高中数学第二章平面向量章末小结导学案无答案新人教A版必修
高中数学 第二章《平面向量》导学案 新人教A版必修4
第二章《平面向量》导学案(复习课)【学习目标】1.理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念.2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接).4.了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5.了解实数与向量的乘法(即数乘的意义).6.向量的坐标概念和坐标表示法.7.向量的坐标运算(加、减、实数和向量的乘法、数量积).8.数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2,注意区别“实数与向量的乘法、向量与向量的乘法”.【导入新课】向量知识,向量观点在数学、物理等学科的很多分支中有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直.新授课阶段例1 已知(3,0),(,5)a b k ==r r ,若a 与b 的夹角为43π,则k 的值为_______.解析:例2 对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+ |b |. 证明:例3 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c ,i ,j . 解:例4 下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( )A .①②⑤ B.③④ C.①③ D.②④⑤ 解析:例 5 已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r,(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ABC ∆为直角三角形,且A ∠为直角,求实数m 的值. 解:例6 已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 解:课堂小结本章主要内容就是向量的概念、向量的线性运算、向量知识解决平面几何问题;掌握向量法和坐标法,以及用向量解决平面几何问题的步骤.作业 见同步练习 拓展提升 一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式:①=;②||||=;③||||+=-; ④222||||4||,AC BD AB +=u u u ru u u ru u u r其中正确的个数为 ( )A .1个B .2个C .3个D .4个4.在 ABCD 中,设====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( ) A .||||||-=- B .||||-=+ C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③8.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( ) A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.已知||22p =u r ,||3q =r ,,p q u r r 的夹角为4π,如图,若52AB p q =+u u u r u r r ,3AC p q =-u u u r u r r ,D 为BC 的中点,则||AD uuu r为( ).A .215B .215C .7D .18二、填空题12.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 13.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .14.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= . 15.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 .三、解答题16.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥.17.设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.参考答案 例1解析:如图1,设a OA =,43π=∠AOC ,直线l 的方程为5=y ,设l 与OC 的交点为B ,则OB 即为b , 显然()5,5-=b ,5-=∴k . 例2证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且 |a |-|b |<|a ±b |<|a |+|b |;(2)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a .b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>|b |,则|a +b |=|a |-|b |.同理可证另一种情况也成立.例3解:建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是=-3, =, =-3.所以-3=33+,即=3-33.例4解析:根据向量的运算可得到,只有①③对,故选择答案 C 例 5解:(1)若点A 、B 、C 能构成三角形,则这三点不共线,∵(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r, ∴(3,1)AB =u u u r ,(1,)BC m m =---u u u r,而AB u u u r 与BC uuur 不平行,xy ABOCab图1即31m m -≠--,得12m ≠, ∴实数12m ≠时满足条件. (2)若ABC ∆为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r,而(3,1)AB =u u u r ,(2,1)AC m m =--u u u r,∴3(2)(1)0m m -+-=,解得74m =. 例6解:(1,)(2,3)(1,3),BC AC AB k k =-=-=--u u u ru u u ru u u rQ0(1,)(1,3)0C RT AC BC AC BC k k ∠∠⇒⊥⇒⋅=⇒⋅--=u u u r u u u r u u u r u u u rQ 为2313130.k k k ±⇒-+-=⇒=拓展提升 题号 1 2 3 4 5 6 7 8 9 10 11 答案 ABCBCDACABA11.提示:A 11()(6)22AD AC AB p q =+=-u u u r u u u r u u u r ur r ,∴222211||||(6)361222AD AD p q p p q q ==-=-+u u u r u u u r u r r u r u r r r g2211536(22)12223cos 3242π=⨯-⨯⨯⨯+=. 二、填空题:12. 120° 13. 矩形 14、 1± 15. 2- 三、解答题: 16.证:()()22b a b a b a b a -=+⇒+=+⇒-=+Θ2222220.a ab b a ab b ab ⇒++=-+⇒=r r r r r r r r r r,a b r rQ 又为非零向量,.a b ∴⊥r r17.()121212234,BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u rQ若A ,B ,D 三点共线,则与共线,,AB BD λ∴=u u u r u u u r设即121224.e ke e e λλ+=-u r u u r u r u u r 由于12e e u r u u r 与不共线,可得: 11222,4.e e ke e λλ==-u r u ru u r u u r故2,8.k λ==-。
高中数学 第二章平面向量复习教案 新人教A版必修4
第二章平面向量复习课(一)一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a·b=|a||b|cos =x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、教学过程(一)重点知识:1. 实数与向量的积的运算律:2. 平面向量数量积的运算律:3. 向量运算及平行与垂直的判定:则),(2121y y x x b a ++=+ ),(2121y y x x b a --=-2121y y x x b a +=⋅4. 两点间的距离:5. 夹角公式:6. 求模:(二)习题讲解:《习案》P167 面2题,P168面6题,P169面1题,P170面5、6题,P171面1、2、3题,P172面5题,P173面6题。
(三)典型例题例1. 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c解:如图建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是a =i -3j , b =j , c =-3i 所以-3a =33b +c |即c =3a -33b(四)基础练习:《习案》P178面6题、P180面3题。
人教版A版高中数学必修4:第二章平面向量_小结(12)
五、定比分点的坐标公式、
已知点
P1、P2的坐标分别是(
x1,y1)、(
x2,y
)
2
P是直线P1P2上一点,且P1P PP2,则点P的坐标
x
y
x1 1
y1
x2 y2
( 1)
1
特殊的
x
1
y
x1 y1
2
x2 y2
上的一个动点.
(1)当MA MB取最小值时,求OM的坐标; (2)当点M满足(1)的条件和结论时,求AMB的余弦值.
上页 下页 返回
例6:一轮船以20海里/小时的速度向正东方向航行,
它在A点时测得灯塔P在船的北600东,2小时后
船到达B点时测得灯塔P在船的北450东,求 :
(1)船在B点时与灯塔P的距离;
平面向量
2019/9/23
上页 下页 返回
一、向量的初步
1.定义:
既有大小又有方向的量叫向量
2.向量的表示:
向量的几何表示 : 用有向线段表示
向量的符号表示 : AB 或 a
3.特殊向量:零向量 :
单位向量 :
a0
a |a|
4.向量之间的关系:
平行向量(: 共线向量) 相反向量 : 相等向量:
上页 下页 返回
长线上的一点,F在BC上,且BE=BF, 用向量的坐标法证明:AF⊥CE
D
C
F
A
BE
上页 下页 返回
3、已知三个力 f1、f2、f3 作用于同一质点,且 | f1 | 20, | f2 | 30, | f3 | 40 (单位:牛)若三个力在同一平面
【数学】第二章《平面向量全章小结》教案(新人教A版必修4)
第二章 平面向量全章小结(一)学习目标1.进一步理解向量的有关概念;2.掌握向量的线性运算,掌握向量数乘的运算,并理解其几何意义.3.掌握平面向量的正交分解及其坐标表示以及相关应用.4.掌握平面向量的数量积,并会应用其判断两个平面向量的垂直关系。
5.能够用向量解决一些具体问题,如平面几何中的一些问题和物理中的一些问题. (二)重点难点1.重点是让学生理解向量的相关概念和向量的运算2. 难点是如何向量方法解决一些问题. (三)教学过程 教学环节 教学内容师生互动 设计意图 全章知识结构介绍让学生根据表根中的各项要,回忆相关的概念让学生从整体上对本章内容有一个宏观的了解复习例1.填空(向量的线性运算) 1.已知平行四边形ABCD,则_______,=+AD AB ._______=-AD AB2. ._______=-++BA CB AC AB3. 已知)(21OB OA OM +=,则点M 是A,B 的_______;若点A()7,1(),,5,2--B , 则 M 的坐 标为_________. 4.已知OB OA OM 31)311(+-=,则._____AB AM =5.已知)2,3(),1,2(--B A , AB AM 32=, 则点M 的坐标为_______.让学生自己先解决问题,让后同学进行回答,教师进行指导 说明:给出这组题的目的是,在复习向量的加减法,坐标运算和其相关的几何表示都要掌握,并且要会结合在一起使用.例2.(向量的数量积)说明:让学生首要注意一些数据表明平面向量、实际背景向量及其基本概念 线性运算 向量的数量积基本定理坐标表示向量的应用(1)已知)1,3(),3,1(-==b a ,求.,|,||,|,,>+<-+><a b a b a b a b a(2)已知在ABC ∆中,有A C O O OC OB OB OA ⋅=⋅=⋅,问:点O 在ABC ∆的什么位置.的一些几何信息以及向量的代数式也可以告诉我们一些相关的几何信息,从而突出代数和几何关系.例3.(向量基本定理) (1)给定一个基底},{j i 且,312,3,4j i c j b j i a -==+=如果b y a xc +=,求y x ,.(2)已知E,F 分别是∆ABC 边AB,AC 上的点,其EF//BC,AE=AB 31,如果a =AE ,b =AF ,用b a ,表示 .,,,CF EC BF BC会让学生在给出基底的情况下表示其它向量.例4.(向量的应用) (1)已知ABC ∆中,引中线AD,BE,CF,求证: 0=++CF BE AD ;(2)若O 为ABC ∆的重心,求证:0=++OC OB OA .(根据此问让学生思考重心坐标公式) (3)用向量方法证明:平行四边形两条对 角线长度的平方和等于平行四边形四边 长度的平方和. (4)已知向量OCOB OA ,,满足,0=++OC OB OA 1||||||===OC OB OA ,求证:ABC ∆是等边三角形. (5)已知R t c b a ∈==-=),1,3(),1,2(),2,3(.求||b t a -的最小值和相应t 的值;教师要对学生进行适当的提示.这部分问题的对学生的要求较高,让学生会应用向量方法解决相关问题,而这包括用向量和坐标方法.若b ta 与c共线,求t的值.归纳小结本节主要复习向量的概念和相关的运算, 如何用向量来解决问题布置作业课本126页习题. 学生自主完成(四)教学资源建议教材、教参、多媒体或实物投影仪、尺规(五)教学方法与学习指导策略建议向量是沟通代数,几何,三角函数的工具,掌握向量的解题技巧,方法显得非常重要.向量的解题方法有向量法和坐标法.而要熟练应用这些方法,学生应该对相应的基本概念比较清楚,因此教师在复习时,应该在引导学生得到结果基础之上,让同学理解相关的意义和了解其实际背景.应该把几何的直观性和向量的运算有机的结合在一起.运算和运算律是向量的灵魂,是连接数与形的纽带,教师应该突出这一点.因此,教师在讲授时,(1)关注解题方法产生的思维过程引导学生探究如何将把问题转化为向量问题,揭示解题方法产生的的思维过程,让学生体会解题思路的形成过程和数学思想方法的运用,从而提高学生综合运用知识分析和解决问题的能力.(2)强化学生的应用意识一是培养学生利用所学数学知识、用数学的思维与观点去观察和分析现实生活现象的习惯和意识,强化学生的应用意识;二是为学生提供充足的动手操作的机会,一旦形成解决问题的思路,后续的解题过程则放手让学生独立完成,让学生体验问题的解决过程,并在此过程中锻炼与提高数学能力.(3)引导学生探究解题规律指导学生做好解题后的反思,总结解题规律,从而培养学生理性的、条理的思维习惯,形成对通性通法的归纳意识.。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4
高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
高中数学人教A版第二章平面向量平面向量基本定理导学案新必修_
点 A 重合,再由三角形法则和平行四边形法则即可得到. 5.已知在梯形 ABCD 中,AB∥DC,且 AB=2CD,E,F 分别是 DC,AB 的中点,设→AD=a,→AB=
b,试用 a、b 为基底表示→DC,→BC,→EF.
解 连接 FD,∵DC∥AB,AB=2CD,E,F 分别是 DC,AB 的中点, ∴DC 綊 FB. ∴四边形 DCBF 为平行四边形. 依题意,→DC=→FB
2.3.1 平面向量基本定理
学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当 一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向 量的综合问题.
知识点一 平面向量基本定理 思考 1 如果 e1,e2 是两个不共线的确定向量,那么与 e ,e2 在同一平面内的任一向量 a 能
解 取 CF 的中点 G,连接 EG.
∵E、G 分别为 BC,CF 的中点,
→ 1→ 1 ∴EG=2BF=2b,
∴→DG=→DE+→EG=a+12b.
→ 3→ 3→ 又∵DG=4DC=4AB,
∴→AB=4D→G=4(a+1b)=4a+2b. 3 3 2 33
又∵→AD=→BC=→BF+→FC=→BF+1→DC=→BF+1A→B,
λ(λ e +μ e );
21
22
④若存在实数 λ,μ 使得 λe1+μe =0,则 λ=μ=0. 2
A.①② B.②③ C.③④ D.②
答案 B
解析 由平面向量基本定理可知,①④是正确的;
对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底
下的实数对是唯一的;
对于③,当两向量的系数均为零,即 λ1=λ2=μ =μ2=0 时,这样的 λ 有无数个,故选 1
新人教版高中数学必修第二册《平面向量的运算》导学案
平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA → =a ,接着作向量AB →=c ,则得向量OB → =a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA → =a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE → =OC → +c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算例2:化简:(1)BC → +AB →;(2)DB → +CD → +BC →;(3)AB → +DF → +CD → +BC → +FA →.解:(1)BC → +AB → =AB → +BC → =AC →.(2)DB → +CD → +BC→ =BC → +CD → +DB→ =(BC → +CD → )+DB→ =BD → +DB →=0.(3)AB → +DF → +CD → +BC → +FA→ =AB → +BC → +CD → +DF → +FA → =AC → +CD → +DF → +FA→=AD → +DF → +FA → =AF → +FA →=0.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB → ,水流的速度为OA → ,以OA → ,OB →为邻边作▱OACB ,则此人的实际速度为OA → +OB → =OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.三、学习小结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法前提已知非零向量a ,b作法在平面内任取一点A ,作AB → =a ,BC → =b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC → =AC→法则三角形法则图形前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB 结论对角线OC →就是a 与b 的和法则平行四边形法则图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、精炼反馈1.化简OP → +PQ → +PS → +SP →的结果等于( )A .QP →B .OQ→ C .SP → D .SQ→解析:选B .OP → +PQ → +PS → +SP → =OQ → +0=OQ →.2.在四边形ABCD 中,AC → =AB → +AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC → =AB → +AD → 得AD → =BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO → +AC →;(2)DE → +BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【学习重难点】【学习目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【学习过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB → +MB → )+(-OB → -MO →);(2)AB → -AD → -DC →.解:(1)法一:原式=AB → +MB → +BO → +OM → =(AB → +BO → )+(OM → +MB → )=AO → +OB →=AB →.法二:原式=AB → +MB → +BO → +OM→=AB → +(MB → +BO → )+OM → =AB → +MO → +OM → =AB → +0=AB →.(2)法一:原式=DB → -DC → =CB →.法二:原式=AB → -(AD → +DC → )=AB → -AC → =CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA → =a ,OB → =b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD → =OA → +AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC → =b ,AE → =c ,试用向量a ,b ,c 表示向量CD → ,BC → ,BD →.解:因为四边形ACDE 是平行四边形,所以CD → =AE → =c ,BC → =AC → -AB →=b -a ,故BD → =BC → +CD →=b -a +c .三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA → =a ,OB → =b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD → -AC →等于( )A .CB → B .BC→ C .CD → D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD→-AC → =CD →.2.化简:AB → -AC → +BD → -CD → +AD →=________.解析:原式=CB → +BD → +DC → +AD → =CD → +DC → +AD → =0+AD → =AD →.答案:AD→3.已知Error!=10,|AC → |=7,则|CB →|的取值范围为______.解析:因为CB → =AB → -AC →,所以|CB → |=|AB → -AC →|.又Error!≤|AB → -AC → |≤|AB → |+|AC →|,3≤|AB → -AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB → -OC → |=|OB → -OA → +OC → -OA →|,试判断△ABC 的形状.解:因为OB → -OA → +OC → -OA → =AB → +AC → ,OB → -OC → =CB → =AB → -AC →.又|OB → -OC → |=|OB → -OA → +OC → -OA → |,所以|AB → +AC → |=|AB → -AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【学习重难点】【学习目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23[(4a-3b)+13b-14(6a-7b)].(2)设向量a=3i+2j,b=2i-j,求(13a-b)-(a-23b)+(2b-a).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23(4a -3b +13b -32a +74b)=23(52a -1112b)=53a -1118b .(2)原式=13a -b -a +23b +2b -a=(13-1-1)a +(-1+23+2)b =-53a +53b =-53(3i +2j )+53(2i -j )=(-5+103)i +(-103-53)j=-53i -5j .探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB → =e 1+e 2,BC → =2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB → =e 1+e 2,BD → =BC → +CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB → ,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有{k -λ=0,λk -1=0,所以k =±1.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB → ∥CD → 且|AB → |=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB → =e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB → ∥CD → ,|AB → |=2|CD →|,所以AB → =2DC → ,DC → =12AB →.(1)AC → =AD → +DC →=e 2+12e 1.(2)MN → =MD → +DA → +AN→ =-12DC → -AD → +12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC → =e 1,AD → =e 2,试用e 1,e 2表示向量MN →.解:因为MN → =MD → +DA → +AN →,MN → =MC → +CB → +BN →,所以2MN → =(MD → +MC → )+DA → +CB → +(AN → +BN → ).又因为M ,N 分别是DC ,AB 的中点,所以MD → +MC → =0,AN → +BN →=0.所以2MN → =DA → +CB →,所以MN → =12(-AD → -BC →)=-12e 2-12e 1.三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、精炼反馈1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -b B .2b -a C .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB → =2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO →B .AO→ C .CO → D .DO→解析:选A .BD → =AD → -AB → =BC → -AB → =3e 2-2e 1,BO → =12BD → =32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB → =e 1+3e 2,CD →=2e 1-e 2,所以BD → =CD → -CB →=e 1-4e 2.又AB → =2e 1-8e 2=2(e 1-4e 2),所以AB → =2BD → ,所以AB → 与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【学习重难点】【学习目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB → |=4,|AD →|=3,∠DAB =60°,求:①AD → ·BC → ;②AB → ·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD → ∥BC →,且方向相同,所以AD → 与BC →的夹角是0°,所以AD → ·BC → =|AD → ||BC →|·cos 0°=3×3×1=9.②因为AB → 与AD →的夹角为60°,所以AB → 与DA →的夹角为120°,所以AB → ·DA → =|AB → ||DA →|·cos 120°=4×3×(-12)=-6.互动探究:变问法:若本例(2)的条件不变,求AC → ·BD →.解:因为AC → =AB → +AD → ,BD → =AD → -AB →,所以AC → ·BD → =(AB → +AD → )·(AD → -AB → )=AD → 2-AB →2=9-16=-7.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72,所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[0,π],所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +(-a·b |b |2)·|b |2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB → =a ,CD → =b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM → =a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a +b )·c =a·c +b·c (分配律).四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3.2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0,所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×(-45)e=-125e .答案:-125e4.已知|a |=1,|b |=2.(1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2.(2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。
高中数学必修四第二章 平面向量 章末小结导学案
高中数学必修四第二章平面向量章末小结导学案本资料为woRD文档,请点击下载地址下载全文下载地址第二章平面向量章末小结【本章知识体系】【题型归纳】专题一、平面向量的概念及运算包含向量的有关概念、加法、减法、数乘。
向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。
利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.、1.AB→+Ac→-Bc→+BA→化简后等于A.3AB→B.AB→c.BA→D.cA→2、在平行四边形ABcD中,oA→=a,oB→=b,oc→=c,oD→=d,则下列运算正确的是A.a+b+c+d=0B.a-b+c-d=0c.a+b-c-d=0D.a-b-c+d=03、已知圆o的半径为3,直径AB上一点D使AB→=3AD →,E、F为另一直径的两个端点,则DE→•DF→=A.-3B.-4c.-8D.-64、如图,在正方形ABcD中,设AB→=a,AD→=b,BD →=c,则在以a,b为基底时,Ac→可表示为________,在以a,c为基底时,Ac→可表示为________.5、下列说法正确的是A.两个单位向量的数量积为1B.若a•b=a•c,且a≠0,则b=cc.AB→=oA→-oB→D.若b⊥c,则•b=a•b专题二、平面向量的坐标表示及坐标运算向量的坐标表示及运算强化了向量的代数意义。
若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。
6、已知向量a=,b=,若2a-b与b垂直,则|a|等于A.1B.2c.2D.47、设向量a=,b=,c=,若表示向量4a,4b-2c,2,d的有向线段首尾相接能构成四边形,则d=A.B.c.D.8、已知a=,b=,c满足a•c=0,且|a|=|c|,b•c>0,则c=________.专题三、平面向量的基本定理平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。
(新教材)人教A版高中数学必修第二册学案 平面向量的概念含配套练习答案
6.1 平面向量的概念问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( )(5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)×已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M答案:D已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点 B .一条直线 C .一个圆 D .不能确定答案:C如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.答案:AB →,DC →向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB →=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析:选D.不管向量的方向如何,它们都不能比较大小,故A ,B 不正确;向量的大小即为向量的模,指的是有向线段的长度,与方向无关,故C 不正确;向量的模是一个数量,可以比较大小.故D 正确.2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行D .共线向量是在一条直线上的向量解析:选C.向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.用有向线段表示向量的步骤已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远?解:(1)由题意,作出向量AB →,BC →,CD →,DA →,如图所示.(2)依题意知,三角形ABC 为正三角形,所以AC =2 000 km.又因为∠ACD =45°,CD =1 0002,所以△ACD 为等腰直角三角形,即AD =1 000 2 km ,∠CAD =45°,所以D 地在A 地的东南方向,距A 地1 000 2 km.共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量. 解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.2.[变问法]本例条件不变,与AD →共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确解析:选B.根据共线向量的定义,可知AB →,BC →,AC →这三个向量一定为共线向量,故选B.2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.解:(1)因为四边形ABCD 和BCED 都是平行四边形,所以BC ∥AD ∥DE ,BC =AD =DE ,所以BC →=AD →=DE →.故与BC →相等的向量为AD →,DE →.(2)与BC →共线的向量共有7个,分别是AD →,DE →,DA →,ED →,AE →,EA →,CB →.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE →平行的向量为BE →,FD →,FC →共3个. 2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B.两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量. 解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB →长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →. (3)与DA →共线的向量为AD →,BC →,CB →.[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D.4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案: 27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线,所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图. (1)在每两点所确定的向量中,写出与向量FC →共线的向量; (2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形, 所以BE 綊FD , 所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形. 解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E . 因为∠ACD =∠BCD =∠AED , 所以|AC →|=|AE →|. 因为△ADE ∽△BDC ,所以|AD →||DB →|=|AE →||BC →|=|AC →||BC →|,故|DB →|=32.答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →, 如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i =1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).6.2 平面向量的运算 6.2.1 向量的加法运算问题导学预习教材P7-P10的内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则? 2.向量加法的运算律有哪两个?1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律判断(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( ) (2)两个向量相加实际上就是两个向量的模相加.( ) (3)任意两个向量的和向量不可能与这两个向量共线. ( ) 答案:(1)√ (2)× (3)×已知非零向量a ,b ,c ,则向量(a +c )+b ,b +(a +c ),b +(c +a ),c +(b +a ),c +(a +b )中,与向量a +b +c 相等的个数为( )A .2B .3C .4D .5答案:D如图所示,在平行四边形ABCD 中,AB →=a ,AD →=b ,则AC →+BA →=( )A .aB .bC .0D .a +b答案:B在正方形ABCD 中,|AB →|=1,则|AB →+AD →|=________. 答案: 2平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB →=a +c ,然后作向量BC →=b , 则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ; (3)再作向量OD →=c ; (4)作平行四边形CODE ,则OE →=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合; ②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和.如图,已知向量a ,b ,求作向量a +b .解:(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1). (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2). (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).平面向量的加法运算化简: (1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC → =BC →+CD →+DB → =(BC →+CD →)+DB → =BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.1.下列等式不正确的是( ) ①a +(b +c )=(a +c )+b ; ②AB →+BA →=0; ③AC →=DC →+AB →+BD →. A .②③ B .② C .①D .③解析:选B.由向量的加法运算律知①正确;因为AB →+BA →=0,故②不正确;DC →+AB →+BD →=AB →+BD →+DC →=AC →成立,故③正确.2.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA的中点,化简下列各式:(1)DG →+EA →+CB →; (2)EG →+CG →+DA →+EB →.解:(1)DG →+EA →+CB →=GC →+BE →+CB →=GC →+CB →+BE →=GB →+BE →=GE →. (2)EG →+CG →+DA →+EB →=EG →+GD →+DA →+AE →=ED →+DA →+AE →=EA →+AE →=0.向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|; 两次飞行的位移的和指的是AB →+BC →=AC →. 依题意有|AB →|+|BC →|=800+800=1 600(km),又α=35°,β=55°,∠ABC =35°+55°=90°,所以|AC →|=|AB →|2+|BC →|2=8002+8002=8002(km),其中∠BAC =45°,所以方向为北偏东35°+45°=80°,从而飞机飞行的路程是1 600 km ,两次飞行的位移和的大小为800 2 km ,方向为北偏东80°.1.化简OP →+PQ →+PS →+SP →的结果等于( ) A.QP →B.OQ →C.SP →D.SQ →解析:选B.OP →+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形解析:选D.由AC →=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD 的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →; (2)DE →+BA →.解:(1)延长AC ,在延长线上截取CF =AO , 则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.[A 基础达标]1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( ) A.AB →B.BC →C.CD →D.DA →解析:选A.因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A.2.如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA →+BC →+AB →+DO →=( )A.CD →B.DC →C.DA →D.DO →解析:选B.OA →+BC →+AB →+DO →=DO →+OA →+AB →+BC →=DA →+AB →+BC →=DB →+BC →=DC →. 3.若向量a 表示“向东航行1 km ”,向量b 表示“向北航行 3 km ”,则向量a +b 表示( )A .向东北方向航行2 kmB .向北偏东30°方向航行2 kmC .向北偏东60°方向航行2 kmD .向东北方向航行(1+3)km 解析:选B.如图,易知tan α=13,所以α=30°.故a +b 的方向是北偏东30°.又|a +b |=2 km ,故选B.4.如图所示,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|等于( )A .1B .2C .3D .2 3解析:选B.由正六边形知FE →=BC →, 所以AB →+FE →+CD →=AB →+BC →+CD →=AD →, 所以|AB →+FE →+CD →|=|AD →|=2.故选B.5.(2019·云南曲靖一中检测)已知向量a ,b 皆为非零向量,下列说法不正确的是( ) A .若a 与b 反向,且|a |>|b |,则a +b 与a 同向 B .若a 与b 反向,且|a |>|b |,则a +b 与b 同向 C .若a 与b 同向,则a +b 与a 同向 D .若a 与b 同向,则a +b 与b 同向解析:选B.a 与b 反向,且|a |>|b |,则a +b 与a 同向,所以B 错;a 与b 同向,则a +b 与a 同向,也与b 同向.6.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 答案:AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 解析:在菱形ABCD 中,连接BD ,因为∠DAB =60°,所以△BAD 为等边三角形, 又因为|AB →|=1,所以|BD →|=1, 所以|BC →+CD →|=|BD →|=1. 答案:18.已知平行四边形ABCD ,设AB →+CD →+BC →+DA →=a ,且b 是一非零向量,给出下列结论:①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |. 其中正确的是________.解析:因为在平行四边形ABCD 中,AB →+CD →=0,BC →+DA →=0,所以a 为零向量,因为零向量和任意向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确,②④错误.答案:①③9.根据下列条件,分别判断四边形ABCD 的形状: (1)AD →=BC →;(2)AB →=DC →且|AB →|=|AD →|.解:(1)因为AD →=BC →,所以AD ∥BC ,AD =BC , 所以四边形ABCD 是平行四边形.(2)因为AB →=DC →且|AB →|=|AD →|,所以四边形ABCD 是有一组邻边相等的平行四边形,即四边形ABCD 是菱形.10.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =60°,求|a +b |. 解:如图,因为|OA →|=|OB →|=3,所以四边形OACB 为菱形, 连接OC ,AB ,则OC ⊥AB , 设垂足为D . 因为∠AOB =60°, 所以AB =|OA →|=3. 所以在Rt △BDC 中,CD =332. 所以|OC →|=|a +b |=332×2=3 3.[B 能力提升]11.已知有向线段AB →,CD →不平行,则( ) A .|AB →+CD →|>|AB →| B .|AB →+CD →|≥|CD →| C .|AB →+CD →|≥|AB →|+|CD →| D .|AB →+CD →|<|AB →|+|CD →|解析:选D.由向量加法的几何意义得||a |-|b ||≤|a +b |≤|a |+|b |,等号当且仅当a ,b 共线的时候取到,所以本题中,|AB →+CD →|<|AB →|+|CD →|.12.若P 为△ABC 的外心,且P A →+PB →=PC →,则∠ACB =______.解析:因为P A →+PB →=PC →,则四边形APBC 是平行四边形. 又P 为△ABC 的外心, 所以|P A →|=|PB →|=|PC →|.因此∠ACB =120°. 答案:120°13.如图,已知△ABC 是直角三角形且∠A =90°,则下列结论中正确的是________.①|AB →+AC →|=|BC →|; ②|AB →+CA →|=|BC →|; ③|AB →|2+|AC →|2=|BC →|2.解析:①正确.以AB ,AC 为邻边作▱ABDC ,又∠A =90°,所以▱ABDC 为矩形,所以AD =BC , 所以|AB →+AC →|=|AD →|=|BC →|. ②正确.|AB →+CA →|=|CB →|=|BC →|.③正确.由勾股定理知|AB →|2+|AC →|2=|BC →|2. 答案:①②③14.如图,已知向量a ,b ,c ,d .(1)求作a +b +c +d ;(2)设|a|=2,e 为单位向量,求|a +e|的最大值.解:(1)在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,CD →=d ,则OD →=a +b +c +d .(2)在平面内任取一点O ,作OA →=a ,AB →=e ,则a +e =OA →+AB →=OB →, 因为e 为单位向量,所以点B 在以点A 为圆心的单位圆上(如图所示),由图可知当点B 在点B 1时,O ,A ,B 1三点共线, |OB →|即|a +e |最大,最大值是3.[C 拓展探究]15.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,要使整个系统处于平衡状态,两根绳子的拉力为多少?解:如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N.所以|OA →|=|OC →|cos 30°=150 3(N), |OB →|=|OC →|cos 60°=150(N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算问题导学预习教材P11-P12的内容,思考以下问题: 1.a 的相反向量是什么? 2.向量减法的几何意义是什么?1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可. (3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |.判断(正确的打“√”,错误的打“×”) (1)两个相等向量之差等于0.( ) (2)两个相反向量之差等于0.( ) (3)两个向量的差仍是一个向量.( )(4)向量的减法实质上是向量的加法的逆运算.( ) 答案:(1)√ (2)× (3)√ (4)√在平行四边形ABCD 中,下列结论错误的是( ) A.AB →-DC →=0 B.AD →-BA →=AC → C.AB →-AD →=BD → D.AD →+CB →=0答案:C设b 是a 的相反向量,则下列说法一定错误的是( ) A .a 与b 的长度相等 B .a ∥bC .a 与b 一定不相等D .a 是b 的相反向量在平行四边形ABCD 中,向量AB →的相反向量为________. 答案:BA →,CD →向量的减法运算化简下列各式: (1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB →.(2)法一:原式=DB →-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法1.下列四个式子中可以化简为AB →的是( )①AC →+CD →-BD →;②AC →-CB →;③OA →+OB →;④OB →-OA →. A .①④ B .①② C .②③ D .③④解析:选A.因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以①正确,排除C ,D ;因为OB →-OA →=AB →,所以④正确,排除B.故选A.2.化简下列向量表达式: (1)OM →-ON →+MP →-NA →; (2)(AD →-BM →)+(BC →-MC →).解:(1)OM →-ON →+MP →-NA →=NM →+MP →-NA →=NP →-NA →=AP →.(2)(AD →-BM →)+(BC →-MC →)=AD →+MB →+BC →+CM →=AD →+(MB →+BC →+CM →)=AD →+0=AD →.向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD , 则AD →=b -c ,所以OD →=OA →+AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b , 连接OB ,则OB →=a +b ,再作OC →=c ,连接CB , 则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA →=a ,AB →=b ,连接OB , 则OB →=a +b ,再作CB →=c ,连接OC , 则OC →=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可. (2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.如图,已知向量a ,b ,c ,求作向量a -b -c .。
高中数学 第二章 平面向量本章整合学案 新人教A版必修
第二章 平面向量本章整合知识网络专题探究专题一 向量的基本运算及几何意义向量的运算有:加法、减法、数乘及两个向量的数量积,进行向量的运算常见的方法有两种:定义法和坐标法.(1)在定义运算中,要会根据题意寻找或画出三角形或平行四边形,利用三角形法则或平行四边形法则,结合平面向量的基本定理求解.(2)如果条件是坐标的向量,则直接进行运算.如果向量在含有垂直关系的几何图形中给出,则可以建系利用坐标进行向量的运算,从而转化为实数的运算求解.【例1】 如图,在边长为2的菱形ABCD 中,∠BAD =60°,E 为BC 的中点,则AE u u u r ·BDu u u r=()A .-3B .0C .-1D .1解析:方法一:AE u u u r =AB u u u r +BE u u u r =AB u u u r +12BC uuur , 所以AE u u u r ·BD u u u r =12AB BC ⎛⎫+ ⎪⎝⎭u u u r u u u r ·BD u u u r=AB u u u r ·BD u u u r +12BC uuu r ·BD u u u r=|AB u u u r |·|BD u u u r |cos 120°+12|BC uuur |·|BD u u u r |cos 60°=-12×2×2+12×2×2×12=-1. 方法二:∵ABCD 为菱形,∴AC ⊥BD .以AC ,BD 所在直线为坐标轴建立如图所示的平面直角坐标系,则由菱形ABCD 的边长为2,∠BAD =60°,得A (,0),B (0,-1),C0),D (0,1),中点E 12⎫-⎪⎪⎝⎭,则AE u u u r=12⎫-⎪⎪⎝⎭,BD u u u r=(0,2),∴AE u u u r ·BD u u u r=12×2=-1.答案:C专题二 向量的模向量的模,即向量的大小,也就是用来表示向量的有向线段的长度.向量的模不仅是研究向量的一个重要的量,而且是利用向量方法解决几何问题的一个“交汇”点.因此,我们必须熟练掌握求向量的模的基本方法.一般地,求向量的模主要是利用公式|a|2=a2将它转化为向量的数量积问题,利用数量积的运算律和运算性质进行展开、合并,使问题得以解决.或利用公式|a|【例2】若a,b,c均为单位向量,且a·b=0,则|a+b-c|的最小值为( )-1 B.1 +解析:|a+b-c|2=a2+b2+c2+2a·b-2a·c-2b·c=3-2(a+b)·c,因为a·b=0,且|a|=|b|=|c|=1,所以|a+b|,所以(a+b)·c=|a+b||c|cos〈a+b,c cos〈a+b,c〉.所以|a+b-c|2=3-cos〈a+b,c〉.所以当cos〈a+b,c〉=1时,|a+b-c|2最小为|a+b-c|2=3-=-1)2,即|a+b-c|-1.选A.答案:A【例3】设|a|=|b|=1,|3a-2b|=3,求|3a+b|的值.解法一:∵|3a-2b|=3,∴9a2-12a·b+4b2=9.又|a|=|b|=1,∴a·b=13.故|3a+b|解法二:设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=x22+y22=1.∵3a-2b=(3x1-2x2,3y1-2y2),∴|3a-2b| 3.∴x1x2+y1y2=13.∴|3a+b|专题三 向量的夹角求向量a ,b 夹角θ的步骤:①求|a |,|b |,a ·b ;②求cos θ=·||||a ba b (夹角公式);③结合θ的范围[0,π]求出θ.因此求向量的夹角应先求向量夹角的余弦值,再结合夹角的范围确定夹角的大小.【例4】 若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A.6π B.3πC.23π D.56π 解析:由|a +b |=|a -b |,得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0. 由|a +b|=2|a|,得a 2+2a·b +b 2=4a 2,即b 2=3a 2, 所以|b|所以(a +b )·a =a 2+a·b =|a|2. 所以向量a +b 与a 的夹角的余弦值为cos θ=||||(+)⋅+⋅a b a a b a =||||⋅2a 2a a =12,所以θ=3π,选B. 答案:B【例5】 已知在直角梯形ABCD 中,AB ∥DC ,AD ⊥AB ,AB =4,AD =CD =2,E ,F 分别为BC ,CD 的中点,则∠EAF =__________.解析:如图建立平面直角坐标系,则A (0,0),B (4,0),C (2,2),D (0,2),∴E (3,1),F (1,2),则AE u u u r =(3,1),AF u u u r=(1,2),∴cos ∠EAF =AE AFAE AF⋅⋅u u u r u u u r u u u r u u u r∵0<∠EAF <2π,∴∠EAF =4π. 答案:4π 专题四 向量的共线与垂直及应用 已知非零向量a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0(λ∈R ); a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.因此证明a ∥b ,只需要证明a =λb 或x 1y 2-x 2y 1=0(λ∈R );已知a ∥b ,则必有a =λb ,x 1y 2-x 2y 1=0(λ∈R ).证明a ⊥b ,只需证明a ·b =0或x 1x 2+y 1y 2=0;已知a ⊥b ,则必有a ·b =0,x 1x 2+y 1y 2=0.【例6】 如图,AB u u u r=(6,1),BC uuu r =(x ,y ),CD uuu r =(-2,-3).(1)若BC uuu r ∥DA u u u r,求x 与y 之间的关系式;(2)若在(1)的条件下,又有AC u u u r ⊥BD u u u r,求x ,y 的值及四边形ABCD 的面积.解:(1)∵AD u u u r =AB u u u r +BC uuur +CD uuu r =(6,1)+(x ,y )+(-2,-3)=(x +4,y -2), ∴DA u u u r =-AD u u u r=(-x -4,2-y ).又∵BC uuu r ∥DA u u u r ,BC uuur =(x ,y ),∴x (2-y )-y (-x -4)=0,即x +2y =0.(2) AC u u u r =AB u u u r +BC uuur =(6,1)+(x ,y )=(x +6,y +1),BD u u u r =BC uuur +CD uuu r =(x ,y )+(-2,-3)=(x -2,y -3), ∵AC u u u r ⊥BD u u u r ,∴AC u u u r ·BD u u u r =0.即(x +6)(x -2)+(y +1)(y -3)=0.又x +2y =0,∴(6-2y )(-2y -2)+(y +1)(y -3)=0, 化简得y 2-2y -3=0.∴y =3或y =-1.当y =3时,x =-6.∴BC uuu r =(-6,3),AC u u u r =(0,4),BD u u u r=(-8,0). |AC u u u r |=4,|BD u u u r|=8.∴S 四边形ABCD =12|AC u u ur |·|BD u u u r |=16.当y =-1时,x =2.∴BC uuu r =(2,-1),AC u u u r =(8,0),BD u u u r=(0,-4). |AC u u u r |=8,|BD u u u r|=4.∴S 四边形ABCD =12|AC u u ur |·|BD u u u r |=16.综上,63x y ⎧⎨⎩=-,=或21x y ⎧⎨⎩=,=-,S 四边形ABCD =16.。
高中数学 第二章 平面向量 2.2 向量的线性运算小结导学案(无答案)新人教A版必修4(2021年
山东省平邑县高中数学第二章平面向量2.2 向量的线性运算小结导学案(无答案)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省平邑县高中数学第二章平面向量2.2 向量的线性运算小结导学案(无答案)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省平邑县高中数学第二章平面向量2.2 向量的线性运算小结导学案(无答案)新人教A版必修4的全部内容。
2。
2向量的线性运算小结【学习目标】1.掌握向量加法的平行四边形法则及加减法的三角形法则.2.理解学会共线向量定理在平面几何图形中的应用.【新知自学】知识梳理:1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的加法与减法加法:(1)定义:求两个向量和的运算(2)法则(或几何意义):三角形法则平行四边形法则(3)运算律:交换律:a+b=b+a.结合律:(a+b)+c=a+(b+c)减法:(1)定义:向量a加上向量b的相反向量,叫做a与b的差,即a+(-b)=a-b(2)法则(或几何意义):三角形法则(3)运算律:a-b=a+(-b)3.向量的数乘运算及其几何意义(1)定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa =0.(2)运算律:设λ,μ是两个实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.4.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.感悟:1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.2.在△ABC中,若D为BC的中点,则错误!=错误!(错误!+错误!).3。
高中数学第二章平面向量章末小结与测评教学案新人教版
第二章平面向量1.平面向量的线性运算及运算律(1)向量加法是由三角形法则定义的,要点是“首尾相连”,即向量加法的平行四边形法则:将两向量移至共起点,分别为邻边作平行四边形,则同起点对角线的向量即为向量的和.加法满足交换律、结合律.(2)向量减法实质是向量加法的逆运算,是相反向量的作用.几何意义有两个:一是以减向量的终点为起点,被减向量的终点为终点的向量;二是加法的平行四边形法则的另外一条对角线的向量.注意两向量要移至共起点.(3)数乘运算即通过实数与向量的乘积,实现同向或反向上向量长度的伸缩变换.2.向量共线及平面向量基本定理(1)共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 共线向量定理是证明平行的主要依据,也是解决三点共线问题的重要方法. 特别地,平面内一点P 位于直线AB 上的条件是存在实数x ,使,或对直线外任意一点O ,有(2)平面向量基本定理:如果向量e 1,e 2不共线,那么对于平面内的任一向量a ,有且只有一对实数 λ1,λ2,使a =λ1e 1+λ2e 2.其中e 1,e 2是平面的一组基底,e 1,e 2分别称为基向量.由定理可知,平面内任一向量都可以用两个不共线的向量表示出来,而且任意两个不共线的非零向量都可以作为基底.[典例1] 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是DA 、BC 的中点,且DCAB=k ,设=e 1,=e 2,以e 1、e 2为基底表示向量、[对点训练](3)确定点P 在边BC 上的位置.所以⎩⎪⎨⎪⎧1-λ=13μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以⎩⎪⎨⎪⎧-m =n 5-1,m =2n 5,解得⎩⎪⎨⎪⎧m =23,n =53.即BP PC=2,P 是边BC 上靠近C 的三等分点.若a =(a 1,a 2),b =(b 1,b 2),则 ①a +b =(a 1+b 1,a 2+b 2);②a -b =(a 1-b 1,a 2-b 2); ③λa =(λa 1,λa 2); ④a ·b =a 1b 1+a 2b 2;⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0); ⑥a ⊥b ⇔a 1b 1+a 2b 2=0; ⑦|a |=a ·a =a 21+a 22; ⑧若θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22. [典例2] (1)已知点A (1,3),B (4,-1),则与向量同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 (2)已知向量a =(1,m ),b =(m ,2), 若a ∥b, 则实数m 等于( ) A .- 2 B. 2 C .-2或 2 D .0(3)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量在方向上的投影为( )A.322 B.3152C .-322D .-3152解析:(1)由已知,得=(3,-4),所以||=5,因此与同方向的单位向量是15=⎝ ⎛⎭⎪⎫35,-45.(2)a ∥b 的充要条件的坐标表示为1×2-m 2=0,∴m =±2,选C. (3)=(2,1),=(5,5),向量=(2,1)在=(5,5)上的投影为||cos,=||答案:(1)A (2)C (3)A [对点训练]2.(1)若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A .13B .-13C .9D .-9(2)已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120°D .150° 解析:(1) =(-8,8),=(3,y +6).∵∥,∴-8(y +6)-24=0.∴y =-9.(2)a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又θ∈[0°,180°],所以θ=120°. 答案:(1)D (2)C1.两向量的数量积及其运算律两个向量的数量积是a ·b =|a ||b |cos θ,θ为a 与b 的夹角,数量积满足运算律: ①与数乘的结合律,即(λa )·b =λ(a ·b ); ②交换律,即a ·b =b ·a ;③分配律,即(a +b )·c =a ·c +b ·c .2.平面向量的数量积是向量的核心内容,向量的平行、垂直是向量中最基本、最重要的位置关系,而向量的夹角、长度是向量的数量特征.3.利用向量的数量积可以证明两向量垂直、平行,求两向量的夹角,计算向量的长度等.[典例3] 已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.解:∵c =(-23,2),∴|c |=4. ∵a ⊥c ,∴a ·c =0.∵b·c =|b ||c |cos 2π3=|b |×4×⎝ ⎛⎭⎪⎫-12=-4,∴|b |=2.∵c =m a +n b ,∴c 2=m a ·c +n b ·c . ∴16=n ×(-4).∴n =-4. 在c =m a +n b 两边同乘以a , 得0=8m -4a ·b .①在c =m a +n b 两边同乘以b ,得m a ·b =12.② 由①②,得m =± 6.∴a ·b =±26.∴cos θ=±2622×2=±32.∴θ=π6或5π6.[对点训练]3.如图,在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则的最小值是________.答案:-2(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )解析:选B ∵== .2.已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b=( ) A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)解析:选B ∵a∥b,∴-21=m2,∴m=-4,∴b=(-2,-4),∴2a+3b=2(1,2)+3(-2,-4)=(-4,-8).3.已知平面向量a=(1,-3),b=(4,-2),若λa+b与a垂直,则λ的值是( ) A.-1 B.1 C.-2 D.2解析:选A 由题意可知(λa+b)·a=λa2+b·a=0.∵|a|=10,a·b=1×4+(-3)×(-2)=10,∴10λ+10=0,λ=-1.4.若|a|=2,|b|=2,且(a-b)⊥a,则a与b的夹角是( )A.π6B.π4C.π3D.π2解析:选B 由于(a-b)⊥a,所以(a-b)·a=0,即|a|2-a·b=0,所以a·b=|a|2=2,所以 cos〈a,b〉=a·b|a||b|=222=22,即a与b的夹角是π4.A.12B.-12C.32D.-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10.A .内心B .外心C .垂心D .重心∴P 是△ABC 的垂心.8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( )A .0 B.π4 C.π2 D.3π4解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2×1+1×2=0, ∴b ⊥c .9.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23bB.23a +43bC.23a -43b D .-23a +43bA.⎝ ⎛⎭⎪⎫0,π3B.⎝ ⎛⎭⎪⎫π3,5π6C.⎝⎛⎭⎪⎫π2,2π3 D.⎝ ⎛⎭⎪⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .4解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2, 所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ),都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________.解析:因为a +b =(x ,x +2),所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________.解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1答案:[1,4]三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1×(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α.解:(1)证明:由题意,得a +b =⎝⎛⎭⎪⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32, 因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1, 所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π,所以α=π6或α=7π6.19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3×4×cos 120°=-6,=12a 2+⎝ ⎛⎭⎪⎫1-112a ·b -16b 2=12×32+1112×(-6)-16×42 =-113.20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝ ⎛⎭⎪⎫23b -a =13b 2-12a 2-16a ·b =13-12-16×1×1×12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4.21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎪⎫0≤θ≤π2.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k.由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线,∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k-1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面向量章末小结【本章知识体系】
【题型归纳】
专题一、平面向量的概念及运算
包含向量的有关概念、加法、减法、数乘。
向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。
利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
1、1.AB →+AC →-BC →+BA →化简后等于( )
A .3A
B → B.AB →
C.BA →
D.CA →
2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( )
A .a +b +c +d =0
B .a -b +c -d =0
C .a +b -c -d =0
D .a -b -c +d =0
3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点,
则DE →·DF →=( )
A .-3
B .-4
C .-8
D .-6
4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a ,
b 为基底时,AC →可表示为________,在以a ,
c 为基底时,AC →可表示为
________.
5、下列说法正确的是( )
A .两个单位向量的数量积为1
B .若a ·b =a ·c ,且a ≠0,则b =c
C .AB →=OA →-OB →
D .若b⊥c ,则(a +c )·b =a ·b
专题二、平面向量的坐标表示及坐标运算
向量的坐标表示及运算强化了向量的代数意义。
若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。
6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )
A .1 B. 2
C .2
D .4
7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( )
A .(2,6)
B .(-2,6)
C .(2,-6)
D .(-2,-6)
8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理
平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。
9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )
A.43a +23b
B.23a +43
b C.23a -43b D .-23a +43
b
10、在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的等价条件
为存在唯一的实数λ,使得OC →=λOA →+(1-λ)OB →成立,此时称实数λ为“向量OC →关于OA →和
OB →的终点共线分解系数”.若已知P 1(3, 1),P 2(-1,3),且向量OP 3→与向量a =(1,1)垂直,
则“向量OP 3→关于OP 1→和OP 2→的终点共线分解系数”为( )
A .-3
B .3
C .1
D .-1
11、已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →=0,
(1)用OA →,OB →表示OC →;
(2)若点D 是OB 的中点,证明四边形OCAD 是梯形.
解:
12、如图,平行四边形ABCD 中,AB →=a ,AD →=b ,H 、M 是AD 、DC 的中点,BC 上点F 使
BF =13
BC . (1)以a 、b 为基底表示向量AM →与HF →;
(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求AM →·HF →.
专题四、平面向量的数量积
求平面向量的数量积的方法有两个:一个是根据数量积的定义a ·b =|a ||b |cos θ,其中θ为向量a ,b 的夹角;另一个是根据坐标法,坐标法是a =(1x ,1y ),b =(2x ,2y )时,a ·b =1x 2x +1y 2y 。
利用数量积可以求长度,也可判断直线与直线的关系(相交的夹角以及垂直),还可以通过向量的坐标运算转为代数问题解决.
13、在直角坐标系xOy 中,AB →=(2,1),AC →=(3,k ),若三角形ABC 是直角三角形,则
k 的可能值个数是( )
A .1
B .2
C .3
D .4
14、A ,B ,C ,D 为平面上四个互异点,且满足(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC
的形状是( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形
15、已知|a |=3,|b |=4,|c |=23,且a +b +c =0,则a ·b +b ·c +c ·a =________.
16.已知|a |=1,|b |=1,a 与b 的夹角为120°,则向量2a -b 在向量a +b 方向上的投影为________.
17.如图所示,在正方形ABCD 中,已知|AB →|=2,若N 为正方形内(含边界)任意一点,
则AB →·AN →的最大值是________.
18、设平面上向量a =(cos α,sin α)(0≤α<2π),b =(-12,32
),a 与b 不共线. (1)证明向量a +b 与a -b 垂直; (2)当两个向量3a +b 与a -3b 的模相等时,求角α.
19、已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2) a 与b 的夹角为钝角.
专题五、平面向量的应用
用向量的方法研究代数问题与一些几何问题,往往能有一种简易的奇妙效果,关键是建立几何与向量问题的联系,利用向量的运算。
20、如图,在平行四边形ABCD 中,E 为对角线BD 上的一点,且BE :ED=2:3,连接CE 并延长交AB 与F ,求AF :FB 的值。
21、在平面直角坐标系中,A (1,1)、B (2,3)、C (s ,t )、P (x ,y ),△ABC 是等腰直角三
角形,B 为直角顶点.(1)求点C (s ,t );(2)设点C (s ,t )是第一象限的点,若AP →=AB →-mAC →,
m ∈R ,则m 为何值时,点P 在第二象限?。