Review of x-ray free-electron laser theory

合集下载

热带海洋学报投稿格式

热带海洋学报投稿格式

文章题名*(标题1:黑体, 小二; *上标表致谢, 置于页脚; 一般不超过20个字)第一作者1, 2, 3, 第二作者2, 3, 第三作者2, 3, 第四作者2, 3, 第五作者1(作者:华文仿宋, 四号, 逗号隔开)1.中国海洋大学光学光电子实验室, 山东青岛 266100; 2.国土资源部海洋油气资源与环境地质重点实验室, 山东青岛266071; 3.青岛海洋地质研究所, 山东青岛 266071(作者单位、地址:宋体、Times New Roman, 8.5磅; 省、市、邮编中间空格隔开)摘要(黑体, 小五):应反映论文的主要观点、创新点及研究意义, 概括地阐明研究的目的、方法、结果和结论, 能够脱离全文阅读而不影响理解。

尽量避免使用过于专业化的词汇、特殊符号和公式。

摘要的写作要精心构思, 随意从文章中摘出几句或只是重复一遍结论的做法是不可取的。

摘要中不能出现参考文献序号。

(摘要正文:宋体小五)(摘要中英文缩写首次出现应给出中英文全称)关键词(黑体, 小五): X射线断层扫描; 天然气水合物; 多孔介质; X-CT成像(关键词:宋体, 小五, 分号隔开; 一般为3~8个)中图分类号: P736.15 文献标识码: A文章编号: 1009-5470(2012)03-0137-7(此行由编辑添加)Application of X-ray computed tomography in natural gas hydrate research(英文标题:Times New Roman, 13磅, 加粗)ZHANG Yun-fan1, HU Deng-ke1, 2, WANG Wan-yin3, QIU Zhi-yun3, LI Fu-cheng1(英文作者:Times New Roman, 五号, 逗号隔开; 汉语拼音, 姓全大写, 名首字母大写, 名字间用连字符)1.Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China; 2.Key Laboratory of Marine Hydrocarbon Resources and Environment Resources, Ministry of Land and Resources, Qingdao 266071, China; 3.Qingdao Institute of Marine Geology, Qingdao 266071, China(作者单位英文:Times New Roman, 8.5磅; 单位名需用全称)Abstract(Times New Roman 9.5磅, 加粗): This paper gives a review of the application of X-ray computed tomography(X-CT) in natural gas hydrate research, emphasizing sediment structure analysis and dynamics process.X-CT is anon-destructive technique, which is used to analyze the spatial structure of an object.For in-depth study of natural gas hydrate, X-CT plays an increasingly important role in observing the interior spatial structure of natural gas hydrate sediments and assessing the physical properties of these sediments, such as porosity, saturation, and permeability.In terms of identifying natural gas hydrate formation and dissociation process, X-CT imaging has the advantages of being real-time, intuitive and accurate.The measuring principle, apparatus and the important aspects for future hydrate research based on X-CT are also discussed.(英文摘要正文:Times New Roman, 小五)空格下划线收稿日期:; 修订日期:基金项目: 资助项目名称(基金项目编号); 资助项目名称(基金项目编号)(基金名称要写全称)作者简介: 作者名(出生年—), 性别, **省**市人, 学历, 研究方向。

上海软X射线自由电子激光装置直线加速器束流位置测量系统研制

上海软X射线自由电子激光装置直线加速器束流位置测量系统研制

·粒子束及加速器技术·上海软X 射线自由电子激光装置直线加速器束流位置测量系统研制*吴 桐1,2, 赖龙伟1,3, 俞路阳1,3, 袁任贤1,3, 陈 健1,3, 阎映炳1,3, 冷用斌1,2,3(1. 中国科学院 上海应用物理研究所,上海 201800; 2. 中国科学院大学,北京 100049; 3. 中国科学院 上海高等研究院,上海 201210)摘 要: 上海软X 射线自由电子激光装置(SXFEL )作为中国第一台工作在软X 射线波段的第四代光源,其产生的激光具备短波长、全相干、超高亮度、超短脉冲长度等优点,预期将会在基础科学研究领域中发挥出重要的作用。

基于直线加速器的特点和需求,在SXFEL 的注入器与直线加速段上选择了条带型束流位置测量系统(SBPM )作为束团位置测量工具。

该系统由SXFEL 束测团队自主研发设计,由条带探头、前端信号调理电子学与专用数字信号束流位置处理器(DBPM )组成,系统设计上借鉴上海同步辐射光源(SSRF )的同类型设备,并根据SXFEL 的特点做了进一步的优化,束流实验结果表明该系统位置测量系统分辨率好于5.7 μm@188 pC ,达到国际先进水平,满足了SXFEL 注入器和直线加速器段对束流位置测量分辨率的设计要求。

关键词: 上海软X 射线自由电子激光; 束测; 束流位置测量; 条带型; 数字信号处理 中图分类号: TL506 文献标志码: A doi : 10.11884/HPLPB202133.210015Design of stripline beam position monitor for Shanghaisoft X-ray free electron laserWu Tong 1,2, Lai Longwei 1,3, Yu Luyang 1,3, Yuan Renxian 1,3, Chen Jian 1,3, Yan Yingbing 1,3, Leng Yongbin 1,2,3(1. Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800, China ;2. University of Chinese Academy of Sciences , Beijing 100049, China ;3. Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210, China )Abstract : Shanghai Soft X-ray Free Electron Laser (SXFEL) is the first fourth-generation light source in China that can work in soft X-ray band. With the advantages of short wavelength, full coherence, ultra-high brightness, and ultra-short pulse, it is expected to play an important role in basic science research. Based on the characteristics of the linear accelerator, the stripline beam position monitor (SBPM) was selected as the beam position measurement tool in the injection section and the straight section. The system is mainly composed of the probe, the front-end electronics system, and the digital beam position monitor (DBPM). The design draws on the same type of device from Shanghai Synchrotron Radiation Facility (SSRF) and is further optimized according to the characteristics of SXFEL. Finally, the beam experiment results show that the resolution reaches 5.7 μm@188 pC, which meets the requirements for beam position resolution of SXFEL.Key words : Shanghai Soft X-ray Free Electron Laser ; beam diagnosis ; beam position monitor ; stripline ;signal processing上海软X 射线自由电子激光装置(SXFEL )于2014年开始建设,现已完成实验装置(SXFEL-TF )的安装与调试。

自由电子激光器

自由电子激光器

Efficiency and Spectrum Enhancement in a Tapered Free-Electron Laser Amplifier
Report the first experimental characterization of efficiency and spectrum enhancement in a laser seeded free-electron laser using a tapered undulator. Output and spectra in the fundamental and third harmonic were measured versus distance for uniform and tapered undulators. With a 4% field taper over 3 m, a 300% (50%) increase in the fundamental (third harmonic) output was observed. A significant improvement in the spectra with the elimination of sidebands was observed using a tapered undulator. The experiment is in good agreement with predictions using the MEDUSA simulation code.
2006年10月31日,美国能源部托马斯·杰弗逊 国家加速器实验室的科学家宣布,他们创造了 自由电子激光器输出功率14.2千瓦的最高记录, 激光波长达1.61微米,属于红外线范围。此激 光器具有十分广泛的应用范围,既可用于军事 (如舰载反导弹防务)和制造技术,也能用于 支持化学、物理、生物和医学研究。

自由电子激光器

自由电子激光器
物理解释:电子对辐射的受激康普顿散射
原理图
装置核心
电子源(通常是粒子加速器) 相互作用区(把电子动能转换为光子能量)
与传统激光器的比较
比较
相同点 •高方向性 •高能量 •高相干性 …… 光学性质相同
不同点 •不需要介质 •谈不上布居数 反转 •其他基本特性 …… 发光机制不同
基本特性
•自由电子处于连续态,从理论上说其辐射波长不 受固定波长限制 ,因此调谐范围更宽,当前可涵 盖微波至X射线 (电子束能量或波荡器的磁场强 度)
实物图
模拟图
工作原理
基本思想:利用通过周期性摆动磁场的高速电子束和 光辐射场之间的相互作用,使电子的动能传递给光辐射 而使其辐射强度增大 由加速器产生的高能电子经偏转磁铁注入到极性交替 变换的扭摆磁铁中。电子因做扭摆运动而产生电磁辐射 (光脉冲),光脉冲经下游及上游两反射镜反射而与以 后的电子束团反复发生作用。结果是电子沿运动方向群 聚成尺寸小于光波波长的微小的束团。这些微束团将它 们的动能转换为光场的能量,使光场振幅增大
LOGO
自由电子激光器
光信息91 罗兵
主要内容
1.自由电子激光器简介 2.工作原理 3. 与传统激光器的比较 4.基本特性 5.应用
自由电子激光器简介
free-electron laser (FEL) 以自由电子为工作物质,将高能电子束的能 量转换成激光的装置。由于电子束可以在磁 场中自由移动,故命名为“自由电子激光器”
•相干性好且高度偏振
•峰值功率和平均功率高,而且可以调节
•其他不可替代的特性
应用
凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、
激光聚变、等离子体诊断、表面特性、非线性以及瞬态现 象的研究

光学激光技术缩写

光学激光技术缩写

光学激光技术缩写光学激光技术是当今高科技领域中的一个热门话题。

随着科技的不断进步和发展,我们对激光技术的了解和应用也逐渐加深。

在这项技术中,缩写也是非常重要的一部分,因为它们可以帮助人们更好地理解和应用激光技术。

在下面的文章中,我们将详细介绍一些常见的光学激光技术缩写。

1. LASER“LASER”是“激光”这个词的缩写,全称是“Light Amplification by Stimulated Emission of Radiation”(光子放大的受激辐射)。

这个术语最初是由美国物理学家西奥多·曼纳斯创建的,他在1958年首次使用了这个缩写。

今天,“LASER”已经成为了激光技术领域中最常用的缩略词。

2. CO2“CO2”是二氧化碳(Carbon Dioxide)的缩写,当它用于激光技术时,通常表示一种长波红外激光器。

这种激光器的波长可以达到9.4微米到10.6微米,通常用于切割和焊接不同种类的材料,比如钢铁、不锈钢、铝合金等。

3. Nd:YAG“Nd:YAG”是钕掺杂的钇铝石榴石晶体(Neodymium-doped Yttrium Aluminum Garnet)的缩写。

这种晶体通常用于制造固体激光器。

Nd:YAG激光器的波长为1.064微米,被广泛用于医疗、皮秒镭射等领域。

4. Q-switching“Q-switching”是确定激光输出的方法中最重要的技术之一,它通过调节一个叫做“Q开关”的特殊器件来控制激光器的输出。

Q-switching可以使激光器在极短的时间内输出非常高的功率,可用于制造超短激光器、雷达、制造等领域。

5. MOPA“MOPA”是“Master Oscillator Power Amplifier”的缩写,这是一种激光器系统,使用了两个不同的部分:一个被称为主振荡器(Master Oscillator)产生激光,另一个被称为功率放大器(Power Amplifier)将激光增幅到更高的功率。

半导体一些术语的中英文对照

半导体一些术语的中英文对照

半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德-斯卡夫-斯高特理论”。

沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect 择优取向preferred orientation制版工艺mask-making technology 图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see-through plate高分辨率版high resolution plate, HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂”。

负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and-repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。

轻质高强材料的缺陷演化行为及疲劳损伤先进表征技术

轻质高强材料的缺陷演化行为及疲劳损伤先进表征技术

2.7 原位疲劳损伤成像-相关进展
高时空分辨成像-衍射线站32-ID-B 美国APS光源
22/45
气孔形成
基于先进光源的高通量制 备和表征技术加速了先进 材料及结构从概念设计到 工程应用的过程,是目前 国际上前沿发展方向。
[9] Zhao C, et al. Sci Rep (2017) 3602.
该研究确定了亚微米尺度应力场的动态演化过程,揭示了位错对剪切带形成、交互及微观损伤的影响,澄清了交 叉剪切带处应力集中引起疲劳寿命偏离经典Coffin-Manson定律的物理本质。这一研究成果对金属材料的疲劳断裂行为 和使用寿命的准确预测及高性能构件的设计具有重要指导意义
[10] Li RG, et al. PNAS (2018) 115: 483-488.(先投稿Nature,修改后未被接收)
基本涵盖目前所有科学实验 用光源需求
高水平、高通量交叉前沿实 验研究平台
电磁波种类、特性及穿透材料深度关系
2.1 先进光源表征技术
世界典型的第三代高能光源
11/45
电子储存环(Storage rings) 扭摆器(Wigglers) 弯转磁铁(Bending magnet) 波荡器(Undulators)
中国散裂中子源 (China Spallation Neutron Source,CSNS)
引起原子核散裂反应,从而释放出高能中子的大科学装置。
技术特点: 穿透能力强、对物质破坏性小、对物质核外电子扰动十分微弱
主要应用:高精度应变、织构和残余应力测试
基于同步辐射X射线衍射衬度成像亚稳态粗 晶β钛合金原位拉伸变形机制[1]
轻质高强材料的缺陷演化行为及疲劳损伤 先进表征技术
吴圣川,胡雅楠,康国政

短波长自由电子激光振荡器的建模和分析概述

短波长自由电子激光振荡器的建模和分析概述

短波长自由电子激光振荡器的建模和分析概述自由电子激光在诸多领域都有非常重要的作用。

自由电子激光一直在朝着短波长、高功率和小型化方向发展,随着加速器技术和激光技术的发展,低增益自由电子激光振荡器在这三个方向表现出巨大的潜力,成为自由电子激光研究领域的热点。

本文首先阐述了自由电子激光的历史、现状及工作模式,然后讲解自由电子激光的基础理论,重点推导了低增益模式和自由电子激光振荡器理论。

对X射线自由电子激光振荡器纵向相干性的研究是本文的重点,将数字信号处理的知识与MATLAB软件相结合,对XFELO纵向相干性进行了建模和分析,进而说明XFELO具有良好的纵向相干性。

目前普遍认为理论上X射线自由电子激光振荡器能够产生稳定、全相干的X 射线,然而由于热负载和晶体不稳定问题,这一方案仍有大量的工作需要完成。

关键词:自由电子激光;低增益;短波长;振荡器;X射线;纵向相干性第一章绪论自由电子激光(Free Electron Laser,简称FEL),作为公认的第四代同步辐射光源的可行路线之一[1,2],其特点是将加速器技术与激光物理技术相结合,输出光波长连续可调,时间结构优异可控,光束质量好,亮度高,具有传统激光器无法替代的优点。

自由电子激光在固体物理、材料科学、分子生物学、化学等科学研究,及国防、医学、工业和国民经济各方面具有广阔的应用前景。

自上世纪70年代诞生以来,受到科学界的广泛关注,发展迅猛。

目前FEL主要向高功率、短波长、超短脉冲和小型化发展。

根据经典电动力学,当自由电子的运动状态改变时,伴随产生电磁辐射。

自由电子激光的基本原理是:不受束缚的相对论性电子通过周期性变化的磁场(相应磁场装置成为波动器),同时与光场相互作用,产生由共振条件确定的受激辐射。

1.1 FEL历史及现状上世纪60年代第一台激光器诞生,随着激光技术的发展,人们希望普通激光器的波长、功率和效率的调谐范围能大幅提高。

于是科学家开始探索新的方法,新的途径来改进激光器的性能。

与激光有关的英文文献

与激光有关的英文文献

与激光有关的英文文献Revised at 16:25 am on June 10, 2019L a s e r t e c h n o l o g y R. E. Slusher Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974 Laser technology during the 20th century is reviewed emphasizing the laser’s evolution from science to technology and subsequent contributions of laser technology to science. As the century draws to a close, lasers are making strong contributions to communications, materials processing, data storage, image recording, medicine, and defense. Examples from these areas demonstrate the stunning impact of laser light on our society. Laser advances are helping to generate new science as illustrated by several examples in physics and biology. Free-electron lasers used for materials processing and laser accelerators are described as developing laser technologies for the next century.S0034-68619902802-01. INTRODUCTIONLight has always played a central role in the study of physics, chemistry, and biology. Light is key to both the evolution of the universe and to the evolution of life on earth. This century a new form of light, laser light, has been discovered on our small planet and is already facilitating a global information transformation as well as providing important contributions to medicine, industrial material processing, data storage, printing, and defense. This review will trace the developments in science and technology that led to the invention of the laser and give a few examples of how lasers are contributing to both technological applications and progress in basic science. There are many other excellent sources that cover various aspects of the lasers and laser technology including articles from the 25th anniversary of the laser Ausubell and Langford, 1987 and textbooks ., Siegman, 1986; Agrawal and Dutta, 1993; and Ready, 1997.Light amplification by stimulated emission of radiation LASER is achieved by exciting the electronic, vibrational, rotational, or cooperative modes of a material into a nonequilibrium state so that photons propagating through the system are amplified coherently by stimulated emission. Excitation of this optical gain medium can be accomplished by using optical radiation, electrical current and discharges, or chemical reactions. The amplifying medium is placed in an optical resonator structure, for example between two high reflectivity mirrors in a Fabry-Perot interferometer configuration. When the gain in photon number for an optical mode of the cavity resonator exceeds the cavity loss, as well as loss from nonradiative and absorption processes, the coherent state amplitude of the mode increases to a levelwhere the mean photon number in the mode is larger than one. At pump levels above this threshold condition,the system is lasing and stimulated emission dominates spontaneous emission. A laser beam is typically coupled out of the resonator by a partially transmitting mirror. The wonderfully useful properties of laser radiation include spatial coherence, narrow spectral emission, high power, and well-defined spatial modes so that the beam can be focused to a diffraction-limited spot size in order to achieve very high intensity. The high efficiency of laser light generation is important in many applications that require low power input and a minimum of heat generation.When a coherent state laser beam is detected using photon-counting techniques, the photon count distribution in time is Poissonian. For example, an audio output from a high efficiency photomultiplier detecting a laser field sounds like rain in a steady downpour. This laser noise can be modified in special cases, ., by constant current pumping of a diode laser toobtain a squeezed number state where the detected photons sound more like a machine gun than rain. An optical amplifier is achieved if the gain medium is not in a resonant cavity. Optical amplifiers can achievevery high gain and low noise. In fact they presently have noise figures within a few dB of the 3 dB quantum noise limit for a phase-insensitive linear amplifier, ., they add little more than a factor of two to the noise power of an input signal. Optical parametric amplifiers OPAs, where signal gain is achieved by nonlinear coupling of a pump field with signal modes, can be configured to add less than 3 dB of noise to an input signal. In an OPA the noise added to the input signal can be dominated by pump noise and the noise contributed by a laser pump beam can be negligibly small compared to the large amplitude of the pump field.2. HISTORYEinstein 1917 provided the first essential idea for the laser, stimulated emission. Why wasn’t the laser invented earlier in the century Much of the early work on stimulated emission concentrates on systems near equilibrium, and the laser is a highly nonequilibrium system. In retrospect the laser could easily have been conceived and demonstrated using a gas discharge during the period of intense spectroscopic studies from 1925 to 1940. However, it took the microwave technology developed during World War II to create the atmosphere for thelaser concept. Charles Townes and his group at Columbia conceived the maser microwave amplification by stimulated emission of radiation idea, based on their background in microwave technology and their interest in high-resolution microwave spectroscopy. Similar maser ideas evolved in Moscow Basov and Prokhorov, 1954 and at the University of Maryland Weber, 1953. The first experimentally demonstrated maser at Columbia University Gordon et al., 1954, 1955 was based on an ammonia molecular beam. Bloembergen’s ideas for gain in three level systems resulted in the first practical maser amplifiers in the ruby system. These devices have noise figures very close to the quantum limit and were used by Penzias and Wilson in the discovery of the cosmic background radiation.Townes was confident that the maser concept could be extended to the optical region Townes, 1995. The laser idea was born Schawlow and Townes, 1958 when he discussed the idea with Arthur Schawlow, who understood that the resonator modes of a Fabry-Perot interferometer could reduce the number of modes interacting with the gain material in order to achieve high gain for an individual mode. The first laser was demonstrated in a flash lamp pumped ruby crystal by Ted Maiman at Hughes Research Laboratories Maiman, 1960. Shortly after the demonstration of pulsed crystal lasers, a continuouswave CW He:Ne gas discharge laser was demonstrated at Bell Laboratories Javan et al., 1961, first at mm and later at the red nm wavelength lasing transition. An excellent article on the birth of the laser is published in a special issue of Physics Today Bromberg, 1988.The maser and laser initiated the field of quantum electronics that spans the disciplines of physics and electrical engineering. For physicists who thought primarilyin terms of photons, some laser concepts were difficult to understand without the coherent wave concepts familiar in the electrical engineering community. For example, the laser linewidth can be much narrower than the limit that one might think to be imposed by the laser transition spontaneous lifetime. Charles Townes won a bottle of scotch over this point from a colleague at Columbia. The laser and maser also beautifully demonstrate the interchange of ideas and impetus between industry, government, and university research.Initially, during the period from 1961 to 1975 there were few applications for the laser. It was a solution looking for a problem. Since the mid-1970s there has been an explosive growth of laser technology for industrial applications. As a result of this technology growth, a new generation of lasers including semiconductor diode lasers, dye lasers, ultrafast mode-locked Ti:sapphire lasers, optical parameter oscillators, and parametric amplifiers is presently facilitating new research breakthroughs in physics, chemistry, and biology.3. LASERS AT THE TURN OF THE CENTURYSchawlow’s ‘‘law’’ states that everything lases if pumped hard enough. Indeed thousands of materials have been demonstrated as lasers and optical amplifiers resulting in a large range of laser sizes, wavelengths, pulse lengths, and powers. Laser wavelengths range from the far infrared to the x-ray region. Laser light pulses as short as a few femtoseconds are available for research on materials dynamics. Peak powers in the petawatt range are now being achieved by amplification of femtosecond pulses. When these power levels are focused into a diffraction-limited spot, the intensities approach 1023 W/cm2. Electrons in these intense fields are accelerated into the relativistic range during a single optical cycle, and interesting quantum electrodynamic effects can be studied. The physics of ultrashort laser pulses is reviewed is this centennial series Bloembergen, 1999.A recent example of a large, powerful laser is the chemical laser based on an iodine transition at a wavelength of mm that is envisioned as a defensive weapon Forden, 1997. It could be mounted in a Boeing 747 aircraft and would produce average powers of 3 megawatts, equivalent to 30 acetylene torches. New advances in high quality dielectric mirrors and deformable mirrors allow this intense beam to be focused reliably on a small missile carrying biological or chemical agents and destroy it from distances of up to 100 km. This ‘‘star wars’’ attack can be accomplished during the launch phase of the target missile so that portions of the destroyed missile would fall back on its launcher, quite a good deterrent for these evil weapons. Captain Kirk and the starship Enterprise may be using this one on the Klingons At the opposite end of the laser size range are microlasers so small that only a few optical modes are contained in a resonator with a volume in the femtoliter range. These resonators can take the form of rings or disks only a few microns in diameter that use total internal reflection instead of conventional dielectric stack mirrors in order to obtain high reflectivity. Fabry-Perot cavities only a fraction of a micron in length are used for VCSELs vertical cavity surface emitting lasers that generate high quality optical beams that can be efficiently coupled to optical fibers Choquette and Hou, 1997. VCSELs may find widespread application in optical data links.4. MATERIALS PROCESSING AND LITHOGRAPHYHigh power CO2 and Nd:YAG lasers are used for a wide variety of engraving, cutting, welding, soldering, and 3D prototyping applications. rf-excited, sealed off CO2 lasers are commercially available that have output powers in the 10 to 600 W range and have lifetimes of over 10 000 hours. Laser cutting applications include sailclothes, parachutes, textiles, airbags, and lace. The cutting is very quick, accurate, there is no edge discoloration, and a clean fused edge is obtained that eliminatesfraying of the material. Complex designs are engraved in wood, glass, acrylic, rubber stamps, printing plates, plexiglass, signs, gaskets, and paper. Threedimensional models are quickly made from plastic or wood using a CAD computer-aided design computer file.Fiber lasers Rossi, 1997 are a recent addition to the materials processing field. The first fiber lasers were demonstrated at Bell Laboratories using crystal fibers in an effort to develop lasers for undersea lightwave communications. Doped fused silica fiber lasers were soon developed. During the late 1980s researchers at Polaroid Corp. and at the University of Southampton invented cladding-pumped fiber lasers. The glass surrounding the guiding core in these lasers serves both to guide the light in the single mode core and as a multimode conduit for pump light whose propagation is confined to the inner cladding by a low-refractive index outer polymer cladding. Typical operation schemes at present use a multimode 20 W diode laser bar that couples efficiently into the large diameter inner cladding region and is absorbed by the doped core region over its entire length typically 50 m. The dopants in the core of the fiber that provide the gain can be erbium for the mm wavelength region or ytterbium for the mm region. High quality cavity mirrors are deposited directly on the ends of the fiber. These fiber lasers are extremely efficient, with overall efficiencies as high as 60%. The beam quality and delivery efficiency is excellent since the output is formed as the single mode output of the fiber. These lasers now have output powers in the 10 to 40 W range and lifetimes of nearly 5000 hours. Current applications of these lasers include annealing micromechanical components, cutting of 25 to 50 mm thick stainless steel parts, selective soldering and welding of intricate mechanical parts, marking plastic and metal components, and printing applications.Excimer lasers are beginning to play a key role in photolithography used to fabricate VLSI very large scale integrated circuit chips. As the IC integrated circuit design rules decrease from mm 1995 to mm 2002, the wavelength of the light source used for photolithographic patterning must correspondingly decrease from 400 nm to below 200 nm. During the early 1990s mercury arc radiation produced enough power at sufficiently short wavelengths of 436 nm and 365 nm for high production rates of IC devices patterned to mm and mm design rules respectively. As the century closes excimer laser sources with average output powers in the 200 W range are replacing the mercury arcs. The excimer laser linewidths are broad enough to prevent speckle pattern formation, yet narrow enough, less than 2 nm wavelength width, to avoid major problems with dispersion in optical imaging. The krypton fluoride KF excimer laser radiation at 248 nm wavelength supports mm design rules and the ArF laser transition at 193nm will probably be used beginning with mm design rules. At even smaller design rules, down to mm by 2008, the F2 excimer laser wavelength at 157 nm is a possible candidate, although there are no photoresists developed for this wavelength at present. Higher harmonics of solid-state lasers are also possibilities as high power UV sources. At even shorter wavelengths it is very difficult for optical elements and photoresists to meet the requirementsin the lithographic systems. Electron beams, x-rays and synchrotron radiation are still being considered for the 70 nm design rules anticipated for 2010 and beyond.5. LASERS IN PHYSICSLaser technology has stimulated a renaissance in spectroscopies throughout the electromagnetic spectrum. The narrow laser linewidth, large powers, short pulses, and broad range of wavelengths has allowed new dynamic and spectral studies of gases, plasmas, glasses, crystals, and liquids. For example, Raman scattering studies of phonons, magnons, plasmons, rotons, and excitations in 2D electron gases have flourished since the invention of the laser. Nonlinear laser spectroscopies have resulted in great increases in precision measurement as described in an article in this volume Ha¨nsch and Walther 1999.Frequency-stabilized dye lasers and diode lasers precisely tuned to atomic transitions have resulted in ultracold atoms and Bose-Einstein condensates, also described in this volume Wieman et al., 1999. Atomicstate control and measurements of atomic parity nonconservation have reached a precision that allows tests of the standard model in particle physics as well as crucial searches for new physics beyond the standard model. In recent parity nonconservation experiments Wood et al., 1997 Ce atoms are prepared in specific electronic states as they pass through two red diode laser beams. These prepared atoms then enter an optical cavity resonator where the atoms are excited to a higher energy level by high-intensity green light injected into the cavity from a frequency-stabilized dye laser. Applied electric and magnetic fields in this excitation region can be reversed to create a mirrored environment for the atoms. After the atom exits the excitation region, the atom excitation rate is measured by a third red diode laser. Very small changes in this excitation rate with a mirroring of the applied electric and magnetic fields indicate parity nonconservation. The accuracy of the parity nonconservation measurement has evolved over several decades to a level of %. This measurement accuracy corresponds to the first definitive isolation of nuclear-spin-dependent atomic parity violation.。

THZ辐射方式

THZ辐射方式

摘要太赫兹波(THz)是介于红外光和毫米波之间的电磁辐射,它可以像X射线、可见光等辐射一样,作为物体成像的光源,由于其独特的性质,使得太赫兹成像技术在安检、航天航空领域、材料的无损检测等各方面都有广阔的应用前景。

本文介绍了从电子学方法中太赫兹辐射的方法,详细介绍了了电子振荡THz辐射和倍频耿氏二极管、同步辐射和自由电子激光器、返波管(BWO,Backward Wave Oscillator)、量子级联激光技术、自由电子激光器产生方式。

关键词:太赫兹、反波管、量子级联、自由电子激光器AbstractTerahertz (THz) is the range between the infrared and millimeter-wave electromagnetic radiation, it can be like X-rays, visible light and other radiation as the light of the object imaging because of its unique properties, making terahertz imaging technology at the security checkpointall aspects of the field of aerospace, non-destructive testing of materials has broad application prospects.This article describes the method of terahertz radiation from the e-learning method, described in detail the electron oscillation THz radiation and the multiplier Gunn diode, synchrotron radiation and free electron lasers, backward wave, quantum cascade laser technology, the free-electron lasermanner.Keywords: terahertz, anti-wave tubes, quantum cascade,free-electron laser引言电磁波谱技术是人类认识世界的工具,很长时间以来,人们发展了基于电磁辐射与物质相互作用产生的各种谱学技术,借助于这些技术,得到了很多物质的有用信息,比如,物质结构、分子的电子能级、振动、转动,材料的电学、光学性质等,这些技术已经很成熟,并应用到了物理、化学、生命科学等基础研究学科,以及医学成像、安全检查、产品检测、空间通信等很多领域。

半导体一些术语的中英文对照

半导体一些术语的中英文对照

半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德-斯卡夫-斯高特理论”。

沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section 退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect择优取向preferred orientation制版工艺mask-making technology图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see-through plate高分辨率版high resolution plate, HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂”。

负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and-repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。

用于X射线探测器的非晶硒薄膜的制备及其性能的研究

用于X射线探测器的非晶硒薄膜的制备及其性能的研究

2 0 0

羞 10 0

2 0
4 0 2 ea Th t
6 O
8 0
f1薄膜 电阻 1
同样 选 用Z 型 高 阻计对 薄膜 的 电 阻进行 测 试 , C 测 试 电压 均 相 同 。对 每一 片样 片都 进 行 反 复测 试 , 最后 取 平均 值 如 图5 示 。 所
方 法进 行 了探 讨 .在 严格 控 制 蒸发 室温度 和 基底 温度 的前 提 下 ,采 用 不 同的 蒸发 电流和 蒸发
速 率制 备 出不 同的非 晶硒 薄 膜 ,并 对 其进 行 了 电阻测 试和XR 分 析 以及 耐 高 温测 试 。经 过 系 D
列 实验 和 结果 分析 ,制备 出 了电 阻率较 高并有 一定 耐 高温性 能 的非 晶硒 薄膜 。
为4 n 左 右 ,硅 片衬底 的规 格 为1 m lmm。 0m l mx 1 非 晶硒 薄膜 的制备 如下 : 将 纯 度 为9 . 9 99 %的S 粒 材料 分 别 用 酸及 有 机 9 e 溶 剂 、去 离 子水 进 行 超 声 处 理 ,在 已经 蒸 镀 了一
图2
电 阻 与 蒸 发 速 率 关 系 图
6 0
8 O
图4 E组薄 膜 的 X D " 图 R  ̄射

之 实 验所 成膜 的电阻 较高 ,所 以 暗电流 相对 较小 。 22 退 火后 的 非 晶硒薄 膜性 能 .
3 0 0
元器件制造 与材料
本 实 验 中 ,我 们 选取 了两 组 不 同蒸 发 速率 ( 即
结 的 核较 多 ,使 得 非 晶化 的程 度变 小 的结 果 。总
lO 2 0
阻测 量 。本 实 验 中用 Z 型 高 阻计 对 薄 膜 的 电 阻进 C 行 测 试 。高 阻 计 的 探 针 分 别 接 通 两层 铝膜 。通 过

相干X射线衍射成像在生命科学研究中的【推荐论文】

相干X射线衍射成像在生命科学研究中的【推荐论文】

相干X 射线衍射成像在生命科学研究中的进展张剑,江怀东5 (山东大学晶体材料国家重点实验室,济南 250100)摘要:相干X 射线衍射成像是一种通过测量衍射信号, 利用相位恢复算法来获取样品结构图像的无透镜成像技术。

这种成像技术可以实现生物样品的二维或三维高分辨、高衬度成像。

由于该成像技术能够获得样品的密度信息,因此可以实现样品结构图像的定量分析。

近年来利用相干衍射成像技术已经实现了病毒、细菌、细胞、骨等生物样品的成像。

随着低温冷冻10 技术和X 射线自由电子激光技术的发展和应用,该成像技术将得到快速的发展。

本文就相干衍射成像方法在生命科学中的应用做一综述。

关键词:X 射线衍射成像;同步辐射;相位恢复;定量成像中图分类号:O5915 Progress of coherent X-Ray diffraction imaging in biologyZHANG Jian, JIANG Huaidong(State Key Laboratory of Crystal Materials, Shandong University, JiNan 250100) Abstract: Coherent X-ray diffraction imaging (CDI) is a lensless imaging that uses diffraction patterns to recover images of specimens. By the imaging technology, 2D or 3D images of20 biological specimens with high contrast and high resolution can be acquired withoutcrystallization, section or stain. CDI images can provide density information of specimens, by which the compositional mass, volume and density can be determined. So far, CDI has been used for determination of microstructure of biological specimens, such as viruses, bacteria, cells, bone particles and so on. Combining with cryogenic technology ofand X-ray free electron lasers, CDI 25 will keep fast developing. In the review, the applications and development of CDI are introducedand discussed.Keywords: X-ray diffraction imaging; synchrotron radiation; phase retrieval; quantitative imaging0 引言30 X 射线具有良好的穿透性,是生物学领域的一种重要成像工具[1-4]。

X-ray laser

X-ray laser

专利名称:X-ray laser发明人:Melvin A. Piestrup 申请号:US07/614989申请日:19901116公开号:US05107508A公开日:19920421专利内容由知识产权出版社提供摘要:A tunable generator or amplifier of intense, collimated, monochromatic electromagnetic radiation includes primarily of a relativistic electron beam, a periodic medium, a periodic magnet or electromagnetic field, a vacuum housing, and, in the primary embodiment, a ring resonator. An accelerator provides a high current, relativistic electron beam which interacts with an electromagnetic wave in a periodic magnetic field and a periodic medium to achieve periodic phase synchronizism between the phase velocity of the electromagnetic wave and the velocity of the said electron beam. The said periodic phase synchronization results in the bunching of the electron beam and the amplification of the electromagnetic wave. In the primary embodiment the growing wave is returned back to the interaction region via Bragg reflectors. The wave continues to grow on each pass through the interaction region formed by the periodic medium and magnetic field. In this primary embodiment, part of the said growing wave can be transmitted through one of the Bragg reflectors which is only partially reflective. In this way the electromagnetic wave can be out into the external environment.申请人:ADELPHI TECHNOLOGY代理人:Joseph H. Smith更多信息请下载全文后查看。

DESY-OCPC-2017-09

DESY-OCPC-2017-09

2017 Helmholtz – OCPC – Programme for the involvement of postdocs in bilateral collaborationprojectsPART ATitle of the project: X-ray Free-Electron Laser Beams by DesignHelmholtz Centre and institute: Deutsches Elektronen-Synchrotron DESY, Photon Science Project leader: PD Dr. Tim LaarmannE-mail: armann@desy.deWeb-address: http://photon-science.desy.de/facilities/flash/index_eng.html Description of the project:Currently the Free-Electron Laser at DESY in Hamburg FLASH operates in the regime of self-amplified spontaneous emission (SASE). Due to its start-up from noise, the radiation consists of a number of uncorrelated modes resulting in reduced longitudinal coherence and shot-to-shot fluctuations of the output pulse energy. In the last decade, many schemes were developed and tested to improve the performance of free-electron laser (FEL) sources and to push the temporal and spectral qualities of FEL beams to their limits and beyond.An important trend of research and development in this field is the generation of fully coherent X-ray laser pulses either by seeding the FEL process with an external laser pulse or by using extremely low electron bunch charges in the accelerator, i.e. single-spike lasing for advanced nonlinear spectroscopic applications. For generating fully coherent pulses of a few-fs length or even shorter, the operation of the FLASH accelerator is challenging. Key machine parameters for reliable FEL performance need to be kept under control, such as slice energy spread and emittance of the electron beam. Sophisticated timing and feedback systems that steer the individual electron bunch trajectories require detailed information on electron energy and density as a function of the intra-bunch coordinates. Novel schemes of undulator tapering are applied in order to generate highly flexible pulse properties. Thus, the success of FEL science and technology is closely linked to major advances in electron and photon beam diagnostics and instrumentation.It can be expected that the focus of research in the field of FEL science and technology in the next decade will move towards the generation of fully coherent attosecond pulses at GW peak-power. The present project strives to further develop FLASH’s position as one of the leading science drivers in this field. Thus, we are seeking a postdoctoral researcher to take an active role in the implementation, characterization and application of theses modern concepts at FLASH.The project proposal shall prepare the ground for an inspiring cooperation with the Chinese collaboration partner institute in this unique focus of research and to a rich harvest of novel results.Description of existing or sought Chinese collaboration partner institute:The Dalian Coherent Light Source (DCLS) delivers the world’s brightest femtosecond pulses in an energy range from 8 eV to 24 eV. The vacuum ultraviolet FEL facility was jointly built by the Dalian Institute of Chemical Physics (DICP) and the Shanghai Institute of Applied Physics (SINAP), two Chinese Academy of Sciences (CAS) institutes. Since the VUV FEL light source is able to probe the valence electronic structures of all kinds of materials on the ultrafast timescale, it will have a wide range of applications form basic energy science, chemistry, physics to atmospheric sciences. Its initial focus will be on dynamic studies in the physical chemistry making use of time-resolved pump-probe and absorption spectroscopy.In early 2017 the collaboration has successfully commissioned the new FEL facility operating in both seeding and SASE mode. By applying undulator tapering technology a photon flux of 1.4 x 1014 photons per pulse was achieved. It goes without saying that these achievements perfectly match the present and future activities pursued at FLASH. Furthermore, the accessible VUV photon energy range of the DCLS FEL nicely complements the XUV to soft X-ray spectrum covered by FLASH and the hard X-ray beams delivered by the European XFEL, respectively. Therefore, we expect that the new VUV FEL facility will lead to new international scientific collaborations. It is a central objective of the present proposal to foster those, because bottom-up approaches are a very efficient way for fast technological progress.Required qualification of the post-doc:•PhD in Physics, Electrical Engineering or a similar discipline•Strong background in one or more of the following research areas: accelerator physics, interaction of intense laser pulses with relativistic electrons, seeding, nonlinear optics, electron beam transport, soft X-ray beamline designPART BDocuments to be provided by the post-doc:•Detailed description of the interest in joining the project (motivation letter) •Curriculum vitae, copies of degrees•List of publications• 2 letters of recommendationPART CAdditional requirements to be fulfilled by the post-doc:•Max. age of 35 years•PhD degree not older than 5 years•Very good command of the English language•Strong ability to work independently and in a team。

激光振荡器工作原理探析

激光振荡器工作原理探析

激光振荡器工作原理探析周世伟【摘要】激光振荡器是产生激光的装置,是一种新型的光源.它优异的性能参数,使它广泛应用于各个领域,并形成激光物理学新的技术领域.激光技术是一门包含多个学科的综合技术,从激光振荡器结构出发,深入探究其工作原理及激光技术的发展前景.【期刊名称】《哈尔滨师范大学自然科学学报》【年(卷),期】2012(028)005【总页数】3页(P52-54)【关键词】激光;谐振腔;激活介质【作者】周世伟【作者单位】哈尔滨师范大学【正文语种】中文0 引言激光(laser)是辐射受激发射光量子放大的简称.爱因斯坦首先在光量子论的基础上发展了自发辐射和受激辐射理论,并预言了原子产生受激辐射放大的可能性,奠基了激光理论基础[1].激光技术是以原子物理、量子理论、光学技术和电子技术为基础的综合技术.激光技术的发展,使光的微观发射机制,由不可控、杂乱无序,变为可控有序.一个能量为ħν=E2-E1的光子碰到高态E2原子时的受激辐射和它碰到低态E1原子时被吸收,已由经典的吸收理论及量子化辐射过程的热力学理论所证实.受激发射和光的吸收,描述了物质吸收能量与释放能量两个不同状态,而在激光技术中需要人为的造成反常态——受激发射状态,而反常态的实现,决定于高能级与低能级粒子数量差.只有打破玻耳兹曼统计分布规律,使高能级粒子数高于低能级粒子数,才能得到受激发射的反常态.正是由于物质从一个状态到另一个状态,才发生着意想不到的奇迹.迫使高能级粒子数多于低能级粒子数,称为粒子数反转,而粒子数反转的实现,要靠外界能量的输入来改变能级粒子数的分布.把外界提供能量的装置称为泵浦(激励系统).1 激光振荡器工作原理探究激光振荡器由泵浦能源、激活介质和谐振腔三部分组成[2].激光的基础是光受激放大与振荡.光要从介质中吸取能量而放大,必须使介质中原子的光发射超过光吸收,并在粒子数反转的状态下实现.在常温下热平衡状态,处于上下能级的粒子数分布服从玻耳兹曼统计分布:式中N1与N2分别代表E1、E2能级的粒子数,K为波耳兹蔓常数.该分布是常温下粒子数的正常分布,虽然处于该状态的粒子迟早会掉到较低的状态,并将以光的形式辐射出能量.但是此状态只有光的自发发射和吸收,而光的发射是杂乱的、无序的,不能形成激光,借助外来力量,以激励系统为动力,打破热平衡状态下粒子数分布使即高能级E2的粒子数多于低能级E1的粒子数.N2>N1状态,是对热平衡状态的一种扰乱,处于负温度状态.理论与实践证明激励系统(泵浦)与容易实现粒子数反转的工作物质(激活介质),共同实现了物质中粒子数的反转.当能量为ħν=E2-E1的外来光子,作用到粒子数反转的物质时,发生高能级粒子向低能级跃迁的受激辐射.依靠外来力量打破粒子数的正常分布,实现粒子数的反分布,让光发射大于光吸收,从而形成激光.粒子数反转是激光产生的状态.若使激活介质受激发射的光持续放大,必须在介质两边分别加一块全反射镜和一块半反射镜组成谐振腔.谐振腔是激光振荡器中的核心部件.在谐振腔中,光、工作物质、反射镜三者之间,以及光与光之间存在复杂的相互制约与影响,左右输出激光的性能参数.谐振腔是固体激光器、气体激光器、半导体激光器等各种激光振荡器的必备技术,均采用谐振腔进行选模和放大,从而获得单色性好、相干性好、方向性强和高亮度的激光.谐振腔的设计与调试是关键技术,影响激光振荡器激光输出的性能.若在激光振荡器内激活介质起振荡作用,那么输出能量的一部分必须用做反馈.反馈由通过放置在激活介质两端的反射镜来实现.反射镜一个完全反射,另一个部分反射,以便把激光束耦合出去.谐振腔实际上是频率选择器,它从所发射的频率很宽的光波中,选出满足谐振条件的频率形成激光.谐振腔第二个功能是进行光放大,谐振腔尺寸大小决定选择振荡频率的多少.设谐振腔反射镜尺寸很大,那么在半周期(单程)中总相移为:又因一次往返的总相移必须为π的偶数倍,所以又式中q表示纵模数,由K=ω/c,ω为波的角频率又得式中m与n确定各个模的横场分布,q确定谐振腔两反射镜之间波长的数目.方程ωmnq=π(2q+m+n+1)c/2R为确定振荡频率的方程.方程指出:相同频率的模有多个,所有具有(2q+m+n)的模都有相同的振荡频率,因为这些模是简并的.由此可见,谐振腔尺寸决定谐振腔振荡频率的多少,谐振腔对频率的选择,使得只有某些特定的光波在腔内来回一周后,位相改变2π的整数倍,才满足谐振条件.满足方程ωmnq=π(2q+m+n+1)c/2R的这些频率在腔内发生振荡,要形成激光还要满足阈值条件.为此在谐振频率中,只有在原子谱线宽度内,并同时满足阈值条件的频率可以形成激光.正是由于谐振腔对频率的选择功能,才使激光振荡器具备了良好的单色性.若要激光振荡器发出来的激光只有一个频率,只能缩短谐振腔的长度,但影响激光的输出功率.上述方程建立于共焦式谐振腔近轴区域,式中R 为两凹面镜的曲率半径,并R≫λ,σ的大小确定着受到的损耗,是个复常数.在激光振荡器工作物质内部,由于泵浦的激励,在N2>N1非热平衡状态,当外来光子的频率满足ħν=E2-E1两能级能量差时,引起受激辐射发光.辐射过程中产生的光子与外来光子具有完全相同的特征,如相同的频率、相同的相位等.由一个光子的作用,得到两特征完全相同的光子,两个相同的光子再引起其它粒子产生受激辐射,就能得到更多特征完全相同的光子.在一个入射光子作用下的连锁反应,产生大量的具有相同特征的光子,该现象被定义为光放大.激活介质在泵浦激励下实现了粒子数反转,当受激发射大于吸收过程时便具备了放大光的能力,而受激辐射只有沿着轴线方向的光子,才能在谐振腔两反射镜之间来回反射,每次路径激活介质,并在谐振腔振荡中光变得越来越强.与谐振腔轴线不平行的光子很快飞出腔外或被阻挡层吸收.当激活介质对光的放大作用足以抵消激光输出和其它损耗时,谐振腔内保持了一定光强,同时不断输出激光,从而建立了激光振荡.可见在谐振腔内某一方向的受激辐射不断得到放大和加强,产生的光振荡实现了受激辐射在谐振腔内占有绝对优势,在轴向行进的光子不断得到放大和振荡,使谐振腔内沿轴向的光骤然增加,形成激光.综上所述,激光振荡器是发射激光的装置.激光发射必须满足三个条件:(1)形成粒子数反转,使受激辐射占优势.(2)具有核心部件谐振腔,用以实现谐振频率的选择,并实现光量子放大.(3)降低阈值,其方法为减小各种损耗.2 激光振荡器发展前景及最新动态由国内外激光技术领域[3]的科技动态来看,激光振荡器的研究和发展主要有:(1)提高激光振荡器的物理参数,研究大功率、大能量的激光仪器.(2)积极寻找新的工作物质,以满足对激光振荡器的不同需求.(3)开展X射线激光振荡器的研究,寻找在X射线激光振荡器中,在激活物质(等离子体)中实现粒子数反转的技术手段.如:离子的光激发;离子的电子碰撞激发;离子的碰撞复合;多电荷原子(离子内壳层的光电离和碰撞电离);原子——离子的电荷交换等.固体激光振荡器靠光抽运来实现粒子数反转;气体激光振荡器粒子数反转是由电子碰撞激发的;在半导体激光振荡器中,粒子数反转的实现是靠注入不同物质的少数载流子形成激活区(p-n结),在(p-n结)中实现的.半导体激光振荡器[4]最大的优点在于它容易实现粒子数反转(如只需很小的脉冲电压),高效率体积小,因而半导体激光振荡器成为激光发展的主流.最近日本东京都市大学成功的由硅基板发出波长约1.5 μm近红外线的激光,首先在硅中制造出微小构造,再埋入直径约70 nm的锗微小粒“量子点”,规则排列制造出直径200 nm的孔穴,通电产生光子,光子在各孔穴间来回则形成接近近红外线波长的光.东京大学则成功由硅基板发出波长1.3 μm的激光.硅基材料本身就含有微量不纯物,再加入比一般防腐剂高百倍的硼,通电后产生的光子在两端反射镜之间(谐振腔)来回产生激光.东京农工大学则以低成本的技术制造硅基板激光器,在溶液中通电,基板表面会形成硅量子点,虽然成功发出激光,但仍需解决光电变换效率等诸多问题[5].总之由于半导体材料优良的特性,是激光发展的重要方向.通过扩散在材料中掺入不同的杂质,形成p-n结,利用光刻工艺形成微小孔穴的半导体材料,更容易实现粒子数反转.寻找新的半导体材料仍然是半导体激光的新突破.目前科研人员努力的方向是X射线激光、红外线激光、attosecondlaser(阿秒激光)、free electronlaser(自由电子激光)等[6].我们已经十分清楚,科研人员总是想各种办法,寻找最容易形成粒子数反转的工作物质,让其发出光来,然后通过一系列的方法,将光加以放大,增加激光的能量.从这一思路出发,演绎了激光技术的发展和未来.参考文献[1]加塔克 M K,塞格雷键 K.现代光学:第2版.内蒙古:内蒙古人民出版社,1986.[2]伽本尼M.北京大学激光教研室,译.光学物理:第1版.北京:科学出版社,1976.[3]彭慧民,王世绩.X射线激光,第1版.北京:国防工业出版社,1997. [4]刘恩科,朱秉生,罗晋生,等.半导体物理学:第4版.北京:国防工业出版社,2007.[5]中国电子科技集团公司第二十七研究所.电光系统,2012(2).[6]姚启钧.光学教程.北京:人民教育出版社,1981.。

电子回旋脉射-基本知识及应用

电子回旋脉射-基本知识及应用

電子迴旋脈射—原理及應用文/朱國瑞、張存續、陳仕宏摘要電子迴旋脈射(Electron Cyclotron Maser, ECM)係靜磁場中迴旋的電子,基於相對論效應所產生的受激輻射(stimulated emission)現象。

四十年來,ECM從基礎研究逐漸發展成為一個實用的高功率同調(coherent)電磁波源,在電磁波頻譜的毫米及次毫米波段,佔有獨特的地位。

ECM輻射於核融合加熱、先進雷達、粒子加速、太空探測、材料處理、物性偵測及頻譜學等應用,發揮了高度的實用價值。

另一方面,其中仍有許多的物理現象,未獲充分了解,而其應用潛力也還有廣闊的發展空間。

本文首先介紹真空電子學這個相關課題,再探討ECM的輻射原理及例舉幾個代表性的應用,最後略談國內的ECM研究。

一、課題簡介早期的真空電子學[1, 2],研創出磁控管(magnetron)、速調管(klystron)及行波管(traveling wave tube,簡稱TWT)等高功率微波源。

這些成果與我們今天的日常生活(電視、微波爐、衛星通訊等)、科學研究(加速器、核融合等),以至戰爭的勝負(雷達偵測、飛彈導航等)都息息相關。

1950年代以後,傳統微波管已趨成熟,取而代之的是一門新興科目:相對論電子學(relativistic electronics),它的兩大支柱為自由電子雷射(free electron laser, FEL)[3]和電子迴旋脈射[4],二者均利用相對論效應,將自由電子的動能轉換為高頻率及高功率的同調電磁輻射。

相對論電子學帶來了許多新的物理題材,同時也將電磁波的頻段及功率推進到前所未有的新境界,功率較之早期微波管驟增了百萬倍以上,而波長則由厘米進入毫米、次毫米、兆赫(terahertz)、可見光、以至X-光等頻段(表一)。

除了輻射機制本身具有高度的研究價值之外,新波源的誕生又可作為其他科目的研究工具,同時也具有發展各種新型系統的潛力[5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Phys. Rev. ST Accel. Beams 10, 034801 (2007) an optical cavity together with many electron bunches is necessary to build up the radiation intensity. Such FEL oscillators have been constructed and used successfully in the visible and longer wavelengths (e.g., Ref. [16]). For a sufficiently bright electron beam and a sufficiently long undulator, the collective interaction of the beam-radiation system leads to an exponential growth of the radiation intensity along the undulator distance as illustrated in Fig. 3. Such a high-gain FEL does not require any optical cavity and can amplify either an input seed signal or the spontaneous undulator radiation produced by the electron shot noise. Thus, in the x-ray wavelength range where both mirrors and coherent input sources are difficult to obtain, intense, quasicoherent radiation can be generated by the SASE process. The exponential gain eventually stops as the beam loses enough energy to upset the resonant condition. Both the radiation intensity and the electron beam microbunching reach a maximum saturation level (see Fig. 3). A fundamental scaling parameter for a high-gain FEL is the dimensionless Pierce parameter defined as [5] 2 2 2 1=3 2 K0 JJ kp 1 Ie K 0 JJ2 1=3 ; 2 2 16 IA 3 32 k2 u 0 x ku
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 034801 (2007)
Review of x-ray free-electron laser theory
Zhirong Huang
Stanford Linear Accelerator Center, Stanford, California 94309, USA
and effects of beam emittance and energy spread. The main characteristics of x-ray FELs, including coherence properties and harmonic content, are presented in Sec. IV, where the temporal manipulation and seeding schemes are also briefly discussed. In Sec. V we analyze degrading effects of undulator errors and wakefields and study their tolerances or compensations. Several electron beam-manipulation methods to enhance the SASE performance are described in Sec. VI. We conclude the paper with final remarks in Sec. VII. II. QUALITATIVE DISCUSSIONS The radiation discussed in this paper is generated in a periodic magnetic device called an ‘‘undulator.’’ Consider a planar undulator for which the magnetic field is in the vertical y direction and varies sinusoidally along the z direction: By B0 sin ku z: (1)
DOI: 10.1103/PhysRevSTAB.10.034801 PACS numbers: 41.60.Cr
I. INTRODUCTION Free-electron lasers (FELs), invented by John Madey [1] and subsequently demonstrated experimentally by his group at Stanford University in the 1970s [2], hold great promise as tunable, high-power, coherent sources for shortwavelength radiation. To circumvent the need for mirrors or coherent seeds, the initial random field of spontaneous radiation in an undulator may be amplified in the medium of a bright electron beam traveling through a long undulator to intense, quasicoherent radiation [3–5]. In the x-ray or less), a wavelength range (from a few nm down to 1 A high-gain FEL operated in this self-amplified spontaneous emission (SASE) mode can generate multigigawatt (GW) and femtosecond (fs) coherent x-ray pulses. The extreme high power together with the excellent transverse coherence of such x-ray sources provide about 10 orders of magnitude improvement in peak brightness above that offered by the current synchrotron radiation sources based on electron storage rings, making FELs suitable probes for both the ultrasmall and the ultrafast worlds. Tremendous progress in accelerator and FEL technologies has been made in past years towards realizing such a ‘‘fourthgeneration’’ radiation facility, demonstrated by the sequence of recent SASE FEL experiments at visible and ultraviolet wavelengths [6 –9]. More recently, the VUVFEL at DESY, now called FLASH, reported FEL lasing at wavelengths down to 13 nm [10]. Because of these successes, several x-ray FEL projects are either under construction or being proposed (see, e.g., Refs. [11–14]). This paper reviews the basic theory behind the x-ray FELs and points out possible improvement of these sources. In Sec. II we discuss qualitatively how the coherent radiation is amplified and developed from the initial seed signal or the electron shot noise. It is then followed by mathematical analysis of the FEL equations and their solutions in Sec. III, including diffraction, optical guiding, 1098-4402= 07 =10(3)=034801(26)
Here ku 2=u , u is the undulator period, and B0 is the magnetic pole field. As shown in Fig. 1, a relativistic electron entering the undulator will wiggle periodically in the horizontal x direction and can spontaneously emit radiation at the resonant wavelength (see, e.g., Ref. [15])
相关文档
最新文档