12.2.4 直角三角形全等判定 公开课
12.2全等三角形的判定SAS(精品公开课)
30º
1
2 3Ⅲ
Ⅳ4
5 cm
30º
6
5
30º
7
8
第6页,共13页。
2.在下列推理中填写需要补充的条 件,使结论成立:
(1)如图,在△AOB和△DOC中
AO=DO(已知)
∠__A_O__B_=__∠__D__O_C_( 对顶角相等) B
BO=CO(已知)
∴ △AOB≌△DOC(
证明:在△ABC和△DEC中,
A
B
AC=DC(已知)
∠ACB=∠DCE(对顶角相等)
C
BC=EC(已知)
∴△ABC≌△DEC(SAS)
E
D
∴AB=DE (全等三角形的对应边相等)
第11页,共13页。
拓展(1)
如图,已知:AB=AC,则添加什么条件可得 △ABD≌ △ACD?请说明理由.
A (1)补充∠BAD=∠CAD
∠A=∠A(公共角)
AD=AE(已知)
∴ △ADB≌△AEC(SAS)
∴ ∠B=∠C
B
(全等三角形的对应角相等)
B
C
A
A
DE
C
第10页,共13页。
解决问题
如图,有一池塘,要测池塘两端A、B的距离,可在平 地上取一个可直接到达A和B的点C,连结AC并延长至D 使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么 量出DE的长,就是A、B的距离,为什么?
是AB和AC的夹角,
符合图一的条件,它可 称为“两边夹角”。
B
图二
C
符合图二的条件, 通常
说成“两边和其中一边的对角”
第4页,共13页。
12.2.4 “斜边、直角边”判定三角形全等
方法一:测量斜边和一个对应的锐角(AAS); 方法二:测量没遮住的一条直角边和一个对应的锐角 (ASA或AAS). 工作人员测量了每个三角形没有被遮住的直角边和斜边, 发现它们分别相等,于是他就肯定“两个直角三角形是全 等的”.你相信他的结论吗?
二、探究新知 多媒体出示教材探究5. 任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′, 使∠C′=′C′ 剪下来,放到Rt△ABC上,它们全等吗? 画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB. 想一想,怎么样画呢?
本节课教学,主要是让学生在回顾全等三角形判定的基础 上,进一步研究特殊的三角形全等的判定的方法,让学生 充分认识特殊与一般的关系,加深他们对公理的多层次的 理解.在教学过程中,让学生充分体验到实验、观察、比 较、猜想、归纳、验证的数学方法,一步步培养他们的逻 辑推理能力.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
三、巩固练习 如图,两根长度为12米的绳子,一端系在旗杆上,另一 端分别固定在地面两个木桩上,两个木桩离旗杆底部的 距离相等吗?请说明你的理由.
12.2.4直角三角形全等的判定 课件 2024—2025学年人教版数学八年级上册
复习旧知
老师提出问题,学生回答:
1、判定两个三角形全等的方法:
、
、
、
2、如图,Rt△ABC中,直角边是
、
,
斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF
(填“全等”或“不全等” )
根据
(用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF
巩固练习
3、判断两个直角三角A)两条直角边对应相等 (B)斜边和一锐角对应相等 (C)斜边和一条直角边对应相等 (D)两个锐角对应相等
巩固练习
4、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量 这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等 吗?说说你的理由。
N
A
B
CM
C′
(1) 先画 ∠MC′N=90°;
N
A
B
C M B′
C′
(2) 在射线 C′M 上截取 B′C′=BC;
N
A
A′
B
C M B′
C′
(3) 以点 B′ 为圆心,AB 长为半径画弧,交射线 C′N 于 A′;
画图思路
A
B
C M B′
(4) 连接 A′B′.
思考:通过上面的探究,你能得出什么结论?
12.2.4 直角三角形全等的判定 2024-2025学年人教版数学八年级上册
素养目标
1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的 过程; 2、掌握直角三角形全等的条件,并能运用其解决实际问题。 3、探索直角三角形全等条件及其运用的过程中,能够思考并进行简单的推理。
12.2.4直角三角形全等的判定—“HL” 课件 +2023—2024学年人教版八年级数学上册
学以致用
练习2
如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.
学习探究
任务二 运用“斜边、直角边(HL)”判定方法证明 两个直角三角形全等
活动3:已知:如图,AB⊥BD,CD⊥BD,AD=BC. 求证:(1)AB=DC;(2)AD∥BC.
情境导入 【思考1】 如果他只带了一个卷尺,能否完成这个任务?
(1)一边一锐角分别相等的两个直角三角形全等.(“ASA”、“AAS”) (2)两直角边分别相等的两个直角三角形全等.(“SAS”)
学习探究
任务一
探索并掌握“斜边、直角边(HL)” 判定两个直角三角形全等
【思考2】一个卷尺可以测得哪些数据?只满足斜边和一条直角边对 应相等的两个直角三角形能全等吗?
与同伴比较,这些直角三角形有怎么样的关系流发言.
学习探究
➢【互学 】
(3分钟)
互学要求:
(组长主持,主动参与,分工合作) ①有序交流:C2先说,其余补充; ②汇总意见:组长汇总,作好记录;
归纳作法:
③准备展示:任务分工,全员展示.
第一步:作∠MC′N=90°.
2.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF。
求证:AE =DF.
学习反思
这节课你学会了哪些知识? 你还有哪些疑惑?
一般三角形
三角形全等 的判定
SSS SAS
也可用来判定直角三角形全等 ASA AAS
直角三角形 HL
课后作业
分层作业: 1. 必做题:P44 T7、T8 2. 选做题:P44 T11
第二步:在射线C′M上截取A′C′=4cm.
12.2第4课时直角三角形全等的判定(HL)
第4课时 直角三角形全等的判定(HL)
2.如图 12-2-45 所示,P 是∠BAC 内一点,且点 P 到 AB,AC 的距离 PE,PF 相等,则直接得到 Rt△PEA≌Rt△PFA 的依据是( C )
A.AAS C.HL
B.ASA D.SSS
图 12-2-45
第4课时 直角三角形全等的判定(HL)
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF 的度数.
图 12-2-56
第4课时 直角三角形全等的判定(HL)
解:(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°. 在 Rt△ABE 和 Rt△CBF 中,AAEB= =CCFB, , ∴Rt△ABE≌Rt△CBF(HL). (2)∵∠ABC=90°,AB=CB,∴∠BAC=45° ∵∠CAE=30°,∴∠BAE=∠BAC-∠CAE=45°-30°=15°. 由(1)知 Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=15°+45°=60°.
第4课时 直角三角形全等的判定(HL)
14.如图 12-2-57,已知 AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高,如果 AD=AF,AC=AE.求证:BC=BE.
图 12-2-57
第4课时 直角三角形全等的判定(HL)
证明:∵AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高, ∴∠ADC=∠AFE=90°. 在 Rt△ADC 和 Rt△AFE 中,AACD= =AAEF, , ∴Rt△ADC≌Rt△AFE(HL),∴CD=EF. 在 Rt△ABD 和 Rt△ABF 中,AABD= =AABF, ,∴Rt△ABD≌Rt△ABF(HL), ∴BD=BF,∴BD-CD=BF-EF, 即 BC=BE.
人教版八年级数学上册12.2.4《直角三角形全等的判定》教学设计
人教版八年级数学上册12.2.4《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版八年级数学上册第12.2.4节的内容,本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法,并能够运用该方法解决实际问题。
本节课是学生在学习了三角形的基本概念、全等三角形的性质及判定方法的基础上进行的,是对全等三角形判定方法的进一步拓展和深化。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、全等三角形的性质及判定方法,能够运用SSS、SAS、ASA、AAS判定两个三角形全等。
但是,对于直角三角形全等的判定方法,学生可能还比较陌生,需要通过实例分析、自主探究等方式,让学生理解和掌握HL判定两个直角三角形全等的方法。
三. 教学目标1.让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.教学难点:如何让学生理解和运用HL判定两个直角三角形全等。
五. 教学方法1.情境教学法:通过生活实例,引发学生的思考,激发学生的学习兴趣。
2.自主探究法:引导学生通过合作交流、动手操作,自主发现HL判定两个直角三角形全等的方法。
3.讲解法:教师对HL判定两个直角三角形全等的方法进行讲解,帮助学生理解和掌握。
4.练习法:通过适量练习,让学生巩固所学知识,提高运用能力。
六. 教学准备1.教学课件:制作课件,展示直角三角形全等的判定方法。
2.学习材料:准备相关的学习材料,如三角形模型、直角三角形等。
3.教学设备:准备黑板、粉笔、投影仪等教学设备。
七. 教学过程1.导入(5分钟)通过一个生活实例,如建筑工人测量高度,引入直角三角形全等的概念。
提问:如何判断两个直角三角形全等呢?2.呈现(10分钟)展示直角三角形全等的判定方法,引导学生观察、思考,引导学生发现HL判定两个直角三角形全等的方法。
12.2.4用“HL”判定三角形全等(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了HL判定法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对HL判定法的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调HL判定法的原理和适用条件这两个重点。对于难点部分,我会通过具体例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与HL判定法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示HL判定法的基本原理。
五、教学反思
在今天的教学中,我重点关注了HL判定法的教学,尝试了多种方法来帮助学生理解和掌握这个几何判定全等的重要工具。我发现,通过引入日常生活中的实例,学生们能够更快地理解抽象的几何概念,并且对HL判定法的兴趣明显增加。然而,我也注意到,学生在实际应用这一判定法时,仍然存在一些困难。
在讲授过程中,我尽量用简洁明了的语言解释HL判定法的原理,并通过案例分析和实验操作来加深学生的理解。我观察到,大多数学生在听到原理介绍后,能够跟上思路,但在自己动手解题时,却容易忽视HL判定法只适用于直角三角形这一关键点。这说明我在教学中需要更多地强调这一点,确保学生能够清晰地区分不同判定法的适用范围。
2.抽象思维与问题解决能力:引导学生从具体的直角三角形全等案例中抽象出HL判定法的通用原理,培养学生从特殊到一般的抽象思维能力,并能运用该原理解决实际问题。
3.数学表达与交流能力:通过课堂讨论、例题解析和习题练习,鼓励学生用准确、规范的数学语言表达思考过程和解题步骤,提升数学表达和交流能力。
12.2 第4课时 直角三角形全等的判定(“HL”)
知识点二 直角三角形全等的判定方法 判定:斜边和___一_条_直__角_边____分别相等的两个直角三角形全等( 可 以 [注简意写] 可成用“斜“S边S、S”直“角S边A”S或”“H“LA”S)A.”“AAS”来判定直角三 角形全等,还可用“HL”来判定.
已知:如图12-2-18所示,AB⊥CF于点B,AD⊥CE于点D,
且AB=AD,DE=BF.求证:AF=AE.
证明:在 Rt△ABF 和 Rt△ADE 中,
AB=AD,
BF=DE, ∴Rt△ABF≌Rt△ADE(HL),
∴AF=AE.
图12-2-18
上面的推理过程正确吗?如果不正确,说明错在哪里,并写出正
确的推理过程.
解:不正确,错用了“HL”. 证明:∵AB⊥CF,AD⊥CE,∴∠ABF=∠ADE=90°.
第十二章 全等三角形
12.2 三角形全等的判定
第十二章 全等三角形
第4课时 直角三角形全等的 判定(“HL”)
目标突破 总结反思
目标突破
目标一 用“HL”判定直角三角形全等
例1 教材例5针对训练 已知:如图12-2-16,在四边形 ACBD中,∠C=∠D=90°,BC=BD. 求证:AC=AD.
图12-2-16
证明:连接பைடு நூலகம்AB.
AB=AB, 在 Rt△ABC 和 Rt△ABD 中,
BC=BD, ∴Rt△ABC≌Rt△ABD(HL). ∴AC=AD.
【归纳总结】“HL”只适用于判定两个直角三角形全等,不适用 于判定两个一般三角形全等.
目标二 综合运用不同方法证明直角三角形全等
找第三边→SSS
(2)已知两角找 找夹 一边 角→ 的A对S边A→AAS
12.2.4 直角三角形全等的判定(HL)(教案)-2022-2023学年八年级数学上册同步备课系列
12.2.4 直角三角形全等的判定(HL)(教案)一、教学目标1.理解直角三角形的定义和性质;2.掌握直角三角形全等判定的HL定理;3.能够应用HL定理判定直角三角形的全等性。
二、教学准备1.教师准备:教案、教学PPT、黑板、粉笔、直角三角形模型、练习题;2.学生准备:课本、练习笔、铅笔、橡皮。
三、教学过程第一步:导入1.引入直角三角形的概念,让学生回顾直角三角形的定义和性质;2.提问:如何判断两个三角形全等?引导学生思考与回答。
第二步:HL定理的介绍1.先让学生观察直角三角形模型,引导他们思考直角三角形的特点;2.引导学生推测:在什么条件下,两个直角三角形可以全等?提示学生思考HL定理;3.准确介绍HL定理:如果两个直角三角形中的一条直角边和另一条边分别相等,那么这两个直角三角形是全等的;4.讲解HL定理的证明过程,引导学生理解HL定理的合理性。
第三步:HL定理的应用1.列举几个例子,让学生运用HL定理判断两个直角三角形是否全等;2.通过PPT展示多个实例,让学生动手操作,尝试使用HL定理判定。
第四步:练习与巩固1.布置练习题,让学生灵活运用HL定理判定直角三角形的全等情况;2.鼓励学生互相交流讨论,提高解题的效率和质量;3.分享解题思路,讲解解题过程,及时纠正错误。
四、课堂总结1.复习直角三角形的定义和性质;2.总结HL定理的内容和使用方法;3.强调学生的实际应用能力和解决问题的能力。
五、作业布置1.完成课堂上未完成的练习题;2.预习下节课的内容:直角三角形全等的判定(其他定理)。
以上是12.2.4 直角三角形全等的判定(HL)的教案。
通过本节课的学习,学生将了解到直角三角形的性质和定义,掌握HL定理的判定方法,并能够应用HL定理判断直角三角形的全等性。
教师在教学过程中要通过引导和举例演示,激发学生的学习兴趣和思维能力,并鼓励学生多思考、多实践,培养解决问题的能力。
12.2.4直角三角形全等的判定(HL)教学设计 初中八年级上册数学教案教学设计课后反思 人教版
课题:12.2.4直角三角形全等的判定(HL)课型:新授课【教学内容】直角三角形全等的判定(HL)【学习目标】1.知识与技能:(1)探索并掌握直角三角形全等的判定方法“HL”;(2)能够合理选择恰当的直角三角形判定方法来解决问题。
2.过程与方法:经历探索直角三角形全等判定方法的过程,体会利用操作、证明、归纳获得数学结论的过程,培养学生反思的习惯和理性的思维习惯。
3.情感态度与价值观:通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性。
【学习重点】掌握判定两个直角三角形全等的特殊方法-HL。
【学习难点】灵活应用直角三角形的判定方法解决问题。
【教法学法】探究、讨论、归纳法【教学准备】直角三角形板、两张透明纸、圆规直尺【课时安排】1课时【教学流程】预习提纲教案1.斜边与一条直角边分别相等的两个直角三角形.(简写成“”或“”).2.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法).3.略.4.课后练习题……(略).教案一、情境导入、目标引领(时间:5分钟)1、判定两个三角形全等的方法有:、、、。
2、这些方法能判定直角三角形全等吗?3、思考:对于两个直角三角形,除了直角相等外,还要添几个条件,这两个直角三角形就全等呢?我们知道直角三角形是特殊的三角形,所以可以用一般三角形全等的判定方法: SSS 、SAS、ASA、AAS。
只要添加一边一锐角或两直角边分别相等,这两个直角三角形就全等了。
4.问题:如果两个直角三角形满足斜边和一条直角边分别相等,那么这两个直角三角形全等吗?二、自主学习、合作探究(时间:10分钟)探究:动手画一画(小组比较)1.任意画出一个Rt△ABC,∠C=90°,再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。
12.2.4三角形全等的判定——斜边直角边(同步课件)-人教版初中数学八年级上册
你画的三角形与同伴画的一定全等吗?
A
B
斜边和一条直角边分别相等的两个直角三角形全等 (简写成“斜边、直角边”或“HL”).
B
在 Rt△ABC 和 Rt△A′B′C′ 中, AB = A′B′,
BC = B′C′, ∴ Rt△ABC≌Rt△A′B′C′ (HL).
A
C
B′
A′
C′
特别提醒:在做题时往往在相等的边或角上
在 △GBF 和 Rt△GDE 中,
D
BF=DE
∠BFG=∠DEG
∠BGF=∠DGE
∴△GBF≌△GDE (AAS)
∴GF=GE,即BD平分EF.
如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,求 DE的长.
解:∵AE⊥CE于点E,BD⊥CD于点D, ∴∠AEC=∠D=90°, 在Rt△AEC与Rt△CDB中
∴ Rt△ABF≌Rt△CDE (HL).
∴ BF = DE.
B
F
C
E
D
如图,AB = CD,BF⊥AC,DE⊥AC,AE = CF. 求证:BD 平分 EF.
在 Rt△ABF 和 Rt△CDE 中, AB = CD, AF = CE,
∴ Rt△ABF≌Rt△CDE (HL).
B
FC AEG
∴BF=DE
如图,AB = CD, BF⊥AC,DE⊥AC,AE = CF.求证:BF = DE.
证明:∵ BF⊥AC,DE⊥AC,
∴∠BFA =∠DEC = 90°.
∵ AE = CF,∴ AE + EF = CF + EF,
即 AF = CE.
在 Rt△ABF 和 Rt△CDE 中,
12.2直角三角形全等判定公开课课件(共27张PPT)
△ABC即为所要画的三角形
N
B
MA
C
动动手 做一做 比比看
把我们刚画好的直角三角形剪下来,和同桌的比比看, 这些直角三角形有怎样的关系呢?
B
5cm
B′
5cm
A
4cm
C
A′
4cm
C′
Rt△ABC≌ Rt△A′B′ C′
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
Step1:画∠MCN=90°; Step2:在射线CM上截取CA=4cm; Step3:以A为圆心,5cm为半径画弧,交射线CN于B;
N
B
MA
C
动动手 做一做
Step1:画∠MCN=90°;
Step2:在射线CM上截取CA=4cm;
Step3:以A为圆心,5cm为半径画弧,交射线CN于B;
Step4:连结AB;
C B
例3
已知:如图,在△ABC和△DEF中,AP、DQ分别是高,
并且AB=DE,AP=DQ,∠BAC=∠EDF,
求证:△ABC≌△DEF
A
分析: △ABC≌△DEF
∠BAC=∠EDF, AB=DE,∠B=∠E
B
Rt△ABP≌Rt△DEQ
PC D
AB=DE,AP=DQ
E
QF
证明:∵AP、DQ是△ABC和△DEF的高 ∴∠APB=∠DQE=90° 在Rt△ABP和Rt△DEQ中
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
12.2直角三角形全等的判定---公开课
证明: ∵ AC⊥BC, BD⊥AD ∴∠C与∠D都是直角.
在 Rt△ABC 和 Rt△BAD 中,
AB=BA,
AC=BD . Rt△ABC≌Rt△BAD (HL).
∴ BC﹦AD
D
C
A
B
第13页,共21页。
1.如图,AB=CD,AE⊥BC, DF⊥BC,CE=BF. 求证:AE=DF.
C
D
F E
第10页,共21页。
想一想
总共有几种方法可以证明两个直角三 角形全等?
直角三角形是特殊的三角形,所以不仅
有一般三角形判定全等的方法:SAS、 ASA、AAS、SSS,还有直角三角形 特殊的判定方法——“HL”.
第11页,共21页。
具有下列条件的Rt△ABC与Rt△A′B′C′ (其中∠C=∠C′=Rt∠)是否全等?
⑷ 连结AB.
C
N
A
MB
C
⑴ △ABC就是所求作的三角形.
第8页,共21页。
M
B
C
动动手 比比看
把画好的Rt△ABC剪下来,与同 桌相比较,它们重合吗?你发现了 什么了?
B
A
C
第9页,共21页。
直角三角形全等的判定方法
斜边和一条直角边对应相等的
两个直角三角形全等。简写成 “斜边、直角边”或“HL”.
第2页,共21页。
2.一个锐角及这个锐角相邻的直 角边对应相等的两个直角三角形.
第3页,共21页。
3.两直角边对应相等的两个直角 三角形.
第4页,共21页。
思考:
如果满足斜边和一条直角边对应相等, 这两个直角三角形会全等吗?
A
A′
B
C
直角三角形全等的判定(HL)说课稿
直角三角形全等的判定(HL)说课稿各位老师,大家好:我说课的课题是人教版八年级数学上册12。
2。
4直角三角形全等的判定。
我从以下四大部分来说课。
一、教材分析(一)教材所处的地位和作用:本节课探索的是直角三角形全等的条件.通过探究活动,使学生在实践中学习,是培养学生自主学习,合作交流的好素材。
三角形全等是贯穿这一章的主线,是初中阶段证线段和角相等的主要工具。
而探索斜边与直角边长度之比则是学习三角函数的基础。
因此,这节课有利于学生形成完整的数学知识结构,有利于培养学生的能力,是学习后续几何课程的基础。
(二)教学目标1学会推导斜边、直角边定理。
2.熟练利用斜边、直角边定理判断两个直角三角形是否全等,解决一些简单的实际问题。
2. 经历探索三角形全等条件的过程,进一步掌握证明几何问题和解决简单实际问题的方法。
3.通过斜边、直角边定理的推导渗透变换的思想,培养学生一题多解的思维能力,拓宽学生的知识面,并使学生在数学学习中体验数学推理证明的乐趣,获得成功的喜悦.(三) 教学重点,难点重点:“HL”公理的推导过程。
难点:如何用几何语言有条理的,清晰的阐述自己的观点。
二、教学方法的选择与应用本课采用师生互动的方式,以多媒体手段辅助教学,创设情境,以开放性的问题启发学生思考,引导学生总结出判定直角三角形全等的条件以及正确应用“HL”定理的方法。
三、学法指导充分利用素材和活动,引导学生经历观察,画图,猜想,证明等活动,体验几何学习的过程。
教学准备:圆规,直尺,多媒体.四、教学过程五、总结与反思1.今天所学的直角三角形全等的判定定理是什么?2.直角三角形全等有几种判定方法?六、作业课本P41 练习1题、2题用其它方法证明H L定理好,我今天的说课就到这里,如有不当之处,请各位老师批评、指正。
谢谢!大通民中:强玉琴2015。
10.19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
F
E
情况1:满足一边一锐角对应相等的两个直角 三角形全等.
(1)(AAS) (2)(AAS)
(3)( ASA)
情况;2
满足两直角边对应相等的两个直角三角列条件的两直角三角形是否全等?为什么?
斜边和一条直角边对应相等的两个 直角三角形.
动动手 做一做
说明:
1、HL只能用于证明直角三角形的全等。 2、SSS、SAS、ASA、AAS适用于任何三角形证 全等,包括直角三角形。
例1及变式延伸
已知:如图,在△ABC和△ABD中AC⊥BC,AD⊥BD,垂足
分别为C,D,AD=BC, 求证:(1)△ABC≌△BAD (2)BD=AC. D C
证明:∵ AC⊥BC, AD⊥BD ∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
直角三角 形全等的 判定
“ SSS ” “ SAS ” “ ASA ” “ AAS ” “ HL ”
应用:灵活运用各种方法证明直角三角形全等
课后作业
作业本: 课本14页 练习:1、2
谢谢大家
∴ Rt△ABC≌Rt△BAD (HL) A ∴ BD=AC..
AB BA BC AD
B
小试牛刀
已知:AB=CD,AE⊥BC,DF⊥BC ,CE=BF, 求证:AE=DF
C F A
D E B
课堂小结
一般三角 形全等的 判定
“ SSS ” “SAS” “ ASA ” “ AAS ”
直角三角形全等的判定
学习目标:
1、掌握“斜边、直角边”的判定方法。 2、会运用“斜边、直角边”的判定方法证 明两个直角三角形全等的简单问题。
重难点:
会运用“斜边、直角边”的判定 方法证明直角三角形全等的简单问题。
认识直角三角形
A
直 角 边
C
直角边
B
记作:Rt△ABC
对于两个直角三角形,除了直角边的条件,还应满 足几个条件,这两个直角三角形就全等了?
Step2:在射线CM上截取CA=4cm;
Step3:以A为圆心,5cm为半径画弧,交射线CN于B;
N B
M A
C
动动手 做一做
Step1:画∠MCN=90°;
Step2:在射线CM上截取CA=4cm;
Step3:以A为圆心,5cm为半径画弧,交射线CN于B; Step4:连结AB;
N B
△ABC即为所要画的三角形
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
动动手 做一做
Step1:画∠MCN=90°;
N
M
C
动动手 做一做
Step1:画∠MCN=90°;
Step2:在射线CM上截取CA=4cm;
N
M A
.
C
动动手 做一做
Step1:画∠MCN=90°;
M
A
C
动动手 做一做 比比看
把我们刚画好的直角三角形剪下来,和同桌的比比看, 这些直角三角形有怎样的关系呢?
B
5cm 5cm
B′
A
4cm
C A′
4cm
C′
RT△ABC≌RT△A´B´C ´
斜边和一条直角边对应相等的两个直角三角形全等.
(简写成“斜边、直角边” 或简写为“HL”)
H表示 斜边 L表示直角边