数学思维与训练 高中不等式一

合集下载

高中数学第二章一元二次函数方程和不等式.基本不等式1教案第一册

高中数学第二章一元二次函数方程和不等式.基本不等式1教案第一册

2.2基本不等式教材分析:“基本不等式" 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。

利用基本不等式求最值在实际问题中应用广泛。

同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标 【知识与技能】1。

学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2。

掌握基本不等式2a b +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣。

教学重难点 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b+≤的证明过程; 【教学难点】 12a b+≤等号成立条件; 22a b+≤求最大值、最小值。

教学过程 1。

课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a ,a ∈a ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a 〉0,b 〉0,我们用√a ,√a 分别代替上式中的a ,b ,可得√aa ≤a +a 2①当且仅当a =b 时,等号成立。

通常称不等式(1)为基本不等式(basic inequality )。

其中,a +a 2叫做正数a ,b 的算术平均数,√aa 叫做正数a ,b 的几何平均数。

基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。

思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,(a>0,b>0)2a bab +≤2)2a bab +≤用分析法证明:要证 2a bab +≥(1) 只要证 a +b ≥(2) 要证(2),只要证 a +b - ≥0(3) 要证(3),只要证 ( — )2≥0 (4)显然,(4)是成立的。

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案高中数学重点《不等关系与不等式》教案主要关注学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。

下面就和课件网一起来看看有关高中数学重点《不等关系与不等式》教案。

高中数学必修5《不等关系与不等式》教案1教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立高中数学必修5《不等关系与不等式》教案2整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题(1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系(2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗(3)数轴上的任意两点与对应的两实数具有怎样的关系(4)任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“ ne;”“ ge;”“ le;”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B 的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x le;6,a+2 ge;0,3 ne;4,0 le;5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃ le;t le;32 ℃.实例3,若用x表示一个非负数,则x ge;0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v le;40 km/h.实例7,f ge;2.5%,p ge;2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f ge;2.5%或p ge;2.3%,这是不对的.但可表示为f ge;2.5%且pge;2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0 a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g (x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1 ge;1>0,there4;f(x)>g(x).2.已知x ne;0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x ne;0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a ne;b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b).∵a>0,b>0且a ne;b, there4;a+b>0,(a-b)2>0. there4;(a-b)22(a+b)>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2 ge;0(当且仅当a=b=0时取等号),又a ne;b, there4;(a-b)2>0,2a2+(a+b)2>0. there4;-(a-b)2[2a2+(a+b)2]<0.there4;a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y ne;0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y, there4;x-y>0.当y<0时,x-yy<0,即xy-1<0. there4;xy<1;当y>0时,x-yy>0,即xy-1>0. there4;xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab ge;10%,因此a+mb+m>ab ge;10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ne;1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零, there4;q>0,即1+q>0.又∵q ne;1, there4;(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2 ge;0,③x2+y2-2xy=(x-y)2 ge;0.there4;只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x .4.若x5.设a>0,b>0,且a ne;b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,there4;(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2 ge;0, there4;(m2-2m+5)-(-2m+5) ge;0. there4;m2-2m+5 ge;-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2 ge;0, there4;a2+2 ge;2>0.there4;a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0, there4;x24>0.there4;(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.there4;-2xy(x-y)>0.there4;(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a ne;b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abb a.综上所述,对于不相等的正数a、b,都有aabb>abba.。

高中数学必修一高中数学第章(第课时)含有绝对值的不等式(一)公开课教案课件课时训练练习教案课件

高中数学必修一高中数学第章(第课时)含有绝对值的不等式(一)公开课教案课件课时训练练习教案课件

课 题:含有绝对值的不等式(1)教学目的:1.理解含有绝对值的不等式的性质;2.培养学生观察、推理的思维能力, 使学生树立创新意识; 3运用联系的观点解决问题,提高学生的数学素质;4.认识不等式证法的多样性、灵活性教学重点:含有绝对值不等式的性质、定理的综合运用教学难点:对性质的理解、常见证明技巧授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:前面我们已学过不等式的性质和证明方法,这一节我们再来研究一些含有绝对值的不等式的证明问题我们知道,当a >0时,|x |<a ⇔-a <x <a ,|x |>a ⇔x >a 或x <-a根据上面的结果和不等式的性质,我们可以推导出含有绝对值的不等式具有下面的性质二、讲解新课:定理:||||||||||b a b a b a +≤+≤-证明:∵|||||)||(|||||||||b a b a b a b b b a a a +≤+≤+-⇒⎭⎬⎫≤≤-≤≤- ||||||b a b a +≤+⇒ ①又∵a =a +b -b |-b |=|b |由①|a |=|a +b -b |≤|a +b |+|-b | 即|a |-|b |≤|a +b | ②综合①②: ||||||||||b a b a b a +≤+≤-注意:1︒ 左边可以“加强”同样成立,即||||||||||b a b a b a +≤+≤-2︒ 这个不等式俗称“三角不等式”—三角形中两边之和大于第三边,两边之差小于第三边3︒ a ,b 同号时右边取“=”,a ,b 异号时左边取“=”推论1:||21n a a a +++ ≤||||||21n a a a +++推论2:||||||||||b a b a b a +≤-≤-证明:在定理中以-b 代b 得:|||||)(|||||b a b a b a -+≤-+≤--即 ||||||||||b a b a b a +≤-≤-三、讲解范例:例1 已知|x |<3ε,|y |<6ε,|z |<9ε, 求证 |x +2y -3z |<ε 证明:|x +2y -3z |≤|x |+|2y |+|-3z |=|x |+2|y |+3|z |∵|x |<3ε,|y |<6ε,|z |<9ε, ∴|x |+2|y |+3|z |<εεεε=++93623 ∴|x +2y -3z |<ε说明:此例题主要应用了推论1,其中出现的字母ε,其目的是为学生以后学习微积分作点准备例2 设a , b , c , d 都是不等于0的实数,求证||||||||a d d c cb b a +++≥4证明:∵ ,0||,0||,0||,0||>>>>ad a c c b b a ∴,||2||2||||2||||ca cb b ac b b a c b b a =⋅=⋅≥+ ① ,||2||2||||2||||ac ad d c a d d c a d d c =⋅=⋅≥+ ② 又 2||2||||2||||4=⋅=⋅≥+a c c a a c c a ac c a ③ 由①,②,③式,得4)||||2( ||2||2||||||||≥+=+≥+++ac c a a c c a ad d c c b b a 说明:此题作为一个含绝对值的不等式,在证明过程中运用了基本不等式及不等式的性质,在证法上采用的是综合法例3 已知|a |<1,|b |<1,求证|1|abb a ++<1 证明:|1|ab b a ++<122)1()(ab b a ++⇔<1 .0)1)(1(012122222222222>--⇔>+--⇔++<++⇔b a b a b a b a ab b ab a 由|a |<1,|b |<1,可知(1-a 2)(1-b 2)>0成立,所以 |1|abb a ++<1 说明:此题运用了|x |<a ⇔x 2<a 2这一等价条件将绝对值符号去掉,并采用了求差比较法证明其等价不等式的正确性,并用到了绝对值的有关性质,也体现了证明不等式的方法的综合性和灵活性例4 设|a |<1, |b |<1 求证|a +b |+|a -b |<2证明:当a +b 与a -b 同号时,|a +b |+|a -b |=|a +b +a -b |=2|a |<2当a +b 与a -b 异号时,|a +b |+|a -b |=|a +b -(a -b )|=2|b |<2∴|a +b |+|a -b |<2例5 已知21)(x x f += 当a ≠b 时 求证:|||)()(|b a b f a f -<- 证法一:1111|11||)()(|222222+++--+=+-+=-b a b a b a b f a f|||||)(||||))((|11||222222b a b a b a b a b a b a b a b a +-+=+-+<+++-= |||||||||)||(|b a b a b a b a -=+-+≤ 证法二:(构造法)如图21)(a a f OA +==,f OB =||||b a AB -=,由三角形两边之差小于第三边得|||)()(|b a b f a f -<-四、课堂练习:已知:|x -1|≤1,求证:(1)|2x +3|≤7; (2)|x 2-1|≤3证明:(1)∵|2x +3|=|2(x -1)+5|≤2|x -1|+5≤2+5=7(2)|x 2-1|=|(x +1)(x -1)|=|(x -1)[(x -1)+2]|≤|x -1||(x -1)+2|≤|x -1|+2≤1+2=3五、小结 :通过本节学习,要求大家理解含有绝对值不等式的性质,并能够简单的应用,同时认识证明不等式的方法的灵活性、多样性六、课后作业: 1:(1)a ,b ∈R ,求证|a +b |≤|a |+|b |;(2)已知|h |<ε,|k |<ε(ε>0),求证:|hk |<ε;(3)已知|h |<c ε, c <|x | (c >0,ε>0),求证:|xh |<ε 分析:用绝对值性质及不等式性质作推理运算绝对值性质有:|ab |=|a |·|b |;|a n |=|a |n ,|b a |=ba 等证明:(1)证法1:∵-|a |≤a ≤|a |,-|b |≤b ≤|b |∴-(|a |+|b |)≤a +b ≤|a |+|b | 即|a +b |≤|a |+|b |证法2:(平方作差)(|a |+|b |)2-|a +b |2=a 2+2|a ||b |+b 2-(a 2+2ab +b 2)=2[|a |·|b |-ab )=2(|ab |-ab )≥0显然成立故(|a |+|b |)2≥|a +b |2又∵|a |+|b |≥0,|a +b |≥0,所以|a |+|b |≥|a +b |, 即|a +b |≤|a |+|b |(2)∵0≤|h |<ε,0≤|k |<ε (ε>0),∴0≤|hk |=|h |·|k |<ε·ε=ε(3)由0<c <|x |可知: 0<c x 11<且0≤|h |<c ε,∴c h x 11<⋅·c ε,即|xh |<ε 2:|x +x1|≥2(x ≠0) 分析:x 与x 1同号,因此有|x +x 1|=|x |+|x 1| 证法一:∵x 与x 1同号,∴|x +x1|=|x |+x 1∴|x +x 1|=|x |+x 1≥2xx 1⋅=2,即|x +x 1|≥2 证法二:当x >0时,x +x1≥2x x 1⋅=2 当x <0时,-x >0,有-x +2121)(21-≤+⇒=-⋅-≥-xx x x x ∴x ∈R 且x ≠0时有x +x 1≤-2,或x +x 1≥2 即|x +x1|≥2 方法点拨:不少同学这样解: 因为|x +x 1|≤|x |+x 1,又|x |+x 1≥2xx 1⋅=2,所以|x +x 1|≥2 学生认为这样解答是根据不等式的传递性实际上,上述两个不等式是异向不等式,是不符合传递性的,因而如此作解是错误的 3:|A-a |<2ε,|B-b |<2ε,求证: (1)|(A +B )-(a +b )|<ε;(2)|(A -B )-(a -b )|<ε分析:证明本题的关键是把结论的左边凑出条件的左边,创造利用条件的机会证明:因为|A -a |<2ε,|B -b 2所以(1)|(A +B )-(a +b )|=|(A -a )+(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A +B )-(a +b )|<ε(2)|(A -B )-(a -b )|=|(A -a )-(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A -B )-(a -b )|<ε方法点拨:本题的证明过程中运用了凑的技巧,望给予足够重视,灵活掌握七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

数学思维训练教案

数学思维训练教案
数学思维训练教案
CONTENTS
• 课程介绍与目标 • 数学基础知识回顾 • 逻辑思维训练 • 数学建模能力培养 • 空间想象能力提升 • 数据分析与处理能力锻炼 • 课程总结与展望
01
课程介绍与目标
数学思维训练的目的
提高学生数学思维能力
通过系统的训练,使学生 掌握数学思维的基本方法 ,提高分析问题和解决问
03
逻辑思维训练
推理与证明方法
演绎推理
通过已知的前提和逻辑规则,推导出新的 结论。
归纳推理
从具体的事实或例子中,概括出一般性的 结论或规律。
反证法
假设某个命题不成立,然后推导出矛盾, 从而证明该命题成立。
归纳分类思想培养
观察与比较
通过观察和比较不同事物的相似之处和差 异之处,进行分类和归纳。
寻找规律
从具体的事例中找出隐藏的规律或模式, 进行归纳和分类。
抽象与概括
将具体的事物抽象化,概括出它们的本质 特征或属性。
批判性思维训练
分析问题
对问题进行深入的分析,理解问题的本质 和关键要素。
得出结论
根据实验结果和数据分析,得出合理的结 论并解释原因。
评估证据
对提供的证据进行评估,判断其真实性和 可靠性。
平面图形空间位置关系分析
1 2 3
图形平移、旋转和翻折
理解平面图形在二维空间中的基本变换,包括平 移、旋转和翻折,掌握变换后的图形特征和性质 。
图形对称
掌握轴对称和中心对称的概念,理解对称轴和对 称中心的性质,能够运用对称性分析和解决问题 。
图形相似和全等
理解相似和全等图形的概念,掌握相似和全等的 判定方法和性质,能够运用相似和全等关系分析 和解决问题。

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版

思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.解:x 2+y 2 12+12 ≥x +y 2,则8≥x +y 2所以x +y ≤22,当且仅当x =y =2时等号成立.答案:222设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.【分析】(1)根据条件x +y +z =1,和柯西不等式得到(x -1)2+(y +1)2+(z +1)2≥43,再讨论x ,y ,z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的x ,y ,z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)[(x -1)2+(y +1)2+(z +1)2](12+12+12)≥[(x -1)+(y +1)+(z +1)]2=(x +y +z +1)2=4故(x -1)2+(y +1)2+(z +1)2≥43等号成立当且仅当x -1=y +1=z +1而又因x +y +z =1,解得x =53y =-13z =-13时等号成立,所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)因为(x -2)2+(y -1)2+(z -a )2≥13,所以[(x -2)2+(y -1)2+(z -a )2](12+12+12)≥1.根据柯西不等式等号成立条件,当x -2=y -1=z -a ,即x =2-a +23y =1-a +23z =a -a +23 时有[(x -2)2+(y -1)2+(z -a )2](12+12+12)=(x -2+y -1+z -a )2=(a +2)2成立.所以(a +2)2≥1成立,所以有a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【详解】因为2a +b =3,所以4a +2b =6由权方和不等式a 2x +b 2y ≥(a +b )2x +y可得1a -1+12b -1=44a -4+12b -1=224a -4+122b -1≥2+1 24a -4+2b -1=9当且仅当24a -4=12b -1,即a =76,b =23时,等号成立.【答案】C【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14 B.12C.10D.8【答案】A 【分析】利用柯西不等式求出即可.【详解】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A5(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4【答案】B【分析】由空间向量的坐标表示计算OP =xOA +yOB +zOC ,然后由柯西不等式求解即可.【详解】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12 =x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为 3.故选:B二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【分析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,代入公式即可得解.【详解】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:67(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.【答案】9【分析】根据柯西不等式求解最小值即可.【详解】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:98(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k的最小值为.【答案】305/1530【分析】运用柯西不等式进行求解即可.【详解】由柯西不等式的变形可知5x +y =x 215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y 1,即y =25x 时等号成立,则k 的最小值为305.故答案为:3059(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.【答案】15,85【分析】先根据MN 的最小值求出CD =7,即a -6 2+b -8 2=49,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离CD =4+1+2=7,即a -6 2+b -8 2=49,由柯西不等式得:a -6 2+b -8 2 ⋅32+42 ≥3a -6 +4b -8 2,当且仅当a -63=b -84,即a =515,b =685时,等号成立,即3a +4b -50 2≤25×49,解得:15≤3a +4b ≤85.故答案为:15,8510已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.【答案】163/513【分析】利用配凑法及柯西不等式即可求解.【详解】由题意可知,1a +b +c +1b +c +d +1c +d +a +1d +a +b=133a +b +c +d ×1a +b +c +1b +c +d +1c +d +a +1d +a +b=13a +b +c +b +c +d +c +d +a +d +a +b ×(1a +b +c +1b +c +d +1c +d +a +1d +a +b)≥131+1+1+1 2=163,当且仅当a =b =c =d =14时取“=”号.所以原式的最小值为163.故答案为:163.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.【答案】(1)26(2)证明见解析【分析】(1)利用柯西不等式直接求解;(2)由分析法转化为求证4≤4+2ab -2a 2b 2≤92,换元后由函数单调性得证.【详解】(1)由柯西不等式得:a 2+b 2 22+32 ≥2a +3b 2,即2a +3b 2≤26,故2a +3b ≤26,当且仅当3a =2ba 2+b 2=2 ,即a =22613b =32613时取得等号,所以2a +3b 的最大值为26.(2)要证:4≤a 3+b 3 a +b ≤92,只需证:4≤a 4+b 4+ab a 2+b 2 ≤92,只需证:4≤a 2+b 2 2+ab a 2+b 2 -2a 2b 2≤92,即证:4≤4+2ab -2a 2b 2≤92,由a ,b 均为正实数,且满足a 2+b 2=2可得2=a 2+b 2≥2ab ,当且仅当a =b 时等号成立,即0<ab ≤1,设ab =t ∈(0,1],则设f t =-2t 2+2t +4,t ∈0,1 ,∵f (x )在0,12 上单调递增,在12,1 上单调递减,又f (0)=f (1)=4,f 12=94,∴4≤f t ≤92,即4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a2+b2+c2≥1641.【答案】(1)12 5(2)证明见解析【分析】(1)结合已知等式,将1a+1100b-4c化为1a+9a+1100b+4b-4,利用基本不等式,即可求得答案;(2)利用柯西不等式,即可证明原不等式.【详解】(1)因为a,b,c均为正实数,9a+4b+4c=4,所以1a+1100b-4c=1a+1100b+9a+4b-4=1a+9a+1100b+4b-4≥21a×9a+21100b ×4b-4=125,当且仅当1a=9a1100b=4b,即a=13,b=120,c=15时等号成立.(2)证明:根据柯西不等式有9a2+b2+c232+42+42≥(9a+4b+4c)2=16,所以9a2+b2+c2≥16 41.当且仅当3a3=b4=c4,即a=441,b=c=1641时等号成立,即原命题得证.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得b+c=1-a,又12-2a2=b2+c2,结合基本不等式可得12-2a2≥1-a22,化简求得0≤a≤25,得证;(2)法一,由已知条件得a21-a +1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c 4≥c,三式相加得证;法二,根据已知条件可得121-a+1-b+1-c=1,所以a21-a+b2 1-b +c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c,利用柯西不等式求解证明.【详解】(1)因为a+b+c=1,所以b+c=1-a.因为2a2+b2+c2=1 2,所以12-2a2=b2+c2≥b+c22=1-a22,当且仅当b=c时等号成立,整理得5a2-2a≤0,所以0≤a≤2 5.(2)解法一:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,所以a21-a+1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c4≥c,以上三式相加得a21-a+b21-b+c21-c≥54a+b+c-34=12,当且仅当a=b=c=13时等号成立.解法二:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,且121-a+1-b+1-c=1,所以a21-a+b21-b+c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c≥121-a⋅a1-a+1-b⋅b1-b+1-c⋅c1-c2=12a+b+c2=12,当且仅当a=b=c=13时等号成立.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.【答案】9 2【分析】由x>-1知:x+1>0,为保证分母和为定值,对所求作适当的变形1x+1+2y=1x+1+42y,然后就可以使用权方和不等式了.【解析】1a-2b +4b=1a-2b+123b≥1+122a-2b+3b=14+46(等号成立条件,略).15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.【答案】1 4【解析】x2x+2+y2y+1≥x+y2x+y+3=14当xx+2=yy+1,即x=23,y=13时,等号成立.16已知a >0,b >0,且2a +2+1a +2b=1,则a +b 的最小值是.【答案】12+2【解析】1=2a +2+1a +2b ≥2+1 22a +2b +2当2a +2=1a +2b,即a =2,b =12时,等号成立,a +b min =12+2.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f x =2x +91-2x 0<x <12的最小值.【答案】25【分析】由f x =2x +91-2x =42x +91-2x ,再利用权方和不等式即可得解.【详解】由0<x <12,得1-2x >0,由权方和不等式可得f x =2x +91-2x =42x +91-2x ≥2+3 22x +1-2x=25,当且仅当22x =31-2x ,即x =15时取等号,所以函数f x =2x +91-2x 0<x <12的最小值为25.故答案为:25.18(2023高三·全国·专题练习)已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y 的最小值为【答案】13【分析】根据权方和不等式可得解.【详解】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.19(2023高三·全国·专题练习)已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【分析】应用权方和不等式即可求解.【详解】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6020(2023高三·全国·专题练习)已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【分析】利用权方和不等式:b n +1a n +d n +1c n ≥b +d n +1a +cn求解.【详解】1sin θ+8cos θ=132sin 2θ12+432cos 2θ12≥1+432sin 2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5521(2023高三·全国·专题练习)已知正实数x 、y 且满足x +y =1,求1x 2+8y 2的最小值.【答案】27【分析】设x =cos 2α,y =sin 2α,α∈0,π2 ,由权方和不等式计算可得.【详解】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y 2的最小值为27.故答案为:2722(2024高三·全国·专题练习)已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【分析】利用权方和不等式求解最值即可.【详解】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=ba -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:823(2023高三·全国·专题练习)已知实数x ,y 满足x >y >0,且x +y =2,M =3x +2y +12x -y的最小值为.【答案】85/1.6【分析】巧妙运用权方和不等式求解和式的最小值问题,关键是找到所求式的两个分母与题设和式的内在联系.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.不妨令m (x +2y )+(2x -y )=n (x +y ),整理得(m +2)x +(2m -1)y =nx +ny ,则m +2=n 2m -1=n,解得m =3n =5 ,则M =3x +2y +12x -y =93x +6y +12x -y =93x +6y +12x -y=323x +6y +122x -y ≥(3+1)25(x +y )=85,当且仅当33x +6y =12x -y 时等式成立,由33x +6y =12x -y x +y =2解得:x =32y =12,即当x =32,y =12时,M =3x +2y +12x -y 的最小值为85.故答案为:85.24(2024高三·全国·专题练习)已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【分析】利用权方和不等式求解最值即可.【详解】由题意得,1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b nm,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y=1,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3325(2023高三·全国·专题练习)已知正数x ,y 满足4x +9y =1,则42x 2+x +9y 2+y的最小值为【答案】118【分析】运用权方和不等式求和式的最小值,关键在于找到所求和式的两个分母与题设和式之间的联系,满足条件则迅速求解.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当ax =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.故由42x 2+x +9y 2+y =4242x 2+x +929y 2+y =42x 28+4x +92y 29+9y ≥4x +9y24x +9y+17=118当且仅当4x8+4x =9y9+9y 时取等号.由4x +9y =14x 8+4x =9y 9+9y,解得:x =172y =17 ,即当x =172,y =17时,42x 2+x +9y 2+y的最小值为118.故答案为:118.。

高中数学第一章不等关系与基本不等式1.1不等式的性质选修省公开课一等奖新优质课获奖课件

高中数学第一章不等关系与基本不等式1.1不等式的性质选修省公开课一等奖新优质课获奖课件

<
>
1
.

1
.

7/32
【做一做2】 若a>b,则以下结论一定成立是(

A. <1

)

B. <0

C.2-a>1-b D.(a-b)c2≥0
解析:因为a>b,所以a-b>0.又c2≥0,所以(a-b)c2≥0.
答案:D
【做一做3】 已知-2<a<-1,-2<b<4,则a-b取值范围

.
解析:因为-2<a<-1,-2<b<4,所以-4<-b<2,
,则 1-sin α>0.
a>b>0,c>d>0,所以
a2>b2, > >0,所以- >- ,故 a2- >b2- ,所以②正确;因为
函数 y=
1
1
是减函数,a>b,所以 3
3
<
1
,故③正确;当
3
π
α=2
时,1-sin α=0,故④不正确.
答案:②③
20/32
探究一
探究二
答案:A
28/32
1
2
3
4
5
1

1

2.已知 m,n∈R,则 > 成立的一个充要条件是(
A.m>0>n
C.m<n<0
1

解析: >
)
B.n>m>0
D.mn(m-n)<0
1


1
1

不等式在高中数学中的重要作用

不等式在高中数学中的重要作用

不等式在高中数学中的重要作用新一轮教育教学改革对高中数学教学提出了新的要求,即高中数学教学除了要遵循以人为本的原则,还要突出知识实用性,不等式作为数学理论必不可少的一部分,与很多知识都有着密切相连的关系,不仅可以帮助学生解决数学题目,而且可以帮助学生解决现实问题,具有很强的实用性,所以高中数学教师应主动实施不等式知识教学,从而活跃数学课堂气氛,提升学生解题效率。

本文主要针对不等式在高中数学中的重要作用作出了分析与探讨。

一、学习高中数学不等式的必要性高中阶段的学生即将面临高考,学习任务比较繁重,通过对大量数学考题的分析与总结,我们发现不等式是高考重点考查内容,占有很重要的分值,而且在日常的数学学习中,学生可以运用不等式解决多种类型的数学题目,总得来说,不等式是高中数学的基础理论,与很多知识都有着密切相连的关系,运用不等式解题可以培养学生创新思维能力,提高学生解题速度,所以,学习高中数学不等式很有必要。

第一,可以运用不等式知识求解函数最值问题。

随着教育教学改革的不断深入,函数最值逐渐成为高考重点考查内容,对大部分高中生来说,虽然他们现已掌握了多种求函数最值的方法,但运用函数单调求函数最值是他们最常用的解题方法,这种方法相对较复杂,需要花费一定的思考时间,而运用不等式求函数最值则是一种较为便捷的解题方法,不仅可以帮助学生理清解题思路,而且可以提高学生解题技巧与能力。

第二,可以运用不等式解决?⑹?取值问题。

参数取值是高考考查的重点问题,这类问题涉及多个知识点,给学生的理解带来了很大的困难,在具体解题过程中,学生往往会运用函数单调性与导数等方法求参数取值范围,这种方法相对比较复杂,且容易出错,会影响学生的答题速度。

运用不等式解决参数取值问题则可以将问题简单化,提高解题效率,需要注意的是,参数取值综合性较强,方法灵活多样,高中生需要在熟悉掌握运用不等式求参数取值范围思路的基础上结合其他方法一起进行题目分析与解决,如函数单调性等方法,从而提高解题速度。

高中数学精品课件:第一章 基本不等式

高中数学精品课件:第一章 基本不等式

(2)若 x<23,则 f(x)=3x+1+3x-9 2有
A.最大值0
√C.最大值-3
B.最小值9 D.最小值-3
∵x<23,∴3x-2<0, f(x)=3x-2+3x-9 2+3 =-2-3x+2-93x+3 ≤-2 2-3x·2-93x+3=-3. 当且仅当 2-3x=2-93x,即 x=-13时取“=”.
教材改编题
1.已知 x>2,则 x+x-1 2的最小值是
A.1
B.2
C.2 2
√D.4
∵x>2, ∴x+x-1 2=x-2+x-1 2+2≥2 x-2x-1 2+2=4, 当且仅当 x-2=x-1 2,即 x=3 时,等号成立.
2.(多选)若a,b∈R,则下列不等式成立的是
A.ba+ab≥2
√B.ab≤a2+2 b2
第一章
§1.4 基本不等式
考试要求
1.了解基本不等式的推导过程. 2.会用基本不等式解决简单的最值问题. 3.理解基本不等式在实际问题中的应用.
知识梳理
1.基本不等式: ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时,等号成立.
a+b (3)其中 2 叫做正数a,b的算术平均数, ab 叫做正数a,b的几何 平均数.
方法一 9-xy=x+3y≥2 3xy, ∴9-xy≥2 3xy, 令 xy=t, ∴t>0, ∴9-t2≥2 3t, 即 t2+2 3t-9≤0, 解得 0<t≤ 3,
∴ xy≤ 3,∴xy≤3, 当且仅当x=3y,即x=3,y=1时取等号,∴xy的最大值为3.
方法二 ∵x=91-+3yy, ∴x·y=91-+3yy·y=9y1-+3yy2

高中数学解题思维训练 PPT课件 图文

高中数学解题思维训练 PPT课件 图文

(1) 概念模糊
概念是数学理论体系中十分重要的组成部分。它是构成判断、推理的要素。因 此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础。概念不 清就容易陷入思维混乱,产生错误。
(2) 判断错误
判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式。 数学中的判断通常称为命题。在数学中,如果概念不清,很容易导致判断错 误。例如,“函数是一个减函数”就是一个错误判断。
(1)善于观察
做一道数学题,大致上有:审题、想题、解题三大段 。
& 在审题时要细心观察。
解数学题首先要弄清题意。即:正确地感知题目中出现 的主要概念,分清什么是已知,什么是求(证)。
& 在想题时要重视“特殊”的已知条件。
在探索解题思路时,往往会感到有些“特殊”的已知条 件用不上,因而思路也找不出来。有时虽然思路找出来 了,但如果注意到了已知条件中的某些“特殊性”,往 往可以发现有更为简便的思路存在。
因而,怎样解题,解题的速度 如何,取决于能否由观察到的特征, 灵活运用有关知识,作出相应的联 想,找到突破口,不断深入。
(3)善于进行问题转化
数学家波利亚在《怎样解题》中说过,
数学解题是命题的连续变换。可见解题过 程是通过问题的转化才能完成的。转化是 解数学题的一种十分重要的思维方法。
G
那么,怎样转化呢?概括讲,就是把
2.思维训练:
(1)观察能力的训练 虽然观察看起来是一种表面现象,但 它是认识事物内部规律的基础。所以, 必须重视观察能力的训练,使学生不 但能用常规方法解题,而且能根据题 目的具体特征,采用特殊方法来解题。
数学中,同一素材的题目,常常可以有不同 的表现形式;条件与结论(或问题)之间,也存 在着多种联系方式。因此,恰当构造辅助元素, 有助于改变题目的形式,沟通条件与结论(或条 件与问题)的内在联系,把陌生题转化为熟悉题。

高中数学第一章不等式的基本性质和证明不等式的基本方法1

高中数学第一章不等式的基本性质和证明不等式的基本方法1

——教学资料参考参考范本——高中数学第一章不等式的基本性质和证明不等式的基本方法1______年______月______日____________________部门[读教材·填要点]1.反证法首先假设要证明的命题是不正确的,然后利用公理,已有的定义、定理,命题的条件逐步分析,得到和命题的条件(或已证明过的定理,或明显成立的事实)矛盾的结论,以此说明假设的结论不成立,从而原来结论是正确的,这种方法称为反证法.2.放缩法在证明不等式时,有时需要将所需证明的不等式的值适当放大(或缩小)使它由繁化简,达到证明目的,这种方法称为放缩法.[小问题·大思维]1.用反证法证明不等式应注意哪些问题?提示:用反证法证明不等式要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的.2.运用放缩法证明不等式的关键是什么?提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是我们在证明中的常用方法与技巧,也是放缩法中的主要形式.[对应学生用书P21]用反证法证明否定性结论[例1] 设a,b,c,d都是小于1的正数,求证:4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.[思路点拨] 本题考查反证法的应用.解答本题若采用直接法证明将非常困难,因此可考虑采用反证法从反面入手解决.[精解详析] 假设4a(1-b)>1,4b(1-c)>1,4c(1-d)>1,4d(1-a)>1,则有a(1-b)>,b(1-c)>,c(1-d)>,d(1-a)>.∴>,>,>,>.又∵≤,≤,≤,≤,∴>,>,c+1-d>,>.2将上面各式相加得2>2,矛盾.∴4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.(1)当证明的结论中含有“不是”,“不都”,“不存在”等词语时,适于应用反证法,因为此类问题的反面比较具体.(2)用反证法证明不等式时,推出的矛盾有三种表现形式①与已知相矛盾,②与假设矛盾,③与显然成立的事实相矛盾.1.已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;(2)求证数列{an}中不存在三项按原来顺序成等差数列.解:(1)当n=1时,a1+S1=2a1=2,则a1=1.又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=an,所以{an}是首项为1,公比为的等比数列,所以an=.(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N+),则2·=+,所以2·2r-q=2r-p+1.①又因为p<q<r,所以r-q,r-p∈N+.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.用反证法证明“至多”、“至少”型命题[例2]若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a,b,c中至少有一个大于0.[思路点拨] 由于问题是“至少型”命题,故可用反证法证明.[精解详析] 假设a,b,c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3∴π-3>0,且(x-1)2+(y-1)2+(z-1)≥0∴a+b+c>0这与a+b+c≤0矛盾.因此,a,b,c中至少有一个大于0.(1)在证明中含有“至少”、“至多”、“最多”等字眼时,或证明否定性命题、惟一性命题时,可使用反证法证明.在证明中常见的矛盾可以与题设矛盾,也可以与已知矛盾,与显然的事实矛盾,也可以自相矛盾.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾.2.实数a,b,c,d满足a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.证明:假设a,b,c,d都是非负数,即a≥0,b≥0,c≥0,d≥0,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd.这与已知中ac+bd>1矛盾,∴原假设错误,故a,b,c,d中至少有一个是负数.用放缩法证明不等式[例3] 求证:-<1++…+<2-(n∈N*且n≥2).[思路点拨]本题考查放缩法在证明不等式中的应用,解答本题要注意欲证的式子中间是一个和的形式,但我们不能利用求和公式或其他方法求和,因此可考虑将分母适当放大或缩小成可以求和的形式,进而求和,并证明该不等式.[精解详析] ∵k(k+1)>k2>k(k-1),∴<<.即-<<-(k∈N+且k≥2).分别令k=2,3,…,n得1-<<1-,-<<-,2…1-<<-,将这些不等式相加得n1-+-+…+-<++…+<1-+-+…+-,2即-<++…+<1-.∴1+-<1+++…+<1+1-.即-<1+++…+<2-(n∈N+且n≥2)成立.(1)放缩法证不等式主要是根据不等式的传递性进行变换,即欲证a>b,可换成证a>c且c>b,欲证a<b,可换成证a<c且c<b.(2)放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:2+>2;将分子或分母放大(缩小):<,>1,<,>(k∈R,k>1)等.3.设n是正整数,求证:≤++…+<1.证明:由2n≥n+k≥n(k=1,2…,n),得≤<.当k=1时,≤<;当k=2时,≤<;…当k=n时,≤<,∴=≤++…+<=1.[对应学生用书P23]一、选择题1.否定“自然数a 、b 、c 中恰有一个为偶数”时正确的反设为( )A .a 、b 、c 都是奇数B .a 、b 、c 都是偶数C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数解析:三个自然数的奇偶情况有“三偶、三奇、二偶一奇、二奇一偶”4种,而自然数a 、b 、c 中恰有一个为偶数包含“二奇一偶”的情况,故反面的情况有3种,只有D 项符合.答案:D2.设M =+++…+,则( ) A .M =1 B .M<1 C .M>1D .M 与1大小关系不定解析:∵210+1>210,210+2>210,…,211-1>210, ∴M =+++…+1211-1<=1.101010102111···222+++个答案:B3.设a ,b ,c∈(-∞,0),则三数a +,b +,c +的值( ) A .都不大于-2 B .都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2解析:假设都大于-2,则a++b++c+>-6,∵a,b,c<0,∴a+≤-2,b+≤-2,c+≤-2,∴a++b++c+≤-6,这与假设矛盾,则选C.答案:C4.已知p=a+,q=-a2+4a(a>2),则( )A.p>q B.p<qC.p≥q D.p≤q解析:∵p=(a-2)++2,又a-2>0,∴p≥2+2=4,而q=-(a-2)2+4,由a>2,可得q<4,∴p>q.答案:A二、填空题5.给出下列两种说法:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以上两种说法正确的是________.解析:反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①错误;对于②,其假设正确.答案:②6.用反证法证明“已知平面上有n(n≥3)个点,其中任意两点的距离最大为d ,距离为d 的两点间的线段称为这组点的直径,求证直径的数目最多为n 条”时,假设的内容为________.解析:对“至多”的否定应当是“至少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目至少为n +1条”.答案:直径的数目至少为n +1条7.A =1+++…+与(n∈N+)的大小关系是________. 解析:A =+++…+≥==.111++?··+n n n n项答案:A≥n8.设a>0,b>0,M =,N =+,则M 与N 的大小关系是________. 解析:∵a>0,b>0, ∴N =+>+ ==M. ∴M<N. 答案:M<N 三、解答题9.已知0<x<2,0<y<2,0<z<2,求证:x(2-y),y(2-z),z(2-x)不都大于1.证明:法一:假设x(2-y)>1且y(2-z)>1且z(2-x)>1均成立, 则三式相乘有:xyz(2-x)(2-y)(2-z)>1.①由于0<x<2,∴0<x(2-x)=-x2+2x =-(x -1)2+1≤1.同理:0<y(2-y)≤1,且0<z(2-z)≤1,∴三式相乘得:0<xyz(2-x)(2-y)(2-z)≤1② ②与①矛盾,故假设不成立.∴x(2-y),y(2-z),z(2-x)不都大于1.法二:假设x(2-y)>1且y(2-z)>1且z(2-x)>1. ∴++>3.③又++≤++=3④④与③矛盾,故假设不成立,∴原题设结论成立.10.已知实数x 、y 、z 不全为零,求证: + + >(x +y +z). 证明:x2+xy+y2= ≥ ⎝ ⎛⎭⎪⎫x+y 22 =|x +|≥x+.同理可得:≥y+,z2+zx+x2≥z+.由于x 、y 、z 不全为零,故上述三式中至少有一式取不到等号,所以三式累加得:x2+xy+y2++>++=(x +y +z).11.设数列{an}的前n 项和为Sn ,a1=1,Sn =nan -2n(n -1).(1)求数列{an}的通项公式an ;(2)设数列的前n 项和为Tn ,求证:≤Tn<.解:(1)由Sn =nan -2n(n -1)得an +1=Sn +1-Sn =(n +1)an +1-nan -4n , 即an +1-an =4.∴数列{an}是以1为首项,4为公差的等差数列, ∴an =4n -3.(2)证明:Tn =++…+1anan+1 =+++…+1 =14⎝ ⎛⎭⎪⎫1-15+15-19+19-113+…+14n-3-14n+1=<.又易知Tn 单调递增,故Tn≥T1=,得≤Tn<.。

高中数学方程与不等式的相关题型与解答方法

高中数学方程与不等式的相关题型与解答方法

高中数学方程与不等式的相关题型与解答方法在高中数学中,方程与不等式是重要的内容之一。

掌握了方程与不等式的相关题型和解答方法,不仅可以帮助我们解决实际问题,还可以提高我们的逻辑思维和数学运算能力。

本文将从常见的方程与不等式题型入手,详细介绍解题方法,并通过具体例子进行说明。

一、一元一次方程一元一次方程是高中数学中最基础的方程之一。

其一般形式为ax + b = 0,其中a和b为已知数,x为未知数。

解一元一次方程的方法有很多,常用的有等式两边加减法、等式两边乘除法和移项法。

例如,解方程2x + 3 = 7:首先,我们可以使用等式两边加减法将3移到等式右边,得到2x = 7 - 3 = 4;然后,再使用等式两边乘除法将2移到x的一侧,得到x = 4 / 2 = 2。

二、一元二次方程一元二次方程是高中数学中较为复杂的方程之一。

其一般形式为ax² + bx + c = 0,其中a、b和c为已知数,x为未知数。

解一元二次方程的方法有多种,常用的有配方法、因式分解法和求根公式法。

例如,解方程x² - 5x + 6 = 0:首先,我们可以使用配方法将方程进行分解,得到(x - 2)(x - 3) = 0;然后,根据零乘法,得到x - 2 = 0或x - 3 = 0;最后,解得x = 2或x = 3。

三、一元一次不等式一元一次不等式是高中数学中常见的不等式之一。

其一般形式为ax + b > 0(或ax + b < 0),其中a和b为已知数,x为未知数。

解一元一次不等式的方法与解一元一次方程类似,可以使用等式两边加减法和等式两边乘除法。

例如,解不等式2x - 3 > 5:首先,使用等式两边加减法将-3移到不等式右边,得到2x > 5 + 3 = 8;然后,再使用等式两边乘除法将2移到x的一侧,得到x > 8 / 2 = 4。

四、一元二次不等式一元二次不等式是高中数学中较为复杂的不等式之一。

高中不等式数学课

高中不等式数学课

高中不等式数学课一、教学任务及对象1、教学任务本节课的教学任务是关于高中数学中的不等式知识。

不等式作为数学中一个基础且重要的部分,对于培养学生的数学思维和解决问题的能力具有关键作用。

本节课将围绕不等式的定义、性质、解法及应用进行深入讲解,旨在使学生掌握不等式的核心概念,并能灵活运用到实际问题中。

2、教学对象本节课的教学对象为高中一年级的学生。

经过初中数学的学习,他们已经具备了一定的数学基础,但对于不等式的理解与应用仍需加强。

此外,由于高中数学知识点的加深,学生需要在思维方式和方法上进行调整,因此,本节课将针对学生的实际情况,引导他们从直观理解走向严谨证明,提高解题能力。

二、教学目标1、知识与技能(1)理解不等式的定义,掌握不等式的符号表示及其含义;(2)掌握不等式的性质,如传递性、加法和乘法性质等;(3)掌握不等式的解法,包括线性不等式、一元二次不等式及其它复杂不等式的求解;(4)学会运用不等式解决实际问题,如函数的值域、不等式的证明等;(5)培养运用数形结合思想分析问题的能力,提高解题速度和准确性。

2、过程与方法(1)通过问题驱动,引导学生自主探究不等式的性质和解法,培养学生独立思考的能力;(2)采用合作学习的方式,让学生在小组内讨论、交流,提高学生的沟通和协作能力;(3)运用变式教学,让学生在解决不同类型的不等式问题时,掌握解题规律,形成解题策略;(4)通过典型例题的讲解,让学生学会分析题目条件,提炼关键信息,提高解题效率;(5)注重培养学生的数学思维能力,让学生在解题过程中,学会从不同角度、运用不同方法分析问题。

3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养学生对不等式知识的好奇心和求知欲;(2)通过不等式知识的学习,使学生认识到数学的严谨性和美感,提高学生的审美情趣;(3)培养学生面对困难时,保持积极乐观的态度,勇于克服困难,解决问题;(4)教育学生遵循数学道德,尊重客观事实,培养诚实守信的品质;(5)引导学生将数学知识运用到实际生活中,培养学生的应用意识和实践能力。

2020秋新人教版高中数学必修一第二章 一元二次函数、方程和不等式 复习课题型课思维导图

2020秋新人教版高中数学必修一第二章 一元二次函数、方程和不等式 复习课题型课思维导图

第二章一元二次函数、方程和不等式复习课要点训练一等式的性质与不等式的性质不等式的性质是不等式这一章内容的理论基础,是证明不等式和解不等式的主要依据.主要以选择题的形式出现在试卷中.在学习时,应弄清性质的内在联系.运用不等式的性质时,要注意与等式的性质的区别,并注意不等式的性质成立的条件.1.下列命题正确的有()①若a>1,则1a <1;②若a+c>b,则1a<1b;③对任意实数a,都有a2≥a;④若ac2>bc2,则a>b.A.1个B.2个C.3个D.4个解析:在①中,因为a>1,所以1a<1,所以①正确;在②中,若a+c>b,可令a=1,c=1,b=-1,则有1a >1b,故②错误;在③中,可取a=12,则a2<a,故③错误;在④中,因为ac2>bc2,而且c2>0,所以a>b,故④正确.答案:B2.对于任意实数a,b,c,d,有以下命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若a>b,则1a <1b;④若a>b>0,c>d,则ac<bd.其中真命题的个数是()A.0B.1 C.2 D.3解析:当c<0时,由a>b,得ac<bc,因此命题①是假命题;当c=0时,虽然a>b,但是ac2=bc2,所以命题②是假命题;命题③是假命题,例如a=3,b=-2不满足1a <1b;命题④是假命题.答案:A3.一辆汽车原来每天行驶x km,如果这辆汽车每天行驶的路程比原来多19 km,那么在8天内它的行程就超过2 200 km,写成不等式为8(x+19)>2 200;如果它每天行驶的路程比原来少12 km,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为8x>9(x-12).解析:原来每天行驶x km,现在每天行驶(x+19)km,则不等关系“在8天内它的行程就超过2 200 km”写成不等式为8(x+19)>2 200;若每天行驶(x-12)km,则不等关系“原来行驶8天的路程就得花9天多时间”写成不等式为8x>9(x-12).要点训练二基本不等式基本不等式主要是解决最大值、最小值的问题,使用基本不等式解决问题时,要注意条件是否满足,同时注意等号能否取到,多次使用基本不等式,要注意等号能否同时成立.1.若正数a,b满足2ab=2a+b,则a+8b的最小值是252.解析:因为正数a,b满足2ab=2a+b,所以1b +12a=1,所以a+8b=(a+8b)(1b +12a)=ab+4ba+172≥252,当且仅当4ba =ab,且2ab=2a+b,即a=52,b=54时取得最小值252.2.已知正数a,b,c满足a+b+c=2,求证:b 2a +c2b+a2c≥2.证明:因为a+b+c=2,由基本不等式,得b 2a +a≥2b,c2b+b≥2c,a2c+c≥2a,三式相加可得b2 a +a+c2b+b+a2c+c≥2b+2c+2a,所以b2a+c2b+a2c≥a+b+c,即b2a+c2b+a2c≥2.要点训练三 一元二次不等式及其解法求解一元二次不等式常出现在试卷中,主要考查解一元二次不等式,应用一元二次不等式解决恒成立问题.解决这类问题,要注意与一元二次方程、二次函数相结合.对于含有参数的一元二次不等式,解题时应先看二次项系数的正负,再考虑判别式,最后分析两根的大小,要注意讨论.1.不等式(1-x )(x -2)>0的解集为 ( ) A .{x |x <1,或x >2} B .{x |1<x <2} C .{x |x <-2,或x >-1} D .{x |-2<x <-1} 解析:将不等式(1-x )(x -2)>0化为(x -1)(x -2)<0,解得1<x <2,所以解集为{x |1<x <2}.答案:B2.某摩托车生产企业上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆,本年度为适应市场需要,计划提高产品档次,适度增加投入成本,若每辆摩托车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 之间的解析式;(2)为使本年度的利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解:(1)由已知每辆摩托车投入成本增加的比例为x ,得本年度每辆摩托车投入成本为1×(1+x )万元,出厂价为1.2×(1+0.75x )万元,年销售量为1 000×(1+0.6x )辆, 所以y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x ),即y =-60x 2+20x +200(0<x <1). (2)欲使本年度的利润比上年度有所增加,则{y -(1.2-1)×1 000>0,0<x <1,即{-60x 2+20x >0,0<x <1,解得0<x <13,即为使本年度的利润比上年度有所增加,投入成本增加的比例x 应在0<x <13范围内. 要点训练四 利用作差法比较数(式)的大小作差法比较数(式)的大小的理论依据是实数大小关系的基本事实,即要比较两个数(式)的大小,可以转化为比较它们的差与0的大小.作差法比较数(式)的大小的关键是对差式进行合理变形,在变形过程中综合利用实数有理化、因式分解、乘法公式等方法,把差式变形成乘积式或完全平方式等,从而有利于判断数(式)的大小.1.比较大小:(√3-√2)2<(√6-1)2.2.若M =x 2+y 2-4x +2y (x ≠2,y ≠-1),N =-5,则M 与N 的大小关系是M >N.3.已知x ∈R,试比较x 1+x 2与12的大小关系. 解:因为x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,所以x 1+x 2≤12.要点训练五 分类讨论思想在涉及含字母参数的一元二次不等式及其恒成立问题中,常常对不等式中的字母参数进行分类讨论,从而使复杂问题简单化.1.已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是 ( )A.-∞,√33B.-∞,47C.√33,+∞D.47,+∞ 答案:A2.若关于x 的不等式ax 2-x +a >0对一切实数x 都成立,则实数a 的取值范围为 ( )A .a <-12或a >12B .a >12或a <0 C .a >12 D .-12<a <12解析:显然当a =0时不等式不恒成立.当a ≠0时,由不等式ax 2-x +a >0对一切实数x 都成立,得{a >0,Δ<0,即{a >0,1-4a 2<0,解得a >12, 所以实数a 的取值范围是a >12. 答案:C。

5一元一次不等式

5一元一次不等式

《数学思维与能力训练》辅导讲义姓名 辅导时间一元一次不等式【知识拓展】1、如果不等式中只含有一个未知数,而且未知数的最高次数是1,这样的不等式就称为一元一次不等式,它的一般形式是 ax >b (或ax <b 或ax ≥b 或ax ≤b 或ax ≠b)。

解一元一次不等式的步骤是① 去分母、去括号,② 移项、合并同类项,将不等式化成一般形式③ 将未知数的系数化为1,得到不等式的解集 <关键步骤>2、在初中奥数中,解答一次不等式要特别注意分类讨论,待定系数法、逆向思维的运用,合理、熟练的运用不等式的性质求解相关问题【夯实基础】[例题1]解不等式1215312≤+--x x〖小试牛刀〗1、解不等式134211->--+x x x 2、解不等式23515124++->-+-x x x x[例题2]解关于x的不等式ax + 3 < x + b〖小试牛刀〗解关于x的不等式2mx + 3 < 3x + n[例题3]当a取何数值时,代数式213+-a的值①是非负数②小于1 ③不小于a〖小试牛刀〗当k为何值时,关于x的方程5 (x – k) = 3x – k + 2有①正数解②负数解③不大于1的解[例题4]求不等式5x – 2 < 3 (x + 6)的最大整数解〖小试牛刀〗1、求不等式7 – 2x > 1的正整数解2、如果关于x 的方程 3 (x + 4) = 2a + 5的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围【拓展探究】1、k 为何值时,不等式x kx 3)8(21>+永远成立?2、当31≤≤-x 时,求)3(21)14(32x x -+-的取值范围。

高考数学:不等式高级水平必备

高考数学:不等式高级水平必备

高考数学:不等式高级水平必备在高考数学中,不等式是考察学生数学思维和解决问题能力的重要部分。

不等式的解法和应用涉及到众多数学思想和技巧,比如转化思想、基本不等式、不等式的性质等。

因此,掌握不等式的高级水平是高考数学取得高分的必要条件之一。

基本不等式是高中数学中最重要的不等式之一,也是解决实际问题中经常用到的。

基本不等式主要涉及到算术平均数和几何平均数之间的关系,即“平均数大于等于几何平均数”。

在应用基本不等式时,需要注意等号成立的条件和取值范围。

例题:已知x>0,求(x + 1/x)的最小值。

解:由基本不等式可得,x + 1/x ≥ 2√(x × 1/x) = 2,当且仅当x = 1时取等号。

因此,(x + 1/x)的最小值为2。

不等式的性质是解决不等式问题的基石,包括传递性、可加性、可乘性等。

在解复杂的不等式时,常常需要通过变形将其转化为几个简单的不等式组,再分别解不等式组。

例题:解不等式(x - 1)(x + 2) > 0。

解:由不等式的可加性和可乘性可得,不等式(x - 1)(x + 2) > 0等价于两个简单的不等式组:①x - 1 > 0且x + 2 > 0;②x - 1 < 0且x + 2 < 0。

解得第一个不等式组的解集为x > 1,第二个不等式组的解集为x < -2。

因此,原不等式的解集为{x|x > 1或x < -2}。

绝对值不等式是高中数学中一个重要的不等式,它涉及到绝对值的性质和运算规则。

绝对值不等式的解法一般需要先去掉绝对值符号,再解不等式。

例题:解不等式|x - 3| < x - 1。

∣x−3∣=−(x−3)。

因此,原不等式等价于两个简单的不等式组:①x - 3 < x - 1;②- (x - 3) < x - 1。

解得第一个不等式组的解集为空集,第二个不等式组的解集为{x|x > 2}。

高一函数:数学思维与方法点拨

高一函数:数学思维与方法点拨

函数能力提升函数能力提升一、方法点拨(师生互动):1、 基础知识打扎实,形成函数知识体系基础知识打扎实,形成函数知识体系2、 学会思考、总结做题方法学会思考、总结做题方法3、 跳出题海,找到解题的切入点跳出题海,找到解题的切入点4、 掌握高中数学思想与方法掌握高中数学思想与方法二、思维训练:二、思维训练:1、为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5=__________2、已知函数f(x)=x 2+ax+b +ax+b (a,b (a,b ÎR)的值域为[0,+¥),若关于x 的不等式f(x)<c 的解集为(m,m+6),则实数c 的值为__________;3、如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =éùëû, 则函数()y g x =的图象为(图象为( )4.4.已知已知b a ,设函数1(1)|-1|)=1(=1)x x f x x ì¹ïíïî(,若关于x 的方程2[()]+()+c=0f x bf x 有三个不同的实数根123,,x x x ,则222123++x x x 等于等于A. 13 B. 5 C. 223c +2c D. 222b +2b5、偶函数f (x )满足(1)(1)f x f x +=-,且在x ∈[0[0,,1]1]时,时,时,f f (x )=x 2,则关于x 的方程f (x )=x÷øöçèæ101在10[0,]3上根的个数是上根的个数是A. 1个B. 2个C. 3个D. 5个6.设函数()()1x f x x R x=-Î+,区间M =[a ,b ](a <b ),集合N ={(),y y f x x M =Î},则使M =N 成立的实数对(a ,b )有 ( )A .0个B .1个C .2个D .无数多个.无数多个7、定义:如果函数)(x f y =在定义域内给定区间b][,a 上存在)(00b x a x <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是b][,a 上的“平均值函数”,0x 是它的一个均值点,如4x y =是]1,1[-上的平均值函数,0就是它的均值点.现有函数1)(2++-=mx x x f 是]1,1[-上的平均值函数,则实数m 的取值范围是的取值范围是 . . .8、已知函数2))(1()(xa x x x f ++=为偶函数.为偶函数. (Ⅰ)求实数a 的值;的值;(Ⅱ)记集合{(),{1,1,2}}E y y f x x ==Î-,21lg 2lg 2lg5lg54l =++-,判断l 与E 的关系;的关系; (Ⅲ)当x Î]1,1[nm ()0,0>>n m 时,若函数()f x 的值域为]32,32[n m --,求n m ,的值.8、已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当x >0时,()0f x <又(1)2f =-. (1)判断()f x 的奇偶性;的奇偶性;(2)求证:()f x 是R 上的减函数;上的减函数; (3)求()f x 在区间[-3,3]上的值域;上的值域;(4)若x R "Î,不等式2()2()()4f ax f x f x -<+恒成立,求a 的取值范围. 【答案】解: (Ⅰ))(x f 为偶函数 ()(f x f x\=- 22))(1())(1(xa x x x a x x +-+-=++\,0)1(2=+\x a Îx R 且0¹x ,1-=\a ………………………………………………………………………………………………………………………44分 (Ⅱ)由(Ⅰ)可知:221)(x x x f -=当1x =±时,()0f x =;当2x =时,3()4f x =304E ,ìü\=íýîþ, ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………66分【答案】(1)解:取,0==y x 则0)0()0(2)00(=\=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-\对任意R x Î恒成立恒成立∴)(x f 为奇函数. 高考真题:1已知函数()()f x x R Î满足下列条件:对任意的实数x 1,x 2都有都有2121212()()[()()]x x x x f x f x l -£--和1212()()f x f x x x -£-,其中l 是大于0的常数. 设实数a 0,a ,b 满足0()0f a =和()b a f a l =- (Ⅰ)证明1l £,并且不存在00b a ¹,使得0()0f b =; (Ⅱ)证明22200()(1)()b a a a l -£--;(Ⅲ)证明222[()](1)[()]f b f a l £-. 22.本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分. 证明:(I )任取1212,,x x R x x ̹,则由)]()()[()(2121221x f x f x x x x --£-l 和|||)()(|2121x x x f x f -£- ②可知可知 22121212121221|||)()(|||)]()()[()(x x x f x f x x x f x f x x x x -£-×-£--£-l , 从而从而 1£l . 假设有00b a ¹,使得0()0f b =,则由①式知,则由①式知20000000()()[()()]0a b a b f a f b l <-£--=矛盾.矛盾.∴不存在00b a ¹,使得0()0.f b =(II )由)(a f a b l -= ③可知可知 220202020)]([)()(2)()]([)(a f a f a a a a a f a a a b l l l +---=--=- ④ 由和0)(0=a f ①式,得20000)()]()()[()()(a a a f a f a a a f a a -³--=-l ⑤由0)(0=a f 和②式知,2202)()]()([)]([a a a f a f a f -£-= ⑥ 由⑤、⑥代入④式,得由⑤、⑥代入④式,得 2202222022220220)()(2)()(a a a a a a a b -+---£-l l2202))(1(a a --=l(III )由③式可知22)]()()([)]([a f a f b f b f +-=22)]([)]()()[(2)]()([a f a f b f a f a f b f +-+-=22)]([)]()([2)(a f a f b f a b a b +--×--£l(用②式)(用②式) 222)]([)]()()[(2)]([a f a f b f a b a f +---=l l2222)]([)(2)([a f a b a f +-××-£l ll (用①式)(用①式)2222222)]()[1()]([)]([2)]([a f a f a f a f l l l -=+-= 2、设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思维与训练 高中(一 )
————不等式的解
一、 一元二次不等式:
1. “-4<k<0”是函数y=kx 2-kx -1的值为负值的_____________条件.
2.函数y =x 2+ax +3的图象恒在函数y =2ax -5的上方,求实数a 的取值范围.
3.不等式:(a 2-1)x 2-(a -1)x -1<0对任意实数都成立,那么实数a 的取值范围是 .
4.若不等式61
63922<+--+<-x x mx x 对一切x 恒成立,求实数m 的范围
5.函数1122+--=
kx kx x y 的定义域为R ,求实数k 的范围
6.对任意实数m ,关于x 的方程012=-++m mx ax 恒有实数解,
试求a 的取值范围。

二、不等式的解与方程根的关系:
7.不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______
8.如果关于x 的不等式:x 2-ax -4<0的解集是(-1,m ),那么a = ;m =
9.已知不等式
11<-x ax 的解集为{x |x <1或x >2},那么a = .
10.如果不等式1
122+-->++-x x b x x x a x 的解集为(21,1),则b a ⋅= .
11.如果不等式2x ax ≤的解集是[0,2],则a=
12.如果不等式b ax ≤+|1|的解集是[-1,3],则a= b=
13.如果不等式3
2+
≥ax x 的解集是[1,m],则m=
14.已知不等式02
<++q px x 的解集是(1,2),则不等式06522>+-+-x x q px x 的解 集是
三、含参讨论
14.解不等式:0222≤+-mx x (m ∈R )
15.解不等式:
011<-+x ax
16.解不等式:
02<--a x a x
17.解不等式:
x x
a >
18.解关于x 的不等式ax 2-2≥2x -ax (a ∈R )
四、与集合的联系:
19.}065|{2<-+=x x x A ,}|{a x x B ≤=,若A B A =⋂,则a 的取值范 围是
20.已知}|1||{c x x A <-=(c >0),B=}082|{2>--x x x ,且Φ=⋂B A
试求c 的取值范围。

21.关于x 的不等式0622<+++m m mx x 的解集包含区间(1,2)时,求实数m 的取值范围。

22.设集合A=}0107|{2<++x x x ,B=}034|22<+-a ax x x ,且B A ⊆,试求a 的取值范围。

23.设集合A=}13|{-≥
-x x x ,B=}0)1(|2≤++-a x a x x ,且B A ⊆,试求a 的取
值范围。

练习题:
1.若函数)8(6)(2++-=
k kx kx x f 的定义域为R ,则实数k 的取值范围是
2.已知不等式0322<--x x 的解集是A ,不等式062<-+x x 的解集是B ,
不等式02<++b ax x 的解集是,B A 那么=+b a 3.已知对于任意实数x ,不等式0122<+-+-x
x k x kx 恒成立,则实数k 的取值范 围是
4.若不等式2
(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围

5.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围

6.设方程02=++c bx ax 的两根为21,x x 且,0,21<<a x x 那么02>++c bx ax 的解集是
7.042<-ac b 是一元二次不等式02>++c bx ax 的解集为R 的( ) A 充分不必要条件 B 必要不非充分条件
C 充要条件
D 既不充分也不必要条件
8.若不等式012
<--kx kx 的解是全体实数,则实数k 的取值范围是( ) A 04<<-k B 04≤<-k
C 4-<k 或0>k
D 4-<k 或0≥k
9.函数y =x 2+ax +3的图象恒在函数y =2ax -5的上方,求实数a 的取值范围.
10.解关于x 的不等式
a x x -<-11。

相关文档
最新文档