三角函数(无答案)

合集下载

高中数学第1章三角函数8三角函数的周期性教学案无答案苏教版必修4

高中数学第1章三角函数8三角函数的周期性教学案无答案苏教版必修4

江苏省泰兴中学高一数学教学案(44) 必修4_01 三角函数的周期性班级 姓名目标要求1.了解周期函数的概念,会判断一些简单的、常见函数的周期性; 2.会求一些简单的三角函数的周期. 重点难点重点: 三角函数的周期性; 难点: 周期函数的概念 教学进程: 一、问题情境问题:一、(1)终边相同的角的转变有“周而复始”的转变规律吗?(2)物理中的圆周运动的规律如何呢? 二、用三角函数线研究正弦、余弦函数值:每当角增加(或减少)π2,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也别离相同,即有:_________________________;__________________________. 这种性质咱们就称之为周期性.二、数学建构一、周期函数的概念:一般地,对于函数)(x f ,若是存在一个非零的常数T ,使得概念域内的每一个值x ,都知足_______________________,那么函数就叫做______________, 非零常数T 叫做这个函数的_____________________. 说明:(1)T 必需是常数,且不为零;(2)对周期函数来讲()()f x T f x +=必需对概念域内的任意x 都成立. 二、最小正周期的概念:3、(1)一个周期函数的周期有_________个.(2)试举出没有最小正周期的周期函数:___________________________________. 练习:(1)3x π=时,2sin()sin 3x x π+=是不是成立?________76x π=呢? _________ (2) 若是(1)中的等式不成立,可否说23π不是正弦函数sin y x =的一个周期?若是(1)中的等式成立,可否说23π是正弦函数sin y x =的一个周期?为何?三、典例剖析例1 若钟摆的高度()h mm 与时间()t s 之间的函数关系如图所示,(1)求该函数的周期; (2)求10t s =时钟摆的高度.例2 求下列函数的周期. (1)x x f 2cos )(=(2)1()2cos()24f x x π=-(3)|sin |)(x x f =(4)若函数)5sin(2)(π+=kx x f 的最小正周期为π32,求正数k 的值.1例3 若函数)(x f 的概念域为R ,且对一切实数x ,都有)()(x f x f =-,且)2()2(x f x f -=+,试证明)(x f 为周期函数,并求出它的一个周期.例4 已知函数)(x f 是概念域为R 的奇函数,它的图像关于直线1=x 对称(1)求:)0(f (2)证明函数)(x f 为周期函数(3)若函数10,sin )(≤<=x x x f 求:]3,1[-∈x 上函数)(x f 的解析式.四、课堂练习一、 判断下列命题的真假: (1) f (x )=sin x+x 是周期函数; (2) g (x )=3是周期函数;(3) h (x )=sin(2x+3)不是周期函数;(4) u (x )=sin(-x )不是周期函数. 二、设()f x 是概念域为R ,最小正周期为32π的函数,若cos (0)()2sin (0)x x f x x x ππ⎧-≤≤⎪=⎨⎪≤≤⎩,则15()4f π-的值等于 .(假)3、 若函数f (x )是周期为4的奇函数,且f (1)=3,求f (2015)的值.五、课堂小结1. 函数的周期性是函数的全局性质,因此必然要强调f (x+T )=f (x )对概念域中的任意x 都要成立;函数的周期性反映了函数图象的周而复始的转变趋势.2. 掌握正弦函数、余弦函数、正切函数的周期.3. 一般地,函数sin()y A x ωϕ=+及cos()y A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期T = ,当0ω<时,T = .江苏省泰兴中学高一数学作业(44)班级 姓名 得分一、指出下列函数的最小正周期:(1)3sin4x y = (2)cos4y x = (3)13sin()24y x π=+ 二、函数2cos()3y x πω=-的最小正周期是4π,则正数ω=3、函数)(x f 是概念在R 上的周期为3的奇函数,且2)1(=f ,则=)5(f ________.4、若函数()sin ()6f x x x Z π=∈,则(1)(2)(3)(2009)f f f f ++++=五、函数()2cos()543kx f x π=+-的最小正周期不大于2,则正整数k 的最小值_____六、已知函数()sin()12f x x ππ=--,则该函数的周期为_______,奇偶性为________7、()f x 是概念在R 上的奇函数,概念最小正周期为T ,则()2T f -的值为______ 八、若弹簧振子对平衡位置的位移x(cm)与时间t(s)之间的关系如图所示: (1)求该函数的周期;(2)求t=时弹簧振子对平衡位置的位移.九、函数3sin()3y kx π=+的最小正周期T 知足T (1,3)∈,求正整数k .10、概念在R 上的偶函数()f x 知足(1)()f x f x +=-,且在[3,2]--上是减函数.若84841201x x ≤<≤,试比较1()f x 与2()f x 的大小.1一、设有函数()sin()3f x a kx π=-和函数()cos(2)(0,0,0)6g x b kx a b k π=->>>,若它们的最小正周期之和为32π,且()(),()()12244f g f ππππ==-,求这两个函数的解析式.1二、证明:若函数R x x f y ∈=),(知足()()()( ++-=a x f a x f x f 常数)+∈R a ,则)(x f 是周期函数,且a 6是它的一个周期.。

高中数学 第一章 三角函数练习(无答案)新人教A版必修4(2021年整理)

高中数学 第一章 三角函数练习(无答案)新人教A版必修4(2021年整理)

【课堂练习】
1.比较4o与4rad角的大小
2.若两个角的差为1弧度,它们的和为1°,则这两个角的大小分别为___________.
003§1。2.1 任意角的三角函数(一)
【典型例题】
例1.已知角α的终边过点(2a,-3a)(a≠0),求sina、cosa、tana的值.
变式:已知角 终边上一点 ,且 ,求cosa的值.
第一章 三角函数
§1。1.1任意角
【典型例题】
例1.写出与下列各角终边相同的角的集合S,并把S中适合不等式—3600≤β<7200的元素β写出来:
(1)60°;(2)—21°;(3)-843o10′
变式:在0°到360°范围内, 找出与-2046°24′角终边相同的角, 并判断它是第几象限的角?
例2.若 是第二象限角,则 , 分别是第几象限的角?
【课堂练习】
1.证明:函数 的一个周期为 .
2.已知函数f(x+2)=f(x),且xÎ[0,1]时,f(x)=2x, 求f(log26)的值.
§1.4.2 正、余弦函数的性质(二)(总第10课时)
【 典型例题】
例1.判断下列函数的奇偶性。
(1)y=sin( ); (2) .
例2.求下列函数的单调增区间
(1) ;(2)y= sin( ).
变式:求 的单调减区间.
例3.求下列函数的最值
(1)y=2sin(2x+ )(xÎ[0, ];(2)y=cos2x-4sinx+5.
【课堂练习】
1.已知函数y=sin(x+j)(0<j〈p)的图象关于y轴对称,求j的值。
2.比较sin1与sin2的大小.【提示:放在同 一个单调区间上】

三角函数答案

三角函数答案

三角函数1.已知5cos13θ=-,θ为第二象限角,则tanθ=.【答案】-12 5【解析】因为cos θ=-513,θ为第二象限角,所以sin θ=1213,所以tan θ=-125.2.求值:(tan3°+1)(tan42°+1)=.【答案】2【解析】原式=tan3°tan42°+tan3°+tan42°+1=tan3°tan42°+tan(3°+42°)(1-tan3°tan42°)+1=2.3.若1sin64xπ⎛⎫+=⎪⎝⎭,则5sin6xπ⎛⎫-⎪⎝⎭2sin3xπ⎛⎫+-⎪⎝⎭=.【答案】19 16【解析】因为5sin6xπ⎛⎫-⎪⎝⎭=sinππ-6x⎡⎤⎛⎫+⎪⎢⎥⎝⎭⎣⎦=sinπ6x⎛⎫+⎪⎝⎭=14,2 sin3xπ⎛⎫+-⎪⎝⎭=sin2π26xπ⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦=cos2π6x⎛⎫+⎪⎝⎭=1516,故原式=1916.4.若1cos33πα⎛⎫-=⎪⎝⎭,则sin26πα⎛⎫-=⎪⎝⎭.【答案】-7 9【解析】令β=α-π3,则cos β=13,α=β+π3,从而2α-π6=2β+π2,因此sin π2-6α⎛⎫ ⎪⎝⎭=sin π22β⎛⎫+ ⎪⎝⎭=cos 2β=2cos 2β-1=2×213⎛⎫ ⎪⎝⎭-1=-79.5.函数sin 24y x π⎛⎫=-⎪⎝⎭,x ∈0,2π⎡⎤⎢⎥⎣⎦的值域是 ;单调增区间为【答案】1⎡⎤⎢⎥⎣⎦ ;30,8π⎡⎤⎢⎥⎣⎦, 【解析】因为x ∈0,2π⎡⎤⎢⎥⎣⎦,所以2x ∈[0,π],所以2x -π4∈π3π-44⎡⎤⎢⎥⎣⎦,,所以-≤sin π2-4x ⎛⎫ ⎪⎝⎭≤1.6.将函数y =3sin2x 的图象向左平移8π个单位长度后,所得图象的函数解析式为 .【答案】y =3sinπ24x ⎛⎫+ ⎪⎝⎭ 【解析】函数y =3sin 2x 的图象向左平移π8个单位长度后,得到y =3sin π28x ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦, 即y =3sinπ24x ⎛⎫+ ⎪⎝⎭的图象.7.已知函数f (x )= sin 26x π⎛⎫+⎪⎝⎭,若(),(0)2y f x πϕϕ=-<<是偶函数,则ϕ= .【答案】π3【解析】因为y =f (x -φ)=sin π2-26x ϕ⎛⎫+ ⎪⎝⎭为偶函数,所以-2φ+π6=k π+π2,k ∈Z ,φ=-π2k -π6,k ∈Z .因为φ∈π02⎛⎫ ⎪⎝⎭,,所以k =-1,φ=π3.8.已知将函数yx +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 .【答案】π6【解析】因为函数ycos x +sin x =2sin π3x ⎛⎫+ ⎪⎝⎭的图象向左平移m (m >0)个单位长度后所得图象的函数解析式是y =2sin π3x m ⎛⎫++ ⎪⎝⎭,由于函数y =2sin x 的图象至少向左平移π2个单位长度后才可得到关于y 轴对称的图象,所以m +ππ32的最小值是,故m 的最小值为π6. 9.已知tan α=2.则tan 4πα⎛⎫+⎪⎝⎭= ;sin 2α= . 【分析】(1) 由两角和的正切公式展开,代入数值,即可求得tan π4α⎛⎫+ ⎪⎝⎭的值. (2) 先利用二倍角的正、余弦公式及平方关系把式子整理成齐次式,然后分子、分母都除以cos 2α,再代入数值求值即可.【解答】(1) 由题意得,tan π4α⎛⎫+ ⎪⎝⎭=πtan tan4π1-tan tan 4αα+=tan 11-tan αα+=211-2+=-3. (2) 4510.已知α,β∈(0,π),且tan α=2,cos β=10-. 则cos2α的值为 ;2α-β的值为 .【分析】(1) 利用二倍角的余弦公式,再找出它与tan α之间的关系.(2) 要求一个角的大小,首先尽量缩小这个角的范围,再求出这个角的一个三角函数值,从而得出角的大小.【解答】(1) cos2α=cos 2α-sin 2α=2222cos -sin cos sin αααα+=221-tan 1tan αα+.因为tan α=2,所以221-tan 1tan αα+=1-414+=-35,所以cos2α=-35.(2) 因为α∈(0,π),且tan α=2,所以α∈π2⎛⎫⎪⎝⎭,.由(1)知cos2α=-35,所以2α∈ππ2⎛⎫⎪⎝⎭,,sin2α=45.因为β∈(0,π),cosβ=-,所以sinβ=,β∈ππ2⎛⎫⎪⎝⎭,,所以sin(2α-β)=sin2αcosβ-cos2αsinβ=45×⎛⎝⎭-3-5⎛⎫⎪⎝⎭×=-.又因为2α-β∈ππ-22⎛⎫⎪⎝⎭,,所以2α-β=-π4.【点评】本题考查同角三角函数的基本关系式,二倍角的余弦公式与两角和与差的三角函数公式的应用.由条件α,β∈(0,π),且tanα=2,cosβ=-,得2α∈ππ2⎛⎫⎪⎝⎭,,β∈ππ2⎛⎫⎪⎝⎭,,得2α-β∈ππ-22⎛⎫⎪⎝⎭,.通过计算sin(2α-β)的值,从而得到2α-β的值.11.如图,在平面直角坐标系x O y中,点A,B,C均在单位圆上,已知点A在第一象限且横坐标是35,点B在第二象限,点C(1,0).(例1)(1) 设∠COA=θ,求sin 2θ的值;(2) 若△AOB为正三角形,求点B的坐标.【分析】由于点A,B是单位圆上的点,利用三角函数的定义可以知道点A(cos θ,sinθ),则cos θ=35,再用二倍角公式,就可求出sin 2θ的值.点B(cos(θ+60°), sin(θ+60°))用和角公式求解即可.【解答】(1) 由题设得cos θ=35.因为点A 在单位圆上且在第一象限,所以sin θ=45,所以sin 2θ=2sin θcos θ=2425.(2) 因为△AOB 为正三角形, 所以∠BOC=∠AOC+60°=θ+60°,所以cos ∠BOC=cos(θ+60°)=cos θcos 60°-sin θsin 60°=,sin ∠BOC=sin(θ+60°)=sin θcos 60°+cos θsin 60°=,所以点B的坐标为⎝⎭.12.已知函数()sin()(0,0,)22f x A x A ππωφωφ=+>>-<<的部分图象如图所示.(例3)(1) 求函数f (x )的解析式; (2) 若()32f α=,求sin 26πα⎛⎫+ ⎪⎝⎭的值. 【分析】(1) 根据图象写出A ,求出周期T ,从而求出ω,再由五点中的第二点求出φ.(2)由f (α)=32,得sin π-6α⎛⎫ ⎪⎝⎭=34,找出角α-π6与2α+π6的关系,用倍角公式求出sinπ26α⎛⎫+ ⎪⎝⎭. 【解答】(1) 由图可知,A=2,T=2π,故ω=1, 所以f (x )=2sin(x +φ).又f 2π3⎛⎫ ⎪⎝⎭=2sin 2π3ϕ⎛⎫+ ⎪⎝⎭=2,且-π2<φ<π2, 故φ=-π6,于是f (x ) =2sin π-6x ⎛⎫ ⎪⎝⎭.(2) 由f (α)=32,得sin π-6α⎛⎫ ⎪⎝⎭=34,所以sin π26α⎛⎫+ ⎪⎝⎭=sin π2-62πα⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ =cosπ26α⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦ =1-2sin 2π-6α⎛⎫ ⎪⎝⎭=1-2×234⎛⎫ ⎪⎝⎭=-18.13.已知函数21()sin 22f x x x =(1) 求f (x )的最小正周期和最小值;(2) 将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈[]2ππ,时,求g (x )的值域.【解答】(1) 21()sin 22f x x x ==12sin 2x-(1+cos 2x ) =12sin 2x-cos 2x- =sinπ2-3x ⎛⎫ ⎪⎝⎭-,故f (x )的最小正周期为π,最小值为-.(2) 由条件可知g (x )=sin π-3x ⎛⎫ ⎪⎝⎭-.当x ∈ππ2⎡⎤⎢⎥⎣⎦,时,有x -π3∈π2π63⎡⎤⎢⎥⎣⎦,, 从而sin π1-132x ⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦的值域为,, 所以g (x )=sin π-3x ⎛⎫ ⎪⎝⎭-的值域为⎣⎦. 14.已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间.(I)解:11()cos cos (cos 1)22f x x x x x x ωωωωω=++--+12cos 12x x ωω⎫=--⎪⎪⎝⎭π2sin 16x ω⎛⎫=-- ⎪⎝⎭. 由π1sin 16x ω⎛⎫--⎪⎝⎭≤≤,得π32sin 116x ω⎛⎫--- ⎪⎝⎭≤≤,可知函数()f x 的值域为[31]-,. (II )解:由题设条件及三角函数图象和性质可知,()y f x =的周期为π,又由0ω>,得2ππω=,即得2ω=.于是有π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭,再由πππ2π22π()262k x k k --+∈Z ≤≤, 解得 ππππ()63k x k k -+∈Z ≤≤.所以()y f x =的单调增区间为ππππ63k k ⎡⎤-+⎢⎥⎣⎦,()k ∈Z 【课后检测】三角函数的化简与求值1.已知角α的终边经过点P(x ,-6),且tan 35α=-,则x 的值为 . 2.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数y =sin4x 的图象向 平移 个单位长度.3.已知函数()sin()f x x ωφ=+的图象如图所示,则f (2)= .(第3题)4.函数sin 23y x π⎛⎫=-+⎪⎝⎭的递增区间是 . 5.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin 6y x k πϕ⎛⎫=++ ⎪⎝⎭,据此函数可知,这段时间水深(单位:m )的最大值为 .(第5题)6.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(-ω,ω)内单调递增,且函数f (x )的图象关于直线x =ω对称,则ω的值为 .7.已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且04f π⎛⎫=⎪⎝⎭,其中a ∈R ,θ∈(0,π),则316f π⎛⎫⎪⎝⎭= . 8. 已知函数1π()2sin 36f x x x ⎛⎫=-∈⎪⎝⎭R ,.(1) 求54f π⎛⎫⎪⎝⎭的值; (2) 设,0,2παβ⎡⎤∈⎢⎥⎣⎦,103213f πα⎛⎫+= ⎪⎝⎭,()6325f βπ+=,求cos(αβ+)的值. 9.已知sin(α+β)=513,tan 122α=,且0<α<2π<β<π. (1) 求cos α的值; (2) 求证:sin β >513.10. 如图,在平面直角坐标系x O y 中,以O x 轴为始边作两个锐角α,β,它们的终边分别交单位圆于A ,B 两点.已知A ,B . (1) 求tan(α+β)的值; (2) 求α+2β的值.(第9题)11.如图,在平面直角坐标系x O y 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点P(x 1,y 1),将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点Q(x 2,y 2),记f (α)=y 1+y 2.(11)(1) 求函数f (α)的值域;(2) 设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若fac =1,求b 的值.12设函数f (x )=(sin x +cos x )2+cos 2x . (1) 求函数f (x )最小正周期; (2) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【课后检测答案】三角函数的化简与求值1. 10 【解析】根据三角函数的定义得tan α=-6x =-35,所以x =10.2. 右π12【解析】因为y=sinπ412⎡⎤⎛⎫-⎪⎢⎥⎝⎭⎣⎦x,所以只需将函数y=sin 4x的图象向右平移π12个单位长度即可.3. -【解析】由图知34T=3-1=2,即34×2πω=2,所以ω=3π4.当x=1时,令ωx+φ=π2,所以φ=-π4,所以f(x)=sin3ππ-44⎛⎫⎪⎝⎭x,所以f(2)=sin3ππ2-44⎛⎫⨯⎪⎝⎭=sin5π4=-.4.5π11πππ1212⎡⎤++⎢⎥⎣⎦k k,,k∈Z【解析】函数y=sinπ-23⎛⎫+⎪⎝⎭x的递增区间即为函数y=sinπ2-3⎛⎫⎪⎝⎭x的递减区间.令π2+2kπ≤2x-π3≤3π2+2kπ,所以5π6+2kπ≤2x≤11π6+2kπ,所以5π12+kπ≤x≤11π12+kπ,k∈Z.5. 8【解析】由图象得,当sinπ6ϕ⎛⎫+⎪⎝⎭x=-1时,y min=2,求得k=5,当sinπ6ϕ⎛⎫+⎪⎝⎭x=1时,y max=3×1+5=8,故答案为8.6. 【解析】由f(x)在区间(-ω,ω)内单调递增,且f(x)的图象关于直线x=ω对称,可得2ω≤πω且f(ω)=sin ω2+cos ω2sin2π4ω⎛⎫+⎪⎝⎭=1,所以ω2+π4=π2⇒ω=.7. - 【解析】由题意知f π4⎛⎫ ⎪⎝⎭=(a +1)cosπ2θ⎛⎫+ ⎪⎝⎭=-(a +1)sin θ=0,因为θ∈(0,π),所以sin θ≠0,所以a +1=0,所以a =-1.因为函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,所以f (0)=(a +2)cos θ=cos θ=0.又因为θ∈(0,π),所以θ=π2,所以f (x )=(-1+2cos 2x )cos π22⎛⎫+ ⎪⎝⎭x =-cos 2x ·sin 2x =-12sin 4x ,所以f 3π16⎛⎫ ⎪⎝⎭=-12sin 3π4=-.8. 【解答】(1) 54f π⎛⎫ ⎪⎝⎭=2sin 5π12⎛ ⎝-π6⎫⎪⎭=2sin π4(2) fπ32α⎛⎫+ ⎪⎝⎭=2sin α=1013,所以sin α=513. 因为α∈π02⎡⎤⎢⎥⎣⎦,,所以cos α=1213.f (3β+2π)=2sin π2β⎛⎫+ ⎪⎝⎭=2cos β=65,所以cos β=35.因为β∈π02⎡⎤⎢⎥⎣⎦,,所以sin β=45,所以cos(α+β)=cos αcos β-sin αsin β=35×1213-45×513=1665.9. (1) 因为tan 2α=12,所以tan α=22tan21-tan 2αα=43, 所以22sin 4cos 3sin cos 1.αααα⎧=⎪⎨⎪+=⎩,又α∈π2⎛⎫⎪⎝⎭,,解得cos α=35.(2) 易得π2<α+β<3π2,又因为sin(α+β)=5 13,所以cos(α+β)=-12 13.由(1)可得sin α=4 5,所以sin β=sin[(α+β)-α]=513×35-12-13⎛⎫⎪⎝⎭×45=6365>513.10. (1) 由题意可知cosα=,cosβ=.因为α为锐角,所以sinα>0,所以sinα.同理可得sinβ,所以tanα=7,tanβ=1 2,所以tan(α+β)=tan tan1-tan tanαβαβ+=17211-72+⨯=-3.(2) tan(α+2β)=tan[(α+β)+β]=1-3211-(-3)2+⨯=-1,又因为0<α<π2,0<β<π2,所以0<α+2β<3π2,所以α+2β=3π4.11.【解答】(1) 由题意,得y1=sin α,y2=sinπ2α⎛⎫+⎪⎝⎭=cos α,所以f(α)=sin α+cos αsinπ4α⎛⎫+⎪⎝⎭.因为α∈π2⎛⎫⎪⎝⎭,,所以α+π4∈π3π44⎛⎫⎪⎝⎭,,所以f(α)∈(1(2) 因为fπ4 C⎛⎫+⎪⎝⎭又因为C∈π2⎛⎫⎪⎝⎭,,所以C=π4.在△ABC中,由余弦定理得c2=a2+b2-2ab cos C,即1=2+b2b,解得b=1.【点评】本题的意图是引导学生强化对三角函数定义的理解.12. (1) 因为f(x)=sin2x+cos2x+2sin x cos x+cos 2x=1+sin 2x+cos 2xπ24⎛⎫+⎪⎝⎭x+1,所以函数f(x)的最小正周期为π.(2) 由(1)的计算结果知,f(xsinπ24⎛⎫+⎪⎝⎭x+1,当x∈π2⎡⎤⎢⎥⎣⎦,时,2x+π4∈π5π44⎡⎤⎢⎥⎣⎦,,由正弦函数y=sin x在π5π44⎡⎤⎢⎥⎣⎦,上的图象可知,当2x+π4=π2,即x=π8时,f(x)+1;当2x+π4=5π4,即x=π2时,f(x)取最小值为0.综上,f(x)在区间π2⎡⎤⎢⎥⎣⎦,+1,最小值为0.。

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。

但既有联系,又有区别。

定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。

河北省高碑店市第三中学人教版高一数学必修四 1.2任意角的三角函数(导学案,无答案)

河北省高碑店市第三中学人教版高一数学必修四 1.2任意角的三角函数(导学案,无答案)

【课题】:任意三角函数【课型】:复习课【学习目标】:1、我能理解:三角函数的概念及三角函数在各个象限内的符号2、我能叙述:三角函数的概念及三角函数在各个象限内的符号3、我能运用:利用三角函数定义及决问题【学习重难点】:定义的运用【学法指导】:通过让学生观察、思考、交流、讨论、发现问题解决问题.一、知识梳理:【自主学习】:(课前预习)1、三角函数定义:任意角的三角函数的定义如图所示,以任意角α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系.设P(x,y)是任意角α终边上不同于坐标原点的任意一点.其中,r=OP=x2+y2>0.定义:叫做角α的余弦,记作cos α,即;叫做角α的正弦,记作sin α,即;叫做角α的正切,记作tan α,即 .2.正弦、余弦、正切函数值在各象限的符号.3、特殊角的三角函数之二、知识运用:【自主学习】例1、求35π的正弦、余弦和正切值. 练习:求67π的三个三角函数值.例2、已知角α的终边经过点P (-3,-4),求角α的正弦、余弦和正切值. 练习:已知角α的终边经过点P (53,-54),求sin α-cos α的值。

【合作探究】:变式:1.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,求实数a 的取值范围是 。

2、角β终边在直线y=x 3上,求βcos例3、若sin αtan α>0且ααtan cos <0,则角α在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限【小组展示】:1.sin585°的值为 ( ) A .-22B.22 C .-32D.322、已知角α的终边经过点(sin65π,cos 65π),则角α的最小正值为( )A 、65π B 、35π C 、 611π D 、32π 3、角α的终边过点P (-1,2),则cos2α=( )A 、-54 B 、-53 C 、53 D 、-552【课堂检测】:1、设集合A={小于90°的角},B={第一象限的角},则A ∩B 等于( )A.{小于90°的角}B.{0°~90°的角}C.{第一象限的角}D.以上都不对 2、若为第二象限角,则下列各式恒小于0的是( )A 、ααcos sin +B 、ααsin tan +C 、sin α-cos αD 、sin α-tan α【作业】:1、已知角α的终边经过点P(θθcos 4,cos 3-), 其中),2(ππθ∈,则αsin =____.2、已知角θ的终边经过点P(4,y),且θsin =-552,则 y=____.3、已知角α的终边经过点P(-3,y)(y ≠0),且αsin =y 43,求ααtan cos 、. 【收获和质疑】:。

2017年高考全国名校试题数学分项汇编 专题04 三角函数与解三角形(原卷版) Word版无答案

2017年高考全国名校试题数学分项汇编 专题04 三角函数与解三角形(原卷版) Word版无答案

一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知()23tantan 1,sin 3sin 222ααβαβ+==+,则()tan αβ+=2. 【2016高考冲刺卷(7)【江苏卷】】直线3=y 与曲线)0(sin 2>=ωωx y 相距最近的两个交点间距离为6π,则x y ωsin 2=的最小正周期为 . 3. 【2016高考冲刺卷(6)【江苏卷】】已知θ是第三象限角,且52cos 2sin -=-θθ,则=+θθcos sin4. 【2016高考冲刺卷(5)【江苏卷】】已知312sin =α,则⎪⎭⎫ ⎝⎛-4cos 2πα=_____▲____.5. 【2016高考冲刺卷(3)【江苏卷】】将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .6. 【2016高考冲刺卷(1)【江苏卷】】若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= .7. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】若将函数)4sin(πω+=x y 的图象向左平移6π个单位长度后,与函数)4cos(πω+=x y 的图象重合,则正数ω的最小值为_____________.8. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】将函数f (x )=sin(2x +θ)()22ππθ-<<的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ,则φ的值为 ▲ .9. 【2016高考冲刺卷(2)【江苏卷】】已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则200(1)sin 2x x x += ▲ . 10. 【2016高考押题卷(3)【江苏卷】】已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .11. 【2016高考押题卷(3)【江苏卷】】设α为锐角,若31)6sin(=-πα,则αcos 的值为 . 12. 【2016高考押题卷(3)【江苏卷】】如图,在平面四边形ABCD 中,若090,2,2,1=∠===ACD DC AD BC AB ,则对角线BD 的最大值为 .13. 【2016高考押题卷(1)【江苏卷】】将函数3cos sin y x x x的图像向左平移0m m个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______.14. 【2016年第四次全国大联考【江苏卷】】已知sin 2cos αα+=,那么tan2α的值为_______.15. 【2016年第三次全国大联考【江苏卷】】已知]4,4[ππθ-∈,且314cos -=θ,则=--+)4(sin )4(sin 44πθπθ .16. 【 2016年第二次全国大联考(江苏卷)】已知1sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)在ABC △中,角CB A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若 60=B ,求C sin 的值; (Ⅱ)若2cos 3C=,求sin()A B -的值. 2. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)如图,290,,3OC km AOB OCD πθ=∠=∠=,点O 处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r 随时间t 变化函数为3r =,且半径增大到81km 时不再变化.一架无人侦察机从C 点处开始沿CD 方向飞行,其飞行速度为15/min km .(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且4πθ=,则雷达是否能测控到无人侦察机?请说明理由.3. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+.(Ⅰ)求函数()f α的值域;(Ⅱ)设ABC ∆的角,,A B C 所对的边分别为,,a b c,若()f C =a =1c =,求b的值.4. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且(cos ,sin ),(cos ,sin ),cos2,sin sin 3sin sin A A B B C A B A B =-=⋅=+=m n m n ,(Ⅰ)求角C 的值;(Ⅱ)若3c =,求ABC ∆的面积.5. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,等边三角形OAB 的边O C DEAB长为4km.现在线段OB 上取一点D (不含线段OB 端点)建发电站向,A B 两点供电.如果线段DB 上每公里建设费用为a 万元(a 为正常数),线段AD 上每公里建设费用为3a 万元,设ADO θ∠=,建设总费用为S 万元.(Ⅰ) 写出S 关于θ的函数关系式,并指出θ的取值范围; (Ⅱ)AD 等于多少时,可使建设总费用S 最少?6. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)已知角α终边逆时针旋转6π与单位圆交于点 且2tan()5αβ+=. (1)求sin(2)6πα+的值,(2)求tan(2)3πβ-的值.7. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角45CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?8. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)已知ABC ∆的面积是30,内角C B A ,,所对边长分别是c b a ,,,且144-=⋅AC AB . (1)求A cos 的值;(2)若4=-b c ,求a 的值.9. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分) 已知函数2()sin(2)cos 6f x x x π=+-.(1)求()f x 的最小正周期及2[,]123x ππ∈时()f x 的值域;(2)在△ABC 中,角A 、B 、C 所对的边为c b a ,,,其中角C 满足423)4(-=+πC f ,若ABC S ∆,2=c ,,求)(,b a b a >的值.10. 【江苏省扬州中学2015—2016学年第二学期质量检测】(本小题满分14分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角.(1)证明:2B A π-=; (2)求sin sin A C +的取值范围.11. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值.12. 【南京市2016届高三年级第三次模拟考试】(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值. 13. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B Cc B A--=+. ⑴求角A 的值;⑵若a ,c ,b 成等差数列,试判断ABC ∆的形状.14. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)若A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos ,cos 1)22A A m =-,向量(1,cos 1)2An =+,且21m n ⋅=-.(1)求A 的值;(2)若a =S =b c +的值.15. 【2016高考冲刺卷(5)【江苏卷】】(本题满分14分)已知函数2()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期和单调减区间;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足()26A f π-=sin sin B C +=,求bc 的值. 16. 【2016高考冲刺卷(6)【江苏卷】】在△ABC 中,角A 、B 、C 的对边分别为c b a ,,,已知A C B cos 1)cos(-=-,且c a b ,,成等比数列.(1)求C B sin sin ⋅之值; (2)求角A 的大小; (3)求C B tan tan +的值。

三角函数详细讲解

三角函数详细讲解

三角函数详细讲解
三角函数是基本初等函数之一,是以角度(最常用的单位是弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

它也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

三角函数中的正弦函数、余弦函数和正切函数是最常见的。

这些函数的定义可以通过直角三角形来解释,其中θ是要找的角度,对边是指与θ所对应的直角三角形中的最短边,邻边是指与θ所对应的直角三角形中的最长边,斜边是指三角形的最长边。

正弦函数的定义为sinθ=对边/斜边,余弦函数的定义为cosθ=邻边/斜边,正切函数的定义为tanθ=对边/邻边。

这些函数的值是固定的,不会因为三角形的大小改变而改变。

例如,tan45°的值总是等于1,无论三角形的大小如何变化。

这是因为我们用的是直角三角形,所以每个三角形都有成比例的关系。

三角函数不仅用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

另外,以三角函数为模版,可以定义一
类相似的函数,叫做双曲函数。

常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

以上是关于三角函数的详细讲解,如需了解更多信息,建议查阅数学书籍或咨询专业人士。

三角函数填空题

三角函数填空题

三角函数填空题一.填空题(共30小题)1.已知<cosA<sin70°,则锐角A的取值范围是.2.比较下列三角函数值的大小:sin40°sin50°.3.若α为锐角,且,则m的取值范围是.4.已知:实常数a、b、c、d同时满足下列两个等式:①asinθ+bcosθ﹣c=0;②acosθ﹣bsinθ+d=0(其中θ为任意锐角),则a、b、c、d之间的关系式是:.5.已知α是锐角且tanα=,则sinα+cosα=.6.若α为锐角,已知cosα=,那么tanα=.7.已知:tanx=2,则=.8.若α是锐角,sinα+cosα=,则sinα•cosα=.9.若sin28°=cosα,且α是锐角,则α=.10.已知:sinα﹣cosα=,则sinαcosα=(0<α<90°)11.若0°<α<45°,且sinαcosα=,则sinα=.12.已知∠A为锐角且7sin2A﹣5sinA+cos2A=0,则tanA=.13.计算tan35°×cos35°﹣sin35°=.14.设,则=.15.若α为锐角,则sinα+cosα1.(填“=”、“≤”、“≥”、“<”、“>”)16.化简:)=.17.设x为锐角,且满足sinx=3cosx,则sinx•cosx=.18.如果α是锐角,且sin2α十cos235°=1,那么α=度.19.已知sinα•cosα=,且α为锐角,则|cosα﹣sinα|的值为.20.已知cosα=,则的值等于.21.同角三角函数的基本关系为:(sinα)2+(cosα)2=1,=tanα.利用同角三角函数的基本关系求解下题:已知tanα=2,则=.22.在△ABC中,已知∠C=90°,sinA+sinB=,则sinA﹣sinB=.23.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=.24.若a<60°,且sin(60°﹣a)=,则cos(30°+a)=.25.已知α为锐角,sin(90°﹣α)=0.625,则cosα=.26.计算tan1°•tan2°•tan3°•…•tan88°•tan89°=.27.已知sin45°54′=0.6807,如果cosα=0.6807,那么α=.28.若tan(x+10°)=1,则锐角x的度数为.29.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.30.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.2016年12月02日三角函数填空题参考答案与试题解析一.填空题(共30小题)1.(2015•成都校级模拟)已知<cosA<sin70°,则锐角A的取值范围是20°<∠A<30°.【分析】利用特殊角的三角函数值以及互余两角的锐角三角函数关系得出∠A的取值范围.【解答】解:∵<cosA<sin70°,sin70°=cos20°,∴cos30°<cosA<cos20°,∴20°<∠A<30°.故答案为:20°<∠A<30°.【点评】此题主要考查了锐角三角函数关系以及特殊角的三角函数值,得出sin70°=cos20°是解题关键.2.(2014•雁塔区校级模拟)比较下列三角函数值的大小:sin40°<sin50°.【分析】根据当0<α<90°,sinα随α的增大而增大即可得到sin40°<sin50°.【解答】解:∵40°<50°,∴sin40°<sin50°.故答案为<.【点评】本题考查了锐角三角函数的增减性:对于正弦函数,当0<α<90°,sinα随α的增大而增大.3.(2014•高港区二模)若α为锐角,且,则m的取值范围是.【分析】根据余弦值的取值范围,列不等式求解.【解答】解:∵0<cosα<1,∴0<<1,解得,故答案为:.【点评】本题考查了锐角三角函数的增减性.明确锐角三角函数的取值范围:正余弦的锐角三角函数值都是大于0而小于1,正余切的锐角三角函数值都是大于0.4.(2015•黄冈中学自主招生)已知:实常数a、b、c、d同时满足下列两个等式:①asinθ+bcosθ﹣c=0;②acosθ﹣bsinθ+d=0(其中θ为任意锐角),则a、b、c、d之间的关系式是:a2+b2=c2+d2.【分析】把两个式子移项后,两边平方,再相加,利用sin2θ+cos2θ=1,即可找到这四个数的关系.【解答】解:由①得asinθ+bcosθ=c,两边平方,a2sin2θ+b2cos2θ+2absinθcosθ=c2③由②得acosθ﹣bsinθ=﹣d,两边平方,a2cos2θ+b2sin2θ﹣2absinθcosθ=d2④③+④得a2(sin2θ+cos2θ)+b2(sin2θ+cos2θ)=c2+d2∴a2+b2=c2+d2.【点评】本题考查了sin2θ+cos2θ=1的应用.5.(2015春•东台市月考)已知α是锐角且tanα=,则sinα+cosα=.【分析】根据tanα=,设出关于两边的代数表达式,再根据勾股定理求出斜边长的表达式,再根据锐角三角函数的定义分别求出sinα与cosα的值,进而求解即可.【解答】解:由tanα==知,如果设a=3x,则b=4x,结合a2+b2=c2得c=5x.所以sinα===,cosα===,sinα+cosα=+=.故答案为.【点评】本题考查了求锐角三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.6.(2015•奉贤区一模)若α为锐角,已知cos α=,那么tan α=.【分析】根据正弦的平方与余弦的平方和等于1,可得正弦函数值,根据正切函数等于正弦值与与余弦的比,可得答案.【解答】解:由α为锐角,已知cos α=,得sin α==,由正切函数等于正弦值与与余弦的比,得tan α===,故答案为:.【点评】本题考查了同角三角函数关系,正弦的平方与余弦的平方和等于1,正切函数等于正弦值与与余弦的比. 7.(2015秋•简阳市校级期末)已知:tanx=2,则=.【分析】分式中分子分母同时除以cosx ,可得出关于tanx 的分式,代入tanx 的值即可得出答案. 【解答】解:分子分母同时除以cosx ,原分式可化为:,当tanx=2时,原式==.故答案为:.【点评】此题考查了同角三角函数的知识,解答本题的关键是掌握tanx=这一变换,有一定的技巧性.8.(2015秋•邵阳校级期中)若α是锐角,sin α+cos α=,则sin α•cos α=.【分析】根据完全平方公式,可得正弦、余弦的平方和,根据解方程,可得答案. 【解答】解:由sin α+cos α=平方,得sin 2α+2sin αcos α+cos 2α=.2sin αcos α+1=.sin αcos α=, 故答案为:. 【点评】本题考查了同角三角函数的关系,解题过程中利用了平方关系:sin 2α+cos 2α=1. 9.(2014秋•蓝山县校级期中)若sin28°=cos α,且α是锐角,则α= 62° .【分析】利用锐角三角函数定义得出即可. 【解答】解:∵sin28°=cos α,且α是锐角,sinA=cos (90°﹣A ),∴α=90°﹣28°=62°. 故答案为:62°.【点评】此题主要考查了锐角三角函数定义,正确记忆锐角三角函数关系是解题关键. 10.(2012•浙江校级自主招生)已知:sin α﹣cos α=,则sin αcos α=(0<α<90°)【分析】对sin α﹣cos α=两边平方,然后根据sin 2α+cos 2α=1即可求解. 【解答】解:∵sin α﹣cos α=, ∴(sin α﹣cos α)2=,∴sin 2α﹣2sin αcos α+cos 2α=,∵sin 2α+cos 2α=1 ∴2sin αcos α=1﹣=.∴sin αcos α=.【点评】本题主要考查了同角的三角函数的关系,正确理解sin 2α+cos 2α=1是关键.11.(2012•余姚市校级自主招生)若0°<α<45°,且sin αcos α=,则sin α=.【分析】利用参数法,设x=sinα,y=cosα,再根据平方关系和三角函数的增减性解答.【解答】解:设x=sinα,y=cosα,∵sin2α+cos2α=1,∴x2+y2=1,∴xy=,又∵0°<α<45°,∴sinα<cosα,则,将②两边平方得,x2y2=④,由①得,y2=1﹣x2⑤,把⑤代入④得,x2(1﹣x2)=,令x2=z,可得z2﹣z +=0,解得z1=,z2=.解得x=±或x=±.由于x=sinα,0°<α<45°,故x=或x=,当x=时,y===>,符合③;当x=时,y==<,不符合③,舍去.故答案为:.【点评】此题考查了三角函数的增减性和三角函数的平方关系,利用参数法是解题的关键.12.(2012•泰顺县模拟)已知∠A为锐角且7sin2A﹣5sinA+cos2A=0,则tanA=或.【分析】根据sin2A+cos2A=1,代入得出关于sinA的方程,求出sinA和cosA的值,再根据tanA=代入求出即可.【解答】解:∵7sin2A﹣5sinA+cos2A=0,sin2A+cos2A=1,∴7sin2A﹣5sinA+1﹣sin2A=0,∴6sin2A﹣5sinA+1=0∴(3sinA﹣1)(2sinA﹣1)=0,∴3sinA﹣1=0,2sinA﹣1=0,∴sinA=,sinA=,∴cosA==,cosA==,∴tanA===,tanA==,故答案为:或.【点评】本题考查了同角的锐角三角函数值的应用,注意:sin2A+cos2A=1,tanA=.13.(2012秋•上城区期末)计算tan35°×cos35°﹣sin35°=0.【分析】根据tanα=(α为锐角)得到原式=×cos35°﹣sin35°,然后约分后进行减法运算即可.【解答】解:原式=×cos35°﹣sin35°=sin35°﹣sin35°=0.故答案为0.【点评】本题考查了同角三角函数的关系:若α为锐角,则sinα=cos(90°﹣α),tanα=.14.(2012秋•昌江区校级期末)设,则=﹣5.【分析】把代入=,运算求得结果.【解答】解:∵,∴===﹣5.故答案为:﹣5.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.15.(2012春•荣昌县期中)若α为锐角,则sinα+cosα>1.(填“=”、“≤”、“≥”、“<”、“>”)【分析】把∠α置于一个直角三角形中,进而表示出它的正弦值和余弦值,相加后与1比较即可.【解答】解:如图:sinα+cosα=+=,∵a+b>c,∴sinα+cosα>1,故答案为:>.【点评】考查锐角三角函数的知识;把所求锐角置于直角三角形中是解决本题的突破点.16.(2010秋•江阴市校级期中)化简:)=cosα﹣sinα.【分析】根据sin2α+cos2α=1代入计算后化简即可.【解答】解:∵sin2α+cos2α=1,∴==,∵0<α<45,∴cosα>sinα,∴原式=cosα﹣sinα,故答案为:cosα﹣sinα.【点评】考查同角三角函数的计算;得到0度和45度之间的同角的三角函数的大小的比较是解决本题的易错点.17.(2008•南充自主招生)设x为锐角,且满足sinx=3cosx,则sinx•cosx=.【分析】根据sin2x+cos2x=1和sinx=3cosx代入得出10cos2x=1,求出cosx=,求出sinx=,代入求出即可.【解答】解:∵sin2x+cos2x=1,sinx=3cosx,∴10cos2x=1,∵x为锐角,∴cosx=,∴sinx=,∴sinx•cosx=×=,故答案为:.【点评】本题考查了同角的三角函数的关系的应用,注意:sin2x+cos2x=1.18.(2002•西城区)如果α是锐角,且sin2α十cos235°=1,那么α=35度.【分析】根据锐角三角函数的概念,可以证明:同一个角的正弦和余弦的平方和等于1.【解答】解:∵sin2α十cos235°=1,∴α=35°.【点评】解答此题要用到同角三角函数关系式,同角三角函数关系常用的是:sin2x+cos2x=1;tanx•cotx=1.19.已知sinα•cosα=,且α为锐角,则|cosα﹣sinα|的值为.【分析】根据同角三角函数的平方关系求出(cosα﹣sinα)2=,根据算术平方根的性质解答即可.【解答】解:∵sinα•cosα=,∴sin2α+cos2α﹣2sinα•cosα=1﹣=,即(cosα﹣sinα)2=,则|cosα﹣sinα|=,故答案为:.【点评】本题考查的是同角三角函数的关系,掌握它们的平方关系:sin2A+cos2A=1是解题的关键,注意完全平方公式的运用.20.(2016•雅安校级模拟)已知cosα=,则的值等于0.【分析】先利用tanα=得到原式==,然后把cosα=代入计算即可.【解答】解:∵tanα=,∴==,∵cosα=,∴==0.故答案为0.【点评】本题考查了同角三角函数的关系:平方关系:sin2A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或sinA=tanA•cosA.21.(2016•兰州模拟)同角三角函数的基本关系为:(sinα)2+(cosα)2=1,=tanα.利用同角三角函数的基本关系求解下题:已知tanα=2,则=.【分析】将(sinα)2+(cosα)2=1代入后得到(tanα+),然后求值即可.【解答】解:==(tanα+)=×(2+)=,故答案为:.【点评】本题考查了同角三角函数的关系,解题的关键是能够对代数式进行正确的变形,难度不大.22.(2013•内江)在△ABC中,已知∠C=90°,sinA+sinB=,则sinA﹣sinB=±.【分析】根据互余两角的三角函数关系,将sinA +sinB 平方,把sin 2A +cos 2A=1,sinB=cosA 代入求出2sinAcosA 的值,代入即可求解. 【解答】解:(sinA +sinB )2=()2, ∵sinB=cosA ,∴sin 2A +cos 2A +2sinAcosA=,∴2sinAcosA=﹣1=,则(sinA ﹣sinB )2=sin 2A +cos 2A ﹣2sinAcosA=1﹣=,∴sinA ﹣sinB=±. 故答案为:±.【点评】本题考查了互余两角的三角函数关系,属于基础题,掌握互余两角三角函数的关系是解答本题的关键. 23.(2012•衡阳)观察下列等式 ①sin30°= cos60°= ②sin45°= cos45°= ③sin60°= cos30°=…根据上述规律,计算sin 2a +sin 2(90°﹣a )= 1 .【分析】根据①②③可得出规律,即sin 2a +sin 2(90°﹣a )=1,继而可得出答案.【解答】解:由题意得,sin 230°+sin 2(90°﹣30°)=1;sin 245°+sin 2(90°﹣45°)=1; sin 260°+sin 2(90°﹣60°)=1;故可得sin 2a +sin 2(90°﹣a )=1. 故答案为:1.【点评】此题考查了互余两角的三角函数的关系,属于规律型题目,注意根据题意总结,另外sin 2a +sin 2(90°﹣a )=1是个恒等式,同学们可以记住并直接运用.24.(2010•黔东南州)若a <60°,且sin (60°﹣a )=,则cos (30°+a )=.【分析】由于60°﹣α+30°+α=90°,且α<60°,即60°﹣α和30°+α互余,根据互余两角的三角函数的关系即可得到cos (30°+α)=sin (60°﹣a )=.【解答】解:∵60°﹣α+30°+α=90°,且α<60°, ∴cos (30°+α)=sin (60°﹣a )=.故答案为.【点评】本题考查了互余两角的三角函数的关系:若∠A +∠B=90°,则sinA=cosB ,cosA=sinB . 25.(2006•贺州)已知α为锐角,sin (90°﹣α)=0.625,则cos α= 0.625 .【分析】一个角的正弦值等于它的余角的余弦值. 【解答】解:∵sin (90°﹣α)=0.625, ∴cos α=0.625.【点评】掌握互为余角的正余弦关系式:一个角的正弦值等于它的余角的余弦值. 26.(2016•汉川市模拟)计算tan1°•tan2°•tan3°•…•tan88°•tan89°= 1 .【分析】根据一个角的正切函数等于它余角的余切函数,根据同一个正切乘以余切的乘积为1,可得答案.【解答】解:原式=cot89°•cot88°•cot87°•cot86°•…•tan86°•tan87°•ta n88°•tan89°=(tan89°•cot89°)•(tan88°•cot88°)•(tan87°•cot87°)•tan45° =1.故答案为:1.【点评】本题考查了互余两角三角函数的关系,利用一个角的正切函数等于它余角的余切函数是解题关键. 27.(2012•滕州市校级模拟)已知sin45°54′=0.6807,如果cos α=0.6807,那么α= 44°6′ .【分析】利用互为余角的三角函数关系式求解即可.【解答】解:∵sin45°54′=0.6807,cos α=0.6807, ∴α=90°﹣45°54′=44°6′.故答案为:44°6′.【点评】考查了互余两角三角函数的关系,在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=cos(90°﹣∠A);②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°﹣∠A);28.(2016•富顺县校级一模)若tan(x+10°)=1,则锐角x的度数为20°.【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可.【解答】解:∵tan(x+10°)=1,∴tan(x+10°)==,∴x+10°=30°,∴x=20°.故答案为:20°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关角对应的函数值是解题关键.29.(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.【分析】把15°化为60°﹣45°,则可利用sin(α﹣β)=sinα•cosβ﹣cosα•sinβ和特殊角的三角函数值计算出sin15°的值.【解答】解:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.【点评】本题考查了特殊角的三角函数值:应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.也考查了阅读理解能力.30.(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.【分析】根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.【解答】解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.。

三角函数高考题及练习题含答案

三角函数高考题及练习题含答案

三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3 =(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3. (2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 由此可见,g(t)在区间⎝⎛⎭⎫-1,-12和⎝⎛⎭⎫12,1上单调增,在区间⎝⎛⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。

三角函数表

三角函数表

三角函数表
在数学领域中,三角函数是一类描述角和三角形边之间关系的函数。

主要有正
弦函数、余弦函数和正切函数等。

这些函数在数学和物理学中扮演着重要的角色,广泛应用于各种领域中。

下面是三角函数表,列出了各角度下正弦、余弦和正切的数值:
角度(°)正弦值余弦值正切值
0 0 1 0
30 0.5 0.866 0.577
45 0.707 0.707 1
60 0.866 0.5 1.732
90 1 0 无穷大
除了上表中列举的角度外,三角函数在整个数轴上都有定义。

在单位圆中,三
角函数的定义与三角形的三个边的比例有关。

正弦函数代表了对边与斜边的比值,余弦函数代表了邻边与斜边的比值,而正切函数代表了对边与邻边的比值。

三角函数在解决三角形相关问题、波动问题等方面有着广泛应用。

在物理学中,三角函数也经常出现,比如在描述波动、振动等现象时,三角函数是不可或缺的工具。

总的来说,三角函数是数学中的一大重要概念,深入理解三角函数将有助于我
们更好地理解和应用数学知识,进而解决实际问题。

希望通过这份三角函数表,读者能对三角函数有更清晰的认识。

三角函数的试题及答案

三角函数的试题及答案

三角函数的试题及答案题目:三角函数的试题及答案一、选择题(每题2分,共10题)1. 在三角函数中,sin^2(x) + cos^2(x) = ?A. 0B. 1C. 2D. -12. 以下哪个选项表示sin(π/6)的值?A. √2/2B. √3/2C. 1/2D. 13. 若tan(x) = √3,则x的取值范围是?A. (-∞, -π/3) ∪ (π/3, +∞)B. (-∞, -π/4) ∪ (π/4, +∞)C. (-∞, -π/6) ∪ (π/6, +∞)D. (-∞, -π/2) ∪ (π/2, +∞)4. 若sin(x) = -1/2,且x > 0,则x的值是?A. 3π/2B. π/6C. 7π/6D. π/25. 若cot(x) = 0,且x > 0,则x的值是?A. π/4B. π/2C. πD. 3π/26. 以下哪个选项表示cos^2(x) = 1 - sin^2(x) 的恒等式?A. sin(2x)B. 1/cos(x)C. tan^2(x)D. sec(x)7. 若cos(x) = -√2/2,且x > 0,则x的值是?A. π/4B. π/6C. 5π/4D. π/38. 若sec(x) = 2,且x > 0,则x的值是?A. π/6B. 5π/6C. 6πD. 09. 若sin(2x) = 1/2,且x > 0,则x的值是?A. π/12B. π/6C. π/3D. π/410. 若cot(x) + tan(x) = 1,且x ≠ kπ,其中k为整数,则x的值是?A. 0B. π/4C. π/6D. π/2二、解答题1. 解方程 2sin^2(x) - 3sin(x) + 1 = 0,其中0 ≤ x ≤ 2π。

解答:设sin(x) = t,则方程化简为 2t^2 - 3t + 1 = 0。

解这个二次方程,可以得到 t = 1 或 t = 1/2。

三角函数试题及答案

三角函数试题及答案

三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。

以下是一些试题及相应的答案。

I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。

解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。

2. 求解方程 tan(x) + 1 = 0 的所有解。

解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。

在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。

因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。

根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。

通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。

不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。

希望本文能为读者提供帮助。

江苏省张家港高级中学苏教版高一数学必修四 1.3.1三角函数的周期性(导学案,无答案)

江苏省张家港高级中学苏教版高一数学必修四 1.3.1三角函数的周期性(导学案,无答案)

1. 从实例感知周期现象,理解周期函数的概念;2. 能熟练求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用;3. 使学生对周期现象有一个初步认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心. 周期函数定义的理解,深化研究函数性质的思想方法.【重点难点】1.函数的三种表示方法;分段函数的概念、表示;求函数的解析式;2.周期函数概念的理解,最小正周期的意义及简单应用.【教学过程】活动一1.情境:取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.2.问题:我们已经知道,三角函数是刻画周期现象的数学模型,那么,三角函数是如何刻画周期现象的呢? 活动二在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式sin(2)sin x k x π+=又是怎样反映函数值的“周而复始”的变化规律的.如何用语言刻画这一变化规律。

1.周期的定义: 思考:一个周期函数的周期有多少个?周期函数的图像具有什么特征?2.最小正周期: 说明:若无特殊说明,函数的周期均指函数的最小正周期.3.)cos()sin(ϕϕω+=+=wx A y x A y 的周期为 .活动三例1 若钟摆的高度h (mm )与时间t (s )之间的函数关系如图所示:例2 求下列函数的周期:(1)()cos 2f x x =;(2)1()2sin()26f x x π=-; (3)函数)3cos(π+=ax y 的周期为π,求a 的值.活动四 练习: (1)第25页练习1,判断说法正误;(2)第26页练习2,求函数的周期性;(3)第26页练习3,4 三角函数周期性的简单应用.。

三角函数练习题及答案

三角函数练习题及答案

三角函数练习题及答案三角函数是数学中的重要内容,它在几何、物理、工程等领域都有广泛的应用。

掌握好三角函数的概念和运用方法,对于解决实际问题具有重要意义。

本文将为大家提供一些三角函数练习题及其答案,希望能帮助读者更好地理解和掌握这一知识点。

一、正弦函数的练习题1. 计算角度为30°的正弦值。

解答:根据正弦函数的定义,正弦值等于对边与斜边的比值。

在一个单位圆上,角度为30°对应的三角形是一个等边三角形,因此对边与斜边的比值为1/2。

所以,角度为30°的正弦值为1/2。

2. 求解方程sin(x) = 1/2,其中x的取值范围为[0, 2π]。

解答:根据正弦函数的性质,可以知道sin(x) = 1/2的解有两个,分别是30°和150°。

由于x的取值范围为[0, 2π],所以需要将150°转换为弧度制,即150° *π/180 = 5π/6。

因此,方程sin(x) = 1/2的解为x = 30°和x = 5π/6。

二、余弦函数的练习题1. 计算角度为45°的余弦值。

解答:根据余弦函数的定义,余弦值等于邻边与斜边的比值。

在一个单位圆上,角度为45°对应的三角形是一个等腰直角三角形,邻边与斜边的比值为√2/2。

所以,角度为45°的余弦值为√2/2。

2. 求解方程cos(x) = √3/2,其中x的取值范围为[0, 2π]。

解答:根据余弦函数的性质,可以知道cos(x) = √3/2的解有两个,分别是30°和330°。

由于x的取值范围为[0, 2π],所以需要将330°转换为弧度制,即330°* π/180 = 11π/6。

因此,方程cos(x) = √3/2的解为x = 30°和x = 11π/6。

三、正切函数的练习题1. 计算角度为60°的正切值。

三角函数习题及答案

三角函数习题及答案

任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。

7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设则Y的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。

12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。

8.已知,则的值为▁▁▁▁▁▁。

9.=▁▁▁▁▁。

10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。

解答题:11.已知:,求的值。

12.已知,求证:13.已知,且,求的值。

14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角函数高考试题精选(含详细答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角函数高考试题精选(含详细答案)的全部内容。

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是() A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为() A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣)D.y=2sin (2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为() A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是() A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z) C.x=﹣(k∈Z) D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+) C.y=2sin(2x﹣)D.y=2sin (2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣) B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为() A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x ﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。

三角函数专项(有答案)

三角函数专项(有答案)

三角函数专项一、化简求值 1、若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=A.3B.3-C.9D.9-【答案】C 2、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A ) 45- (B )35-(C )35(D )45【答案】B 3、设sin 1+=43πθ(),则sin 2θ=(A )79- (B )19-(C )19(D )79【答案】A4、函数sin()cos()26y x x ππ=+-的最大值为 。

【答案】24+5、已知1sin cos 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα⎛⎫α- ⎪⎝⎭的值为__________【答案】2-6、已知a ∈(2π,π),5tan2α=【答案】43-7、已知,2)4tan(=+πx 则xx 2tan tan 的值为__________【答案】948、若tan α=3,则2sin 2cos aα的值等于 A .2B .3C .4D .6【答案】D二、三角函数图像 9、函数2sin 2x y x =-的图象大致是【答案】C10、已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf .10、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的 部分图象如图所示,则f (0)= 【答案】2611、设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .9三、三角函数性质12、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3 B .2 C .32D .23【答案】C13、已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B14、设函数()s i n ()c o s (f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减(C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A15、已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C四、正余弦定理16、若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43B.8-C . 1D .23【答案】A17、如图,在△ABC 中,D 是边A C上的点,且,2,2AB C D AB BC BD ===,则sin C 的值为 A.3 B.6C 3D 6【答案】D18、在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c aa b c bc b c a bc A A bcπ+-≤+-⇒+-≥⇒≥⇒≥⇒<≤【答案】C19、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b(A ) (B ) (C (D【答案】D20、在相距2千米的A .B 两点处测量目标C ,若0075,60C AB C BA ∠=∠=,则A .C两点之间的距离是 千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意的三角函数²基础练习题
一、选择题
1.下列说法正确的是 [ ]
A.小于90°的角是锐角
B.大于90°的角是钝角
C.0°~90°间的角一定是锐角
D.锐角一定是第一象限的角
2.设A={钝角},B={小于180°的角},C={第二象限的角},D={小于180°而大于90°的角},则下列等式中成立的是 [ ]
A.A=C
B.A=B
C.C=D
D.A=D
A.第一象限角
B.第二象限角
C.第一象限角或第三象限角
D.第一象限角或第二象限角
A.重合
B.关于原点对称
C.关于x轴对称
D.关于y轴对称
5.若α,β的终边互为反向延长线,则有 [ ]
A.α=-β
B.α=2kπ+β(k∈Z)
C.α=π+β
D.α=(2k+1)π+β(k∈Z)
A.A=B
D.以上都不对
7.在直角坐标系中,若角α与角β的终边关于y轴对称,则α与β的关系一定是 [ ]
A.α+β=π
B.α+β=2kπ(k∈Z)
C.α+β=nπ(n∈Z)
D.α+β=(2k+1)π(k∈Z)
8.终边在第一、三象限角的平分线上的角可表示为 [ ]
A.k²180°+45°(k∈Z)
B.k²180°±45°(k∈Z)
C.k²360°+45°(k∈Z)
D.以上结论都不对
9.一条弦的长等于半径,则这条弦所对的四周角的弧度数为 [ ]
10.若1弧度的圆心角,所对的弦长等于2,则这圆心角所对的弧长等
于 [ ]
11.已知函数y=sinx²cosx²tgx>0,则x应是 [ ]
A.x∈R且x≠2kπ(k∈Z)
B.x∈R且x≠kπ(k∈Z)
D.以上都不对
[ ]
A.0个
B.1个
C.2个
D.多于2个
13.锐角α终边上一点A的坐标为(2sin3,-2cos3),则角α的弧度数为 [ ]
A.3
C.-3
14.在△ABC中,下列函数值中可以是负值的是 [ ]
A.sinA
D.tgA
终边上,则有
A.sinα<sinβ
B.sinα=sinβ
C.sinα>sinβ
D.以上皆非
[ ]
17.若tgθ+ctgθ=-2,则tgnθ+ctgnθ(n∈N)的值等于 [ ]
A.0
B.(-2)n
C.2(-1)n
D.-2(-1)n
18.已知:sinα+cosα=-1,则tgα+ctgα的值是
A.2
B.-1
C.1
D.不存在
A.0°<x<45°
B.135°<x<225°
C.45°<x<225°
D.0°≤x≤45°或135°≤x≤180°.
[ ]
A.{α|0<α<π}
A.0
B.-1
C.2
D.-2
[ ]
A.第一象限或第四象限
B.第二象限或第三象限
C.X轴上
D.Y轴上
23.在△ABC中,若sin2A=sin2B则该三角形为A.等腰三角形
B.等腰三角形或直角三角形
C.直三角形
D.等腰直角三角形24.若f(cosx)=cos2x,则f(sin15°)= [ ]
A.等于零
B.小于零
C.大于零
D.可取任意实数值
[ ]
27.cos1°+cos2°+cos3°+…+cos179°+cos180°的值是
[ ]
A.0
B.1
C.-1
D.以上都不对
[ ]
A.当α在第一、四象限时,取“+”号
B.当α在第二、四象限时,取“-”号
C.当α在第一、二象限时,取“+”号
D.当α在第二象限时,取“+”号
[ ]
A.{-2,4}
B.{-2,0,4}
C.{-2,0,2,4}
D.{-4,-2,0,4}
二、填空题30.终边落在坐标轴上的角的集合是____31.从5时到7时40分,分针旋转了____弧度,时针旋转了____弧度,如果分针长6cm,时针长4cm,分针比时针共走了____cm32.一个扇形周长等于圆周长的一半,则扇形中心角的度数为
____
34.自行车大链轮有48齿,小轮有20齿,当大链轮转过一周时,小轮转过角度是____度合____弧度.
41.cos25°+cos215°
+cos225°+cos235°+cos245°+cos255°+cos265°+cos275°+cos285=____42.满足|sinx|=sin(-x)的x的范围是
_____44.在△ABC中,若tgA²tgB²tgC<0,那么这个三角形的形状是____45.f(sinθ+cos θ)=sinθcosθ,则f(x)=____三、解答题
46.写出与135°终边相同的角的集合,并从中求出终边位于-720°~720°之间的各角.
47.一条弦的长度等于半径r,试求该弦与劣弧所组成的弓形的面积.
48.12点以后在什么时候,时针与分针第一次重合?什么时候分针第一次在时针的反向延长线上?
51.已知tg2=2tg2β+1,
求证:sin2β=2sin2α-1
52.证明下列恒等式
53.求证:csc6
β-ctg6β=1+3csc2βctg2β55.已知:sin2Acsc2B+cos2Acos2C=1,求证:
tg2Actg2B=sin2C。

相关文档
最新文档