列方程解决实际问题的类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解决实际问题的类型
第一类:(一)和、差、倍、分问题——读题分析法
1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率…”来体现。
2、多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。增长量=原有量×增长率现在量=原有量+增长量
例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?
例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
第一类:(二)等积变形问题
等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?
(练习:)圆柱形水桶的底面周长12.56分米,高6分米.盛满一桶水后,把水倒入一个长方体水缸中,水缸还空着21.5%.已知长方体水缸宽4分米,长是宽的1.5倍,求水缸的高.
第一类:(三)杂题:
(1)年龄问题:抓住“年领差”不变作为等量关系,从而列出方程。
例4:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
例5:今年,小明一家三口的年龄之和是72岁,10年前,三人年龄的年龄之和是44岁,父亲比母亲大3岁.求小明家今年每人的年龄.
(2)比赛积分问题:
例6:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了道题。
(3)古典数学:
例7:有100个和尚100个馍,1个大和尚分3个馍,3个小和尚分1个馍.问:大、小和尚各有多少人?
例8:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
第二类:与数字、比例有关的问题:
例1. 比例分配问题:比例分配问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。
甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?
例2. 数字问题:
(1)有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
(2)一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的大6,求这个两位数。
第三类:与日历、调配有关的问题:
例3. 在日历上,三个相邻数(列)的和为54,求这三天分别是几号?
变式:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)
1 3 5 7 9 11
13 15 17 19 21 23
25 27 29 31 33 35
37 39 41 43 45 47
……
(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;
(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;
(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;
例4. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
(1)某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?
(2)甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(3)有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?
第四类:盈不足问题:
例1 . 苹果若干个分给小朋友,每人m个余14个,每人9个,则最后一人得6个。问小朋友有几人?
第五类:配套问题:这类问题的关键是找对配套的两类物体的数量关系。
(1)某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
(2)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
(3)学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。
第六类:行程问题——画图分析法。(一).行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间
(二).行程问题基本类型
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
常见的还有:相背而行;行船问题;环形跑道问题。
(4)考虑车长的过桥或通过山洞隧道问题:将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
(5)时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。