【VIP专享】初二数学竞赛(2013.12)答案详解
2013年全国初中数学竞赛试题参考答案
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12b x x a +=-,12cx x a=,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c --+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(第3题答题)(第3题)(第4题)(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB= S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232**** 的值为( ).(A )607967 (B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***= ,则()20132012433m ****=* 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=* 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 . 【答案】2013(第4题答题)(第7题答题)(第7题)【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c,d,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数) 【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.…………5分抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.…………10分因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.…………15分所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.…………20分12.设△ABC的外心,垂心分别为O H,,若B C H O,,,共圆,对于所有的△ABC,求BAC∠所有可能的度数.【解答】分三种情况讨论.(i)若△ABC为锐角三角形.因为1802BHC A BOC A∠=︒-∠∠=∠,,所以由BHC BOC∠=∠,可得1802A A︒-∠=∠,于是60A∠=︒.…………5分(ii)若△ABC为钝角三角形.当90A∠>︒时,因为(第11题答题)(第12题答题(i))(第12题答题(ii))(第11题)()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013全国初中数学竞赛答案及解析
8 3 2 6 3 6 1 . 6 6 6 3
8. 2013 解:由已知 a b2 2c 2 0 , 3a 2 8b c 0 消去 c, 并整理得 b 8 6a 2 a 66 .由 a 为正整数及 6a 2 a ≤66,可得 1≤a≤3.
中国教育学会中学数学教学专业委员会
2013 年全国初中数学竞赛试题参考答案
一、选择题 1.A 解: 由已知得 a b c (2a 3b 4c) (a 2b 3c) 0 , 故 (a b c)2 0 . 于
1 ab bc ca 1 是 ab bc ca (a 2 b2 c 2 ) ,所以 2 . 2 2 2 a b c 2
7.
1 3
解:掷三次正方体,朝上的面的数和为 3 的倍数的是 3,6,9,12,15,18, 且 3=1+1+1, 6=1+1+4=1+2+3=2+2+2, 9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6. 记掷三次正方体面朝上的数分别为 x , y , z .则使 x + y + z 为 3 的倍数的 ( x , y , z )中,3 个数都不相等的有 8 组,恰有两个相等的有 6 组,3 个数都 相等的有 6 组. 故所求概率为
将点 C(0, 3 )的坐标代入 y a( x 1)( x 3) ,得 a 1 . …………5 分 抛物线 y x 2 2 x 3 的顶点为 E (1,4 ).于是由 勾股定理得 BC= 3 2 ,CE= 2 ,BE= 2 5 . 因为 BC2+CE2=BE2,所以,△BCE 为直角三角 形, BCE 90 . …………10 分 因此 tan CBE =
初二数学竞赛(2013.12)参考答案
阳高二中 八年级数学 竞赛参考答案(2013.12)第 一 部 分 (共94分)一.选择题(每小题3分,共54分)二.填空题(每小题4分,共40分)第二部分 解答题 (共26分)三.解答题(本部分共5题,其中29题8分,30题8分,31题6分,32题4分,审清题意,仔细作答。
)29. 如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE .(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?解答:(1)证明:在正方形ABCD 中, ∵BC=CD ,∠B=∠CDF ,BE=DF , ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(3分)(2)解:GE=BE+GD 成立.(4分)理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,(6分) 又∠GCE=45°,∴∠GCF=∠GCE=45°. ∵CE=CF ,∠GCE=∠GCF ,GC=GC , ∴△ECG ≌△FCG (SAS ). ∴GE=GF .(7分)∴GE=DF+GD=BE+GD .(8分)30. 课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1) 叙述三角形全等的判定方法中的推论AAS ; (2) 证明推论AAS .要求:叙述推论用文字表达;用图形中的符号表达已知、 求证,并证明,证明对各步骤要注明依据.解:(1)三角形全等的判定方法中的推论AAS 指的是:两个角和其中一个角的对边对应相等的两个三角形全等. (2分)(2)已知:在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F ,BC=EF . 求证:△ABC ≌△DEF . (4分)证明:如图,在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F (已知), ∴∠A+∠C=∠D+∠F (等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理), ∴∠B=∠E . (6分) ∴在△ABC 与△DEF 中,,∴△ABC ≌△DEF (ASA ). (8分) 31. 先化简:(x ﹣)÷ ,若﹣2≤x ≤2,请你选择一个恰当的x 值(x 是整数)代入求值.解:原式=÷(1分)=×(2分)=, (4分)当x=1时,原式==﹣. (6分) (x 还可以取2或0)32.请用圆,线段,正方形,三角形设计一个好看的轴对称图形,并赋予一个有意义的名字。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14C .-4D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ).A .100°B .105°C .110°D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>>6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最(第4题图)DCB小值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= . 11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共G(第8题图)HOFEDCBA(第15题图)EDCBA34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2013年全国数学竞赛试题详细参考答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2013年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x ==,21122y --+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x x y y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点(第3题)E可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2 (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,(第4题)(第8题)与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,(第9题答案)D 所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解: ABC S rp∆===(这里2a bcp ++=)所以12r == 2ABC a S ha ===△由△ADE ∽△ABC,得23a a h r DE BC h -===,即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6;当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
2013年北京市初二数学竞赛试题及解答
D
B
得票多,画得扇形 D 大于扇形 B;由 A, B 得票之和超过 C, D 得票
之和,画扇形 A 与 B 大于半圆;可见得票数由高到低的排列次序应 C
A
为 A, D, B, C.
4.某月里仅有星期一的天数比星期二的天数多,那么发生这种情况的是下面四个
年份中的
(A)2010.
(B)2012.
(C)2014.
除余 2 或余 1,不满足 p3−q5=(p+q)2.
所以满足 p3−q5=(p+q)2 的质数 p 与 q 被 3 除的余数必不相同.
若 p 与 q 均不被 3 整除,且 p 与 q 一个被 3 除余 1,另一个被 3 除余 2,则左边 p3−q5 不被 3 整除,而右边被 3 整除,因此 p3−q5=(p+q)2 不成立,所以 p 与 q 中有一个且只有
Q A
P
−△DIH 的面积−△EHQ 的面积−△AQP 的面积
=1372−3×98−3×24.5=1004.5.
K F
L B
K F
L B
三、(满分 10 分)(1)已知 a、b 是正整数,求证:(a+b)│(a3+b3); (2)设 N=13+23+33+…+20113+20123,求证:(2012×2013)│N.
.2013 年北京市中学生数学竞赛 初二年级竞赛试题及解答
2013 年 5 月 12 日 13:00~15:00
一、选择题(满分 25 分,每小题只有一个正确答案,答对得 5 分,将答案写在下面相 应的空格中)
题号
1
2
3
4
5
答案
A
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .1D .4 2.下列各式中计算正确的是()A .9)9(2-=-B .525±=C .1=-D .2)2(2-=-3.若1k k <+(k 是整数),则k =() A .6B .7C .8D .94.下列计算正确的是()A.ab ·ab =2ab C.3-=3(a ≥0) D.·=(a ≥0,b ≥0) 5.满足下列条件的三角形中,不是直角三角形的是() A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7.将一根24cm 的筷子置于底面直径为15cm ,高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( ) A .(0,5) B .(-1,5) C .(9,5) D .(-1,0) 10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是() A .b a<B .3<aC .3<bD .2-<c 二、填空题(每小题3分,共24分) 11.函数y =的自变量x 的取值范围是________. 12.点P (a ,a -3)在第四象限,则a 的取值范围是.13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________. 14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__________.15.在△ABC 中,a ,b ,c 为其三边长,,,,则△ABC 是_________.16.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则BC 边上的高是_________cm .17.若),(b a A 在第二、四象限的角平分线上,a 与b 的关系是_________. 18已知:m 、n 为两个连续的整数,且m<<n ,则m +n =_________.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是, 求这个三角形各边的长.20.(8分)计算: (1)44.1-21.1;(2)0)31(33122-++;(3)2)75)(75(++-;(4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积. 22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25m ,如图所示斜靠在一面墙上,梯子底端C 离墙7m. (1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向也是滑动了4m 吗? 第24题图第25题图25.(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分; (3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?年级数学竞赛答题卡D C第19题图二、填空题(每小题3分,共24分) 11.12.13.14. 15.16.17.18.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长. 20.(8分)计算: (1)44.1-21.1;(2)0)31(33122-++;(3)2)75)(75(++-;(4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积. 22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值. 24.(8分)一架云梯长25m ,如图所示斜靠在一面墙上,梯子底端C 离墙7m. (1)这个梯子的顶端A 距地面有多高? (2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向也是滑动了4m 吗?25.(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分; (3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?期中检测题参考答案一、选择题1.C 解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .D C第19题图2.C 解析:选项A 9=,选项B 5=,选项D 中22(=,所以只有选项C 中1=-正确.3.D 解析:∵81<90<100,∴,即910,∴k =9.4.D 解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为0)a =≥,所以C 0,0)a b =≥≥,所以D 项正确.5.D 解析:判断一个三角形是不是直角三角形有以下方法: ①有一个角是直角或两锐角互余; ②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角. B 、C 满足勾股定理的逆定理,故选D.6.C 解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5的周长为3+4+5=12或3+47C . 7.D 解析:筷子在杯中的最大长度为22815+=17(cm ),最短长度为8cm ,则筷子露在杯子外面的长度h 的取值范围是24-17≤h ≤24-8,即7≤h ≤16,故选D .8.C 解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C .9.B 解析:∵△ABC 向左平移5个单位长度,A (4,5),4-5=-1, ∴点A 1的坐标为(-1,5),故选B . 10.D 解析:设直线l的表达式为()0y kx b k =+≠,直线l经过第一、二、三象限,∴0k >,函数值y 随x 的增大而增大.01>-,∴a b >,故A 项错误;02>-,∴3a >,故B 项错误;12->-,∴3b >,故C 项错误;13-<,∴2c <-,故D 项正确.二、填空题11.x ≥2解析:因为使二次根式有意义的条件是被开方数≥0,所以x -2≥0,所以x ≥2. 12.0<a <3解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法. ∵点P (a ,a -3)在第四象限,∴a >0,a -3<0,解得0<a <3.13.25解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴a b =25.14.y =0.3x +6解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y 与x 的函数关系式为y =0.3x +6(0≤x ≤5).15.直角三角形解析:因为所以△是直角三 角形.16.8解析:如图,AD 是BC 边上的高线. ∵AB =AC =10cm ,BC =12cm , ∴BD =CD =6cm ,∴在Rt △ABD 中,由勾股定理,得AD=8(cm ).17.互为相反数解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,•符号 相反.18.7解析:∵9<11<16,∴3<<4.又∵m 、n 为两个连续的整数,∴m =3,n =4,∴m +n =3+4=7.三、解答题19.解:设,由等腰三角形的性质,知.由勾股定理,得,即,解得, 所以,. 20.解:(1). (2).(33=+=+= (4).61513334)31(331220=+=++=-++ (5) (6).21.解:梯形.因为AB ∥CD ,AB 的长为2,CD 的长为5,AB 与CD 之间的距离为4,所以S 梯形ABCD =(25)42+⨯=14. 22.解:因为a 31-≥0,︱8b -3︱≥0,且a 31-和︱8b -3︱互为相反数,DBC第16题答图所以a 31-,0=︱8b -3︱,0= 所以,83,31==b a所以()2-ab -27=64-27=37. 23.分析:直接把A 点和B 点的坐标分别代入y =kx +b ,得到关于k 和b 的方程组,然后解方程组即可.解:把(1,3)、(0,-2)分别代入y =kx +b ,得+32k b b =⎧⎨=-⎩,,解得52k b =⎧⎨=-⎩,,即k ,b 的值分别为5,-2.24.分析:(1)可设这个梯子的顶端A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了4m ,那么梯子的底部在水平方向不一定滑动了4m ,应计算才能确定. 解:(1)设这个梯子的顶端A 距地面有x m 高, 根据题意,得AB 2+BC 2=AC 2,即x 2+72=252,解得x =24, 即这个梯子的顶端A 距地面有24m 高. (2)不是.理由如下:如果梯子的顶端下滑了4m ,即AD =4m,BD =20m. 设梯子底端E 离墙距离为y m ,根据题意,得BD 2+BE 2=DE 2,即202+y 2=252,解得y =15. 此时CE =15-7=8(m ).所以梯子的底部在水平方向滑动了8m.25.解:(1)甲行走的速度:150530÷=(米/分). (2)补画的图象如图所示(横轴上对应的时间为50). (3)由函数图象可知,当t =12.5时,s =0; 当12.5≤t ≤35时,s =20t -250; 当35<t ≤50时,s =-30t +1500.当甲、乙两人相距360米时,即s =360, 360=20t -250,解得30.5=t ,360=-30t +1500.解得38=t∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.26.解:(1)设一名熟练工加工1件A 型服装需要x 小时,加工1件B 型服装需要y 小时,由题意,得解得答:一名熟练工加工1件A 型服装需要2小时,加工1件B 型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件. ∴W=16a+12(25×8-2a)+800,∴W=-8a+3200.又a≥(200-2a),解得a≥50.∵-8<0,∴W随着a的增大而减小.∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.。
2013年全国初中数学竞赛试题参考答案
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.(第3题答题)(第4题答题)(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967 (B )1821967 (C )5463967 (D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:(第7题)45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)(第7题答题)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形. 当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
初二年级数学竞赛题[含答案解析]
初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF=40°,那么∠XYZ= °。
2013年初中数学竞赛初 二试题答案2013年初中数学竞赛初 二试题答案
2013年株洲市初中数学竞赛试题答案(初二年级)时量:120分钟 总分:100分 注意事项:1、用黑色、蓝色钢笔或圆珠笔作答;2、在密封线内答题,答题内容不要超过密封线;3、不准使用计算器。
一、选择题(每题4分,共32分,每题仅有一个正确选项,请将正确选项填入表格内 )题 次 12345678答 案ABDCBACD1、下列计算中,正确的是( A )A 、2336)ab a b =( B 、 333(3)9xy x y = C 、 222(2)4a a -=- D 、 93=±2、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( B ) A 、32° B 、58° C 、68° D 、60°3、如图是一个立方体的表面展开图,已知立方体的每一个面上都有一个实数,且相对面上的两数互为倒数,那么代数式b ca-的值等于( D )A 、6 B 、6- C 、43 D 、43- 4、从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg ), 依此估计这300尾草鱼的总质量大约是( C ) A 、45kgB 、150kgC 、450kgD 、15kg5、规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果 (2,3)-Δ(,)(1,4),x y =-则(,)x y 为( B ) A .(1,1) B .(2,1) C .(1,2)- D .(2,1)-6、如图是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 ( A )A .5个 B .4个C .3个D .2个7、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长( C )。
八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( ) A .-5 B .-2 C .1 D .42.下列各式中计算正确的是( )A.9)9(2-=-B.525±=C.3311()-=-D.2)2(2-=-3.若901k k <<+ (k 是整数),则k =( )A. 6B. 7 D. 94.下列计算正确的是( )·ab =2ab-=3(a ≥0) D.·=(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对7.将一根24 cm的筷子置于底面直径为15 cm,高为8 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的取值范围是()A.h≤17 B.h≥8C.15≤h≤16 D.7≤h≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4, -3)B.(-4, 3)C.(0, -3)D.(0, 3)9.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(4,5),B (1,2),C(4,2),将△ABC向左平移5个单位长度后,A的对应点A1的坐标是()A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l经过第一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A. bb D. 2-c<<a< B. 3<a C. 3二、填空题(每小题3分,共24分)11.函数y=的自变量x的取值范围是________.12.点P(a,a-3)在第四象限,则a的取值范围是 .13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为__________.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时米的速度匀速上升,则水库的水位高度y米与时间x 小时(0≤x≤5)的函数关系式为__________.15.在△ABC中,a,b,c为其三边长,,,,则△ABC是_________.16.在等腰△ABC中,AB=AC=10 cm,BC=12 cm,则BC边上的高是_________cm.17.若)A在第二、四象限的角平分线上,a与b的关系是a,(b_________.18已知:m、n为两个连续的整数,且m<<n,则m+n=_________.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是, 求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C(2,-2),D (2,3)各点,你会得到一个什么图形试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3), B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗第24题图第25题图25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺年级数学竞赛答题卡一、选择题(每题3分,共30分)题目12345答案题目678910答案二、填空题(每小题3分,共24分)11. 12. 13. 14.15. 16. 17. 18.三、解答题(共66分)19.(8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C(2,-2),D (2,3)各点,你会得到一个什么图形试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.23.(8分)设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.24.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高(2)如果梯子的顶端下滑了 4 m,那么梯子的底部在水平方向也是滑动了4 m吗25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺期中检测题参考答案一、选择题解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .解析:选项A 中299()-=,选项B 中255=,选项D 中222()-=,所以只有选项C 中3311()-=-正确.解析:∵ 81<90<100,∴ ,即910,∴ k =9. 解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为32(0)a a a a =≥,所以C 项错误;因为0,0)a b ab a b =≥≥,所以D 项正确.解析:判断一个三角形是不是直角三角形有以下方法: ①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角.B 、C 满足勾股定理的逆定理,故选D.解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边所以直角三角形的周长为3+4+5=12或3+4的长为5=7解析:筷子在杯中的最大长度为22815+=17(cm),最短长度为8 cm,则筷子露在杯子外面的长度h的取值范围是24-17≤h≤24-8,即7≤h≤16,故选D.解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C.解析:∵△ABC向左平移5个单位长度,A(4,5),4-5=-1,∴点A1的坐标为(-1,5),故选B.解析:设直线l的表达式为()0=+≠,直线l经过第一、二、y kx b k三象限,∴0>,故A项>-,∴a b k>,函数值y随x的增大而增大.01错误;02b>,故Ca>,故B项错误;12>-,∴3->-,∴3项错误;13-<,∴2c<-,故D项正确.二、填空题≥2解析:因为使二次根式有意义的条件是被开方数≥0,所以x-2≥0,所以x ≥2.<a <3 解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法.∵ 点P (a ,a -3)在第四象限,∴ a >0,a -3<0,解得0<a <3. 解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴ a b =25.=+6 解析:因为水库的初始水位高度是6米,每小时上升米,所以y 与x 的函数关系式为y =+6(0≤x ≤5).15.直角三角形 解析:因为所以△是直角三角形.解析:如图,AD 是BC 边上的高线. ∵ AB =AC =10 cm ,BC =12 cm , ∴ BD =CD =6 cm ,∴ 在Rt △ABD 中,由勾股定理,得 AD 22AB BD -22106-(cm ).A D BC 第16题答图17.互为相反数 解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,•符号相反.解析:∵ 9<11<16,∴ 3<<4.又∵ m 、n 为两个连续的整数,∴ m =3,n =4,∴ m +n =3+4=7.三、解答题19. 解:设,由等腰三角形的性质,知. 由勾股定理,得,即,解得, 所以,.20.解:(1).(2).(3)1332827933393 3.3333+⨯=+⨯=+= (4).61513334)31(331220=+=++=-++ (5)(6).21.解:梯形.因为AB ∥CD ,AB 的长为2,CD 的长为5,AB 与CD 之间的距离为4,所以S 梯形ABCD =(25)42+⨯=14. 22.解: 因为a 31-≥0,︱8b -3︱≥0,且a 31-和︱8b -3︱互为相反数, 所以a 31-,0=︱8b -3︱,0= 所以,83,31==b a 所以()2-ab -27=64-27=37.23.分析:直接把A 点和B 点的坐标分别代入y =kx +b ,得到关于k 和b 的方程组,然后解方程组即可.解:把(1,3)、(0,-2)分别代入y =kx +b ,得+32k b b =⎧⎨=-⎩,,解得52k b =⎧⎨=-⎩,,即k ,b 的值分别为5,-2.24.分析:(1)可设这个梯子的顶端A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向不一定滑动了4 m ,应计算才能确定.解:( 1)设这个梯子的顶端A 距地面有x m 高,根据题意,得AB 2+BC 2=AC 2,即x 2+72=252,解得x =24,即这个梯子的顶端A距地面有24m高.(2)不是.理由如下:如果梯子的顶端下滑了4m,即AD=4m,BD=20m.设梯子底端E离墙距离为y m,根据题意,得BD2+BE2=DE2,即202+y2=252,解得y=15.此时CE=15-7=8(m).所以梯子的底部在水平方向滑动了8m.25.解:(1)甲行走的速度:150530÷=(米/分).(2)补画的图象如图所示(横轴上对应的时间为50).(3)由函数图象可知,当t=时,s=0;当≤t≤35时,s=20t-250;当35<t≤50时,s=-30t+1 500.当甲、乙两人相距360米时,即s=360,360=20t-250,解得30.5t,=第25题360 =-30t+1 500. 解得38=t答图当甲行走分钟或38分钟时,甲、乙两人相距360米.26.解:(1)设一名熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意,得解得答:一名熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.∴W=16a+12(25×8-2a)+800,∴W=-8a+3 200.又a≥(200-2a),解得a≥50.∵ -8<0,∴W随着a的增大而减小.∴当a=50时,W有最大值2 800.∵ 2 800<3 000,∴该服装公司执行规定后违背了广告承诺.。
2013全国数学联赛初中数学试题及答案 - 打印版
2013年全国初中数学竞赛试题班级 姓名 成绩 供稿人:李锦扬一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A)12-(B )0 (C )12(D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B)2222(2)0c x b ac x a --+= (C)2222(2)0c x b ac x a +--=(D)2222(2)0c x b ac x a ---=3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B)OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A)3 (B )4 (C)6(D)85.对于任意实数x ,y ,z ,定义运算“*”为:(第3题)(第4题)()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B)1821967 (C)5463967(D)16389967二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.(第7题)三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC ∠CBE .12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.(第11题)13.设a ,b ,c 是素数,记x b c a y c a b z a b c =+-=+-=+-,,,当2,2z y ==时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.2013全国数学联赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D)1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ).(A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C)DE(D)AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC=2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的(第3题答题)(第3题)面积为( ).(A )3 (B )4 (C)6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A)607967(B)1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEFS ∆=,9613AFD S ∆=.(第4题答题)(第7题)所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i)若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii)若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC ∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B . 将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分 因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形. 因为1802BHC A BOC A ∠=︒-∠∠=∠,, 所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,60A ∠=︒.于是…………5分(第11题答题)(第11题)(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,, 所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013年四川初中数学联赛(初二组)决赛试卷及其解析
20XX年四川初中数学联赛(初二组)决赛试卷及其解析(考试时间:20XX年3月24日上午8:45—11:15)题号——一——二三四五合计得分评卷人复核人一、选择题(本大题满分42分,每小题7分)1、设1Wx兰3,则|x-1-X-3的最大值与最小值的和()(A)0 (B)1 (C) 2 (D)3解析:由条件1兰x兰3,可得x —1 — x —3 = 2x —4,当x = 1,得最小值-2,当x = 3,得最大值2,故选A1 12、设x = -..5,y是不超过x的最大整数,求---- =()x —y(A)5-2 (B) 、、5 2 (C) . 5-1 (D) 15 1解析:易得y =2,代入代数式经分母有理化得 5 2,故选B.3、如图,已知在四边形ABCD 中,/ ACB=Z BAD=105,/ ABC" ADC=45,则/ CAD=()(A)65°(B)70°(C)75°(D)80°解析:此题由三角形内角和及角的构成容易得,答案为 C.4、由1、2、4分别各用一次,组成一个三位数,这样的三位数中是的倍数的三位数共有()(A)1 个(B) 2 个(C) 3 个(D) 4 个解析:是4的倍数必然个位数不能是1,再将124、142、214、412试除以4,便可得答案为是()(A) -丄 1(B)丄5(C)(D)711 11 7 5丄x = 7z - 3 3 7解析:由方程组解出'■ ,由x, y非负实数,可解得亠丄,y = 7 T1z 7 11丁s =3x • y -7z =3(7z -3) 7 -11z-7z =3z-2,取z 二—代入即可求得,答案为 A B5、已知:'3x + 2v + z = 5x,y,z为三个非负实数,且满足,设s = 3x,y-7z,则s的最大值2x+ y_3z =1B.116、如图,/DAP=Z PBC M CDP=90,AP=PB=4 AD=3 贝U BC 的长是( 3241 41 (A ) 32(B ) 16(C ) 士(D )332解析:延长DP 交CB 延长线于点E ,如图,由三角形全等可证 PE=DP,AD=BE ,由勾股定理可求 DP=5,故DE=10,再由EP50 5041,求得 EC= ,BC=EC-EB= -3= ,答案 C EC 3且 xy • 2x • y =13,则x • y 的最小值是解析:丁 x, y 为两个不同的非负整数,0空2x =13,故x 取o 〜6的整数,代入再求符合条件的x=0 x=2 x=4符合条件的整数解只有222 三组,故X + y 的最小值为5.y =13\y =3'l y =14、如图,已知ABCD 为正方形,△ AEP 为等腰直角三角形,/ EAP=90°,且D 、P 、E 点共线,若 EA=AP=1,PB= '-5,贝U DP= _________解析:连结 BE ,易证△ AEB ^^ APD ,故 PD=EB ,/ APD = Z AEB •/△ AEP 为等腰直角三角形,/ EAP=90°/•Z AEP=/ APE=45 /-Z APD=13 5° 故/ AEB=35°/•Z PEB=/ AEB-Z AEP=35° -45 ° =90°(B) 16 EB△ EBQ A EDC ,可得一ED B ___ 、填空题(本大题满分28分,每小题7分)3^_36x U a1、关于x 的不等式组3 6x a的解是1沁乞3,1x ^1则a 的值是3 - a _3 - a解析:解不等式组得1<x,故33, a - -1232、如果p 与8p 2 1都是质数,则解析:考虑到是初二竞赛,试值可求得P=33、设x, y 为两个不同的非负整数,B可求PE= 2 ,三、(本大题满分20分) 设实数k 满足0 ::: k <1,解关于x 的分式方程 空X —1 x - x xk二 x =1 -k1当k 时,x =1为增根,原方程无解21k 当0 ::: k ::: 1且k 时,原方程的解是x 二21 -k四、(本大题满分25分)已知一次函数y=kx ・b(k=0)的图像与x 轴的正半轴交于E 点,与y 轴的正半轴交于F 点, 与一次函数y=2x-1的图像相交于A (m,2),且A 点为EF 的中点. (1) 求一次函数y 二kx ・b 的表达式;(2) 若一次函数y =2x-1的图像与x 轴相交于P 点,求三角形APE 的面积3 3解析:T 函数y=2x —1过点A (m,2)/. m=- A 点坐标(一 2) ..................................... 5分2 2’3•/ A (—,2)点为 EF 的中点./• E (3,0 ) F (0,4 )....................... 10 分2k 2kx x -11 (x -1)x x2 _x (k 1)(x-1) x(x-1)二 2kx -1=(k 1)(x_1) ••• (k -1)x--k ,又 丁 0 . k ::: 110分 15分20分、, 4一次函数解析式为y x 4 ............................................. 15分3T一次函数y =2x-1的图像与x轴相交于P点,1「•P(—,0) ............................... 20 分25如图:所以PE= ,PE边上的高为2,25 1 5...S 2 ................................... 25 分2 2 2五、(本大题满分25分)如图,已知AB=AC, / BAC K CDE=90 , DC=DE , F是BE的中点,求证:FA=FC fi FA!FD 解析:连结AF、DF,并延长AF至G使FG=AF,连结DG EGBF =EFI「/AFB —GFEFG =FAAFE^A GFE/• AB=GE,/ B=Z FEG ................................ 5 分•/ ABED为四边形,且/ BAC K CDE=90 ,/•Z B+K FED+K CAD K CDA=180 ,又vZ C+Z CAD K CDA=180Z C=Z B+Z FED=Z FEG+Z FED=Z GED................. 10 分又因为GE=AB=AC,CD=ED•/ △ACD^A GED .................................................. 15 分•/ AD=GD Z ADC=Z GDE而AF=GF•/ AF! DF ................................................ 20 分又vZ GDE Z GDC Z CDE=90Z ADC Z GDC=90 即Z ADG=90•/ DF=AF .................................................. 25 分。
2013年湖州市八年级初二年级数学竞赛试卷及参考答案与评分标准
2013年浙江省湖州市初二年级数学竞赛试卷(2013年5月12日 上午9:00—11:00)题 号 一 二 三 总分 1-8 9-14 15 16 1718 得 分 评卷人 复查人答题时留意: 1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.可以用计算器一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.设a 是小于1的正数,a b =,那么b a ,的大小关系为( )A .b a >B .b a < C,b a = D .不能确定 2.若13-<<-x , 则化简x +-12所得结果是( )A.1-xB. -3+xC.3-xD.3+x3.如图,若,=,,则∠的度数为( )A .30°B .32° C, 36° D .40° 4.正实数y x ,满意1=xy ,那么44911yx +的最小值为( ) A,32B.45 C. 1D.25.已知a ,b 为实数,则解可以为-1<x <1的不等式组是( )A .⎩⎨⎧>>11bx ax B. ⎩⎨⎧<>11bx ax C. ⎩⎨⎧><11bx ax D. ⎩⎨⎧<<11bx ax6.过点P(-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) A .4条 B. 3条 C. 2条 D. 1条7.如图,在矩形中,已知对角线长为2,且∠1=∠2=∠3=∠4,则四边形的周长为( ) A. 22 B.4 C.42 D. 68.在△中,已知1312, 5为边的中点,⊥且 与∠的平分线交于点E ,则的长为( ) A.1360 B.211 C. 6 D.213 得 分 评卷人二、填空题(共6小题,每小题5分,满分30分) 9.若有理数)0(,≠y y x 的积、商、差的值相等,即y x yxxy -==,则=x ,=y . 10.多项式x 22-687的最小值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:设第三边长为 x,则 2<x<8,三角形的周长设为 p,则 10<p<16,连结三边中点所得三
角形的周长范围应在 5 到 8 之间,只有 A 符合。
3. 下列图形:其中所有轴对称图形的对称轴条数之和为( )
A.13 B.11 C.10 D.8 考点:轴对称图形. 分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案. 解答:解:第一个图形是轴对称图形,有 1 条对称轴; 第二个图形是轴对称图形,有 2 条对称轴; 第三个图形是轴对称图形,有 2 条对称轴; 第四个图形是轴对称图形,有 6 条对称轴; 则所有轴对称图形的对称轴条数之和为 11. 故选 B. 点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两
处,每小题 3 分,共 54 分)
5
1.要使分式 有意义,则 x 的取值范围是( )
x 1
A. x 1
答案:A
B. x 1
解析:由分式的意义,得:x-1≠0,即 x≠1,选 A。
C. x 1
2. 如果三角形的两边分别为 3 和 5,那么连结这个三角形三边中点所得的三角形的周长可能是
答案:A
A. 5. 5 B、5 C.4.5 D.4
解得:n=6. 则原多边形的边数为 5 或 6 或 7. 故选 D.
5. 下列各式计算正确的是( )
A (a7)2=a9
.
B.a7•a2=a14
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
专题:计算题.
分析:A、利用幂的乘方运算法则计算得到结果,即可做出判断; B、利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式不能合并,错误; D、利用积的乘方运算法则计算得到结果,即可做出判断.
阳高二中 八年级数学 竞赛试题
(时间:120 分 总分 120 分)
本试题共分两个部分,第一部分为选择与填空题,第二部分为解答题 ,共 32 小题,请将所 有的试题均回答在答题卡相应的位置上,并注意时间分配,祝同学们在此次参赛中取得收获,获 得成功!
第 一 部 分 (共 94 分)
一.选择题(每小题只有一个选项是正确的,请将你认为是正确的选项填入答题卡相应位置
旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
D. x 1
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生常蚓3根料 学本教活.见身了 据: 生,师的2、的体解 问巩鸟 总看活形作用线的蛔 题固类 结雌动态业手形虫 自练与 本雄学、三:摸动状对 学习人 节蛔生结4、收 、一物和人 后同类 课虫活构请一集 蚯摸并颜体 回步关 重的动、学、鸟 蚓蚯归色的 答学系 点形教生生让类 在蚓纳。危 问习从 并状学理列学的 平线蚯害 题四线人 归、意特出四生面体形蚓以、形类 纳大图点常、五观存 玻表动的及鸟请动文 本小引以见引、察现 璃,物身预3类学物明 节有言及的、导巩蚯状 上是的体防之生和历 课什根蚯环怎学固蚓, 和干主是感所列环史 学么据蚓节二样生练引鸟 牛燥要否染以举节揭 到不上适动、区回习导类 皮还特分的分蚯动晓 的同节于物让分答。学减 纸是征节方布蚓物起 一,课穴并学蚯课生少 上湿。?法广的教, 些体所居归在生蚓前回的 运润4;泛益学鸟色生纳.靠物完的问答原 动的蛔4,处目类 习和活环近.在成前题蚯因 的?虫了以。标就 生体的节身其实端并蚓及 快触寄解上知同 物表内特动体结验和总利的我 慢摸生蚯适识人 学有容点物前构并后结用生国 一蚯在蚓于与类 的什,的端中思端线问活的 样蚓人的飞技有 基么引进主的的考?形题环十 吗体生行能着 本特出要几变以动,境大 ?节活的1密 方征本“特节化下物.让并珍 为近会习形理切 法。课生征有以问的学引稀 什腹小性态解的 。2课物。什游题主.生出鸟 么面起结和结蛔关观题体么戏:要明蚯类 ?处哪利适构虫系察:的特的特确蚓等,些用于特适。蛔章形殊形征,这资是疾板穴点于可虫我态结式。生种料光病书居是寄的们结构,五物典,滑?小生重生鸟内学构,学、的型以还5结活要生类部习与.其习巩结的爱是如鸟的原活生结了功颜消固构线鸟粗何类形因的存构腔能色化练特形护糙预适态之结的,肠相是系习点动鸟?防于、一构现你动适否统。都物为蛔飞结。和状认物应与的是。主虫行构课生却为和”其结与题病的、本理不蛔扁的他构环以?特生8特乐虫形观部特8境小三征理页点观的动位点相组、梳等这;,哪物教相,适为引理方些2鸟,育同师.应单导知面鸟掌类结了;?生的位学识的你握日构解2互.。办生特认线益特了通动手观征识形减点它过,抄察;吗动少是们理生报蛔5?物,与的解.参一虫了它和有寄主蛔与份结解们环些生要虫其。构蚯都节已生特对中爱。蚓会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
4. 一个多边形截去一个角后,形成另一个多边形的内角和为 720°,那么原多边形的边数为(
)
A 5
.
考点:多边形内角与外角.
B.5 或 6
分析:首先求得内角和为 720°的多边形的边数,即可确定原多边形的边数.
解答: 解:设内角和为 720°的多边形的边数是 n,则(n﹣2)•180=720,