集合专项练习题2
集合练习题加答案
集合练习题加答案集合是数学中的基本概念之一,它提供了一种描述对象集合的方式。
在集合论中,集合是由一些明确的或不明确的确定的对象构成的整体。
这些对象被称为集合的元素。
集合论是现代数学的基础之一,它在各个数学领域都有广泛的应用。
以下是一些集合练习题,以及相应的答案,供学习者练习和检验自己的理解。
练习题1:确定以下集合的元素。
- A = {x | x 是一个偶数}- B = {y | y > 5}- C = {z | z 是一个质数}答案1:- A的元素是所有偶数,例如2, 4, 6, 8等。
- B的元素是所有大于5的实数。
- C的元素是所有质数,如2, 3, 5, 7, 11等。
练习题2:判断以下集合是否相等。
- X = {1, 2, 3}- Y = {1, 3, 2}答案2:- X和Y是相等的,因为集合的元素是无序的,只考虑元素的种类和数量。
练习题3:计算以下集合的并集。
- A = {1, 2, 3}- B = {3, 4, 5}- C = {2, 5, 6}答案3:- A ∪ B ∪ C = {1, 2, 3, 4, 5, 6}练习题4:计算以下集合的交集。
- D = {1, 2, 3, 4}- E = {3, 4, 5}答案4:- D ∩ E = {3, 4}练习题5:计算集合D的补集,假设全集U包含所有自然数。
- D = {1, 2, 3, 4}答案5:- D' = U - D = {所有自然数除了1, 2, 3, 4}练习题6:如果A = {x | x 是一个偶数},B = {x | x 是一个奇数},计算A和B的差集。
答案6:- A - B = {x | x 是一个偶数但不是奇数},即A本身,因为奇数和偶数是互补的。
练习题7:给定集合F = {x | x 是一个整数,且 -3 ≤ x ≤ 3},计算F的幂集。
答案7:- F的幂集包含F的所有子集,共有2^7个子集,因为F有7个元素(-3, -2, -1, 0, 1, 2, 3)。
集合测试题及答案
集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。
7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。
8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。
三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。
10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。
11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。
12. 集合N={x | x是2的幂次方},求N的前5个元素。
答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。
.1.1.1集合的概念练习题2
〖帮你读书〗1. 集合的概念:有某些 的对象组成的 叫做集合,简称 ;组成集合的对象叫做这个集合的 。
2. 集合的表示:一般采用 表示集合,3. 采用 表示集合中的元素。
4. 几个常用数集的表示:自然数集记作 ;正整数集记作 ;整数集记作 ;有理数集记作 ;实数集记作 ;空集记作 。
5. 集合与元素之间的关系:如果a 是集合A 的元素,就说aA ,记作 , 6. 如果a 不是集合A 的元素,就说a A ,记作 ,7. 集合的分类:含有 元素的集合,叫做有限集,含有无限多个元素的集合叫做 ,不含 叫空集,记作: .〖疑难解惑〗1.只含有元素0的集合是空集吗?〖技能训练〗1.用符号""""∉∈或填空:R (2)(3)21N (4)-2 N (5)3 Q (6)π R2.选择题:(1) 以下对象能组成集合的是〔 〕; A,大于5的自然数C.班上个子很高的同学(2) 以下对象不能组成集合的是〔 〕.A.不大于8的自然数C.班上身高超过1.8米的同学D.班上数学小测中得分在85分以上的同学。
3.以下对象能否组成集合?假设能组成集合,判断哪些是有限集?哪些是无限极?那些事空集?(1).某班学习成绩好的同学;(2)绝对值不小于3的所有整数;(3)的解集方程06=-x(4)的解集方程022=+x4.判断以下集合是有限集、无限集还是空集:(1)的奇数且小于所有大于200 (2)的解集不等式01<-x(3)的解集022=+x(4)所有大于3且小于4的实数;(5)的解集方程0652=--x x .。
集合测试题及答案
集合测试题及答案一、选择题(每题2分,共20分)1. 以下哪个不是集合的属性?A. 确定性B. 无序性C. 可数性D. 可重复性答案:D2. 集合A={1, 2, 3},集合B={2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B3. 已知集合A={x | x > 0},集合B={x | x < 0},求A∩B。
A. {x | x > 0}B. {x | x < 0}C. 空集D. {x | x = 0}答案:C4. 集合A={1, 2, 3},集合B={4, 5, 6},求A∩B。
A. 空集C. {4, 5, 6}D. {1, 4, 5}答案:A5. 集合A={1, 2, 3},集合B={2, 3, 4},求A-B。
A. {1}B. {2, 3}C. {4}D. {1, 4}答案:A6. 集合A={x | x^2 - 1 = 0},求A的元素个数。
A. 1B. 2C. 3D. 4答案:B7. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B。
A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B8. 集合A={x | x^2 - 4 = 0},求A的元素。
B. {-4, 4}C. {2, 4}D. {-2, 4}答案:A9. 集合A={1, 2, 3},集合B={2, 3, 4},求B-A。
A. {1}B. {4}C. {1, 4}D. {2, 3}答案:B10. 集合A={x | x > 0},集合B={x | x ≤ 0},求A∪B。
A. R(实数集)B. {x | x > 0}C. {x | x ≤ 0}D. {0}答案:A二、简答题(每题5分,共10分)1. 解释什么是集合的并集,并给出一个例子。
答案:集合的并集是指两个集合中所有元素的集合,不考虑元素的重复性。
专题2 集合间的基本关系(解析版)
专题2 集合间的基本关系题组1 集合的包含关系1.已知集合P={x|y=},集合Q={y|y=},则P与Q的关系是()A.P=QB.P QC.P QD.P∩Q=∅【答案】B【解析】P={x|y=}=[-1,+∞),Q={y|y=}=[0,+∞),所以Q P.2.集合M=,N=,则M与N的关系为()A.M=NB.M⊆NC.N⊆MD. 无法判断【答案】C【解析】M中,x=+=N中,x=k+=n+,k=n∈Z,∴N⊆M.3.指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【答案】(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B如图所示,由图可知A B.(4)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.题组2 子集及其运算4.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆BB.B⊆AC.B∈AD.A=B【答案】C【解析】∵A={x|x⊆B},∴A={∅,{1},{2},{1,2}},∴B∈A.5.已知集合A={1,2,3,4,5,6},B={4,5,6,7,8},C⊆A,C⊆B,则集合C最多含有________个元素.【答案】3【解析】由题意知C最多含有3个元素:4,5,6.6.已知集合M满足关系{a,b}⊆M⊆{a,b,c,d,e},写出所有的集合M.【答案】满足条件的集合M可以是以下集合:{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},{a,b,c,d,e},共8个,题组3 子集个数7.若集合A={1,2,3},若集合B⊆A,则满足条件的集合B有()A. 3个B. 7个C. 8个D. 9个【答案】C【解析】由集合B⊆A,则B是A的子集,则满足条件的B有23=8个,故选C.8.若M⊆P,M⊆Q,P={0,1,2},Q={0,2,4},则满足上述条件的集合M的个数是()A. 1B. 2C. 4D. 8【答案】C【解析】P,Q中的公共元素组成集合C={0,2},M⊆C,这样的集合M共有22=4个.9.定义集合运算A◇B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A◇B的子集个数为()A. 32B. 31C. 30D. 14【答案】A【解析】∵A={0,1,2},B={3,4,5}.又∵A◇B={c|c=a+b,a∈A,b∈B},∴A◇B={3,4,5,6,7},由于集合A◇B中共有5个元素,故集合A◇B的所有子集的个数为25=32个.故选A.10.已知a为不等于零的实数,那么集合M={x|x2-2(a+1)x+1=0,x∈R}的子集的个数为()A. 1B. 2C. 4D. 1或2或4【答案】D【解析】当Δ=4(a+1)2-4>0时,一元二次方程x2-2(a+1)x+1=0有两个不相等的实数根,所以集合M 的元素有两个,则集合M子集的个数为22=4个;当Δ=4(a+1)2-4=0即a=-2时,一元二次方程x2-2(a+1)x+1=0有两个相等的实数根,所以集合M 的元素有一个,则集合M子集的个数为21=2个;当Δ=4(a+1)2-4<0时,一元二次方程x2-2(a+1)x+1=0没有实数根,所以集合M为空集,则集合M 的子集的个数为1个.综上,集合M的子集个数为:1或2或4.故选D.11.已知M={a|a≤-2或a≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的子集共有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】由(a-2)(a2-3)=0,可得a=2或a=±,∵a∈M,M={a|a≤-2或a≥2},∴A={2}.∴A的子集有:∅,{2}.集合A的子集共有2个.故选B.12.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“好元素”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A. 6个B. 12个C. 9个D. 5个【答案】A【解析】要不含“好元素”,说明这三个数必须连在一起,(要是不连在一起,分开的那个数就是“好元素”),故不含“好元素”的集合共有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6种可能.故选A.13.若x∈A则∈A,就称A是伙伴关系集合,集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A. 15B. 16C. 28D. 25【答案】A【解析】具有伙伴关系的元素组有-1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,穷举可知个数共15个.故选A.题组4 真子集及其运算14.已知A={x|<-1},B={x|x2-4x-m≥0},若A B,则实数m的取值范围是()A.m≥0B.m≤-3C. -3≤m≤0D.m≤-3或m≥0【答案】B15.已知集合A={x|1<x<3},B={x|x<a},若A B,则实数a满足()A.a<3B.a≤3C.a>3D.a≥3【答案】D【解析】由A B,结合数轴,得a≥3.16.已知集合A满足{0,1}A{0,1,2,3},写出满足条件的所有的集合A.【答案】满足条件的集合A即为集合{2,3}的非空真子集,∴集合A有{0,1,2},{0,1,3}.17.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围;(2)若B⊆A,求a的取值范围.【答案】(1)若A B,由图可知a>2.(2)若B⊆A,由图可知1≤a≤2.题组5 真子集个数18.已知集合A={1,2,3,4},那么A的真子集的个数是()A. 15B. 16C. 3D. 4【答案】A【解析】根据集合的元素数目与真子集个数的关系,n元素的真子集有2n-1个,集合A有4个元素,则其真子集个数为24-1=15,故选A.19.已知集合S={x∈N|-2<x-1<4,且x≠1},则集合S的真子集的个数是()A. 32B. 31C. 16D. 15【答案】D【解析】根据题意,-2<x-1<4可化为-1<x<5;则集合S={x∈N|-2<x-1<4,且x≠1}={x∈N|-1<x<5,且x≠1}={0,2,3,4}.其子集共24-1=16-1=15个.故选D.20.已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的非空真子集的个数为()A. 1B. 2C. 4D. 不确定【答案】B【解析】∵集合M={x|x2-3x-a2+2=0},a为给定的实数,关于方程x2-3x-a2+2=0,∵Δ=(-3)2-4(2-a2)=4a2+1>0,∴方程有两个不同的实根,∴集合M中有两个元素,∴集合M的非空真子集的个数为:22-2=2,故选B.题组6 集合相等的概念21.已知集合P={y=x2+1},Q={y|y=x2+1},E={x|y=x2+1},F={(x,y)|y=x2+1},G={x|x≥1},则()A.P=FB.Q=EC.E=FD.Q=G【答案】D【解析】∵P={y=x2+1}是单元素集,集合中的元素是y=x2+1,Q={y|y=x2+1≥1}={y|y≥1},E={x|y=x2+1}=R,F={(x,y)|y=x2+1},集合中的元素是点坐标,G={x|x≥1}.∴Q=G.故选D.22.设集合A={x|y=x2-4},B={y|y=x2-4},C={(x,y)|y=x2-4},则下列关系:①A∩C=空集;②A=C;③A=B;④B=C,其中不正确的共有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】集合A是数集,它是二次函数y=x2-4的自变量组成的集合,即A=R,集合B也是数集,它是二次函数y=x2-4的值域,即B={y|y≥-4};而集合C是点集,是二次函数图象上所有点组成的集合.因此②③④都不正确.故选C.23.已知集合M={a,2,3+a},集合N={3,2,a2}.若集合M=N.则a等于()A. 1B. 3C. 0D. 0或1【答案】C【解析】由M=N得①或②解①得a∈∅,解②得a=0,此时M={0,2,3},N={0,2,3},满足M=N.故选C.24.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2 009+b2 009的值为()A. 0B. -1C. 1D. ±1【答案】B【解析】根据题意,对于{a,,1},有a≠1,a≠0;又有{a,,1}={a2,a+b,0},则有a=0或=0;又由a≠0,故b=0;代入集合中.可得{a,1,0}={a2,a,0},必有a2=1,又由a≠1,则a=-1;则a2 009+b2 009=-1,选B.题组7 空集的性质及运算25.下面四个集合中,表示空集的是()A. {0}B. {x|x2+1=0,x∈R}C. {x|x2-1>0,x∈R}D. {(x,y)|x2+y2=0,x∈R,y∈R}【答案】B【解析】∵方程x2+1=0无实数解,∴{x|x2+1=0,x∈R}表示空集.故选B.26.在以下五个写法中:①{0}∈{0,1,2};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,写法正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】②③正确.27.已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中至多只有一个元素,求a的取值范围.【答案】(1)当a=0时,方程ax2-3x+2=0化为-3x+2=0,解集非空;当a≠0时,要使A是空集,则Δ=(-3)2-8a<0,解得a>.∴使A是空集的a的取值范围是(,+∞).(2)当a=0,集合A中有一个元素;当a≠0时,若A中有两个元素,则Δ=(-3)2-8a>0,解得a<.综上,使A中至多只有一个元素的a的取值范围是a=0或a≥.。
集合的练习题及答案
集合的练习题及答案集合是数学中的基本概念,它描述了一组具有某种共同属性的元素的全体。
以下是一些集合的练习题及答案,供同学们练习和参考。
练习题1:确定以下集合的元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于0且小于5的有理数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9}- B = {所有大于0且小于5的分数和整数,例如1/2, 3/4, 1, 2, 3, 4}练习题2:判断以下两个集合是否相等。
- A = {x | x 是偶数}- B = {2n | n 是自然数}答案2:- A 和 B 是相等的,因为每一个偶数都可以表示为2n(n为自然数)的形式。
练习题3:求集合A和B的并集、交集和差集。
- A = {1, 2, 3, 4, 5}- B = {4, 5, 6, 7, 8}答案3:- 并集A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}- 交集A ∩ B = {4, 5}- 差集 A - B = {1, 2, 3}练习题4:集合C包含所有A和B的元素,但不包含A和B的交集元素,求集合C。
- A = {1, 3, 5, 7}- B = {2, 4, 6, 8}答案4:- C = A ∪ B - (A ∩ B) = {1, 2, 3, 4, 5, 6, 7, 8}练习题5:如果集合D是A和B的子集,且D包含A和B的交集元素,求D的可能形式。
- A = {1, 2, 3}- B = {2, 3, 4}答案5:- D 可以是任何包含2和3的子集,例如:D = {2, 3} 或 D = {2}或 D = {3}练习题6:用描述法表示集合E,它包含所有A和B的元素,但不包含A和B的交集元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于5的正整数}答案6:- E = {x | x ∈ A ∪ B 且 x ∉ (A ∩ B)} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}练习题7:如果集合F是A的幂集,求F的元素个数。
集合简单的练习题
集合简单的练习题题目一:集合的定义与性质1. 假设集合A={1,2,3,4,5},请列举出A的所有子集。
2. 用集合的形式表示以下集合:a) 所有小于10的正整数。
b) 所有女性学生。
c) 所有大于0小于1的实数。
3. 已知集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的交集和并集。
题目二:集合的运算1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的差集。
2. 已知集合A={2,4,6,8},集合B={1,3,5,7},求A与B的并集。
题目三:集合的特殊运算1. 设集合A={x | x是偶数且1 ≤ x ≤ 10},请列举出A的所有元素。
2. 设集合B={x | x是奇数或x是负数},请列举出B的所有元素。
3. 设集合C={x | x是素数且x < 20},请列举出C的所有元素。
题目四:集合的关系1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否是B的子集。
2. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否与B相等。
3. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A与B是否有交集。
题目五:特殊集合1. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={2,4,6,8},求A的补集。
2. 设全集为U={a,b,c,d,e,f,g,h,i,j},集合A={a,b,c,f,g},集合B={a,c,d,g,i},求A与B的并集的补集。
答案:题目一:1. 集合A的所有子集为:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3, 5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2, 4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}2. 集合的表示形式:a) {1,2,3,4,5,6,7,8,9}b) {女性学生的姓名}c) {x | 0 < x < 1, x为实数}3. A与B的交集为{4,5},并集为{1,2,3,4,5,6,7,8}题目二:1. A与B的差集为{1,2,3}2. A与B的并集为{1,2,3,4,5,6,7,8}题目三:1. A={2,4,6,8,10}2. B={x | x为奇数,x为负数}3. C={2,3,5,7,11,13,17,19}题目四:1. A是B的子集。
集合练习卷(2)---集合的运算
集合练习卷(2)---集合的运算一、知识点:1.交集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的交集。
即:=B A 。
2.并集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集。
即:=B A 。
3.性质:=A A ,=φ A ,=B A ;=A A ,=φ A ,=B A ;A (A C U )= ,A (A C U )= ;(A C U ) (B C U )= ,(A C U ) (B C U )= 。
4.全集:如果集合S 含有我们所要研究的各个集合的 ,这个集合就可以 看作一个全集,全集通常用U 表示。
5.补集:设S 是一个集合,A 是S 的子集,由S 中所有 A 元素组成的集合, 叫做S 中子集A 的补集。
即:=A C S 。
6.Card (A ∪B )= 。
答案:1。
且、{}B x A x x ∈∈且, 2。
或、{}B x A x x ∈∈或,3。
A 、φ、A B 、A 、A 、A B 、φ、U 、)(B A C U 、)(B A C U4.全部元素,5。
不属于、{}A x S x x ∉∈且,,6.)()()(B A Card B Card A Card -+二、例题讲解:例1、已知全集U =R ,A ={x ||x -1|≥1}.B ={x |23--x x ≥0},求: (1)A ∩B ; (2)(U A )∩(U B ).解:(1)A ={x |x -1≥1或x -1≤-1}={x |x ≥2或x ≤0}B ={x |⎩⎨⎧≠-≥--020)2)(3(x x x }={x |x ≥3或x <2} ∴A ∩B ={x |x ≥2或x ≤0}∩{x |x ≥3或x <2}={x |x ≥3或x ≤0}.(2)∵U =R ,∴U A ={x |0<x <2},U B ={x |2≤x <3} ∴(U A )∩(U B )={x |0<x <2}∩{x |2≤x <3}=∅.例2、已知集合M ={y |y =x 2+1,x ∈R },N ={y |y =x +1,x ∈R },则M ∩N 等于( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y |y =1或y =2}D ..{y |y ≥1}解:M ={y |y =x 2+1,x ∈R}={y |y ≥1}.N ={y |y =x +1,x ∈R}={y |y ∈R}.∴M ∩N ={y |y ≥1}∩{y |y ∈R}={y |y ≥1}. ∴应选D . 点评:①本题求M ∩N ,经常发生解方程组⎩⎨⎧-=+=112x y x y 得⎩⎨⎧==10y x 或⎩⎨⎧==.2,1y x 从而选B 的错 例3、已知集合A 、B 是全集U ={1,2,3,4,5,6,7,8,9}的子集,A ∩B ={2},(U A )∩(U B )={1,9},(U A )∩B ={4,6,8},求A ,B .解: 由图可得A ={2,3,5,7},B ={2,4,6,8}.例4.已知集合}02|{2≤-+=x x x A ,B={x|2<x+1≤4},设集合}0|{2>++=c bx x x C ,且满足φ=⋂⋃C B A )(,R C B A =⋃⋃)(,则b_________,c_________。
集合练习题及答案
集合练习题及答案集合是数学中的一个重要概念,它描述了一组对象的全体,这些对象被称为集合的元素。
下面是一些集合的练习题以及它们的答案。
练习题1:确定下列集合的元素:- A = {x | x 是一个正整数,且x ≤ 10}- B = {x | x 是一个偶数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}- B = {..., -4, -2, 0, 2, 4, 6, 8, ...}练习题2:判断以下两个集合是否相等:- C = {x | x 是一个质数}- D = {2, 3, 5, 7, 11, 13, ...}答案2:C 和D 是相等的,因为 D 中列出的所有元素都是质数,且质数集合是无限的,所以用省略号表示。
练习题3:找出集合 A 和集合 B 的交集:- A = {1, 3, 5, 7, 9}- B = {2, 4, 6, 8, 10}答案3:A ∩B = {}(空集,因为 A 和 B 中没有共同的元素)练习题4:找出集合 A 和集合 B 的并集:- A = {1, 2, 3}- B = {3, 4, 5}答案4:A ∪B = {1, 2, 3, 4, 5}练习题5:找出集合 A 的补集(设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}):- A = {1, 2, 3, 4}答案5:A' = {5, 6, 7, 8, 9, 10}练习题6:判断以下命题的真假:- 如果x ∈ A 且y ∈ A,则 x = y。
答案6:这个命题是假的。
因为集合中的元素是互不相同的,如果 x 和 y 都是 A 的元素,它们不一定相等。
练习题7:给定集合 E = {x | x 是一个小于 20 的正整数},找出 E 的子集数量。
答案7:E 有 2^19 - 1 个子集,因为每个元素可以选择包含或不包含在子集中,有 19 个元素,所以有 2^19 种可能的组合,但全包含和全不包含是同一个集合,所以要减去 1。
人教版数学3年级上册 第9单元(数学广角-集合)问题2练习(含答案)
人教版三上第九单元数学广角—集合问题2一、选择题(满分16分)1.妈妈昨天买的菜有:萝卜、黄瓜、白菜、茄子、排骨、鱼。
今天买的菜有:豆腐、白菜、茄子、牛肉、黄瓜、虾。
妈妈两天一共买了()种菜。
A.8 B.9 C.102.我们班会打排球的有23人,会打篮球的有16人,两种都会的人最多不超过()人。
A.23 B.16 C.173.三(1)班学生喜欢跳舞的有13人,喜欢绘画的有15人,喜欢跳舞、绘画的共有22人。
既喜欢跳舞又喜欢绘画的有()人。
A.9 B.7 C.64.三3班40人参加舞蹈和合唱表演,其中参加合唱表演34人,参加舞蹈表演12人,两项都参加有()人.A.2 B.4 C.65.某班学生从颁奖大会上得知,该班获得奖励的情况如表所示:已知该班共有28人获得奖励,其中只获得两项奖励的有且只有13人,那么该班获奖励最多的一位同学获得的奖励最多为()A.3项B.4项C.5项D.6项6.课外活动小组共有8人,喜欢唱歌的有6人,喜欢跳舞的有4人,既喜欢唱歌又喜欢跳舞的()人。
A.10 B.6 C.27.同学们去动物园游玩,看猴馆的有31人,看孔雀馆的有26人,两个馆都看的有20人.去动物园的一共有()人A.37 B.57 C..468.三年级(1)班有12人参加了数学竞赛,有15人参加了语文竞赛,有4人两项竞赛都参加了,三年级(1)班参加数学和语文竞赛的一共有( )人.A.27 B.31 C.23二、填空题(满分16分)9.学校举办元旦联欢会,三(2)班有11名学生参加了唱歌和诗朗诵两个节目的演出,其中参加唱歌的有9人,参加诗朗诵的有5人。
(1)只参加唱歌的有()人。
(2)只参加诗朗诵的有()人。
(3)两个节目都参加的有()人。
10.三(4)班有48个同学,一次测试后统计,语文成绩达到优秀的有36人,数学成绩达到优秀的有42人,语文和数学成绩都达到优秀的最少有()人。
11.小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
集合专题二:集合交并补运算练习
集合专题二:集合关系、集合交并补运算题型一: 集合交并补运算策略:①先化简集合;②弄清楚每个集合代表元素的性质,区分点集、数集、图形集等集合.③利用数形结合的思想方法进行集合间的运算: ⎪⎩⎪⎨⎧形、区域点集:画出点构成的图数集:借用数轴抽象集合:借用文世图组题1:(1)设全集是实数集,若{}01≤+=x x M ,{}2222+==x x x N ,则N M 等于A. {}2≤x x B. {}1- C. φ D.{}2 (2)已知集合{}13-==x y x M ,{})21(log 2x y x N -==,则=⋂N M ( )A .⎪⎭⎫ ⎝⎛21,31B .⎪⎭⎫⎢⎣⎡21,31 C .⎥⎦⎤⎢⎣⎡21,0 D .(]⎪⎭⎫⎢⎣⎡+∞⋃∞-,210,(3)设全集为R ,集合{}32≤-=x x A ,(){}1lg -==x y x B ,则)(B A C R ⋂为 ( ) A .{}51≤<x x B .{}51>-≤x x x 或 C .{}51>≤x x x 或 D .{}51≤≤-x x(4)若集合R U =,集合{}22≤=xx A ,⎭⎬⎫⎩⎨⎧≤-+=021x x xB ,则()=⋂B AC U ( )A .{}21><x x x 或B .{}21<<x xC .{}21>≤x x x 或D .{}21<<-x x (5)已知集合(){}21,x y y x A -==,(){}1,+==x y y x B ,则=⋂B A组题2:(1)若集合{}R x y y S x∈-==,3,{}1+==x y x T ,全集R U =,则)(T C S u ⋂( )A .φB .[)0,1-C .()1,-∞-D .()0,∞-(2)设集合R U =,{}132≤-=x x M ,{}12-+==x y x N x,那么()N C M U ⋂等于( )A .[]2,2-B .[]2,2--C .[][]2,22,2⋃--D .[][)2,22,2⋃--组题3:(1)若{}5,4,3,2,1=U ,{}4,3,1=A ,{}5,4,2=B ,那么()()=⋂B C A C u u ( ) A .φ B .{}4 C .{}3,1 D .{}5,2 {}A .B A ⊇ B . B A ⊆C . B A =D . φ=B A(3)设全集是{1,2,3,4,5,6},{|21,1,2,3},{4,5,6},U M y y x x N ===-==则()M C N UA .{2}B .{2,4,5,6}C .{1,2,3,4,6}D .{4,6}组题4:(1)已知集合{}2,1,0=M ,{}M a a x x N ∈==,2,则集合=⋂N M ( ) A .{}2 B .{}1,0 C .{}2,1 D .{}2,0(2)已知集合{}012112<--=x x x A ,{}M n n x x B ∈+==),13(2,则集合=⋂B A( )A .{}2B .{}8,2C .{}10,4D .{}10,8,4,2(3)集合{}1,0,1-=P ,{}R x x y y Q ∈==,cos ,则=⋂Q P ( ) A .P B .Q C .{}1,1- D .{}1,0题型二:判断集合间的关系组题1:(1)已知集合{}122+-==x x y y A ,{}322+-==m m x x B ,那么集合A 与集合B 之间的关系是 ;(2)设集合{}R x x x A ∈>=,0,(){}R y x x y x B ∈>=,,0,,则下列各式成立的是 ( ) A .B A = B .AB C .B A ∈ D .B A ⊄(3)设集合(){}(){}0,0,,0,0,<<=<+>=y x y x N y x xy y x M ,则M 与N 的关系是 ( )A .NM B .M N C .N =M D .φ=⋂M N组题2:(1)设Z S =,{}Z k k x x A ∈==,2,{}Z k k x x B ∈+==,12,则下列关系中错误的是 ( ) A .B A C s = B .A B C s = C .()B A C C s s = D .Z C s =φ (2)集合{}Z n n x x M ∈+==,12,{}Z k k x x N ∈±==,14,则M 与N 的关系是 ;(3)已知:⎭⎬⎫⎩⎨⎧∈==Z n x x U n ,21,⎭⎬⎫⎩⎨⎧∈==Z n x x A n ,41,则=A C U .组题3:(1)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(V enn )图是题型三:求集合的元素个数、集合子集个数策略: ()⎪⎪⎩⎪⎪⎨⎧---=2212122,n nn n A n A card 非空真子集个数:非空子集个数:真子集个数:子集个数:的则若 组题1:(1)设集合A={1,2,3},满足A B ⋂=B 的集合B 的个数为 ( )A .3B .8C .7D .6 (2)集合⎭⎬⎫⎩⎨⎧∈+==Z y x x y x A ,,312的元素个数为 ( ) A .4 B .5 C .10 D .12(3)设全集{*|lg 1},{|21,1,2,3,4,5}U U A B x N x A C B m m n n ==∈<==-= 若,则集合B= .组题2:(1)已知集合{}圆=A ,{}直线=B ,则B A ⋂的元素个数是(2)已知集合{}是圆上的点P P A =,{}直线上的点是P P B =,则B A ⋂的元素个数是 组题3:(1)集合{}N x x y N y A ∈+-=∈=,42的真子集个数为(2)设集合(){}64,=+=y x y x A ,(){}723,=+=y x y x B ,则满足()B A C ⋂⊂的集合C 的个数是( )A .0B .1C .2D .3 组题4:(1)满足条件{}P ⊆1{}5,4,321,,的集合P 的个数 ( )A .16B .15C .14D .31(2)满足条件{}2,1M{}5,4,3,2,1 的集合个数是( )A .8B .7C .6D .5题型四: 已知集合间的运算、集合的关系,求问题中的参数 策略:求参数的取值范围,采用验证的方法对端点值取舍题组1:(1)集合{}x A ,3,1=,{}2,1x B =,{}x B A ,3,1=⋃,则满足条件的实数x 的个数有 ( ) A .个1 B .个2 C .个3 D .个4 (2)已知集合⎭⎬⎫⎩⎨⎧=1,,a b a A ,{}0,,2b a a B +=,且B A =,则=+20122011b a ; (3)设{}{}{}5,2,,32,3,22==-+=A C b A a a U u ,求实数a 和b 的值 题组2:(1)已知集合{}1≥=x x A ,{}a x x B ≥=,且R B A =⋃,则实数a 的取值范围是 ; (2)设全集R U =,{}1>=x x A ,{}0<+=a x x B ,BA CU ,求实数a 的取值范围;(3)已知集合{}0862<+-=x x x A ,()(){}03<--=a x a x x B ,且A B A =⋂,则实数a 的取值范围是 ;(4)已知集合{}a x a x A +<<-=11,{}71>-<=x x x B 或,若φ=⋂B A ,则实数a 的取值范围是 ;(5)设集合},1|{R x a x x A ∈<-=,集合},2|{R x b x x B ∈>-=,若B A ⊆,则实数b a ,必满足 A .3≤+b a B .3≥+b a C .3≤-b a D .3≥-b a题组3:(7)已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1- B .{}1 C .{}1,1- D .{}1,0,1-(8)已知集合{}0342=+-=x x x A ,{}012=+-=mx x x C ,C C A = ,求m 的取值范围.(9)设{}1,1-=A ,{}02=+-=b ax x x B ,A B B ⊆Φ≠,,求实数b a ,.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.。
集合的基本运算练习题二
集合的基本运算练习题二复习题1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 .若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ;A B = .复习题2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?复习题3:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?复习题4:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .典型例题例题1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例题2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .例题3:分别求()U C A B 、()()U U C A C B .例题4. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .例题5. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .知识拓展试结合Venn 图分析,探索如下等式是否成立?(1)()()()U U U C A B C A C B =;(2)()()()U U U C A B C A C B =.1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( )A. 1B. -1,1C. {1}D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ).A. {|02}x x x ≤≥或B. {|02}x x x <>或C. {|2}x x ≥D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--, {}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .6. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .7. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A。
集合练习题以及答案
集合练习题以及答案集合是数学中的基本概念之一,它涉及到元素与集合之间的关系,以及不同集合之间的运算。
以下是一些集合练习题及其答案,供学习者练习和参考。
练习题1:判断下列命题的真假。
- A = {1, 2, 3}- B = {2, 3, 4}- 命题1:1 ∈ A- 命题2:4 ∈ A- 命题3:A ⊆ B答案1:- 命题1:真,因为1是集合A的元素。
- 命题2:假,因为4不是集合A的元素。
- 命题3:假,因为集合A不包含集合B的所有元素。
练习题2:集合C和D的定义如下,请找出C ∪ D和C ∩ D。
- C = {1, 2, 3, 5}- D = {2, 4, 5, 6}答案2:- C ∪ D = {1, 2, 3, 4, 5, 6},这是C和D所有元素的并集。
- C ∩ D = {2, 5},这是C和D共有的元素。
练习题3:集合E和F如下,求E - F。
- E = {1, 3, 5, 7, 9}- F = {3, 5, 7}答案3:- E - F = {1, 9},这是E中所有不在F中的元素。
练习题4:集合G和H如下,判断它们是否相等。
- G = {x | x是小于10的正整数}- H = {1, 2, 3, 4, 5, 6, 7, 8, 9}答案4:- G和H相等,因为它们包含相同的元素。
练习题5:集合I和J如下,求I的补集。
- I = {x | x是偶数}- J = R(实数集)答案5:- I的补集是所有不在I中的元素,即所有奇数,可以表示为{x ∈ J | x是奇数}。
练习题6:集合K和L如下,找出K相对于L的补集。
- K = {x | x是小于20的正整数}- L = {x | x是小于50的正整数}答案6:- K相对于L的补集是所有在L中但不在K中的元素,即{x ∈ L | 20 ≤ x < 50}。
结束语:通过这些练习题,我们可以加深对集合概念的理解,包括元素与集合的关系、集合的运算以及集合的表示方法。
人教A版高中数学必修一1.1 集合的概念专练(含解析)(2)
1.1 集合的概念一、单选题1.已知集合{0,2}A =,则下列关系表示错误的是( ). A .0A ∈ B .{2}A ∈C .A ∅⊆D .{0,2}A ⊆2.方程组221x y x y +=⎧⎨-=-⎩的解集是( )A .{}1,1x y ==B .{}1C .()1,1D .(){},1,1x y x y ==3.已知2{1,0,}x x ∈,则实数x 的值为( ) A .0B .1C .1-D .±14.已知集合{}1,2,3A =,集合(){},,B x y x A x y A =∈-∈,则符合条件的集合B 的子集个数为( ) A .3B .4C .8D .105.若{}2213,1,1a a a -∈---,则a=( )A .1-B .0C .1D .0或16.已知x 、y 、z 为非零实数,代数式||||||||xyzxyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( ) A .0M ∉B .2M ∈C .4M -∉D .4M7.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 8.集合(x ,y )|y =3x 2-11x}表示( ) A .方程y =3x 2-11x B .(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =3x 2-11x 图象上的所有点组成的集合9{}0x x >,0.2Q ∉,3N -∈,0∈∅,其中正确的个数A .4个B .3个C .2个D .1个 10.若集合{}|1A x x =≤,则满足A B A =的集合B 可以是( )A .{}|0x x ≤B .{}2|x x ≤C .{}|0x x ≥D .{}|2x x ≥二、填空题 1.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 2.实数系的结构图如图所示,其中1,2,3三个方格中的内容依次是________,________,________.3.集合A=x|x=2k ,k∈Z},B=x|x=2k+1,k∈Z} ,C=x|x=4k-1,k∈Z},若m∈A, n∈B,则m+n∈ ___________(选填A 、B 、C )。
(压轴题)高中数学必修一第一单元《集合》测试题(有答案解析)(2)
一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个3.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =4.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞5.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集6.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,37.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]210.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .111.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<< 12.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)二、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______17.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____. 三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-.(1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围. 22.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.23.已知集合A ={x |12x -≤≤},B ={x |123m x m +≤≤+} (1)当m =1时,求AB ;(2)若B A ⊆,求实数m 的取值范围24.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求AB ;(2)若不等式的解集A B ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.4.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.5.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.6.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A.【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.7.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.9.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.10.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.11.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.12.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案. 【详解】A B ⋂≠∅ ∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾; ②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}Bx x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}-- 【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.17.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据M N N =列不等式组,解不等式求得a 的取值范围. 【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题.18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅.因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,AB =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和.【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈, ∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况20.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或.(2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+, {}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系. 23.(1){}2;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【分析】(1)根据集合的交集运算求解即可;(2)讨论集合B 是否为空集,根据包含关系列出不等式,即可得出实数m 的取值范围.【详解】(1)当m =1时,B ={x |2≤x ≤5},因此A B ={2} (2)A B ⇔B A ⊆,则①当B =∅时,即123m m +>+,即2m <-,符合题意②当B ≠∅时,要满足B A ⊆,则12311232m m m m +≤+⎧⎪+≥-⎨⎪+≤⎩2212m m m ⎧⎪≥-⎪⇒≥-⎨⎪⎪≤-⎩122m ⇒-≤≤- 综上所述,当B A ⊆时,实数m 的取值范围时1(,2)2,2⎡⎤-∞-⋃-⎢⎥⎣⎦=1,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于中档题. 24.(1)9,8⎛⎤-∞ ⎥⎝⎦;(2){}90,8⎡⎫⋃+∞⎪⎢⎣⎭【分析】(1)对a 分类讨论:0a =,解出即可判断出是否满足题意.0a ≠时,A 中至少有一个元素,满足0∆,解得a 范围即可得出.(2)对a 分类讨论:0a =,直接验证是否满足题意.0a ≠时,由A 中至多有一个元素,可得0∆≤,解得a 范围即可得出.【详解】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得98a ,0a ≠. 综上可得:a 的取值范围是9,8⎛⎤-∞ ⎥⎝⎦. (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得98a. 综上可得:a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.【点睛】 本题考查了集合的性质、一元二次方程的实数根与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.25.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】 由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可;(2)由A B ⊆,判断a 与集合B 的端点的位置即可.【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤, 因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤,所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤,因为A B ⊆,所以132a -≤< 【点睛】 本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式.。
集合的练习题(打印版)
集合的练习题(打印版)### 集合的基本概念与运算集合是数学中描述对象集合的一种方式,它由一些明确定义的元素组成。
以下是关于集合的一些基本练习题,旨在帮助学生掌握集合的基本概念和运算。
#### 练习题1:集合的表示1. 用描述法表示集合 {1, 2, 3, 4, 5}。
2. 用列举法表示集合 A = {x | x 是小于10的正整数}。
#### 练习题2:集合的元素性质3. 判断元素 6 是否属于集合 {1, 2, 3, 4, 5}。
4. 判断元素 -3 是否属于集合 A。
#### 练习题3:集合的子集5. 判断集合 {1, 2} 是否是集合 {1, 2, 3} 的子集。
6. 找出集合 {1, 2, 3} 的所有子集。
#### 练习题4:集合的并集7. 求集合 A = {1, 2, 3} 和 B = {2, 3, 4} 的并集。
8. 如果 C = {5, 6, 7},求A ∪ B ∪ C。
#### 练习题5:集合的交集9. 求集合 A 和 B 的交集。
10. 如果 D = {4, 5, 6},求B ∩ D。
#### 练习题6:集合的差集11. 求集合 A 和 B 的差集,即 A - B。
12. 如果 E = {1, 2, 3, 4, 5, 6},求 E - A。
#### 练习题7:集合的补集13. 假设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},求 A 的补集。
14. 求集合 B 的补集。
#### 练习题8:集合的幂集15. 找出集合 {1, 2} 的所有幂集。
#### 练习题9:集合的笛卡尔积16. 求集合 A 和 B 的笛卡尔积。
17. 如果 F = {8, 9},求A × F。
#### 练习题10:集合的等价关系18. 定义集合 {1, 2, 3} 上的等价关系 R,使得 R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合专项练习一、选择题.1. 已知全集{}U 0,1,2,3,4,5,6,7,8,9,=,集合{}0,1,3,5,8A =,集合{}2,4,5,6,8B =,则)()(B C A C U U 为 ( )A. {}3,5,8B.{}7,9 C . {}0,1,3 D .{}2,4,62. 若集合{}1,1A =-,{}0,2B =,则集合{},,z z x y x A y B =+∈∈中的元素的个数为( )A .5 B.4 C.3 D.23. 设集合{}1,0,1M =-,{}2N x x x =≤,则M N = ( ) A . {}0 B . {}0,1 C .{}1,1- D . {}1,0,1-4. 设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U M =ð ( )A .UB . {}1,3,5C .{}3,5,6D . {}2,4,65. 设集合122A x x ⎧⎫=-<<⎨⎬⎩⎭,{}21B x x =≤,则A B = ( ) A .{}12x x -≤< B. 112x x ⎧⎫-<≤⎨⎬⎩⎭C. {}2x x <D. {}12x x ≤< 6. 已知集合{}320A x R x =∈+>,()(){}130B x R x x =∈+-≥则A B = ( )A .(),1-∞-B . 21.3⎛⎫-- ⎪⎝⎭ C . 2,33⎛⎫- ⎪⎝⎭D. ()3,+∞ 7. 集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B = ,则a 的值为 ( ) A. 0 B. 1 C. 2 D. 48. 已知全集{}1,2,3,4,5,6,7,8U =,{}1,3,5,7M =,{}5,6,7N =,则()U M N = ð( )A. {}57,B. {}24,C. {}2,4,8D. {}1,3,5,6,79. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-= 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个10. 已知设集合{}4,5,7,9A =,{}3,4,7,8,9B =,全集U A B = ,则集合()U C A B 中的元素共有 ( )A. 3个B. 4个C. 5个D. 6个11. 若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A B 是 ( )A . 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B. {}23x x << C. 122x x ⎧⎫-<<⎨⎬⎩⎭ D. 112x x ⎧⎫-<<-⎨⎬⎩⎭12.集合{A =,{}1,B m =,A B A = ,则m = ( )A . 0 B. 0或3 C. 1 D. 1或313. 若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A B = ( ) A. 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B. {}23x x << C. 122x x ⎧⎫-<<⎨⎬⎩⎭ D. 112x x ⎧⎫-<<-⎨⎬⎩⎭14. 已知全集U =A B 中有m 个元素,()()U U A B 痧中有n 个元素.若A B I 非空,则A B I 的元素个数为A .mnB .m n +C .n m -D .m n -15. 已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈是两个向量集合,则P Q =IA .(){}1,1 B. ()1,1- C .(){}1,0 D. (){}0,116. 设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N 为( ) A. [0,1) B. (0,1) C. [0,1] D.(-1,0]17. 设全集{},{|0},|13x U R A x B x x x ==<=<-+,则图中阴影部分表示的集合为 ( )A. }0|{>x xB. }13|{-<<-x xC . }03|{<<-x x D. }1|{-<x x18. 已知21{|log ,1},{|,2}==>==>U y y x x P y y x x ,则 ðP = ( ) A. 1[,)2+∞ B. 1(0,)2 C.(0,)+∞ D.1(,0)[,)2-∞+∞ 19. 设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且S B φ≠ 的集合S 为( )A. 57B. 56C. 49D. 820. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若()1N C M =∅ ,则M N = ( )A .M B. N C. I D. ∅21. 已知集合2{|1}P x x =≤,{}M a =,若P M P = ,则a 的取值范围是 ( )A. (,1]-∞- B . [1,)+∞ C . [1,1]- D . (,1]-∞- [1,)+∞23. 设集合22{(,)|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B 的子集的个数是 ( )A. 4B. 3C. 2D. 124. 设集合{1,}A x x a x R =-<∈,{2,}B x x b x R =->∈.若A B ⊆,则实数,a b 必满足 ( ) A. 3a b +≤ B. 3a b +≥ C. 3a b -≤ D. 3a b -≥25. 已知集合{||2,}A x x R =≤∈},{|4,}B x x Z =≤∈,则A B = ( )A. ()02,B. [0,2]C. {0,2]D. {0,1,2}26. 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = ( )A .{1,2} B. {0,1,2} C. {x|0≤x<3} D. {x|0≤x≤3}28. 平面上点的集合{},1,0,1;1,21,0,21),(-=-==y x y x Q 则在同一直角坐标系中,P 中函数)(x f 的图像恰好经过Q 中两个点的函数的个数是 ( )A. 4B. 6C. 8D. 1029. 设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是 ( )A. {}a |0a 6≤≤B. {}|2,a a ≤≥或a 4C. {}|0,6a a ≤≥或a D. {}|24a a ≤≤ 30.若集合},,0201|),{(},2,1,0{P y x y x y x y x Q P ∈⎩⎨⎧<-->+-==,则Q 中元素的个数是( ) A .3 B .5 C .7 D .931. 设全集{33,}I x x x =-<<∈Z ,{1,2}A =,{2,1,2}B =--,则()I A B ð等于( ) A .{1} B . {1,2} C .{2} D . {0,1,2}32. 已知R 是实数集,{21,M x N y y x ⎧⎫=<=⎨⎬⎩⎭,则R N M ⋃=ð ( ) A. ()1,2 B. []0,2 C. ∅ D. []1,233. 已知集合{1,2},{,},a A B a b ==若1{}2A B = ,则A B 为 ( )A .1{,1,}2b B .1{1,}2- C .1{1,}2 D .1{1,,1}2- 34. 已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 ( )A .{}1-B .{}1C .{}1,1-D .{}1,0,1- 35. 已知集合A ={1,2,3,4},B ={3,4,5,6},C ={1,3,4,6},则下列关系正确的是( )A .()ABC ⊆ B .()B A C ⊆ C .=A B B CD .()C A B ⊇36. 已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 集合N M =( )A .),0(+∞B .[)+∞,1C .),(+∞-∞D .(]1,0 37. 设全集{}1,3,5,7,9U =,集合{}1,5,9A a =-,{}5,7U A =ð,则实数a 的值是( ) A .2 B .8 C .2-或8 D .2或838. 设{}1,2,3,4U =,且{}250M x U x x p =∈-+=,若{}2,3U M =ð,则实数P 的值为 ( )A. 4-B. 4C. 6-D. 639. 若{1},{1}P x x Q x x =<>-,则 ( )A. P Q ⊆ B . Q P ⊆ C . R P Q ⊆ð D . R Q P ⊆ð40. 已知集合{}{}5,3,1,4,3,2,1,0==N M ,N M P ⋂=,则集合P 的子集有 ( )A. 2个B. 4个 C . 6个 D . 8个41. 设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则= (M N )U ð ( ) A. {}12, B. {}23, C . {}2,4 D . {}1,442. 已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则()U A B = ð ( )A .{}6,8B .{}5,7C .{}4,6,7D .{}1,3,5,6,8 43. 设全集为R ,集合A={x||x|<1},B=}021|{>-x x ,则 ( ) A. B A ⊆ B. A B ⊆ C. R C A B ⊆ D. B C A R ⊆44. 已知{(,)|1,},{(,)|1,},S x y y x T x y x y ==∈==∈R R则S T = ( ) A .空集 B .{1} C .(1,1) D .{(1,1)}二、填空题.45. 若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .46.已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.48. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是 ___49. 若{U n n =是小于9的正整数},{A n U n =∈是奇数},{B n U n =∈是3的倍数},则()U A B = ð .50. 若{}3A x R x =∈<,{}21x B x R =∈>,则A B = . 51. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个52. 设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________.53. 设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B =__________54. 设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则B C A C U U ____________.55. 已知集合{}1|349,|46,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B =_______________________56. 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人57. 某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_58. 已知集合(,0]A =-∞,{1,3,}B a =,若A B ≠∅ ,则实数a 的取值范围是 _________.59. 已知集合{}||1|2,A x R x Z =∈-<为整数集,则集合A Z 中所有元素的和等于 .三、解答题.60. 已知集合{}{}22230,0A x x x B x x ax b =-->=++≤,且{},34A B R A B x x =<≤ ,A B R = , {}34A B x x =<≤ ,求a ,b 的值.61. ()f x =函数A,关于x 的不等式222ax a x +<()a R ∈的解集为B. .A B Aa = 求使的实数的取值范围 62. 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)当A ∪B ⊆A ,求实数a 的取值范围.。