0n S f n --<,所以275()n S f n -<,当6n ≥时,275()0n S f n -->,所以275()n S f n ->,故,A C 不正确;22275()2710521012n S f n n n n n +-=+-+=-+2(2)(3)n n =--0≥在*n N ∈时恒成立,所以275()n S f n +≥,故B 不正确,D 正确. 故选:D 【点睛】关键点点睛:掌握等比中项的概念和等差数列的求和公式是本题的解题关键.4.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a =所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.C解析:C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.7.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=,所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题8.A解析:A 【分析】利用等差数列的前n 项和公式和等差数列的性质可得结果. 【详解】在等差数列{a n }中,由5359a a =,得()()9955115392199555952a a S a a a S a +==⨯=⨯=+ 故选:A 【点睛】本题考查等差数列的性质,考查等差数列的前n 项和,是基础题.9.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.10.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
高中数学《第四章 数列》单元检测试卷与答案解析(共五套)
高中数学选择性必修二《第四章 数列》单元检测试卷(一) 本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( )A .10B .20C .16D .12 2.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .833.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3 4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-55.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .137.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -18.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1010.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S611.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.14.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.15.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.16.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n . 21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________. (1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由.答案解析一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( )A .10B .20C .16D .12 解析:选D ∵{a n }是等差数列, ∴d =a 5-a 35-3=52,∴a 7=2+4×52=12.2.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .83解析:选B ∵a 1=13,a n =(-1)n·2a n -1,∴a 2=(-1)2×2×13=23,a 3=(-1)3×2×23=-43,a 4=(-1)4×2×⎝ ⎛⎭⎪⎫-43=-83,a 5=(-1)5×2×⎝ ⎛⎭⎪⎫-83=163.3.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3解析:选A 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 10∶S 5=1∶2,所以S 5=2S 10,S 15=34S 5,得S 15∶S 5=3∶4,故选A.4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-5 解析:选D 因为S n =5n +1+a =5×5n+a ,由等比数列的前n 项和S n =a 1(1-q n)1-q =a 11-q-a 11-q·q n ,可知其常数项与q n的系数互为相反数,所以a =-5. 5.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项 解析:选D 当n 为正奇数时,a n +1=2a n ,则a 2=2a 1=2,当n 为正偶数时,a n +1=a n +1,得a 3=3,依次类推得a 4=6,a 5=7,a 6=14,a 7=15,…,归纳可得数列{a n }的通项公式a n=⎩⎪⎨⎪⎧2n +12-1,n 为正奇数,2n2+1-2,n 为正偶数,则2n2+1-2=254,n =14,故选D.6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .13解析:选C ∵S 1=a 1,S 3=3a 2,S 5=5a 3,∴1a 1a 2+1a 2a 3+1a 1a 3=35.∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,∴a 2=3.故选C. 7.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -1解析:选A 由题知a 1=1,q =13,则a n -a n -1=1×⎝ ⎛⎭⎪⎫13n -1.设数列a 1,a 2-a 1,…,a n -a n -1的前n 项和为S n , ∴S n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n .又∵S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝⎛⎭⎪⎫1-13n ,∴a n =32⎝⎛⎭⎪⎫1-13n .8.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1解析:选A 若数列{b n }的项数为偶数,则数列可设为1,21,22,…,2m -1,2m -1, (22)2,1,当m≥2 019时, S 2 019=1×(1-22 019)1-2=22 019-1,故B 可能.当1 200<m <2 019时,S 2 019=2×1×(1-2m)1-2-1×(1-22m -2 019)1-2=2m +1-22m -2 019-1,故C 可能.若数列为奇数项,则数列可设为1,21,22,…,2m -2,2m -1,2m -2, (22)2,1,当m≥2 019时,S 2 019=1×(1-22 019)1-2=22 019-1.当1 200<m <2 019时,S 2 019=2×1×(1-2m -1)1-2-1×(1-22m -1-2 019)1-2+2m -1=3·2m -1-22m -2 020-1,故D 可能.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10 解析:选AD ∵等比数列{a n }的公比q =-23,∴a 9和a 10异号,∴a 9a 10=a 29⎝ ⎛⎭⎪⎫-23<0,故A 正确; 但不能确定a 9和a 10的大小关系,故B 不正确; ∵a 9和a 10异号,且a 9>b 9且a 10>b 10, ∴b 9和b 10中至少有一个数是负数,又∵b 1=12>0,∴d<0,∴b 9>b 10,故D 正确;∴b 10一定是负数,即b 10<0,故C 不正确.故选A 、D.10.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S 6解析:选ABC ∵等差数列{a n }的前n 项和公式S n =na 1+n (n -1)d2,若S 5=S 9,则5a 1+10d =9a 1+36d ,∴2a 1+13d =0, ∴a 1=-13d2,∵a 1>0,∴d <0,∴a 1+a 14=0,∴S 14=7(a 1+a 14)=0,A 对;又∵S n =na 1+n (n -1)d 2=-13nd 2+n (n -1)d 2=d[(n -7)2-49]2,由二次函数的性质知S 7是S n中最大的项,B 对;若S 6>S 7,则a 7=a 1+6d <0,∴a 1<-6d , ∵a 1>0,∴d <0,∴a 6=a 1+5d <-6d +5d =-d ,a 8=a 7+d <a 7<0, S 7>S 8=S 7+a 8,C 对;由a 6<-d 不能确定a 6的符号,所以S 5>S 6不一定成立,D 错.故选A 、B 、C.11.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍解析:选ABD 设此人第n 天走a n 里路,则{a n }是首项为a 1,公比为q =12的等比数列.所以S 6=a 1(1-q 6)1-q =a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1261-12=378,解得a 1=192.a 3=a 1q 2=192×14=48,所以A 正确,由a 1=192,则S 6-a 1=378-192=186,又192-186=6,所以B 正确. a 2=a 1q =192×12=96,而14S 6=94.5<96,所以C 不正确.a 1+a 2+a 3=a 1(1+q +q 2)=192×⎝ ⎛⎭⎪⎫1+12+14=336,则后3天走的路程为378-336=42而且42×8=336,所以D 正确. 故选A 、B 、D.12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln n n +1解析:选CD 对A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }为递增数列,故B 错误;对C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)递减,所以数列{a n +1-a n }为递减数列,故D 正确. 故选C 、D.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.解析:由a n =2 020-3n>0,得n<2 0203=67313,又∵n ∈N *,∴n 的最大值为673. 答案:67314.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.解析:设{a n }的首项,公差分别是a 1,d ,则 ⎩⎪⎨⎪⎧a 1+2d =16,20a 1+20×(20-1)2×d=20,解得a 1=20,d =-2,∴a n =a 1+(n -1)d =20-2(n -1)=22-2n .S 10=10×20+10×92×(-2)=110.答案:22-2n 11015.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.解析:因为数列1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10.因为数列1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,又b 2=1×q 2>0(q 为等比数列的公比),所以b 2=3,则b 2a 1+a 2=310. 答案:31016.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.解析:设{a n }的公比为q ,q>0,且a 23=1, ∴a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q 2+1q +1=7,即6q 2-q -1=0,解得q =12或q =-13(舍去),a 1=1q2=4. ∴S 5=4×⎝ ⎛⎭⎪⎫1-1251-12=8×⎝ ⎛⎭⎪⎫1-125=314.答案:314四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.解:(1)证明:∵x n =f(x n -1)=3x n -1x n -1+3(n≥2且n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n≥2且n ∈N *), ∴⎩⎨⎧⎭⎬⎫1x n 是公差为13的等差数列.(2)由(1)知1x n =1x 1+(n -1)×13=2+n -13=n +53.∴1x 2 020=2 020+53=675. ∴x 2 020=1675.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .解:(1)由S 10S 5=3132,a 1=-1,知公比q≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.(2)由(1),得a n =(-1)×⎝ ⎛⎭⎪⎫-12n -1,所以a 2n =⎝ ⎛⎭⎪⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列,故a 21+a 22+…+a 2n =1×⎝ ⎛⎭⎪⎫1-14n 1-14=43⎝ ⎛⎭⎪⎫1-14n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差是d ,由已知条件得⎩⎪⎨⎪⎧a 1+d =3,4a 1+6d =16,解得a 1=1,d =2,∴a n =2n -1. (2)由(1)知,a n =2n -1, ∴b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1.20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a n <a n +1,得q>1,又a 1=1,则a 2=q ,a 3=q 2, 因为S 3=2S 2+1,所以a 1+a 2+a 3=2(a 1+a 2)+1,则1+q +q 2=2(1+q)+1,即q 2-q -2=0,解得q =2或q =-1(舍去), 所以数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)知,b n =(2n -1)·a n =(2n -1)·2n -1(n ∈N *), 则T n =1×20+3×21+5×22+…+(2n -1)×2n -1,2T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,两式相减,得-T n =1+2×21+2×22+…+2×2n -1-(2n -1)×2n,即-T n =1+22+23+24+ (2)-(2n -1)×2n, 化简得T n =(2n -3)×2n+3.21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________. (1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分. 解:若选条件①:(1)易知a n ≠0,∵a n +1=a n 3a n +1,∴1a n +1-1a n =3.又1a 1=1, ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,3为公差的等差数列,∴1a n =3n -2,∴a n =13n -2. (2)证明:由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件②:(1)设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,则1a 2=1+d ,1a 3+1=2+2d ,1a 6=1+5d ,∵1a 2,1a 3+1,1a 6成等比数列, ∴(2+2d)2=(1+d)(1+5d),解得d =3或d =-1.当d =-1时,1a 2=1+d =0,此时1a 2,1a 3+1,1a 6不能构成等比数列,∴d =3,∴1a n =1+3(n -1)=3n -2, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件③:(1)由1a 1+1a 2+1a 3+…+1a n =3n 2-n 2知,当n≥2时,1a 1+1a 2+1a 3+…+1a n -1=3(n -1)2-(n -1)2,两式相减,得1a n =3n 2-n 2-3(n -1)2-(n -1)2=3n -2,∴a n =13n -2(n≥2),当n =1时,a 1=1也适合上式, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13,故T n <13.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由.解:(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2 d.由已知,得⎩⎪⎨⎪⎧10a 1+10×92d =55,20a 1+20×192d =210,即⎩⎪⎨⎪⎧2a 1+9d =11,2a 1+19d =21,解得⎩⎪⎨⎪⎧a 1=1,d =1.所以a n =a 1+(n -1)d =n(n ∈N *).(2)假设存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列,则b 2m =b 1b k . 因为b n =a n a n +1=nn +1,所以b 1=12,b m =m m +1,b k =kk +1,所以⎝⎛⎭⎪⎫m m +12=12×k k +1. 整理,得k =2m2-m 2+2m +1.以下给出求m ,k 的方法: 因为k>0,所以-m 2+2m +1>0, 解得1-2<m<1+ 2. 因为m≥2,m ∈N *, 所以m =2,此时k =8.故存在m =2,k =8使得b 1,b m ,b k 成等比数列.高中数学选择性必修二《第四章 数列》单元检测试卷(二)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25 B .13 C .23D .122.等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( )A .32B .31C .64D .63 3.在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13- C .3或13 D .3-或13- 4.在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ). A .1278 B .212 C .638D .63325.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53 B .103 C .56 D .1166.已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( )A .16B .64C .128D .2567.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ,其中正确结论的序号为( )A .②③B .①②C .①③D .①④8.已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7SB .8SC .11SD .13S二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( )A .0d <B .90a =C .117S S >D .8S 、9S 均为n S 的最大值10.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+11.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍12.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得nna b 为整数的正整数n 的值为( ) A .2 B .3 C .4 D .14第II 卷(非选择题)三、填空题(每题5分,共20分) 13.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 14.在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.15.各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=___. 16.已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.四、解答题(17题10分,其余每题12分,共6题70分) 17.已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式: (2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .18.已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T19.已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .20.已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S,且数列也为等差数列.(1)求数列{}n a 的通项公式; (2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.21.已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式; (2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113nS <.22.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数. (1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25 B .13 C .23D .12【答案】B【解析】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++.故选:B. 2.等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( )A .32B .31C .64D .63 【答案】B【解析】依题意3264640n a a a a =⎧⎪⋅=⎨⎪>⎩,即2151114640,0a q a q a q a q ⎧⋅=⎪⋅=⎨⎪>>⎩,解得11,2a q ==,所以()551123112S ⨯-==-.故选:B3.在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13- C .3或13 D .3-或13- 【答案】C【解析】若{}n a 的公比为q ,∵3135113a a a a ==,又由3134a a +=,即有31313a a =⎧⎨=⎩或31331a a =⎧⎨=⎩,∴1013q =或3,故有101223a q a ==或13故选:C 4.在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ). A .1278 B .212 C .638D .6332【答案】A【解析】则24152454a a a a a a +=⎧⎨==⎩,解得2414a a =⎧⎨=⎩或2441a a =⎧⎨=⎩,∵{}n a 是递减数列,则2441a a =⎧⎨=⎩, ∴24214a q a ==,12q =(12q =-舍去). ∴218a a q ==,7717181(1)21112a q S q ⎛⎫⨯- ⎪-⎝⎭==--1278=. 故选:A .5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53 B .103 C .56 D .116【答案】A【解析】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.6.已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( )A .16B .64C .128D .256 【答案】B【解析】由12q =-,6214S =,得61112211412a ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⎛⎫-- ⎪⎝⎭,解得18a =, 所以数列{}n a 为8,4-,2,1-,12,14-,……,前4项乘积最大为64.故选:B.7.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( )A .②③B .①②C .①③D .①④ 【答案】B【解析】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确;111116111102a a S a +=⨯=>,故②正确; 1126712126()02a aS a a +=⨯=+>,故③错误;因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B.8.已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7S ;B .8S ;C .11S ;D .13S 【答案】D【解析】由于题目所给数列为等差数列,根据等差数列的性质, 有()2415117318363a a a a d a d a ++=+=+=, 故7a 为确定常数,由等差数列前n 项和公式可知()11313713132a a S a+⋅==也为确定的常数.故选:D二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( )A .0d <B .90a =C .117S S >D .8S 、9S 均为n S 的最大值 【答案】ABD【解析】由78S S <得12377812a a a a a a a a +++⋯+<++⋯++,即80a >, 又∵89S S =,1229188a a a a a a a ∴++⋯+=++⋯++,90a ∴=,故B 正确;同理由910S S >,得100a <,1090d a a =-<,故A 正确;对C ,117S S >,即8910110a a a a +++>,可得(9102)0a a +>, 由结论9100,0a a =<,显然C 是错误的;7898810,,S S S S S S <=>∴与9S 均为n S 的最大值,故D 正确;故选:ABD.10.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【答案】ABD【解析】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD.11.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍 【答案】BD【解析】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确; 故选:BD.12.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得nna b 为整数的正整数n 的值为( ) A .2 B .3 C .4 D .14 【答案】ACD【解析】由题意可得()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,则()()21213213931815321311n n n n n a S n b T n n n ---++====+-+++, 由于nna b 为整数,则1n +为15的正约数,则1n +的可能取值有3、5、15, 因此,正整数n 的可能取值有2、4、14. 故选:ACD.第II 卷(非选择题)三、填空题(每题5分,共20分) 13.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 【答案】321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =,又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列,所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 14.在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.【解析】设等比数列{}n a 的公比为()0q q >, 由321a a a =+, 得210q q --=,解得q =(负值舍),则222278565656a a a q a q q a a a a ++====++⎝⎭故答案为:32+15.各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 【答案】10【解析】根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6), 即()()233307030S S -=⋅-. 解得S 3=10或S 3=90(舍). 故答案为:1016.已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.【答案】[]4,2--【解析】因为对任意正整数n 恒有2n S S ≥,所以2S 为n S 最小值, 因此230,0a a ≤≥,即111+20,+4042a a a ≤≥∴-≤≤- 故答案为:[]4,2--四、解答题(17题10分,其余每题12分,共6题70分) 17.已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式: (2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)1n n +. 【解析】设等差数列{}n a 的公差为d ,由317653a a a =⎧⎨=⎩,可得()111251635a d a d a d +=⎧⎨+=+⎩解得1a 1,d 2,所以等差数列{}n a 的通项公式可得21n a n =-; (2) 由(1)可得211(3)22(1)1n n b n a n n n n ===-+++,所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T【答案】(1)证明见解析;(2)21n nT n =+. 【解析】(1)当2n ≥时,因为()()111n n n S nS n n --=+-, 所以()1121n n S S n n n --=≥-, 即n S n ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列. (2)由(1)得nS n n=,2n S n =. 当2n ≥时,()22121n a n n n =--=-.当1n =时,11a =,符合题意,所以21n a n =-.所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n nT n n ⎛⎫=-= ⎪++⎝⎭. 19.已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =+,152n n b -=⋅;(2)5(21)21n n T n ⎡⎤=-+⎣⎦【解析】(1)设等差数列的公差为d ,则由已知得:1232315a a a a ++==,即25a =, 又(52)(513)100d d -+++=,解得2d =或13d =-(舍去),123a a d =-=,1(1)21n a a n d n ∴=+-⨯=+,又1125b a =+=,22510b a =+=,2q ∴=,152n n b -∴=⋅;(2)21535272(21)2n n T n -⎡⎤=+⨯+⨯+++⨯⎣⎦, 2325325272(21)2n n T n ⎡⎤=⨯+⨯+⨯+++⨯⎣⎦,两式相减得2153222222(21)25(12)21n n nn T n n -⎡⎤⎡⎤-=+⨯+⨯++⨯-+⨯=--⎣⎦⎣⎦,则5(21)21nn T n ⎡⎤=-+⎣⎦.20.已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S,且数列也为等差数列.(1)求数列{}n a 的通项公式; (2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.【答案】(1)21n a n =-;(2)222(1)n nn ++.【解析】(1)设等差数列{}n a 的公差为(0)d d ≥,11S ===成等差数列,1∴=+2d =, 1(1)221n a n n ∴+-⨯=-=,n ==, 所以数列为等差数列,21nan ∴=-.(2)2(121)2n n n S n +-==,22222111(1)(1)n n b n n n n +∴==-⋅++,设数列{}n b 的前n 项和为n T ,则2222222221111111211223(1)(1)(1)n n n T n n n n ⎛⎫+⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.21.已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式; (2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113nS <. 【答案】(1)2nn a =;(2)证明见解析.【解析】(1)由39a +是1a ,5a 的等差中项得153218a a a +=+, 所以135a a a ++331842a =+=,解得38a =, 由1534a a +=,得228834q q +=,解得24q =或214q =, 因为1q >,所以2q.所以2n n a =.(2)112()333()1()22nn n n b =<=+, 3412324222()()()513333n n n S b b b b ∴=++++<++++24688221()6599313n -=+-⋅≤在3n ≥成立,又有1222146215136513S S =<=<,, 2113n S ∴<.22.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数. (1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【答案】(1)12a a =;26a a =;312a a =(2)猜想:()()*1na a n N n n =∈+;证明见解析【解析】(1)由题意知:222n n S a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =. 当2n =时,21222S a a a a =+=-,解得26a a =. 当3n =时,312333S a a a a a =++=-,解得312a a =. (2)猜想:()()*1n aa n N n n =∈+ 证明:①当1n =时,由(1)知等式成立. ②假设当()*1,n k k k N=≥∈时等式成立,即()1k aa k k =+,则当1n k =+时,又n n S a na =- 则k k S a ka =-,11k k S a ka ++=-,∴()()1111k k k k k a S S a k a a ka +++=-=-+--, 即()()1211k k a ak a ka k k k k ++==⨯=++所以()()()()112111k aaa k k k k +==+++++⎡⎤⎣⎦,即当1n k =+时,等式成立. 结合①②得()1n aa n n =+对任意*n N ∈均成立.高中数学选择性必修二《第四章 数列》单元检测试卷(三)注:本检测满分150分。
《数列》单元检测题2
《数列》单元检测题一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知等差数列{a n }的前三项依次为x-2、x 、2x+1,则此数列的通项公式a n 等于A .2n-5 B.2n-3 C.2n-1 D.2n+12、等差数列共有2n+1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于A .9 B.10 C .11 D.123、在等比数列{a n }中, Sn 表示前n 项和, 若a 3=2s 2+1,a 4=2s 3+1,则公比q 等于A.3 B.-3 C.-1 D.1 4.数列{a n }中,a 1 =1,对所有n ∈N +都有a 1 a 2…a n =n 2,则a 3+ a 5=A .1661B .925C .1625D .15315.若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数的是A .S 17B .S 15C .S 8D .S 76.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S = A . 1 B . -1 C .2 D .21 7.在等差数列{a n }中,7a 5 +5a 9=0,且a 9 >a 5,则使数列前n 项和S n 取最小值的n=A . 5B .6C .7D .8 8.已知整数对的数列如下:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)(1,5)(2,4),…,则第60个数对是A . (3,8)B . (4,7)C . (4,8)D .(5,7) 9.(理)已知数列{a n }是递增数列,且对所有n ∈N +都有a n = n 2+λn 恒成立,则实数λ的取值范围是A . (-27,+∞ ) B .(0,+∞)C . (-2,+∞)D .(-3,+∞)(文)设43,)1(112161211=⋅+++++=+n n n S S n n S 且 ,则n 的值为A.6B.7C.8 D . 910.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖的块数是 A .42n + B .42n - C .24n + D .33n + 11.(备选)已知=n a ),(156*2N n n n∈+则}{n a 中最大项为 A .第12项 B .第13项 C .第12项或第13项 D .不存在12. (备选) 已知数列}{n a 满足11+++=n n n n a a a a ,则数列}{2n n a a -+是 A .等差数列 B .等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBBABABDDACA二.填空题:本大题共5小题,每小题4分 ,共20分,把答案填在答题卡中对应题号后的横线上.11.在数{a n }中,其前n 项和S n =4n 2-n -8,则a 4= 。
新人教版高中数学选修二第一单元《数列》检测题(有答案解析)(3)
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25003.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .44.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .20205.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1126.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭7.已知函数()()633,7,,7.x a x x f x ax -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( ) A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭8.等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4n S S ≤,设11n n n b a a +=,则数列{}n b 的前项和n T 为() A .310(103)nn -B .10(103)nn -C .103nn-D .10(133)nn -9.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)10.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .4511.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 12.已知等比数列{}141,1,8n a a a ==,且12231n n a a a a a a k ++++<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知数列{}n a 满足11a =,1122n n n a a n n++=++,则8a =_________. 14.设n S 是数列{}n a 的前n 项和,满足212n n n a a S +=,且0n a >,则64S =____.15.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?16.已知数列{}n a 的前n 项和为n S ,11a =,当n *∈N 时,13nn n a a +=,则2n S =______.17.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.18.已知等比数列{}n a 满足()143nn n a a n N*++=⋅∈,的前n 项和为nS,若不等式n n S ka ≥对于任意n *∈N 恒成立,则实数k 的取值范围是______.19.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .22.设数列{}n a 的前n 项和2*,n S n n N =∈.(1)求数列{}n a 的通项公式;(2)若不等式1122318111log n n a a a a a a λ++++≥对任意*n N ∈恒成立,求实数λ的取值范围.23.已知数列{}n a 是递增的等比数列,前3项和为13,且13a +,23a ,35a +成等差数列,(1)求数列{}n a 的通项公式;(2)数列{}n b 的首项11b =,其前n 项和为n S ,且 ,若数列{}n c 满足n n n c a b =,{}n c 的前n 项和为n T ,求n T 的最小值.在如下三个条件中任意选择一个,填入上面横线处,并根据题意解决问题. ①34n n S b +=;②()122n n b b n -+≥= ;③()152n n b b n -=-≥. 注:如果选择多个条件分别解答,只按第一个解答计分. 24.设数列{}n a 满足10a =且112n n a a +=-,n *∈N .记11n nb a =-,n *∈N . (1)求证:数列{}n b 为等差数列;(2)设32nna n c ⎛⎫= ⎪⎝⎭,求满足不等式12312311113n n c c c c c c c c ⎛⎫++++>++++⎪⎝⎭的正整数n 的集合.25.已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =. (1)求数列{}n a 的通项公式;(2)数列{}n b 通项公式为21n b n =+,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .26.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果. 【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =. 故选:A. 【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.3.B解析:B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题4.C解析:C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >, 所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.5.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;6.A解析:A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 110,2n a a >=,2n S <,∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.7.B解析:B 【分析】由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a an -⎧--≤=⎨>⎩()n N *∈且数列{}na 为递增数列,得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.8.B解析:B 【分析】根据已知条件求得{}n a 的通项公式,利用裂项求和法求得n T . 【详解】依题意等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4nS S ≤,所以4151030040a a d a a d ≥+≥⎧⎧⇒⎨⎨<+<⎩⎩,即10301040d d +≥⎧⎨+<⎩,解得10532d -≤<-,由于2a 为整数,1a 为整数,所以d 为整数,所以3d =-.所以()11313n a a n d n =+-=-+. 所以()13113310n a n n +=-++=-+,()()1111113133103310313n n n b a a n n n n +⎛⎫===⨯- ⎪-+-+-+-+⎝⎭, 所以1111111371047310313n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎣⎦()()()10310111133101031010310103n n n n n --+⎡⎤=-=⨯=⎢⎥-+--⎣⎦. 故选:B 【点睛】本小题主要考查裂项求和法,属于中档题.9.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.10.C解析:C 【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.11.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由11a =,418a =,可得318q =,解得q .可得n a .可得1124n n na a +=⨯.利用等比数列的求和公式及其数列的单调性即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,418a =, 318q ∴=,解得12q =. 11111()()22n n n a --=⨯=.12111111()()()22224n n n n n n a a --+∴===⨯.12231211(1)111212442()2(1)144434314n n n n na a a a a a +-∴++⋯+=++⋯⋯+=⨯=-<-. 12231n n a a a a a a k +++⋯+<,23k. k ∴的取值范围是:2,3⎡⎫+∞⎪⎢⎣⎭.故选:D . 【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】先化简整理已知条件得是等差数列求其通项公式得到数列通项公式再计算即可【详解】由得即故故是以为首项以2为公差的等差数列所以所以故故答案为:【点睛】本题解题关键在于化简已知条件得到构造数列是等差 解析:120【分析】先化简整理已知条件得n a n ⎧⎫⎨⎬⎩⎭是等差数列,求其通项公式,得到数列{}n a 通项公式,再计算8a 即可.【详解】 由1122n n n a a n n++=++得()()1121n n na n a n n +=+++, 即()()1121n n na n a n n +-+=+,故121n n a a n n +-=+,故n a n ⎧⎫⎨⎬⎩⎭是以111a =为首项,以2为公差的等差数列,所以()11221na n n n=+-⨯=-,所以()21n a n n =-,故8815120a =⨯=.故答案为:120. 【点睛】本题解题关键在于化简已知条件得到121n n a a n n +-=+,构造数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,进而通过其通项公式求得数列{}n a 的通项公式,以突破难点.14.8【分析】由与的关系化简结合等差数列的定义得出数列是等差数列进而求出【详解】当时当时由题意可知整理得所以数列是以为首项为公差的等差数列则故答案为:【点睛】解决本题的关键是由与的关系对化简结合等差数列解析:8 【分析】由n S 与n a 的关系化简212n n n a a S +=,结合等差数列的定义得出数列{}2n S 是等差数列,进而求出2n S n =,【详解】当1n =时,111S a ==当2n ≥时,由题意可知()()21112n n n n n S S S S S ---+=-,整理得2211n n S S --=所以数列{}2n S 是以1为首项,1为公差的等差数列,则2n S n =64264S ∴=,0n a >,648S ∴=故答案为:8 【点睛】解决本题的关键是由n S 与n a 的关系对212n n n a a S +=化简,结合等差数列的定义进行求解.15.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为1n n a +=,1n n a a +∴=, 即数列{n a }是首项为15a =的等比数列,152n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212n n nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5016.【分析】由递推关系可以得出数列的奇数项和偶数项分别是一个等比数列所以求数列的前项和可转化为奇数项的和加上偶数项的和即可通过等比数列的求和公式求解【详解】是首项为公比为3的等比数列是首项为公比为3的等 解析:232n ⨯-【分析】由递推关系13nn n a a +=可以得出数列{}n a 的奇数项和偶数项分别是一个等比数列,所以求数列的前2n 项和可转化为奇数项的和加上偶数项的和,即可通过等比数列的求和公式求解. 【详解】13n n n a a +=,11a =,23a ∴=,2122212222221333n n n n n n n n a a a a a a +++++===, 2n a 是首项为23a =,公比为3的等比数列,2122121212n n n n n n a a a a a a ++--=221333n n -==,{}21n a -∴是首项为11a =,公比为3的等比数列, ()()21321242n n n S a a a a a a -∴+++++++=()313131313nn --=+--()231232n n =-=⨯-. 故答案为:232n ⨯-. 【点睛】本题考查等比数列的判断,以及等比数列求和公式的运用,是一道中档题.17.【分析】由题意知等差数列中的项一定有正有负分成首项大于零和小于零两种情况进行讨论结合已知条件可知或从而可求出公差的取值范围【详解】解:由题意知等差数列中的项一定有正有负当时由则由则所以所以即;当时同 解析:(][),22,-∞-+∞【分析】由题意知,等差数列{}n a 中的项一定有正有负,分成首项大于零和小于零两种情况进行讨论,结合已知条件,可知101110101,1a a ≥<-或101110101,1a a ≤->,从而可求出公差的取值范围. 【详解】解:由题意知,等差数列{}n a 中的项一定有正有负,当10,0a d <>时, 由123202012320201111a a a a a a a a ++++=-+-+-+⋯+-,则10111010100a a -≥⎧⎨≤⎩ , 由123202012320201111a a a a a a a a ++++=++++++++,则1011101010a a ≥⎧⎨+≤⎩, 所以101110101,1a a ≥≤-,所以10101a d +≥,即101012d a ≥-≥; 当10,0a d ><时,同理可求出101012d a ≤--≤-, 综上所述,公差d 的取值范围为(][),22,-∞-+∞.故答案为: (][),22,-∞-+∞.【点睛】本题考查了等差数列的通项公式,考查了数列的单调性.本题的易错点是未讨论首项的正负问题.18.【分析】设等比数列的公比为利用等比数列的定义求出的值结合等式可求得数列并计算出由可得求出数列的最小值即可求得实数的取值范围【详解】设等比数列的公比为则可得上述两式相除得则得所以等比数列的公比为首项也 解析:(],1-∞【分析】设等比数列{}n a 的公比为q ,利用等比数列的定义求出q 的值,结合等式143nn n a a ++=⋅可求得数列n a ,并计算出n S ,由n n S ka ≥可得131223n k -≤-⋅,求出数列n n S a ⎧⎫⎨⎬⎩⎭的最小值,即可求得实数k 的取值范围. 【详解】设等比数列{}n a 的公比为q ,则()1143nn n n a a q a ++=+=⋅,可得()1211143n n n n a a q a +++++=+=⋅,上述两式相除得()()111433143n n nn q a q q a +++⋅===+⋅,则1443n n n n a a a ++==⋅,得3n n a =, 所以,等比数列{}n a 的公比为3,首项也为3,则()111333132n n na S +--==-,由于n n S ka ≥,则11333123223n n n n n S k a +--≤==-⋅,所以数列n n S a ⎧⎫⎨⎬⎩⎭单调递增, 当1n =时,数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为111S a =,1k ∴≤. 因此,实数k 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查数列不等式恒成立问题的求解,涉及等比数列通项公式的求解,考查运算求解能力,属于中等题.19.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确.【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.20.【分析】求出数列的通项公式利用裂项求和法求出利用极限的运算法则可得出所求极限值【详解】且则数列是以为首项以为公差的等差数列所以因此故答案为:【点睛】本题考查数列前项和的极限值的求法是中档题解题时要认解析:13【分析】求出数列{}n a 的通项公式,利用裂项求和法求出12n b b b ++⋅⋅⋅+,利用极限的运算法则可得出所求极限值. 【详解】()132,n n a a n n N *-=+≥∈且11a =,则数列{}n a 是以1为首项,以3为公差的等差数列,所以,()13132n a n n =+-=-,()()111111323133231n n n b a a n n n n +⎛⎫∴===- ⎪-+-+⎝⎭, 1211111111134473231393n b b b n n n ⎛⎫∴++⋅⋅⋅+=-+-++-=- ⎪-++⎝⎭, 因此,()12111lim lim 3933n n n b b b n →∞→∞⎛⎫++⋅⋅⋅+=-=⎪+⎝⎭. 故答案为:13. 【点睛】本题考查数列前n 项和的极限值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.三、解答题21.(1)2nn a =;(2)1222n n S n +=+-.【分析】(1)利用等比数列的定义求出公比2q后,再根据11n n a a q -=可得结果;(2)根据等差数列的首项和公差求出n b 后再根据等差、等比数列的前n 项和公式,分组求和,即可得到结果. 【详解】(1)由题意设等比数列{}n a 的公比为q ,0q >,12a =,324a a =+,∴2224q q =+,即()()120,0,q q q +-=>∴2q,∴{}n a 的通项公式1222n n n a -=⨯=.(2){}n b 是首项为1,公差为2的等差数列,∴()12121n b n n =+-=-,∴数列{}n n a b +的前n 项和()()1221212122122n n nn n S n +⨯-+-=+=+--.【点睛】本题考查了等差数列的通项公式和前n 项和公式,考查了等比数列的通项公式和前n 项和公式,关键是正确求得等比数列的基本量,并注意分组求和思想的应用,属于基础题.22.(1)*21,n a n n N =-∈;(2)1,2⎡⎫+∞⎪⎢⎣⎭.【分析】(1)直接利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出数列的通项公式;(2)利用(1)的结论和裂项相消法求和得到12231111+++⋯+n n a a a a a a ,再根据不等式恒成立,得到关于λ的方程,然后求出参数λ的取值范围. 【详解】解:(1)当2n ≥时,()221121n n n a S S n n n -=-=--=-,在2n S n =中,令1n =,则111a S ==,满足21n a n =-, 故数列{}n a 的通项公式是*21,n a n n N =-∈;(2)因为一般项()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以12231111111111111233557212121n n na a a a a a n n n +⎛⎫+++=-+-+-++-= ⎪-++⎝⎭ 1122318111log n n a a a a a a λ++++≥对任意*n N ∈恒成立, 也就是18log 21n n λ≤+对任意*n N ∈恒成立,1min 8log 21n n λ⎛⎫≤ ⎪+⎝⎭, 因为121111*********n n n n n +-⎛⎫==- ⎪+++⎝⎭是增函数,其最小值是11112213⎛⎫-= ⎪+⎝⎭, 于是181log 3λ≤,12λ≥.故实数λ的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.23.(1)13n n a -= ;(2)答案见解析.【分析】(1)设数列{}n a 的公比为q ,根据题意得12321313635a a a a a a ++=⎧⎨=+++⎩,解得3q =,进而得13n n a -=.(2)选①,由n a 与n S 的关系即可求得数列{}n b 是以11b =为首项,14为公比的等比数列,故()114n n b -=,进而得()134n n n n c a b -==,由于0n c >,故n T 的最小值为111T c ==;选择②,由题知21n b n =-,()1213n n c n --⋅=,由于1()2130n n c n -=⋅-> ,故()111n minT T c ===;选择③,由题知()115n n b -=-,故()135n n c -=-,()53185nn T ⎡⎤=--⎢⎥⎣⎦,由于当n 为奇数时,58n T >;当n 为偶数时,58n T <,此外()53185nn T ⎡⎤=--⎢⎥⎣⎦在n 为偶数时单调递增,故当2n =时,()min 51628255n T =⨯=.【详解】(1)设数列{}n a 的公比为q ,则由前3项和为13,且13a +,23a ,35a +成等差数列,得12321313635a a a a a a ++=⎧⎨=+++⎩,所以132103a a a +=⎧⎨=⎩ 所以3310q q +=,即231030q q -+= ,解得13q =或3q =又因为{}n a 是递增的等比数列,且10a >,所以1q >,所以3q =,所以13n n a -=.(2)选择①因为34n n S b +=,所以()11342n n S b n --+=≥,两式相减得11()(3)0n n n n S S b b ---+-=,即()1402n n b b n -=≥-, 所以()1124n n b b n -=≥,所以数列{}n b 是以11b =为首项,14为公比的等比数列, 故()114n n b -=,因此()134n n n n c a b -==.由0n c >恒成立,故{}n T 为单调递增数列, 所以n T 的最小值为111T c ==. 选择②由()122n n b b n -+≥=知{}n b 是以11b =为首项,2为公差的等差数列, 所以()12121n b n n =+-=-, 所以()1213n n n n c a b n --⋅==因为1()2130n n c n -=⋅-> ,故{}n T 为单调递增数列,所以()111n min T T c ===选择③由()152n n b b n -=-≥知{}n b 是以11b =为首项,15-为公比的等比数列, 所以()115n n b -=-,所以()135n n n n c a b -==-,所以()()31553138515nnn T --⎡⎤==--⎢⎥⎣⎦+, 当n 为奇数时,由于()305n-<,故58n T >; 当n 为偶数时,由于()305n->,故58nT <,由()53185nnT ⎡⎤=--⎢⎥⎣⎦在n 为偶数时单调递增, 所以当2n =时,()min 51628255n T =⨯=.【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.24.(1)证明见解析;(2){}1,2,3. 【分析】 (1)利用112n na a +=-证明出1n n b b +-是常数,进而可证明出数列{}n b 为等差数列; (2)求得132n n c -⎛⎫= ⎪⎝⎭,利用等比数列的求和公式结合已知条件可得出33291122nn⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭,设3322nt ⎛⎫=≥ ⎪⎝⎭,可得出不等式221190t t -+<,解出t 的取值范围,由此可得出符合条件的正整数n 的值.【详解】(1)数列{}n a 满足10a =且112n n a a +=-,则211122a a ==-,321223a a ==-, 依次类推可知,对任意的n *∈N ,2n a ≠,()1121111111112111111122n n n n n n n n nn na b b a a a a a a a a ++--∴-=-=-=-==----------, 所以,数列{}n b 是等差数列,且首项为11111b a ==-,公差为1, ()11111n n b n n a ∴==+-⨯=-,解得1n n a n-=; (2)132n n c -⎛⎫= ⎪⎝⎭,则1123n n c -⎛⎫= ⎪⎝⎭,所以,11332232nn n n c c +-⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,则数列{}n c 为等比数列,同理可知,数列1n c ⎧⎫⎨⎬⎩⎭也为等比数列,则1233132223212nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==⋅- ⎪⎝⎭-, 12321111123332313nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==-⋅ ⎪⎝⎭-,由12312311113n n c c c c c c c c ⎛⎫++++>++++ ⎪⎝⎭可得23912232n n⎡⎤⎛⎫⎛⎫⋅->⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以,32291123nn⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭,设32nt ⎛⎫= ⎪⎝⎭,n N *∈,则32t ≥,可得9211t t +<,整理可得221190t t -+<,解得912t <<,即39122n⎛⎫<< ⎪⎝⎭,n N *∈,所以,正整数n 的集合为{}1,2,3.【点睛】方法点睛:证明等比数列常用以下几种方法: (1)定义法:证明1n n a a +-为常数;(2)等差中项法:对任意的n *∈N ,证明出122n n n a a a ++=+.25.(1)2nn a =;(2)2552n nn T +=-.【分析】(1)设{}n a 的公比为q ,利用基本量运算求出公比,可得数列{}n a 的通项公式;(2)利用错位相减法计算出数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【详解】(1)设{}n a 的公比为q ,由题意知:()116a q +=,2211a q a q =.又0n a >,解得12a =,2q ,所以2n n a =.(2)21n b n =+.令n n n b c a =,则212n nn c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++, 两式相减得12111113111213121525122222222222n n n n n n n n n T --++++++⎛⎫⎛⎫=++++-=+--=- ⎪ ⎪⎝⎭⎝⎭所以2552n nn T +=-. 【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和. 26.(1)n a =;(2)存在,2m =. 【分析】(1)先证明出21n a ⎧⎫⎨⎬⎩⎭是等差数列,进而求出n a ;(2)利用裂项相消法求出n T ,解不等式得出m 的范围,进而求值即可. 【详解】(1)由()11n n f a a +=得:11n a +=221114n n a a +-=,故21n a ⎧⎫⎨⎬⎩⎭是以2111a =为首项,4为公差的等差数列,2143n n a ∴=-,由()0f x =>可得0n a >,故n a =. (2)211141n n n n b S S a n ++=-==+, 111111414544145n n b b n n n n +⎛⎫∴=⨯=- ⎪++++⎝⎭, 1223341n n n T b b b b b b b b +∴=⋅+⋅+⋅++⋅11111111111145949134131744145n n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111145991313174145n n ⎛⎫=⨯-+-+-++- ⎪++⎝⎭1114545n ⎛⎫=⨯- ⎪+⎝⎭, 由题干对任意*n N ∈,都有25n m T <成立得()max 25n m T <, 由1114545n T n ⎛⎫=- ⎪+⎝⎭得120nT <, 12520m ∴≥,解得:54m ≥, 又m 为正整数, 2m ∴=,综上,存在2m =,使得对任意*n N ∈,都有25n mT <成立. 【点睛】方法点睛:本题考查等差数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。
(易错题)高中数学选修二第一单元《数列》检测(含答案解析)(3)
一、选择题1.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .112.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个3.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩4.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .725.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( )A .4×20162-1B .4×20172-1C .4×20182-1D .4×201828.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( )A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭9.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( )A .14924B .7914C .165D .511010.设等差数列{}n a 的前n 项和为n S ,若130S >,140S <,则n S 取最大值时n 的值为( ) A .6B .7C .8D .1311.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列1,()12+,()223234122,1222,(1222()2),....+++++++++的前n 项之和n S =____________.14.数列{}n a 的前n 项和为n S ,12a =,1112n n n S a +⎛⎫=-⎪⎝⎭,2log n n b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =_____. 15.已知数列{}n a 的前n 项和为n S ,11a =,当n *∈N 时,13nn n a a +=,则2n S =______.16.已知函数()1eex f x x=+(e 是自然对数的底数),设(),2020,1,2020,4041n f n n a f n n ≤⎧⎪=⎨⎛⎫> ⎪⎪-⎝⎭⎩,*n N ∈,数列{}n a 的前n 项和为n S ,则4039S 的值是______.17.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.18.已知数列{}n a 的前n 项和为11,1,2n n n S a S a +==,则n S =__________.19.已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则789a a a ++=________.20.正项数列{}n a 满足222112n n n a a a -+=+,若11a =,22a =,则数列{}n a 的通项公式为______.三、解答题21.已知n S 为等差数列{}n a 的前n 项和,给出以下三个条件:①17914,81a a S +==;②1141,++==n n n a a a ;③2111,41n n a a a n +=⋅=-.从上面①②③三个条件中任选一个解答下面的问题. (1)求n a 及n S ; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:1132n T ≤<. 22.已知公差为整数的等差数列{}n a 满足2315a a =,且47a =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}3nn a ⋅的前n 项和nS.23.设函数()112f x x =+,正项数列{}n a 满足11a =,11n n a f a -⎛⎫= ⎪⎝⎭,n *∈N ,且2n ≥.(1)求数列{}n a 的通项公式; (2)求证:122334111112n n a a a a a a a a ++++⋅⋅⋅+<. 24.数列{}n a 的前n 项的和为n S ,11a =,()1112n n S a +=-. (1)证明数列{}n a 是等比数列,并求通项n a ; (2)若等差数列{}n b 的各项均为正数,且4124i i b ==∑,11ab +,22a b +,33a b +成等比数列,求数列{}n n a b 的前n 项和n T25.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .2.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使100n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.3.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.4.A解析:A根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.5.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解. 【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭. ∴3λ,【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=- ⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.8.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.9.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.10.B解析:B 【解析】分析:首先利用求和公式,根据题中条件130S >,140S <,确定出780,0a a ><,从而根据对于首项大于零,公差小于零时,其前n 项和最大时对应的条件就是10n n a a +≥⎧⎨≤⎩,从而求得结果.详解:根据130S >,140S <,可以确定11371147820,0a a a a a a a +=>+=+<,所以可以得到780,0a a ><,所以则n S 取最大值时n 的值为7,故选B.点睛:该题考查的是有关等差数列的前n 项和最大值的问题,在求解的过程中,需要明确其前n 项和取最大值的条件10n n a a +≥⎧⎨≤⎩,之后就是应用题的条件,确定其相关项的符号,从而求得结果.11.A解析:A 【分析】先由已知数列递推公式可得1221n n a a n n +=⋅++,得到1n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,以2为公比的等比数列,求出该等比数列的通项公式,即能求得n a . 【详解】 解:∵()*12n n n a S n N n++=∈,∴12n n n a S n +=+,①当2n ≥时,111n n n a S n --=+,② ①-②有1121n n n n n a a a n n +--=++,化简得1221n n a a n n +=⋅++()2n ≥, 另外,n =1时21113261a S a =+==,故21232a a =⋅,也符合上式, 故1n a n ⎧⎫⎨⎬+⎩⎭是以112a =为首项,以2为公比的等比数列,∴121n na n -=+,故()112n n a n -=+⋅. 故选:A. 【点睛】本题考查了数列的递推公式,考查了数列通项公式的求法,属于中档题.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
(必考题)高中数学选修二第一单元《数列》检测(包含答案解析)(1)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73C .310D .12或4.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .725.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 6.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110247.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201828.已知数列{}n a 是等比数列,数列{}n b是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A.B .1-C.3-D9.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)10.函数()3sin 2cos 23f x x x =--的正数零点从小到大构成数列{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A .()1,2B .()1,4C .()1,2D .()1,+∞12.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .2二、填空题13.若数列{}n a 满足111+-=n nd a a (*,n N d ∈为常数),则称数列{}n a 为调和数列.已知数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,12320300,++++=b b b b 且378+=b b 则16=b ______.14.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.15.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.16.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项n T =________.17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.已知函数()1eex f x x=+(e 是自然对数的底数),设(),2020,1,2020,4041n f n n a f n n ≤⎧⎪=⎨⎛⎫> ⎪⎪-⎝⎭⎩,*n N ∈,数列{}n a 的前n 项和为n S ,则4039S 的值是______.19.已知数列{}n a 的前n 项和为11,1,2n n n S a S a +==,则n S =__________.20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.设数列{}n a 满足12a =,12nn n a a +-=;数列{}n b 前n 项和为n S ,且()2132n S n n =-. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 是递增的等比数列且149a a +=,238a a =,设n S 是数列{}n a 的前n 项和,(1)求n a 和n S ; (2)数列11n n n a S S ++⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,若不等式n T λ≤对任意的*n N ∈恒成立,求实数λ的最大值.23.已知等差数列{}n a 满足:2414,a a +=613a =.{}n a 的前n 项和为n S (1)求n a 及n S (2)令211n n b a =- (*n N ∈),数列{}n b 的前n 项和为n T ,求证:1184n T ≤< 24.在公差不为0的等差数列{}n a 的前10项和为65,1a 、3a 、7a 成等比数列. (1)求数列{}n a 的通项公式;(2)若2n an n b a =+,求数列{}n b 的前n 项和n T .25.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 26.已知数列}{n a 满足11a =,)(121n n a a n N *+=+∈.(1)求数列}{na 的通项公式.(2)设n b n =,求数列1n n b a ⎧⎫⎪⎨⎬+⎪⎭⎩的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.B解析:B 【分析】根据等比数列的性质求解.在1q ≠-时,24264,,S S S S S --仍成等比数列. 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 【点睛】结论点睛:数列{}n a 是等比数列,若0m S ≠,则232,,m m m m m S S S S S --成等比数列.简称等比数列的片断和仍成等比数列.注意{}n a 是等比数列与232,,m m m m m S S S S S --成等比数列之间不是充要条件.4.A解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=,所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.5.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n n a a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项;形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式.6.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n nn a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 7.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181a a =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.8.A【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题9.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可.【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A .本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A.本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】分别求出等比数列的前三项,利用等比数列的性质能求出入的值. 【详解】∵等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),∴()1123246a S λλλ==+-⨯=-,()()222123223226a S S λλλλλ=-=+-⋅-+-⋅=-⎡⎤⎣⎦()()32332232232412a S S λλλλλ⎡⎤=-=+-⋅-+-⋅=-⎣⎦,123,,a a a 成等比数列,∴()()()22646412λλλ-=--,解得1λ=或3λ= ∵3λ=时,2n S λ=是常数,不成立,故舍去3λ=.1λ∴=故选:C 【点睛】本题主要考查等比数列的性质等基础知识,求和公式与通项的关系,考查运算求解能力,属于中档题.二、填空题13.26【分析】由调和数列的定义可得是公差为的等差数列再由等差数列的性质和求和公式即可得出结果【详解】由数列为调和数列可得(为常数)∴是公差为的等差数列又∴∴又∴∴∴故答案为:26【点睛】本题考查新定义解析:26 【分析】由调和数列的定义可得{}n b 是公差为d 的等差数列,再由等差数列的性质和求和公式,即可得出结果. 【详解】由数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,可得1111111n n n n b b d b b +++-=-=(n N ∈,d 为常数),∴{}n b 是公差为d 的等差数列,又12320300b b b b ++++=,∴120203002b b +⨯=,∴12030b b +=, 又378+=b b ,∴54b =,∴51612030b b b b +=+=,∴1626b =, 故答案为:26. 【点睛】本题考查新定义的理解和运用,考查等差数列的定义和性质,以及求和公式,考查运算能力,属于中档题.14.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.15.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列,所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.16.【分析】首先利用求出的通项即可得【详解】∵∴当时;当时又当时符合上式∴∴∴当是偶数时当是奇数时∴∴数列的前项和故答案为:【点睛】本题主要考查了已知求考查了奇偶并项求和属于中档题 解析:()1nn -【分析】首先利用2n S n =求出{}n a 的通项,即可得()()121nn b n =--.【详解】∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()135791113121nn n T =-+-+-+-+-+-当n 是偶数时,22n nT n =⨯=, 当n 是奇数时,()1122n n T n -=-+-⨯=-, ∴()1nn T n =-,∴数列{}n b 的前项和()1nn T n =-.故答案为: ()1nn - 【点睛】本题主要考查了已知n S 求n a ,考查了奇偶并项求和,属于中档题.17.【详解】存在两项使得比较可得当时有最小值为【点睛】本题考查了基本不等式;等比数列的通项基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误的真正原因是对其前提一正二定三相等的忽视要利用基本不 解析:【详解】7652a a a =+,25552a q a q a ∴=+,220q q ∴--=,2q ∴=,存在两项使得12m n a a a =,214m n a a a ∴=,24m n q +-∴=,4m n ∴+=,,比较可得当时,有最小值为. 【点睛】本题考查了基本不等式;等比数列的通项.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.18.【分析】由题意可得且进而可得结合数列的通项公式可得从而可得答案【详解】根据题意因为所以所以因为所以故答案为:【点睛】此题考查数列的求和以及数列与函数的关系关键是分析属于中档题 解析:40392【分析】由题意可得, 1()11()111()ee e xf x x x==++,且11(1)112f ==+,进而可得1()()1f x f x+=,结合数列的通项公式可得4039111(1)(2)(2020)()()()202020192f f f f f S f =++⋅⋅⋅++++⋅⋅⋅+ 111(1)[(2)()][(3)()](2020)()232020f f f f f f f =+++++⋅⋅⋅++,从而可得答案. 【详解】 根据题意,因为()1e e x f x x=+,所以1()11()111()e e e x f x x x==++,11(1)112f ==+, 所以1()()1f x f x +=,因为(),2020,1,2020,4041n f n n a f n n ≤⎧⎪=⎨⎛⎫> ⎪⎪-⎝⎭⎩所以4039111(1)(2)(2020)()()()202020192f f f f f S f =++⋅⋅⋅++++⋅⋅⋅+ 111(1)[(2)()][(3)()](2020)()232020f f f f f f f =+++++⋅⋅⋅++14039201922=+= 故答案为:40392【点睛】此题考查数列的求和以及数列与函数的关系,关键是分析1()()1f x f x+=,属于中档题.19.【分析】由与的关系得出进而得出数列为等比数列由等比数列的通项公式即可得出【详解】即数列是以1为首项为公比的等比数列故答案为:【点睛】本题主要考查了等比数列前项和与通项的关系属于中档题解析:132n -⎛⎫⎪⎝⎭【分析】由n S 与n a 的关系得出12()n n n S S S +=-,进而得出数列{}n S 为等比数列,由等比数列的通项公式即可得出n S . 【详解】1122()n n n n S a S S ++==-132n n S S +∴=即数列{}n S 是以1为首项,32为公比的等比数列 132n n S -⎛⎫∴ ⎪⎝⎭=故答案为:132n -⎛⎫ ⎪⎝⎭【点睛】本题主要考查了等比数列前n 项和与通项的关系,属于中档题.20.【分析】求出数列的通项公式利用裂项求和法求出利用极限的运算法则可得出所求极限值【详解】且则数列是以为首项以为公差的等差数列所以因此故答案为:【点睛】本题考查数列前项和的极限值的求法是中档题解题时要认解析:13【分析】求出数列{}n a 的通项公式,利用裂项求和法求出12n b b b ++⋅⋅⋅+,利用极限的运算法则可得出所求极限值. 【详解】()132,n n a a n n N *-=+≥∈且11a =,则数列{}n a 是以1为首项,以3为公差的等差数列,所以,()13132n a n n =+-=-,()()111111323133231n n n b a a n n n n +⎛⎫∴===- ⎪-+-+⎝⎭, 1211111111134473231393n b b b n n n ⎛⎫∴++⋅⋅⋅+=-+-++-=- ⎪-++⎝⎭, 因此,()12111lim lim 3933n n n b b b n →∞→∞⎛⎫++⋅⋅⋅+=-=⎪+⎝⎭. 故答案为:13. 【点睛】本题考查数列前n 项和的极限值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.三、解答题21.(1)()*2n n a n N =∈,()*32n b n n N =-∈;(2)()110352n n T n +=+-⋅.【分析】(1)由12nn n a a +-=,得到()1122n n n a a n ---=≥,再利用累加法求解;根据()2132n S n n =-,利用通项和前n 项的的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)由(1)得()322nn n n c a b n ==⋅-,然后利用错位相减法求和.【详解】 (1)12n n n a a +-=,()1122n n n a a n --∴-=≥, ()()()112211n n n n n a a a a a a a a ---∴=-+-++-+122222n n --=++++()()121222212n n n --=+=≥-,又12a =满足上式,()*2n n a n N ∴=∈.数列{}n b 中()2132n S n n =-, ∴当2n ≥时,()()()2211133113222n n n b S S n n n n n -⎡⎤=-=-----=-⎣⎦, 又当1n =时,111b S ==,满足上式.()*32n b n n ∴=-∈N .(2)由(1)得()322nn n n c a b n ==⋅-,()()211242352322n n n T n n -∴=⨯+⨯++-⋅+-⋅①, ()()23121242352322n n n T n n +∴=⨯+⨯++-⋅+-⋅②,①-②得()()23123222322n n n T n +-=++++--⋅()()2112122332212n n n -+-=+⨯--⋅-()110532n n +=-+-⋅, ()110352n n T n +∴=+-⋅.【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 22.(1)12n n a ,21n n S =-;(2)最大值是23. 【分析】(1)由149a a +=,23148a a a a ==,求得14,a a 的值,得出2q ,进而求得数列的通项公式和前n 项和; (2)由(1)可得111112121n n n n n n a b S S +++==---,求得数列{}n b 的前n 项和11121n n T +=--,根据数列的单调性和恒成立,即可求解.【详解】(1)由题意,数列{}n a 是递增的等比数列,且149a a +=,23148a a a a ==, 所以1a ,4a 是方程2980x x -+=的两个根,且14a a <, 解方程2980x x -+=,得11a =,48a =,所以341881a q a ===,解得2q ,所以数列的通项公式为1112n n n a a q --==,所以()()1111221112n n n n a q qS -⨯-===---,(2)由(1)可得()()111121121212121n n n n n n n n n a b S S ++++===----⋅-, 所以数列{}n b 的前n 项和111111111111337715212121n n n n T ++=-+-+-+⋅⋅⋅+-=----,在正整数集上{}n T 单调递增,所以123n T T ≥=, 因为n T λ≤,且对一切*n ∈N 成立,所以23λ≤, 所以实数λ的最大值是23. 【点睛】关于数列的裂项法求和的基本策略: 基本步骤:裂项:观察数列的通项,将通项拆成两项之差的形式; 累加:将数列裂项后的各项相加;消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前n 项和. 消项的规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 23.(1)21n a n =+;22n S n n =+;(2)证明见解析. 【分析】(1)利用等差数列通项公式求解首项及公差,再利用求和公式进行求解; (2)由(1)得22111(2+1)1n n b a n ==--,再用裂项相消法求得n T ,并利用单调性求得n T 的范围.【详解】(1)设等差数列{}n a 的公差为d ,因为2414,a a +=613a =,所以有13,2a d ==,所以32(1)21n a n n =+-=+;2(1)3+222n n n S n n n -=⨯=+ (2)由1知21n a n =+,所以221111111=1(2+1)14(1)41n n b a n n n n n ⎛⎫==⋅=⋅- ⎪--++⎝⎭, 所以1111111111+++142231414n T n n n ⎛⎫⎛⎫=⋅---=-< ⎪ ⎪++⎝⎭⎝⎭, 又118n T T ≥=,且单调递增,故1184n T ≤<. 24.(1)1n a n =+;(2)223242n n n nT ++=-+. 【分析】(1)本题首先可根据前10项和为65得出1104565a d +=,然后根据1a 、3a 、7a 成等比数列得出()()211126a d a a d +=+,最后两者联立,求出1a 、d 的值,即可得出结果;(2)本题首先可根据1n a n =+得出121n n b n +=++,然后采用分组求和法即可求出n T .【详解】(1)设等差数列{}n a 的公差为d (0d ≠), 因为前10项和为65,所以101104565S a d =+=,因为1a 、3a 、7a 成等比数列,所以2317a a a =,即()()211126a d a a d +=+,联立()()1211110456526a d a d a a d +=⎧⎪⎨+=+⎪⎩,解得12a =,1d =, 故1n a n =+.(2)因为1n a n =+,2n an n b a =+,所以121n n b n +=++,则231222231n n T n +=++++++++()()22412213241222n n n n n n +-+++=+=-+-,故223242n n n nT ++=-+. 【点睛】方法点睛:本题考查等差数列通项公式的求法以及分组求和法求和,常见的数列的求和方法有:等差等比公式法、错位相减法、裂项相消法、分组求和法以及倒序相加法. 25.(1)()1n a n n =+;(2)证明见解析. 【分析】(1)由()()31n n n S a n a -=-可得()32n n S n a =+,所以()1133n n S n a ++=+,两式相减可得()12n n na n a +=+,即12n n a n a n++=,利用累加法即可求n a ; (2)由(1)可得()1n a n n =+,所以()111111n a n n n n ==-++,利用裂项求和即可求n T ,进而可证1n T <.【详解】(1)因为()()31n n n S a n a -=- 所以()32n n S n a =+①, 所以()1133n n S n a ++=+②,②-①得()()11332n n n a n a n a ++=+-+, 即()12n n na n a +=+,所以12n n a n a n++=, 所以2131a a =, 3242a a =, 4353a a =,111n n a n a n -+=-, 以上各式累加可得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯⨯=-- 所以()1n a n n =+(2)因为()111111n a n n n n ==-++,所以111111111112233411n T n n n =-+-+-++-=-<++ 因为101n >+,所以1111n T n =-<+. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.26.(1)21nn a =-;(2))(1222nn S n ⎛⎫=-+⋅⎪ ⎭⎝.【分析】( 1)先化简已知)(1121n n a a ++=+,构造等比数列}{1n a +,求出数列{}n a 的通项公式;(2)先求出1122nn n n b nn a ⎛⎫==⋅⎪ +⎭⎝,再利用错位相减求出前n 项和n S .【详解】(1)∵)(121n n a a n N *+=+∈,∴)(1121n n aa ++=+,由已知10n a +≠,∴1121n n a a ++=+,∴}{1n a +是以112a +=为首项,以2为公比的等比数列,∴11222n nn a -+=⨯=,∴21n n a =-.(2)1122n n n n b nn a ⎛⎫==⋅⎪ +⎭⎝,12311111232222nn S n ⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⨯+⋅⋅⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,)(2211111112122222nn n S n n +⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⋅⋅⋅+-⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,∴1231111111222222nn n S n +⎛⎛⎛⎛⎛⎫⎫⎫⎫⎫=+++⋅⋅⋅+-⋅⎪⎪⎪⎪⎪ ⎭⎭⎭⎭⎭⎝⎝⎝⎝⎝,)(1111122111212212n n n n n ++⎡⎤⎛⎫-⎢⎥⎪ ⎭⎝⎢⎥⎛⎛⎫⎫⎣⎦=-⋅=-+⋅⎪⎪ ⎭⎭⎝⎝-,∴)(1222n n S n ⎛⎫=-+⋅⎪ ⎭⎝. 【点睛】本题主要考查由递推数列求通项,若数列{}·n n b c ,其中{}n b 是等差数列,{}n c 是等比数列,则采用错位相减法,意在考查学生对这些知识的掌握水平和分析推理能力.。
高中数学课时跟踪检测数列苏教版必修5
2021年高中数学课时跟踪检测数列苏教版必修5层级一 学业水平达标1.数列0,13,12,35,23,…的通项公式为________.解析:数列可化为02,13,24,35,46,…观看可得:a n =n -1n +1. 答案:a n =n -1n +12.依照下列4个图形及相应点的个数的变化规律,试推测第n 个图形中有____________个点.解析:由图形可得,图形中的点数为1,4,9,16,… 则其通项公式为a n =n 2, 故第n 个图形中的点数为n 2. 答案:n 23.数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n (n ∈N *),则a 6=________. 解析:由题意得a 3=a 2+a 1=2,a 4=a 3+a 2=3,a 5=a 4+a 3=5,a 6=a 5+a 4=8. 答案:84.数列{a n }中,a 1=1,关于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5的值为________.解析:由a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,∴a 3=94,同理a 5=2516.∴a 3+a 5=6116.答案:61165.已知数列{a n }满足a m ·n =a m ·a n (m ,n ∈N *),且a 2=3,则a 8=________. 解析:由a m ·n =a m ·a n ,得a 4=a 2·2=a 2·a 2=9,a 8=a 2·4=a 2·a 4=3×9=27.答案:276.数列{a n }的通项公式为a n =n 2-5n ,则{a n }的第______项最小.解析:a n =⎝ ⎛⎭⎪⎫n -522-254.∵n ∈N *,∴当n =2或3时,a n 最小,∴{a n }的第2或3项最小.答案:2或37.下面五个结论:①数列若用图象表示,从图象上看差不多上一群孤立的点;②数列的项数是无限的;③数列的通项公式是唯独的;④数列不一定有通项公式;⑤将数列看做函数,其定义域是N *(或它的有限子集{1,2,…,n }).其中正确的是________(填序号).解析:②中数列的项数也能够是有限的,③中数列的通项公式不唯独. 答案:①④⑤8.已知函数f (x )由下表定义:x 1 2 3 4 5 f (x )41352若a 1=5,a n +1=f (a n )(n =1,2,…),则a 2 016=________.解析:a 2=f (a 1)=f (5)=2,a 3=f (a 2)=f (2)=1,a 4=f (a 3)=f (1)=4,a 5=f (a 4)=f (4)=5,…,可知数列{a n }是循环数列周期为4,因此a 2 016=a 4×504=a 4=4.答案:49.数列{a n }的通项公式是a n =n 2-7n +6. (1)那个数列的第4项是多少?(2)150是不是那个数列的项?若是那个数列的项,它是第几项? 解:(1)当n =4时,a 4=42-4×7+6=-6.(2)是.令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是那个数列的第16项.10.已知函数f (x )=2x -2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.解:(1)因为f (x )=2x-2-x ,f (log 2a n )=-2n , 因此2log 2a n -2-log 2a n =-2n ,因此,a n -1a n=-2n ,因此a 2n +2na n -1=0,解得a n =-n ±n 2+1. 因为a n >0,因此a n =n 2+1-n .(2)证明:a n +1a n=n +12+1-n +1n 2+1-n=n 2+1+n n +12+1+n +1<1.因为a n >0,因此a n +1<a n , 因此数列{a n }是递减数列.层级二 应试能力达标1.若数列{a n }满足a n +1=4a n +34(n ∈N *),且a 1=1,则a 17=________.解析:由a n +1=4a n +34⇒a n +1-a n =34,a 17=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 17-a 16)=1+34×16=13. 答案:132.若数列{a n }满足(n -1)a n =(n +1)a n -1,且a 1=1,则a 100=________. 解析:由(n -1)a n =(n +1)a n -1⇒a n a n -1=n +1n -1,则a 100=a 1·a 2a 1·a 3a 2·…·a 100a 99=1×31×42×…×10199=5 050.答案:5 0503.已知数列{a n }的通项公式为a n =2 016-3n ,则使a n ≥0成立的最大正整数n 的值为________.解析:由a n =2 016-3n ≥0,得n ≤2 0163=672.∴n 的最大值为672. 答案:6724.已知无穷数列a n =12n 2-λn +1(n ∈N *)是单调递增数列,则λ的取值范畴是_______.解析:利用定义,a n +1-a n >0对n ∈N *恒成立得λ<32.答案:⎝⎛⎭⎪⎫-∞,32 5.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q 且a 2=6,那么a 10=________. 解析:a 4=a 2+a 2=12,a 6=a 4+a 2=18,a 10=a 6+a 4=30. 答案:306.在数列{a n }中,a 1=2,na n +1=(n +1)a n +2,则a 4=________. 解析:当n =1时,a 2=2a 1+2=2×2+2=6; 当n =2时,2a 3=3a 2+2=3×6+2=20, ∴a 3=10;当n =3时,3a 4=4a 3+2=4×10+2=42, ∴a 4=14. 答案:147.已知数列{a n }的通项公式为a n =p n+q (p ,q ∈R),且a 1=-12,a 2=-34.(1)求{a n }的通项公式; (2)-255256是{a n }中的第几项?(3)该数列是递增数列依旧递减数列? 解:(1)∵a n =p n+q , 又a 1=-12,a 2=-34,∴⎩⎪⎨⎪⎧p +q =-12,p 2+q =-34,解得⎩⎪⎨⎪⎧p =12,q =-1,因此{a n }的通项公式是a n =⎝ ⎛⎭⎪⎫12n-1.(2)令a n =-255256,即⎝ ⎛⎭⎪⎫12n-1=-255256,因此⎝ ⎛⎭⎪⎫12n =1256,解得n =8.故-255256是{a n }中的第8项.(3)由于a n =⎝ ⎛⎭⎪⎫12n -1,且⎝ ⎛⎭⎪⎫12n随n 的增大而减小,因此a n 的值随n 的增大而减小,故{a n }是递减数列.8.已知数列{a n }的通项公式为a n =3n -23n +1.(1)求证:0<a n <1.(2)在区间⎝ ⎛⎭⎪⎫13,23内有许多列中的项?若有,有几项?若没有,说明理由. 解:(1)证明:因为a n =3n -23n +1=1-33n +1.又因为n ∈N *,因此3n +1>3, 因此0<33n +1<1,因此0<1-33n +1<1,即0<a n <1.(2)令13<a n <23,即13<1-33n +1<23.因此13<33n +1<23,因此92<3n +1<9,因此76<n <83.因为n ∈N *,因此n =2,即在区间⎝ ⎛⎭⎪⎫13,23内有数列中的项,且只有1项,此项为第2项.。
2020届中职数学单元检测06《数列》-对口升学总复习题含答案
2020届中职数学对口升学总复习单元检测试题第六单元《数列》测试题一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案1.4和9的等比中项为()A.6B.6± C.13± D.-62.3,5,9,17,33,...的一个通项公式=n a ()A .n2B .1n 2+C .12n-D .12n+3.数列-3,3,-3,3,…的一个通项公式是()A .a n =3(-1)n+1B .a n =3(-1)nC .a n =3-(-1)nD .a n =3+(-1)n4.{a n }是首项a 1=4,公差为d =3的等差数列,如果a n =2020,则序号n 等于()A .671B .672C .673D .6745.在等差数列{a n }中,已知21a 9876543=++++++a a a a a a ,则a 2+a 10=()A 6B 7C 9D 116.在等比数列{a n }中,a 2=8,5a =64,,则公比q 为()A.8B.4C.3D.27.数列}{a n 的前n 项和为2n 2,则5a 的值为()A .18B .19C .20D .408.等比数列}{n a 中,===302010,30,10S S S 则()A 、50B 、60C 、70D 、909.两数的等差中项是15,等比中项为12,这两个数是()A .6,24B .12,18C .10,20D .16,1410.公比为2的等比数列{n a }的各项都是正数,且3a 11a =16,则5a =()A 1B2C4D8二.填空题(本大题8小题,每小题4分,共32分)(好老师教学精品资源)1.等比数列中76543214,1a a a a a a a a ⋅⋅⋅⋅⋅⋅=则=2.自然数数列前50个数的和是3.在等比数列{a n }中,a 1=12,a 4=-4,则公比q=________________________.4等比数列{}n a 中,已知121264a a a =,则46a a 的值为_________________.5.}{n a 为等比数列,且81a 92=⋅a ,则=+⋅⋅⋅++1032313log log log a a a _________________.6.等差数列中a 4=7,7S =_________________.7.⋅⋅⋅--,51,41,31,21的一个通项公式是_________________.8.等差数列}{n a 中,=++=++=++987654321a ,9,3a a a a a a a a 则_________________.三.解答题(本大题6小题,共38分)1.等差数列-3,-6,-9,...的第几项是-300?2.等比数列中,3,81,3a 1===q a n ,求n (6分)3.数列}{n a 中,n n a a a 3,111==+,求它的前n 项和(6分)4.等差数列{a n }中,168,48128==S S 求1a 和d (6分)5.数列{a n }的前n 项和为132n ++=n n S ,求该数列的通项公式n a .(6分)6.在等差数列{a n }中,已知74=a 与47=a ,解答下列问题:(1)求通项公式na (2)前n 项和n s 的最大值及n s 取得最大值时项数n 的值(8分)第六单元《数列》参考答案一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案BDBCADACAA二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8..三.解答题(本大题共6小题,共38分)1.1002.4;3.)(1321n-;4.1a =-8,d=4;5.⎩⎨⎧≥-==2,261,5a n n n n ;6.(1)11a +-=n n ;(2)当n=10或n=11时,n S 取到最大值为551225-211)1(a +⋅-=n n n 18204915第六单元《数列》答题卡一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8.三.解答题(本大题共6小题,共38分)1.(6分)2.(6分)3.(6分)4.(6分)5.(6分)6.(8分)。
苏教版高中数学必修五课时跟踪检测(六) 数 列
课时跟踪检测(六) 数 列层级一 学业水平达标1.有下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集)上的函数; ②数列的项数一定是无限的; ③数列的通项公式的形式是唯一的;④数列1,3,2,6,3,9,4,12,5,15,…不存在通项公式. 其中正确的是( ) A .① B .①② C .③④D .②④解析:选A 结合数列的定义与函数的概念可知,①正确;有穷数列的项数就是有限的,因此②错误;数列的通项公式的形式不一定唯一,③错误;数列1,3,2,6,3,9,4,12,5,15,…存在通项公式,④错误.故选A.2.数列{a n }中,a n =3n -1,则a 2等于( ) A .2 B .3 C .9D .32解析:选B 因为a n =3n -1,所以a 2=32-1=3. 3.数列0,33,22,155,63,…的一个通项公式是( ) A .a n = n -2n B .a n = n -1n C .a n =n -1n +1D .a n = n -2n +2 解析:选C 已知数列可化为:0,13,24,35,46,…,故a n = n -1n +1. 4.已知数列12,23,34,…,n n +1,则0.96是该数列的( )A .第20项B .第22项C .第24项D .第26项解析:选C 由nn +1=0.96,解得n =24.5.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2解析:选D ∵a n =1n +1+1n +2+1n +3+…+12n ,∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2,∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2.6.数列0,13,12,35,23,…的通项公式为________.解析:数列可化为02,13,24,35,46,…观察可得:a n =n -1n +1. 答案:a n =n -1n +17.已知数列{a n }满足a m ·n =a m ·a n (m ,n ∈N *),且a 2=3,则a 8=________. 解析:由a m ·n =a m ·a n , 得a 4=a 2·2=a 2·a 2=9, a 8=a 2·4=a 2·a 4=3×9=27. 答案:278.数列{a n }的通项公式为a n =n 2-5n ,则{a n }的第______项最小. 解析:a n =⎝⎛⎭⎫n -522-254. ∵n ∈N *,∴当n =2或3时,a n 最小, ∴{a n }的第2或3项最小. 答案:2或39.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? 解:(1)当n =4时,a 4=42-4×7+6=-6. (2)是.令a n =150, 即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.10.已知数列2,74,2,…的通项公式为a n =an 2+b cn ,求a 4,a 5.解:将a 1=2,a 2=74代入通项公式,得⎩⎨⎧a +bc =2,4a +b 2c =74,解得⎩⎪⎨⎪⎧b =3a ,c =2a ,∴a n =n 2+32n,∴a 4=42+32×4=198,a 5=52+32×5=145.层级二 应试能力达标1.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15 B .5C .6D.log 23+log 31325解析:选B a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5. 2.一个无穷数列{a n }的前三项是1,2,3,下列不可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2+12n -6C .a n =12n 2-12n +1D .a n =6n 2-6n +11解析:选C 对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2+12n -6,则a 1=1,a 2=2,a 3=3,符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =6n 2-6n +11,则a 1=1,a 2=2,a 3=3,符合题意.故选C.3.数列1,12,21,13,22,31,14,23,32,41,…,则89是该数列的( )A .第127项B .第128项C .第129项D .第130项解析:选B 把该数列的第一项1写成11,再将该数列分组,第一组一项:11;第二组两项:12,21;第三组三项:13,22,31;第四组四项:14,23,32,41;…容易发现:每组中每个分数的分子、分母之和均为该组序号加1,且每组的分子从1开始逐一增加,因此89应位于第十六组中第八位.由1+2+…+15+8=128,得89是该数列的第128项.4.已知数列{a n }的通项公式为a n =2 019-3n ,则使a n ≥0成立的最大正整数n 的值为________.解析:由a n =2 019-3n ≥0,得n ≤2 0193=673. ∴n 的最大值为673. 答案:6735.已知无穷数列a n =12n 2-λn +1(n ∈N *)是单调递增数列,则λ的取值范围是________.解析:利用定义,a n +1-a n >0对n ∈N *恒成立得λ<32.答案:⎝⎛⎭⎫-∞,32 6.已知数列{a n}的通项为a n=⎩⎨⎧n +15n,n ≤5,a ln n -14,n >5,若{a n }的最小值为314,则实数a 的取值范围是________.解析:由题可知当n ≤5时结合函数y =x +15x (x >0),可知a n ≥a 4=4+154=314,又∵{a n }的最小值为314,∴当n >5时,y =a ln n -14≥314,即a ln n ≥8,又∵ln n >ln 5>0,∴当n >5时,a ≥8ln n 恒成立,∴a ≥8ln 6. 答案:⎣⎡⎭⎫8ln 6,+∞ 7.已知数列{a n }的通项公式为a n =p n +q (p ,q ∈R ),且a 1=-12,a 2=-34.(1)求{a n }的通项公式; (2)-255256是{a n }中的第几项? 解:(1)∵a n =p n +q ,又a 1=-12,a 2=-34,∴⎩⎨⎧p +q =-12,p 2+q =-34,解得⎩⎪⎨⎪⎧p =12,q =-1,因此{a n }的通项公式是a n =⎝⎛⎭⎫12n-1. (2)令a n =-255256,即⎝⎛⎭⎫12n -1=-255256, 所以⎝⎛⎭⎫12n =1256,解得n =8. 故-255256是{a n }中的第8项.8.已知数列{a n }的通项公式为a n =3n -23n +1. (1)求证:0<a n <1.(2)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由. 解:(1)证明:因为a n =3n -23n +1=1-33n +1.又因为n ∈N *,所以3n +1>3, 所以0<33n +1<1,所以0<1-33n +1<1,即0<a n <1. (2)令13<a n <23,即13<1-33n +1<23.所以13<33n +1<23,所以92<3n +1<9,所以76<n <83.因为n ∈N *,所以n =2,即在区间⎝⎛⎭⎫13,23内有数列中的项,且只有1项,此项为第2项.由Ruize收集整理。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(五
课时跟踪检测(五) 数列的概念与通项公式一、选择题1.下面有四个结论,其中叙述正确的有①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数;③数列若用图象表示,它是一群孤立的点;④每个数列都有通项公式.( )A .①②B .②③C .③④D .①④2.数列的通项公式为a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,则a 2·a 3等于( ) A .70B .28C .20D .83.数列-1,3,-7,15,…的一个通项公式可以是( )A .a n =(-1)n ·(2n -1)B .a n =(-1)n ·(2n -1)C .a n =(-1)n +1·(2n -1) D .a n =(-1)n +1·(2n -1) 4.(2012·宿州高二检测)已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( ) A .递增数列B .递减数列C .常数列D .摆动数列5.下列命题: ①已知数列{a n },a n =1n (n +2)(n ∈N *),那么1120是这个数列的第10项,且最大项为第一项. ②数列2,5,22,11,…的一个通项公式是a n =3n -1.③已知数列{a n },a n =kn -5,且a 8=11,则a 17=29.④已知a n +1=a n +3,则数列{a n }是递增数列.其中正确命题的个数为( )A .4个B .3个C .2个D .1个二、填空题6.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项. 7.已知数列{a n }的前4项为11,102,1 003,10 004,…,则它的一个通项公式为________.8.(2013·福州高二检测)已知数列{a n }的通项公式是a n =n 2-8n +12,那么该数列中为负数的项一共有________项.三、解答题9.求下列数列的一个可能的通项公式:(1)1,-1,1,-1,…;(2)1,10,2,11,3,12,…;(3)1+12,1-324,1+526,1-728,….10.在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式;(2)求a 2 013;(3)2 014是否为数列{a n }中的项?答 案课时跟踪检测(五)1.选B 数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.2.选C 由a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数, 得a 2=2,a 3=10,所以a 2·a 3=20.3.选A 数列各项正、负交替,故可用(-1)n 来调节,又1=21-1,3=22-1,7=23-1,15=24-1,…,所以通项公式为a n =(-1)n ·(2n -1).4.选A a n =n -1n +1=1-2n +1,∴当n 越大,2n +1越小,则a n 越大,故该数列是递增数列.5.选A 对于①,令a n =1n (n +2)=1120⇒n =10,易知最大项为第一项.①正确. 对于②,数列2,5,22,11,…变为2,5,8,11,…⇒3×1-1,3×2-1,3×3-1,3×4-1,…⇒a n =3n -1,②正确;对于③,a n =kn -5,且a 8=11⇒k =2⇒a n =2n -5⇒a 17=29.③正确;对于④,由a n +1-a n =3>0,易知④正确.6.解析:令2n 2+n =110,解得n =4(n =-5舍去),所以110是第4项. 答案:47.解析:由于11=10+1,102=102+2,1 003=103+3,10 004=104+4,…,所以该数列的一个通项公式是a n =10n +n .答案:a n =10n +n8.解析:令a n =n 2-8n +12<0,解得2<n <6,又因为n ∈N *,所以n =3,4,5,一共有3项. 答案:39.答案:(1)a n =(-1)n +1 或a n =⎩⎪⎨⎪⎧1,n 为奇数,-1,n 为偶数. (2)a n =⎩⎨⎧n +12,n 为奇数,n 2+9,n 为偶数 或a n =12⎣⎡⎦⎤⎝⎛⎭⎫n +192+(-1)n ×172. (3)a n =1+(-1)n +1(2n -1)22n. 10.解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =2,17k +b =66, 解得k =4,b =-2.∴a n =4n -2.(2)a 2 013=4×2 013-2=8 050.(3)令2 014=4n -2,解得n =504∈N *,∴2 014是数列{a n }的第504项.。
2020-2021学年人教A版数学必修5配套课时跟踪训练:第二章 数 列 单元综合检测
单元综合检测(二) 时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列的前4项为2,0,2,0,则归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1B .a n =⎩⎨⎧2,n 为奇数0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1解析:对于C ,当n =3时,sin 3π2=-1,则a 3=-2,与题意不符. 答案:C2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49D .64解析:a 8=S 8-S 7=82-72=15. 答案:A3.若数列{a n }的通项公式是a n =2(n +1)+3,则此数列( ) A .是公差为2的等差数列 B .是公差为3的等差数列 C .是公差为5的等差数列 D .不是等差数列解析:由题意可得,a n =2n +5=7+2(n -1),即此数列是公差为2的等差数列. 答案:A4.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2 解析:因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,a 1=a 3q 2=1,故选A.答案:A5.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33D .34解析:由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,所以S 8=8a 1+8×72d =32.答案:B6.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( ) A .8 B .9 C .10D .11 解析:该数列为等差数列,且S 7=28,a 2+a 5+a 8=15,即7a 1+21d =28,3a 1+12d =15,解得a 1=1,d =1,a 9=a 1+8d =9. 答案:B7.等差数列{a n }前n 项和为S n ,S 7+S 5=10,a 3=5,则S 7=( ) A .25 B .49 C .-15D .40解析:因为等差数列{a n }前n 项和为S n ,S 7+S 5=10,a 3=5, 所以⎩⎪⎨⎪⎧7a 1+7×62d +5a 1+5×42d =10,a 1+2d =5,解得a 1=1357,d =-507,所以S 7=7a 1+7×62d =7×1357+7×62×⎝ ⎛⎭⎪⎫-507=-15.答案:C8.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( ) A .16B .32C .64D .128解析:设等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎨⎧a 1(1+q +q 2)=14,a 3=a 1q 2=8,解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C. 答案:C9.已知a ,b ,c 是三个不同的实数,若a ,b ,c 成等差数列,且b ,a ,c 成等比数列,则a ∶b ∶c 为( ) A .2∶1∶4 B .(-2)∶1∶4 C .1∶2∶4D .1∶(-2)∶4解析:由a ,b ,c 成等差数列,设a =m -d ,b =m ,c =m +d ,d ≠0, 因为b ,a ,c 成等比数列,所以a 2=bc ,即(m -d )2=m (m +d ), 化简,得d =3m ,则a =-2m ,b =m ,c =4m , 所以a ∶b ∶c =(-2)∶1∶4. 答案:B10.已知a ,b ,c 成等比数列,a ,m ,b 和b ,n ,c 分别成两个等差数列,则am +cn 等于( ) A .4 B .3 C .2D .1解析:由题意得b 2=ac,2m =a +b,2n =b +c , 则a m +c n =an +cm mn =a ·b +c 2+c ·a +b 2a +b 2·b +c 2=ab +ac +ac +bcab +ac +b 2+bc2=2.答案:C11.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为a n ,则a 1+a 2+…+a 2 017=( ) A.2 0172 018B .2 0162 017C.2 0152 016D.2 0172 016解析:分别令x =0和y =0,得到直线nx +(n +1)y =2(n ∈N *)与两坐标轴的交点,⎝⎛⎭⎪⎫0,2n +1,⎝ ⎛⎭⎪⎫2n ,0,则a n =12·2n ·2n +1=1n (n +1)=1n -1n +1,然后分别代入1,2,…,2 017,则有a 1+a 2+…+a 2 017=1-12+12-13+…+12 017-12 018=1-12 018=2 0172 018. 答案:A12.已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )=f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )=f (3)(n ∈N *),则a n 为( ) A .2n -1 B .n C .2n -1D.⎝ ⎛⎭⎪⎫32n -1 解析:由f (S n +2)=f (a n )+f (3)(n ∈N *),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得,2a n =3a n -1(n ≥2),即a n a n -1=32. 当n =1时,S 1+2=3a 1=a 1+2,解得a 1=1,所以数列{a n }是首项为1,公比为32的等比数列,则a n =⎝ ⎛⎭⎪⎫32n -1.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102,由于26=64,27=128,则n +1≥7,即n ≥6. 答案:614.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由题意得-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.答案:115.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2 018=________.解析:因为数列{a n }满足a 1=1,a n +1=(-1)n (a n +1), 所以a 2=-(1+1)=-2,a 3=-2+1=-1,a 4=-(-1+1)=0,a 5=0+1=1,a 6=-(1+1)=-2,a 7=-2+1=-1,…,所以{a n }是以4为周期的周期数列,因为2 018=504×4+2,所以S 2 018=504×(1-2-1+0)+1-2=-1 009. 答案:-1 00916.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________. 解析:因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8. (1)求a 4,a 7; (2)求a 1+a 10.解析:(1)由等比数列的性质知,a 4a 7=a 5a 6=-8,与a 4+a 7=2联立,解得⎩⎨⎧ a 4=-2,a 7=4或⎩⎨⎧a 4=4,a 7=-2.(2)当a 4=4,a 7=-2时,q 3=a 7a 4=-12,a 1=a 4q 3=-8,所以a 1+a 10=a 1(1+q 9)=-7;当a 4=-2,a 7=4时,q 3=a 7a 4=-2,a 1=a 4q 3=1,所以a 1+a 10=a 1(1+q 9)=-7.综上,a 1+a 10=-7.18.(12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和. (1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n .解析:(1)因为{a n }是首项为19,公差为-2的等差数列, 所以a n =19-2(n -1)=-2n +21, S n =19n +n (n -1)2·(-2)=-n 2+20n .(2)由题意得b n -a n =3n -1,所以b n =3n -1-2n +21,则 T n =S n +(1+3+…+3n -1)=-n 2+20n +3n-12.19.(12分)已知数列{a n }的前n 项和为S n ,且a 1=2,a 2=8,a 3=24,{a n +1-2a n }为等比数列.(1)求数列{a n }的通项公式; (2)求S n .解析:(1)因为a 2-2a 1=4,a 3-2a 2=8, 所以a n +1-2a n =4×2n -1=2n +1,所以a n +12n +1-a n2n =1,所以⎩⎨⎧⎭⎬⎫a n 2n 是以1为首项,1为公差的等差数列.所以a n2n =1+(n -1)=n , 所以a n =n ×2n .(2)由(1)可得a n =n ×2n ,所以S n =1×2+2×22+3×23+…+n ×2n ,① 2S n =1×22+2×23+3×24+…+n ×2n +1,② 由①-②及整理得S n =(n -1)×2n +1+2.20.(12分)在公差为d 的等差数列{a n }中,已知a 1=10,且5a 3·a 1=(2a 2+2)2. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解析:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4,所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n ,因为d <0, 由(1)得d =-1,a n =-n +11,则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n , 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.21.(12分)已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)已知数列{b n }满足b n =S nn ,证明数列{b n }是等差数列,并求其前n 项和T n . 解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.22.(12分)已知数列{a n }的前n 项和为S n ,S 1=1,S 2=4,且当n ≥3时,S n -1+32是S n 与S n -2的等差中项.数列{b n }为等比数列,且b 2=1a 2+1,b 3=1a 3+2.(1)求数列{a n }、{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解析:(1)因为当n ≥3时,S n -1+32是S n 与S n -2的等差中项,所以2⎝ ⎛⎭⎪⎫S n -1+32=S n+S n -2,即S n +S n -2=2S n -1+3,也就是(S n -S n -1)-(S n -1-S n -2)=3,即a n -a n -1=3(n ≥3).而a 1=S 1=1,a 2=S 2-S 1=3,显然a 2-a 1=2≠3,所以数列{a n }从第2项起构成等差数列,公差d =3.故当n ≥2时,a n =a 2+(n -2)d =3+(n -2)×3=3n -3.故a n =⎩⎨⎧1,n =1,3n -3,n ≥2.等比数列{b n }中,b 2=1a 2+1=14,b 3=1a 3+2=18.故其公比q =b 3b 2=12.所以其通项b n =b 2·q n -2=14×⎝ ⎛⎭⎪⎫12n -2=12n .(2)令c n =a n ·b n ,由(1)知,c n =a n ·b n =⎩⎪⎨⎪⎧12,n =1,3n -32n ,n ≥2.当n =1时,T 1=c 1=12.当n ≥2时,T n =c 1+c 2+c 3+…+c n -1+c n =12+3×2-322+3×3-323+…+3(n -1)-32n -1+3n -32n ,①12T n =122+3×2-323+…+3(n -2)-32n -1+3(n -1)-32n +3n -32n +1,②①-②,得12T n =12+222+⎝ ⎛⎭⎪⎫323+…+32n -1+32n -3n -32n +1=12+12+323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -21-12-3n -32n +1 =1+34⎝ ⎛⎭⎪⎫1-12n -2-3n -32n +1=74-3n +32n +1,所以T n =72-3n +32n .显然,当n =1时,也成立.故T n =72-3n +32n .。
《数列单元检测》追踪教师版.doc
饥=却心=8d •(I )-1(6分)《数列单元检测》追踪班级 _______ 姓名 ______________________1. 从数列{%}中取出部分项,并将它们按原来的顺序组成一个数列,称Z 为数列匕}的 一个了数列.设数列匕}是一个首项为4、公差为〃(dHO )的无穷等差数列.(1)若4,a 2, eq 成等比数列,求其公比q.⑵若q=7d,从数列{色}中取出第2项、第6项作为一个等比数列的第1项、第2项, 试问该数列是否为{%}的无穷等比了数列,请说明理rti.解:(1)由题设,得& =加5,即(4 +疔=⑷⑷+ 4d ),得宀2a 、d ,又d 工0 ,于是d = 2亿厂生=3故其公比 4 .(4分)q=^ = - (2)设等比数列为%},其公比 勺2 由题设5 = 4 +⑺_ 1)〃 =⑺+ 6)〃 .假设数列{_}为⑺“}的无穷等比了数列,则对任意自然数加⑷三3),都存在使3 3 s + 6)d = 8d •(―)心 n = 8(—)心-6即 2,得 2 , (8分) n = 8(—)5-1 —6 =—电 N当加=5时, 2 2 ,与假设才盾,故该数列不为的无穷等比了数列.(10分)3 32. S “是{%}的前几项和,S fl =-a n --,neN\ 血}的通项公式仇=4〃 + 3,将{陽}、 2 2{b n }的公共项按它们在原数列中的先后顺序排成一个新的数列{C,,},求C “解:依题意知{a n }: 3、9、27、81、243、729、2187,{/?,,}: 7、11、15、19、23、27、31 79、83、 2432187 猜想:冬卫5。
7,曲 是公共项,即C n = 32,,+1 证明:若色是公共项,则存在使得m e , 3"=4加+ 3那么a n+l = 3 3n = 3(4加 + 3) = 4(3加 + 2) +1 纟{b n }a n+2 =93"= 9(4m 4-3) = 4(9m + 6) + 3 w {b n }这说明当%是公共项时,6/,1+1不是公共项,曾+2是公共项 所以 C fl = 32Z ,+13. 某企业2008年的纯利润为500万元,因设备老化等原因,企业的牛产能力将逐年下降. 若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该金业一次 性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,笫〃年(今年为[1-W ,,]_600 = 500n-^-100T 第一年)的利润为500(1+—)万元(刃为正整数).2“(I ) 设从今年起的前门年,若该金业不进行技术改造的累计纯利润为A”万元,进行技术 改造后的累计纯利润为乩万元(须扌II 除技术改造资金),求儿、B “的表达式;(II ) 依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不 进行技术改造的累计纯利润?解:(I )依题意知,数列人是一个以500为首项,一20为公差的等差数列,所以 4 = 480/7 + D x (-20) = 490n-10n 2,B n = 500(14—) + 500(14— ) 4 ------- 500(14— ) — 600 = 500M + 500(丄 + g + …+ 丄)-600 2 2 2 2 2 2£ 'I=50(加+ 50() x -------- f 1-- 2 (II)依题意得,B n > A n ,即 500n-^-100>490n-10n 2,可化简得—</?+n-10, 2“50 °.•・几| 设/(〃) = — , g (防=rr +77 -10又•/ n e N + , nJ*设于(斤)是减函数,g(“)是增函数,又/⑶=£ > g (3) = 2 J (4)=浮 < g (4) = 8 o lo则n = 4时不等式成立,即4年4. (I )设{%}是集合{T +T I 0<s<t 且几虫Z }屮所有的数从小到人排列成的数列, 即6/1 — 3, Q °=5, 。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(十
课时跟踪检测(十) 等比数列一、选择题1.设a 1,a 2,a 3,a 4成等比数列,其公比为2,则2a 1+a 22a 3+a 4的值为( ) A.14B.12C.18 D .12.已知一等比数列的前三项依次为x,2x +2,3x +3,那么-1312是此数列的第________项( ) A .2B .4C .6D .83.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-44.若a ,b ,c 成等比数列,则关于x 的方程ax 2+bx +c =0( )A .必有两个不等实根B .必有两个相等实根C .必无实根D .以上三种情况均有可能5.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2n -1) C .(-2)nD .-(-2)n二、填空题 6.等比数列{a n }中,a 1=-2,a 3=-8,则a n =________.7.已知等比数列{a n }中,a 3=3,a 10=384,则a 4=________.8.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________.三、解答题9.数列{a n }是公差不为零的等差数列,且a 5,a 8,a 13是等比数列{b n }中相邻的三项,若b 2=5,求b n .10.已知数列{a n }满足a 1=1,a n +1=2a n +1.(1)证明数列{a n +1}是等比数列;(2)求数列{a n }的通项公式.答 案课时跟踪检测(十)1.选A 原式=2a 1+a 2q 2(2a 1+a 2)=1q 2=14. 2.选B 由x,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4,∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4⎝⎛⎭⎫32n -1,由-4⎝⎛⎭⎫32n -1=-1312,得n =4.3.选D 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.4.选C ∵a ,b ,c 成等比数列,∴b 2=ac >0.又∵Δ=b 2-4ac =-3ac <0,∴方程无实数根.5.选A 设公比为q ,则a 1q 4=-8a 1q ,又a 1≠0,q ≠0,所以q 3=-8,q =-2,又a 5>a 2,所以a 2<0,a 5>0,从而a 1>0,即a 1=1,故a n =(-2)n -1. 6.解析:∵a 3a 1=q 2,∴q 2=-8-2=4,即q =±2. 当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ; 当q =2时,a n =a 1q n -1=-2×2n -1=-2n . 答案:(-2)n 或-2n7.解析:设公比为q ,则a 1q 2=3,a 1q 9=384,所以q 7=128,q =2,故a 4=a 3q =3×2=6.答案:68.解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2),∴a n =-a n -1(n ≥2),a n a n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1. 答案:a n =3·(-1)n -1 9.解:∵{a n }是等差数列,∴a 5=a 1+4d ,a 8=a 1+7d ,a 13=a 1+12d ,又a 5,a 8,a 13是等比数列{b n }中相邻的三项,∴a 28=a 5a 13,即(a 1+7d )2=(a 1+4d )·(a 1+12d ), 解得d =2a 1.设等比数列{b n }的公比为q (q ≠0),则q =a 8a 5=53, 又b 2=b 1q =5,即53b 1=5,解得b 1=3, ∴b n =3·⎝⎛⎭⎫53n -1. 10.解:(1)法一:因为a n +1=2a n +1,所以a n +1+1=2(a n +1).由a 1=1,知a 1+1≠0,从而a n +1≠0.所以a n +1+1a n +1=2(n ∈N *).所以数列{a n +1}是等比数列. 法二:由a 1=1,知a 1+1≠0,从而a n +1≠0.∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *), ∴数列{a n +1}是等比数列.(2)由(1)知{a n +1}是以a 1+1=2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,即a n =2n -1.。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(八
课时跟踪检测(八) 等差数列的性质一、选择题1.等差数列{a n }的公差为d ,则数列{ca n },(c 常数且c ≠0)是( )A .公差为d 的等差数列B .公差为cd 的等差数列C .不是等差数列D .以上都不对2.若{a n }是等差数列,且a 1+a 4+7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9=( )A .39B .20C .19.5D .333.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( )A .0B .37C .100D .-374.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( )A .无实根B .有两个相等实根C .有两个不等实根D .不能确定有无实根5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )A .8B .4C .6D .12二、填空题6.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为__________. 7.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n =________. 8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,需要支付车费________.三、简答题9.已知5个数成等差数列,它们的和为25,它们的平方和为165,求这五个数.10.已知无穷等差数列{a n }中,首项a 1=3,公差d =-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}中的第几项?答案课时跟踪检测(八)1.选B设b n=ca n,则b n+1-b n=ca n+1-ca n=c(a n+1-a n)=cd.2.选D由等差数列的性质,得a1+a4+a7=3a4=45,a2+a5+a8=3a5=39,a3+a6+a9=3a6.又3a5×2=3a4+3a6,解得3a6=33,即a3+a6+a9=33.3.选C设c n=a n+b n,由于{a n},{b n}都是等差数列,则{c n}也是等差数列,且c1=a1+b1=25+75=100,c2=a2+b2=100,∴{c n}的公差d=c2-c1=0.∴c37=100.4.选A由于a4+a6=a2+a8=2a5,即3a5=9,∴a5=3,方程为x2+6x+10=0,无实数解.5.选A因为a3+a6+a10+a13=4a8=32,所以a8=8,即m=8.6.解析:不妨设角A=120°,c<b,则a=b+4,c=b-4,于是cos 120°=b 2+(b -4)2-(b +4)22b (b -4)=-12, 解得b =10,所以S =12bc sin 120°=15 3. 答案:15 37.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n=1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a n n=n ,所以a n =n 2. 答案:n 28.解析:根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以可以建立一个等差数列{a n }来计算车费.令a 1=11.2,表示4 km 处的车费,公差d =1.2那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).答案:23.2元9.解:设这5个数依次为a -2d ,a -d ,a ,a +d ,a +2d ,由题意可得⎩⎪⎨⎪⎧ (a -2d )+(a -d )+a +(a +d )+(a +2d )=25,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=165, 解得⎩⎪⎨⎪⎧a =5,d =±2. 所以这5个数为1,3,5,7,9或9,7,5,3,1.10.解:数列{b n }是数列{a n }的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n }是等差数列,则{b n }也是等差数列.(1)∵a 1=3,d =-5,∴a n =3+(n -1)×(-5)=8-5n .数列{a n }中序号被4除余3的项是{a n }中的第3项,第7项,第11项,…,∴b 1=a 3=-7,b 2=a 7=-27.(2)设{a n }中的第m 项是{b n }中的第n 项,即b n =a m ,则m =3+4(n -1)=4n -1,∴b n =a m =a 4n -1=8-5×(4n -1)=13-20n ,即{b n }的通项公式为b n =13-20n .(3)b 503=13-20×503=-10 047,设它是{a n }中的第m 项,则-10 047=8-5m ,解得m =2 011,即{b n }中的第503项是{a n }中的第2 011项.。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(七
课时跟踪检测(七) 等差数列一、选择题1.在等差数列{a n }中,a 3=0,a 7-2a 4=-1,则公差d 等于( )A .-2B .-12 C.12 D .22.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( )A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =03.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35, 则n =( )A .50B .51C .52D .534.在数列{a n }中,a 1=1,a n +1=a n +1,则a 2 012等于( )A .2 009B .2 010C .2 011D .2 0125.下列命题中正确的个数是( )(1)若a ,b ,c 成等差数列,则a 2,b 2,c 2一定成等差数列;(2)若a ,b ,c 成等差数列,则2a,2b,2c 可能成等差数列;(3)若a ,b ,c 成等差数列,则ka +2,kb +2,kc +2一定成等差数列;(4)若a ,b ,c 成等差数列,则1a ,1b ,1c可能成等差数列. A .4个B .3个C .2个D .1个 二、填空题6.已知数列{a n }是各项均为正数的等差数列,a 1和a 3是方程x 2-8x +7=0的两根,则它的通项公式是________.7.等差数列1,-3,-7,…的通项公式为________,a 20=________.8.数列{a n }是等差数列,且a n =an 2+n ,则实数a =________.三、解答题9.在等差数列{a n }中,已知a 1=112,a 2=116,这个数列在450到600之间共有多少项?10.数列{a n }满足a 1=1,12a n +1=12a n+1(n ∈N *). (1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列{a n }的通项公式.答 案课时跟踪检测(七)1.选B 由题意,得⎩⎪⎨⎪⎧a 1+2d =0,a 1+6d -2(a 1+3d )=-1, 解得⎩⎪⎨⎪⎧a 1=1,d =-12. 2.选C 由等差中项的定义知:x =a +b 2, x 2=a 2-b 22, ∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0. 故a =-b 或a =3b .3.选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23. 所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.4.选D 由于a n +1-a n =1,则数列{a n }是等差数列,且公差d =1,则a n =a 1+(n -1)d =n ,故a 2 012=2 012.5.选B 对于(1)取a =1,b =2,c =3⇒a 2=1,b 2=4,c 2=9,(1)错.对于(2)a =b =c ⇒2a =2b =2c ,(2)正确;对于(3)∵a ,b ,c 成等差数列,∴a +c =2b .∴(ka +2)+(kc +2)=k (a +c )+4=2(kb +2),(3)正确;对于(4),a =b =c ≠0⇒1a =1b =1c, (4)正确.综上可知选B.6.解析:解方程x 2-8x +7=0得x 1=1,x 2=7. ∵数列{a n }的各项均为正数,∴a 1=1,a 3=7.∴公差d =a 3-a 12=3.∴a n =a 1+(n -1)d =3n -2. 答案:a n =3n -27.解析:∵d =-3-1=-4,a 1=1,∴a n =1-4(n -1)=-4n +5.∴a 20=-80+5=-75.答案:a n =-4n +5 -758.解析:∵{a n }是等差数列,∴a n +1-a n =常数. ∴[a (n +1)2+(n +1)]-(an 2+n )=2an +a +1=常数. ∴2a =0,∴a =0.答案:09.解:由题意,得d =a 2-a 1=116-112=4,所以a n =a 1+(n -1)d =112+4(n -1)=4n +108. 令450≤a n ≤600,解得85.5≤n ≤123,又因为n 为正整数,故有38项.10.解:(1)证明:由12a n +1=12a n +1,可得1a n +1-1a n=2, ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,以2为公差的等差数列. (2)由(1)知1a n=1+(n -1)·2=2n -1,∴a n =12n -1.。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(九
课时跟踪检测(九) 等差数列的前n 项和一、选择题1.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .242.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .233.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-14.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .275.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .2二、填空题6.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.7. 已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.8.已知S n 为等差数列{a n }的前n 项和,且a 4=2a 3,则S 7S 5= ________.三、解答题9.设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N *)均在函数y =3x -2的图象上.求数列{a n }的通项公式.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.答 案课时跟踪检测(九)1.选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.选C 由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. 3.选D 由题意,得⎩⎪⎨⎪⎧a n =11,S n =35, 即⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1. 4.选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列.所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9-S 6=2S 6-3S 3=2×36-3×9=45.5.选C 由题意得S 偶-S 奇=5d =15,∴d =3.或由解方程组⎩⎪⎨⎪⎧5a 1+20d =15,5a 1+25d =30 求得d =3,故选C.6.解析:设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3×22d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2, 于是a n =2+(n -1)×2=2n .答案:2n7.解析:设{a n }的首项,公差分别是a 1,d ,则⎩⎪⎨⎪⎧ a 1+2d =16,20a 1+20×(20-1)2×d =20,解得a 1=20,d =-2, ∴S 10=10×20+10×92×(-2)=110. 答案:1108.解析:由等差数列的性质知S 7S 5=7a 45a 3=75×a 4a 3=75×2=145. 答案:1459.解:依题意得,S n n=3n -2, 即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, 因a 1=S 1=1,满足a n =6n -5,所以a n =6n -5(n ∈N *).10.解:(1)设{a n }的首项,公差分别为a 1,d .则⎩⎪⎨⎪⎧ a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32(n -72)2-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.。
人教版高中数学必修5:第二章 数列(课堂同步教学课件+学案+练习+单元检测,20份)课时跟踪检测(十
课时跟踪检测(十一) 等比数列的性质一、选择题1.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( ) A .递增数列B .递减数列C .常数数列D .摆动数列2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值( )A .35B .63C .21 3D .±21 33.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( )A .81B .27327C .3D .2434.设数列{a n }为等比数列,则下面四个数列:①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1};④{a n +a n +1}.其中是等比数列的有几个( ) A .1B .2C .3D .45.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.7.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.8.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10= ________.三、简答题9.三个互不相等的数成等差数列,如果适当排列这三个数,又可成为等比数列,这三个数的和为6,求这三个数.10.如图所示,在边长为1的等边三角形A 1B 1C 1中,连结各边中点得△A 2B 2C 2,再连结△A 2B 2C 2的各边中点得△A 3B 3C 3,…,如此继续下去,试证明数列S △A 1B 1C 1,S △A 2B 2C 2,S △A 3B 3C 3,…是等比数列.答 案课时跟踪检测(十一)1.选D 由于公比q =-14<0, 所以数列{a n }是摆动数列.2.选B ∵{a n }成等比数列.∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63. 3.选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)(a 4a 7)(a 5a 6)=(a 1a 10)4=34=81.故选A.4.选D ①∵a 3n +1a 3n =⎝⎛⎭⎫a n +1a n 3=q 3,故{a 3n }是等比数列; ②∵pa n +1pa n =a n +1a n=q ,故{pa n }是等比数列; ③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,故{a n ·a n +1}是等比数列; ④∵a n +a n +1a n -1+a n =q (a n -1+a n )a n -1+a n=q ,故{a n +a n +1}是等比数列. 5.选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.6.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0,∵b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 27=16.答案:167.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0488.解析:∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴⎩⎪⎨⎪⎧ a 4=2,a 14=3,或⎩⎪⎨⎪⎧a 4=3,a 14=2, ∵a 14a 4=q 10, ∴q 10=23或q 10=32. 而a 20a 10=q 10, ∴a 20a 10=23或a 20a 10=32. 答案:23或329.解:由已知,可设这三个数为a -d ,a ,a +d ,则a -d +a +a +d =6,∴a =2,这三个数可表示为2-d,2,2+d ,①若2-d 为等比中项,则有(2-d )2=2(2+d ),解之得d =6,或d =0(舍去).此时三个数为-4,2,8.②若2+d 是等比中项,则有(2+d )2=2(2-d ),解之得d =-6,或d =0(舍去).此时三个数为8,2,-4.③若2为等比中项,则22=(2+d )·(2-d ),∴d =0(舍去).综上可求得此三数为-4,2,8.10.解:由题意,得△A n B n C n (n =1,2,3…)的边长A n B n 是首项为1,公比为12的等比数列,故A n B n =⎝⎛⎭⎫12n -1,所以S △A n B n C n =34⎝⎛⎭⎫122n -2,所以S △A n +1B n +1C n +1S △A n B n C n =34⎝⎛⎭⎫122n 34⎝⎛⎭⎫122n -2=14. 因此,数列S △A 1B 1C 1,S △A 2B 2C 2,S △A 3B 3C 3,…是等比数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数列单元检测》追踪
班级 姓名
1.从数列{}n a 中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{}n a 的一个子数列.设数列{}n a 是一个首项为1a 、公差为d (0d ≠)的无穷等差数列. (1)若1a ,2a ,3a 成等比数列,求其公比q .
(2)若17a d =,从数列{}n a 中取出第2项、第6项作为一个等比数列的第1项、第2项,
试问该数列是否为{}n a 的无穷等比子数列,请说明理由.
解:(1)由题设,得2215a a a =,即2
111()(4)a d a a
d +=+,得2
1
2d ad =,又0d ≠,于是12d a =,
故其公比21
3
a q a =
=.(4分)
(2)设等比数列为{}m b ,其公比
62
32
a q a =
=,
1
1
238()
2m m m b a q
d --==⋅,(6分)
由题设1(1)(6)n a a n d n d =+-=+.
假设数列{}m b 为{}n a 的无穷等比子数列,则对任意自然数m (3)m ≥,都存在*
n ∈N ,使
n m
a b =,
即13(6)8()2m n d d -+=⋅,得1
38()6
2m n -=-,(8分) 当5m =时,51*
3698()6N
22n -=-=∉,与假设矛盾,
故该数列不为{}n a 的无穷等比子数列.(10分)
2.n S 是{}n a 的前n 项和,*
33,22
n n S a n N =
-
∈;{}n b 的通项公式43n b n =+,将{}n a 、
{}n b 的公共项按它们在原数列中的先后顺序排成一个新的数列{}n C ,求n C
解:依题意知3n
n a =
{}n a :3、9、27、81、243、729、2187,
{}n b :7、11、15、19、23、27、31 79、83、 243 2187
猜想:35,721,,n a a a a + 是公共项,即213
n n C +=
证明:若n a 是公共项,则存在使得*
m N ∈,343n
m =+ 那么{}1333(43)4(32)1n
n n a m m b +==+=++∉
{}2939(43)4(96)3n n n a m m b +==+=++∈
这说明当n a 是公共项时,1n a +不是公共项,2n a +是公共项 所以21
3n n C +=
3.某企业2008年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+
n
2
1)万元(n 为正整数).
(Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
解: (Ⅰ)依题意知,数列n A 是一个以500为首项,-20为公差的等差数列,所以2
(1)
480(20)490102
n n n A n n n -=+
⨯-=-,
2
111500(1)500(1)500(1)6002
2
2
n n
B =+
++
+++- =2
111500500()60022
2
n
n ++++
-
=1
1[1()]
22500500600112
n
n -+⨯
--=5005001002n n -- (Ⅱ)依题意得,n n B A >,即2
500500100490102
n
n n n -->-,
可化简得
2
50102
n
n n <+-, ∴可设n
n f 2
50
)(=
,2()10g n n n =+-
又+∈N n ,∴可设)(n f 是减函数,)(n g 是增函数,又5050(3)(3)2,(4)(4)88
16
f g f g =
>==
<=
则4n =时不等式成立,即4年
4.(I )设}{n a 是集合|22{t
s + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,
即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…
将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:
3
5 6
9 10 12 — — — —
…………
⑴写出这个三角形数表的第四行、第五行各数;
⑵求100a
(II )设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的
数列,已知1160=k b ,求k .
解:(Ⅰ)解:用(t,s)表示22t s +,下表的规律为
3((0,1)=0122+)
5(0,2) 6(1,2)
9(0,3) 10(1,3) 12(2,3)
— — — —
…………
(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)
第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)
(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640
解法二:设00
22
100t
s a +=,只须确定正整数.,00t s
数列}{n a 中小于0
2t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002
)
1(,2
)
1(00002
<--=
t t t t C t 依题意
满足等式的最大整数0t 为14,所以取.140=t
因为100-.1664022,8s ,18
1410000214=+=∴=+=a s C 由此解得
(Ⅱ)解:,222
11603
7
10
++==k
b
令}0|22{2B ,(}
1160|{r
t s r C B c M
t
s
<<≤++=<∈=其中
因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r
其元素个数为3
10C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r
s
某
元
素
个
数为
}30|222
{}222
2
2
|{:7
10
3
7
10
7
10
2
7<≤++=++<<+∈r c B c C r
某元素个数为.1451:2
327310710=+++=C C C k C
另法:规定222r
t
s
++=(r,t,s ),1073
160222k
b ==++
=(3,7,10)
则0
1
2
1222b =++= (0,1,2) 22C 依次为 (0,1,3) (0,2,3) (1,2,3) 2
3C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 2
4C
…………
(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 2
9C
(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)
7C +4
2
2
2
2
2397()4145.k C C C C =+++++=。