State complexes for metamorphic robots
复杂适应系统与分布式卫星系统自主运行
第23卷第9期计算机仿真2006年9月文章编号:1006-9348(2006)09-0023-04复杂适应系统与分布式卫星系统自主运行张健,戴金海(国防科技大学航天与材料工程学院,湖南长沙410073)摘要:以复杂适应系统理论为指导,探讨了基于Agent技术实现分布式卫星系统(DSS)自主运行的研究方法和主要步骤。
目前国内外关于DSS自主运行技术的研究尚处于起步阶段,缺乏系统的理论指导。
该文试图运用复杂适应系统(CAS)理论的思想和方法来指导DSS自主运行技术的研究,并以此扩展CAS理论的应用领域。
首先介绍CAS理论的基本概念和核心思想,然后分析自主运行DSS的控制需求和特征,指出CAS理论用于指导DSS自主运行的必要性和可行性,并给出基于Agent 实现DSS自主运行的整体框架。
关键词:复杂适应系统;智能体;分布式卫星系统;自主运行中图分类号:TP391.9;V423 文献标识码:AComplex Adaptive System and Autonomy of Distributed Satellite SystemsZHANG Jian,DAI Jin-hai(Coiiege of Astronautics&Materiai Engineering,NUDT,Changsha Hunan410073,China)ABSTRACT:Under the instruction of CompieX Adaptive System(CAS)theory,the methods and main steps of Agent-based autonomy of Distributed Sateiiite Systems(DSS)are discussed.Tiii now,study on spacecraft autonomy is stiii in the eariy stage,and is in great need of theoreticai instruction.We try to adopt the ideas and methods of Com-pieX Adaptive System(CAS)theory to research autonomy of DSS,and thereby eXtend the appiication domain of CAS theory.Basic concepts and kernei thoughts of CAS are introduced.Then the controi demands and characteristics of autonomous DSS are anaiyzed.The necessity and feasibiiity of instruction of CAS theory is pointed out.In the end,generai frameworks of Agent-based autonomy of DSS are discussed.KEYWORDS:CompieX adaptive system(CAS);Agent;Distributed sateiiite system(DSS);Autonomy引言航天器的自主运行是指利用人工智能等现代控制技术,实现由地面系统到航天器系统的智能移位,使航天器在无人干涉的情况下,实现自我管理并完成各种任务。
人工智能生态相关的专业名词解释
人工智能生态相关的专业名词解释下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!人工智能技术的快速发展,推动着人工智能生态系统的形成和完善。
英语的造字的逻辑 -回复
英语的造字的逻辑-回复什么是马尔可夫链?马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
它由一系列状态和状态之间的转移概率组成。
马尔可夫链的特点是“无记忆”,即在任意给定状态的情况下,未来状态的概率仅仅取决于当前状态,而不受过去状态的影响。
马尔可夫链的定义:1. 状态空间:马尔可夫链的状态集合,用S表示。
2. 初始状态分布:马尔可夫链在时间0开始时,处于某个状态的概率分布,用π表示。
3. 转移概率:表示状态之间的转移概率,用P表示,其中P(i, j)表示从状态i转移到状态j的概率。
一个马尔可夫链可以用状态空间S、初始状态分布π和转移概率矩阵P三元组来表示。
马尔可夫链的性质:1. 马尔可夫性质:在任意给定状态的情况下,未来状态的概率仅仅取决于当前状态,而不受过去状态的影响。
2. 连通性:对于任意两个状态i和j,存在一系列状态k1, k2, ..., kn,使得P(i, k1) ×P(k1, k2) × ... ×P(kn, j) > 0。
3. 不可约性:对于任意两个状态i和j,存在一系列状态k1, k2, ..., kn,使得P(i, k1) ×P(k1, k2) × ... ×P(kn, j) ≠0。
4. 遍历性:从任意状态i出发,经过有限步转移,可以到达任意其他状态j。
5. 马尔可夫链的平稳分布:如果存在一个概率向量π使得πP=π,那么π就是马尔可夫链的平稳分布。
马尔可夫链的应用:马尔可夫链在许多领域都有广泛的应用,例如自然语言处理、机器学习、金融、医学等。
下面以自然语言处理为例,介绍马尔可夫链的应用。
在自然语言处理中,马尔可夫链经常被用来生成文本。
假设我们有一个语料库,其中包含大量的句子。
我们可以将每个句子看作马尔可夫链的一个状态,状态之间的转移概率可以通过统计句子中每个单词的出现情况来计算。
使用马尔可夫链生成文本的步骤如下:1. 首先,从语料库中选择一个初始句子作为起始状态。
2020年国家开放大学《人工智能》专题 形考任务二参考答案
2020年国家开放大学《人工智能》专题形考任务二参考答案判断题现实世界中的规划问题需要先调度,后规划。
×启发式规划的两种方法是减少更多的边或者状态抽象。
×语义网络的表示方法只能表示有关某一事物的知识,无法表示一系列动作、一个事件等的知识。
×下图表示的是前向状态空间搜索。
√人们需要把分类器学习的样本的特点进行量化,这些量化后的数据,如鸢尾花的高度、花瓣的长度、花瓣的宽度等就是鸢尾花的特征。
这些特征都是有效的,可以提供给分类器进行训练。
×状态空间图是对一个问题的表示,通过问题表示,人们可以探索和分析通往解的可能的可替代路径。
特定问题的解将对应状态空间图中的一条路径。
√贝叶斯定理是为了解决频率概率问题提出来的。
×深度学习是计算机利用其计算能力处理大量数据,获得看似人类同等智能的工具。
√分层规划中包含基本动作和高层动作。
√谓词逻辑是应用于计算机的逻辑形式,其逻辑规则、符号系统与命题逻辑是一样的。
×P(A∣B)代表事件A发生的条件下事件B发生的概率。
×人工智能利用遗传算法在求解优化问题时,会把问题的解用“0”和“1”表示。
0,1就是就是“遗传基因”,01组成的字符串,称为一个染色体或个体。
√选择题人们想让智能机器分辨哪个动物是熊猫,就会输入一些数据告诉机器。
如图上所示的“大大的脑袋,黑白两色,黑眼眶,圆耳朵”,这些属于(特征值)。
贝叶斯网络是(朱迪亚·珀尔)首先提出来的。
遗传算法具有(生存+检测)的迭代过程的搜索算法。
也就是说,通过群体的一代代的不断进化,最终收敛到“最适应环境”的个体,从而求得问题的最优解或满意解。
(多选)在A* 算法中,当我们找寻当前节点的相邻子节点时,需要考虑(如果该子节点已经在Open列表中,则我们需要检查其通过当前节点计算得到的F值。
如果比它原有计算的F值更小。
如果更小则更新其F值,并将其父节点设置为当前节点。
人工智能领域模型评估和性能分析方面50个课题名称
人工智能领域模型评估和性能分析方面50个课题名称1. 基于机器学习算法的模型评估方法研究2. 人工智能模型性能分析与优化技术研究3. 对抗样本攻击与防御机制的性能评估研究4. 基于深度学习的图像识别模型评估与性能分析5. 自然语言处理模型的性能评估与优化研究6. 机器学习模型的鲁棒性评估与分析7. 分布式人工智能模型的性能评估与优化策略研究8. 稀有事件检测模型的性能评估与分析9. 基于强化学习的人工智能模型评估与性能优化10. 跨领域数据集的人工智能模型性能分析研究11. 基于迁移学习的人工智能模型性能评估与分析12. 自动驾驶系统的人工智能模型效能评估研究13. 基于深度强化学习算法的智能推荐系统的性能分析14. 人工智能模型中的数据偏见评估与修正研究15. 基于多模态数据的人工智能模型性能评估与分析16. 对抗性迁移学习模型的性能评估与优化策略研究17. 基于图神经网络的人工智能模型性能分析与改进18. 对抗生成网络模型的性能评估与鲁棒性分析19. 基于联邦学习的隐私保护人工智能模型性能评估研究20. 高效人工智能模型并行计算与性能评估技术研究21. 基于时序数据的人工智能模型性能评估与分析22. 深度强化学习模型的探索性能评估与优化研究23. 复杂环境中机器学习模型的性能评估与鲁棒性分析24. 在线学习模型的性能评估与优化策略研究25. 基于知识图谱的人工智能模型性能评估与分析26. 深度神经网络模型的性能评估与可解释性研究27. 大规模数据集上机器学习模型的性能分析与优化28. 神经网络模型中的脆弱性评估与对抗性分析29. 基于自主学习的人工智能模型性能评估与优化30. 分层学习模型的性能评估与鲁棒性分析31. 渐进学习模型的性能评估与优化策略研究32. 基于递归神经网络的自然语言处理模型性能分析33. 基于异构数据的人工智能模型性能评估与分析34. 视觉感知模型的性能评估与优化研究35. 基于生成对抗网络的图像增强模型的性能分析36. 人工智能模型中的中断恢复能力评估与优化37. 深度学习模型的认知可信度评估与分析38. 基于迁移强化学习的机器人控制模型性能评估研究39. 高维数据处理中机器学习模型性能分析与优化40. 基于自适应学习的人工智能模型性能评估与分析41. 人工智能模型中的决策可靠性评估与优化42. 非正式环境下机器学习模型性能评估与鲁棒性分析43. 基于增量学习的人工智能模型性能评估与优化策略研究44. 多任务学习模型的性能评估与分析45. 基于元学习的人工智能模型性能分析与优化研究46. 图神经网络模型的性能评估与鲁棒性分析47. 基于信息熵的人工智能模型可靠性评估与优化48. 深度生成模型的性能评估与可解释性研究49. 跨领域知识迁移模型的性能评估与分析50. 基于弱监督学习的人工智能模型性能评估与优化。
(参考资料)人工智能导论(本科生) 复习大纲 -参考答案
目录绪论 (1)搜索技术 (1)遗传算法 (8)谓词逻辑 (8)结构化知识表示 (12)绪论1、什么是人工智能?答:人工智能又称机器智能,是用计算机模拟或实现的智能;(人工智能是研究如何制造出人造的智能机器或系统,来模拟人类智能活动的能力,以延伸人们智能的科学)2、什么是符号智能与计算智能?并举例说明。
答:符号智能是模拟闹智能的人工智能,是以符号形式的知识和信息为基础,主要通过逻辑推理,运用知识进行问题求解。
如搜索技术、专家系统、定理证明等;计算智能是模拟群智能的人工智能,以数值数据为基础,主要通过数值计算,运用算法进行问题求解。
搜索技术1.状态图是由什么组成的?答:状态图是由节点与有向边组成;2.简述图搜索的方式和策略。
答:搜索方式:线式搜索和树式搜索;搜索策略:盲目搜索和启发式搜索;3.阐述图搜索策略中OPEN表与CLOSED表的作用。
答:OPEN表用来保存当前待考察的节点,并按照某种排列,来控制搜索的方向和顺序;CLOSED表用来记录搜索过程中已考察过的节点,保存全局搜索信息,并可根据节点返回指针得到搜索解路径。
4.简述广度优先策略与深度优先策略的不同点。
答:广度优先搜索是始终在同一级节点中考查,当同一级节点考查完毕,才考查下一级节点。
因此,是自顶向下一层一层逐渐搜索的,属于横向搜索策略,其搜索是完备的,得到的解为最优解;深度优先搜索是在搜索树的每一层始终只扩展一个子节点,不断向纵深前进,直到不能再前进时,才从当前节点返回到上一级节点,沿另一方向又继续前进。
因此,是从树根开始一枝一枝逐渐搜索的,属于纵向搜索策略,其搜索是不完备的,得到的解不一定为最优解。
5.什么是启发式搜索?并以八数码难题为例,说明其原理。
答:启发式搜索是利用问题拥有的启发信息来引导搜索,达到减少搜索范围,降低问题复杂度的目的。
对于八数码难题,可以利用不在位将牌数或者与目标距离信息来作为启发函数,可以加快搜索目标的步数。
6.简述启发函数的单调性判别。
State Space Reconstruction for Multivariate Time Series Prediction
a r X i v :0809.2220v 1 [n l i n .C D ] 12 S e p 2008APS/123-QEDState Space Reconstruction for Multivariate Time Series PredictionI.Vlachos ∗and D.Kugiumtzis †Department of Mathematical,Physical and Computational Sciences,Faculty of Technology,Aristotle University of Thessaloniki,Greece(Dated:September 12,2008)In the nonlinear prediction of scalar time series,the common practice is to reconstruct the state space using time-delay embedding and apply a local model on neighborhoods of the reconstructed space.The method of false nearest neighbors is often used to estimate the embedding dimension.For prediction purposes,the optimal embedding dimension can also be estimated by some prediction error minimization criterion.We investigate the proper state space reconstruction for multivariate time series and modify the two abovementioned criteria to search for optimal embedding in the set of the variables and their delays.We pinpoint the problems that can arise in each case and compare the state space reconstructions (suggested by each of the two methods)on the predictive ability of the local model that uses each of them.Results obtained from Monte Carlo simulations on known chaotic maps revealed the non-uniqueness of optimum reconstruction in the multivariate case and showed that prediction criteria perform better when the task is prediction.PACS numbers:05.45.Tp,02.50.Sk,05.45.aKeywords:nonlinear analysis,multivariate analysis,time series,local prediction,state space reconstructionI.INTRODUCTIONSince its publication Takens’Embedding Theorem [1](and its extension,the Fractal Delay Embedding Preva-lence Theorem by Sauer et al.[2])has been used in time series analysis in many different settings ranging from system characterization and approximation of invariant quantities,such as correlation dimension and Lyapunov exponents,to prediction and noise-filtering [3].The Em-bedding Theorem implies that although the true dynam-ics of a system may not be known,equivalent dynamics can be obtained under suitable conditions using time de-lays of a single time series,treated as an one-dimensional projection of the system trajectory.Most applications of the Embedding Theorem deal with univariate time series,but often measurements of more than one quantities related to the same dynamical system are available.One of the first uses of multivari-ate embedding was in the context of spatially extended systems where embedding vectors were constructed from data representing the same quantity measured simulta-neously at different locations [4,5].Multivariate em-bedding was used for noise reduction [6]and for surro-gate data generation with equal individual delay times and equal embedding dimensions for each time series [7].In nonlinear multivariate prediction,the prediction with local models on a space reconstructed from a different time series of the same system was studied in [8].This study was extended in [9]by having the reconstruction utilize all of the observed time series.Multivariate em-bedding with the use of independent components analysis was considered in [10]and more recently multivariate em-2as x n=h(y n).Despite the apparent loss of information of the system dynamics by the projection,the system dynamics may be recovered through suitable state space reconstruction from the scalar time series.A.Reconstruction of the state space According to Taken’s embedding theorem a trajectory formed by the points x n of time-delayed components from the time series{x n}N n=1asx n=(x n−(m−1)τ,x n−(m−2)τ,...,x n),(1)under certain genericity assumptions,is an one-to-one mapping of the original trajectory of y n provided that m is large enough.Given that the dynamical system“lives”on an attrac-tor A⊂Γ,the reconstructed attractor˜A through the use of the time-delay vectors is topologically equivalent to A.A sufficient condition for an appropriate unfolding of the attractor is m≥2d+1where d is the box-counting dimension of A.The embedding process is visualized in the following graphy n∈A⊂ΓF→y n+1∈A⊂Γ↓h↓hx n∈R x n+1∈R↓e↓ex n∈˜A⊂R m G→x n+1∈˜A⊂R mwhere e is the embedding procedure creating the delay vectors from the time series and G is the reconstructed dynamical system on˜A.G preserves properties of the unknown F on the unknown attractor A that do not change under smooth coordinate transformations.B.Univariate local predictionFor a given state space reconstruction,the local predic-tion at a target point x n is made with a model estimated on the K nearest neighboring points to x n.The local model can have a simple form,such as the zeroth order model(the average of the images of the nearest neigh-bors),but here we consider the linear modelˆx n+1=a(n)x n+b(n),where the superscript(n)denotes the dependence of the model parameters(a(n)and b(n))on the neighborhood of x n.The neighborhood at each target point is defined either by afixed number K of nearest neighbors or by a distance determining the borders of the neighborhood giving a varying K with x n.C.Selection of embedding parametersThe two parameters of the delay embedding in(1)are the embedding dimension m,i.e.the number of compo-nents in x n and the delay timeτ.We skip the discussion on the selection ofτas it is typically set to1in the case of discrete systems that we focus on.Among the ap-proaches for the selection of m we choose the most popu-lar method of false nearest neighbors(FNN)and present it briefly below[13].The measurement function h projects distant points {y n}of the original attractor to close values of{x n}.A small m may still give badly projected points and we seek the reconstructed state space of the smallest embed-ding dimension m that unfolds the attractor.This idea is implemented as follows.For each point x m n in the m-dimensional reconstructed state space,the distance from its nearest neighbor x mn(1)is calculated,d(x m n,x mn(1))=x m n−x mn(1).The dimension of the reconstructed state space is augmented by1and the new distance of thesevectors is calculated,d(x m+1n,x m+1n(1))= x m+1n−x m+1n(1). If the ratio of the two distances exceeds a predefined tol-erance threshold r the two neighbors are classified as false neighbors,i.e.r n(m)=d(x m+1n,x m+1n(1))3 III.MULTIV ARIATE EMBEDDINGIn Section II we gave a summary of the reconstructiontechnique for a deterministic dynamical system from ascalar time series generated by the system.However,it ispossible that more than one time series are observed thatare possibly related to the system under investigation.For p time series measured simultaneously from the samedynamical system,a measurement function H:Γ→R pis decomposed to h i,i=1,...,p,defined as in Section II,giving each a time series{x i,n}N n=1.According to the dis-cussion on univariate embedding any of the p time seriescan be used for reconstruction of the system dynamics,or better,the most suitable time series could be selectedafter proper investigation.In a different approach all theavailable time series are considered and the analysis ofthe univariate time series is adjusted to the multivariatetime series.A.From univariate to multivariate embeddingGiven that there are p time series{x i,n}N n=1,i=1,...,p,the equivalent to the reconstructed state vec-tor in(1)for the case of multivariate embedding is of theformx n=(x1,n−(m1−1)τ1,x1,n−(m1−2)τ1,...,x1,n,x2,n−(m2−1)τ2,...,x2,n,...,x p,n)(3)and are defined by an embedding dimension vector m= (m1,...,m p)that indicates the number of components used from each time series and a time delay vector τ=(τ1,...,τp)that gives the delays for each time series. The corresponding graph for the multivariate embedding process is shown below.y n∈A⊂ΓF→y n+1∈A⊂Γւh1↓h2...ցhpւh1↓h2...ցhpx1,n x2,n...x p,n x1,n+1x2,n+1...x p,n+1ցe↓e...ւeցe↓e...ւex n∈˜A⊂R M G→x n+1∈˜A⊂R MThe total embedding dimension M is the sum of the individual embedding dimensions for each time seriesM= p i=1m i.Note that if redundant or irrelevant information is present in the p time series,only a sub-set of them may be represented in the optimal recon-structed points x n.The selection of m andτfollows the same principles as for the univariate case:the attrac-tor should be fully unfolded and the components of the embedding vectors should be uncorrelated.A simple se-lection rule suggests that all individual delay times and embedding dimensions are the same,i.e.m=m1and τ=τ1with1a p-vector of ones[6,7].Here,we set againτi=1,i=1,...,p,but we consider bothfixed and varying m i in the implementation of the FNN method (see Section III D).B.Multivariate local predictionThe prediction for each time series x i,n,i=1,...,p,is performed separately by p local models,estimated as in the case of univariate time series,but for reconstructed points formed potentially from all p time series as given in(3)(e.g.see[9]).We propose an extension of the NRMSE for the pre-diction of one time series to account for the error vec-tors comprised of the individual prediction errors for each of the predicted time series.If we have one step ahead predictions for the p available time series,i.e.ˆx i,n, i=1,...,p(for a range of current times n−1),we define the multivariate NRMSENRMSE=n (x1,n−¯x1,...,x p,n−¯x p) 2(4)where¯x i is the mean of the actual values of x i,n over all target times n.C.Problems and restrictions of multivariatereconstructionsA major problem in the multivariate case is the prob-lem of identification.There are often not unique m and τembedding parameters that unfold fully the attractor.A trivial example is the Henon map[17]x n+1=1.4−x2n+y ny n+1=0.3x n(5) It is known that for the state space reconstruction from the observable x n the appropriate embedding parame-ters are m=2andτ=1.Due to the fact that y n is a lagged multiple of x n the attractor can obviously be reconstructed from the bivariate time series{x n,y n} equally well with any of the following two-dimensional embedding schemesx n=(x n,x n−1)x n=(x n,y n)x n=(y n,y n−1) since they are essentially the same.This example shows also the problem of redundant information,e.g.the state space reconstruction would not improve by augmenting the delay vector x n=(x n,x n−1)with the component y n that actually duplicates x n−1.Redundancy is inevitable in multivariate time series as synchronous observations of the different time series are generally correlated and the fact that these observations are used as components in the same embedding vector adds redundant information in them.We note here that in the case of continuous dynamical systems,the delay parameterτi may be se-lected so that the components of the i time series are not correlated with each other,but this does not imply that they are not correlated to components from another time series.4 A different problem is that of irrelevance,whenseries that are not generated by the same dynamicaltem are included in the reconstruction procedure.may be the case even when a time series is connectedtime series generated by the system underAn issue of concern is also the fact thatdata don’t always have the same data ranges andtances calculated on delay vectors withdifferent ranges may depend highly on only some ofcomponents.So it is often preferred to scale all theto have either the same variance or be in the samerange.For our study we choose to scale the data torange[0,1].D.Selection of the embedding dimension vector Taking into account the problems in the state space reconstruction from multivariate time series,we present three methods for determining m,two based on the false nearest neighbor algorithm,which we name FNN1and FNN2,and one based on local models which we call pre-diction error minimization criterion(PEM).The main idea of the FNN algorithms is as for the univariate case.Starting from a small value the embed-ding dimension is increased by including delay compo-nents from the p time series and the percentage of the false nearest neighbors is calculated until it falls to the zero level.The difference of the two FNN methods is on the way that m is increased.For FNN1we restrict the state space reconstruction to use the same embedding dimension for each of the p time series,i.e.m=(m,m,...,m)for a given m.To assess whether m is sufficient,we consider all delay embeddings derived by augmenting the state vector of embedding di-mension vector(m,m,...,m)with a single delayed vari-able from any of the p time series.Thus the check for false nearest neighbors in(2)yields the increase from the embedding dimension vector(m,m,...,m)to each of the embedding dimension vectors(m+1,m,...,m), (m,m+1,...,m),...,(m,m,...,m+1).Then the algo-rithm stops at the optimal m=(m,m,...,m)if the zero level percentage of false nearest neighbors is obtained for all p cases.A sketch of thefirst two steps for a bivariate time series is shown in Figure1(a).This method has been commonly used in multivariate reconstruction and is more appropriate for spatiotem-porally distributed data(e.g.see the software package TISEAN[18]).A potential drawback of FNN1is that the selected total embedding dimension M is always a multiple of p,possibly introducing redundant informa-tion in the embedding vectors.We modify the algorithm of FNN1to account for any form of the embedding dimension vector m and the total embedding dimension M is increased by one at each step of the algorithm.Let us suppose that the algorithm has reached at some step the total embedding dimension M. For this M all the combinations of the components of the embedding dimension vector m=(m1,m2,...,m p)are considered under the condition M= p i=1m i.Then for each such m=(m1,m2,...,m p)all the possible augmen-tations with one dimension are checked for false nearest neighbors,i.e.(m1+1,m2,...,m p),(m1,m2+1,...,m p), ...,(m1,m2,...,m p+1).A sketch of thefirst two steps of the extended FNN algorithm,denoted as FNN2,for a bivariate time series is shown in Figure1(b).The termination criterion is the drop of the percent-age of false nearest neighbors to the zero level at every increase of M by one for at least one embedding dimen-sion vector(m1,m2,...,m p).If more than one embedding dimension vectors fulfill this criterion,the one with the smallest cumulative FNN percentage is selected,where the cumulative FNN percentage is the sum of the p FNN percentages for the increase by one of the respective com-ponent of the embedding dimension vector.The PEM criterion for the selection of m= (m1,m2,...,m p)is simply the extension of the goodness-of-fit or prediction criterion in the univariate case to account for the multiple ways the delay vector can be formed from the multivariate time series.Thus for all possible p-plets of(m1,m2,...,m p)from(1,0,...,0), (0,1,...,0),etc up to some vector of maximum embed-ding dimensions(m max,m max,...,m max),the respective reconstructed state spaces are created,local linear mod-els are applied and out-of-sample prediction errors are computed.So,totally p m max−1embedding dimension vectors are compared and the optimal is the one that gives the smallest multivariate NRMSE as defined in(4).IV.MONTE CARLO SIMULATIONS ANDRESULTSA.Monte Carlo setupWe test the three methods by performing Monte Carlo simulations on a variety of known nonlinear dynamical systems.The embedding dimension vectors are selected using the three methods on100different realizations of each system and the most frequently selected embedding dimension vectors for each method are tracked.Also,for each realization and selected embedding dimension vec-5ate NRMSE over the100realizations for each method is then used as an indicator of the performance of each method in prediction.The selection of the embedding dimension vector by FNN1,FNN2and PEM is done on thefirst three quarters of the data,N1=3N/4,and the multivariate NRMSE is computed on the last quarter of the data(N−N1).For PEM,the same split is used on the N1data,so that N2= 3N1/4data are used tofind the neighbors(training set) and the rest N1−N2are used to compute the multivariate NRMSE(test set)and decide for the optimal embedding dimension vector.A sketch of the split of the data is shown in Figure2.The number of neighbors for the local models in PEM varies with N and we set K N=10,25,50 for time series lengths N=512,2048,8192,respectively. The parameters of the local linear model are estimated by ordinary least squares.For all methods the investigation is restricted to m max=5.The multivariate time series are derived from nonlin-ear maps of varying dimension and complexity as well as spatially extended maps.The results are given below for each system.B.One and two Ikeda mapsThe Ikeda map is an example of a discrete low-dimensional chaotic system in two variables(x n,y n)de-fined by the equations[19]z n+1=1+0.9exp(0.4i−6i/(1+|z n|2)),x n=Re(z n),y n=Im(z n),where Re and Im denote the real and imaginary part,re-spectively,of the complex variable z n.Given the bivari-ate time series of(x n,y n),both FNN methods identify the original vector x n=(x n,y n)andfind m=(1,1)as optimal at all realizations,as shown in Table I.On the other hand,the PEM criterionfinds over-embedding as optimal,but this improves slightly the pre-diction,which as expected improves with the increase of N.Next we consider the sum of two Ikeda maps as a more complex and higher dimensional system.The bivariateI:Dimension vectors and NRMSE for the Ikeda map.2,3and4contain the embedding dimension vectorsby their respective frequency of occurrenceNRMSEFNN1PEM FNN2 512(1,1)1000.0510.032 (1,1)100(2,2)1000.028 8192(1,1)1000.0130.003II:Dimension vectors and NRMSE for the sum ofmapsNRMSEFNN1PEM FNN2 512(2,2)650.4560.447(1,3)26(3,3)95(2,3)540.365(2,2)3(2,2)448192(2,3)430.2600.251(1,4)37time series are generated asx n=Re(z1,n+z2,n),y n=Im(z1,n+z2,n).The results of the Monte Carlo simulations shown in Ta-ble II suggest that the prediction worsens dramatically from that in Table I and the total embedding dimension M increases with N.The FNN2criterion generally gives multiple optimal m structures across realizations and PEM does the same but only for small N.This indicates that high complex-ity degrades the performance of the algorithms for small sample sizes.PEM is again best for predictions but over-all we do not observe large differences in the three meth-ods.An interesting observation is that although FNN2finds two optimal m with high frequencies they both give the same M.This reflects the problem of identification, where different m unfold the attractor equally well.This feature cannot be observed in FNN1because the FNN1 algorithm inspects fewer possible vectors and only one for each M,where M can only be multiple of p(in this case(1,1)for M=2,(2,2)for M=4,etc).On the other hand,PEM criterion seems to converge to a single m for large N,which means that for the sum of the two Ikeda maps this particular structure gives best prediction re-sults.Note that there is no reason that the embedding dimension vectors derived from FNN2and PEM should match as they are selected under different conditions. Moreover,it is expected that the m selected by PEM gives always the lowest average of multivariate NRMSE as it is selected to optimize prediction.TABLE III:Dimension vectors and NRMSE for the KDR mapNRMSE FNN1PEM FNN2512(0,0,2,2)30(1,1,1,1)160.7760.629 (1,1,1,1)55(2,2,2,2)39(0,2,1,1)79(0,1,0,1)130.6598192(2,1,1,1)40(1,1,1,1)140.5580.373TABLE IV:Dimension vectors and NRMSE for system of Driver-Response Henon systemEmbedding dimensionsN FNN1PEM FNN2512(2,2)100(2,2)75(2,1)100.196(2,2)100(3,2)33(2,2)250.127(2,2)100(3,0)31(0,3)270.0122048(2,2)100(2,2)1000.093(2,2)100(3,3)45(4,3)450.084(2,2)100(0,3)20(3,0)190.0068192(2,2)100(2,2)1000.051(2,2)100(3,3)72(4,3)250.027(2,2)100(0,4)31(4,0)300.002TABLE V:Dimension vectors and NRMSE for Lattice of3coupled Henon mapsEmbedding dimensionsN FNN1PEM FNN2512(2,2,2)94(1,1,1)6(1,2,1)29(1,1,2)230.298(2,2,2)98(1,1,1)2(2,0,2)44(2,1,1)220.2282048(2,2,2)100(1,2,2)34(2,2,1)300.203(2,2,2)100(2,1,2)48(2,0,2)410.1318192(2,2,2)100(2,2,2)97(3,2,3)30.174(2,2,2)100(2,1,2)79(3,2,3)190.084NRMSEC FNN2FNN1PEM0.4(1,1,1,1)42(1,0,2,1)170.2850.2880.8(1,1,1,1)40(1,0,1,2)170.3140.2910.4(1,1,1,1)88(1,1,1,2)70.2290.1900.8(1,1,1,1)36(1,0,2,1)330.2250.1630.4(1,1,1,1)85(1,2,1,1)80.1970.1370.8(1,2,0,1)31(1,0,2,1)220.1310.072 PEM cannot distinguish the two time series and selectswith almost equal frequencies vectors of the form(m,0)and(0,m)giving again over-embedding as N increases.Thus PEM does not reveal the coupling structure of theunderlying system and picks any embedding dimensionstructure among a range of structures that give essen-tially equivalent predictions.Here FNN2seems to de-tect sufficiently the underlying coupling structure in thesystem resulting in a smaller total embedding dimensionthat gives however the same level of prediction as thelarger M suggested by FNN1and slightly smaller thanthe even larger M found by PEM.ttices of coupled Henon mapsThe last system is an example of spatiotemporal chaosand is defined as a lattice of k coupled Henon maps{x i,n,y i,n}k i=1[22]specified by the equationsx i,n+1=1.4−((1−C)x i,n+C(x i−1,n+x i+1,n)ple size,at least for the sizes we used in the simulations. Such a feature shows lack of consistency of the PEM cri-terion and suggests that the selection is led from factors inherent in the prediction process rather than the quality of the reconstructed attractor.For example the increase of embedding dimension with the sample size can be ex-plained by the fact that more data lead to abundance of close neighbors used in local prediction models and this in turn suggests that augmenting the embedding vectors would allow to locate the K neighbors used in the model. On the other hand,the two schemes used here that ex-tend the method of false nearest neighbors(FNN)to mul-tivariate time series aim atfinding minimum embedding that unfolds the attractor,but often a higher embedding gives better prediction results.In particular,the sec-ond scheme(FNN2)that explores all possible embedding structures gives consistent selection of an embedding of smaller dimension than that selected by PEM.Moreover, this embedding could be justified by the underlying dy-namics of the known systems we tested.However,lack of consistency of the selected embedding was observed with all methods for small sample sizes(somehow expected due to large variance of any estimate)and for the cou-pled maps(probably due to the presence of more than one optimal embeddings).In this work,we used only a prediction performance criterion to assess the quality of state space reconstruc-tion,mainly because it has the most practical relevance. There is no reason to expect that PEM would be found best if the assessment was done using another criterion not based on prediction.However,the reference(true)value of other measures,such as the correlation dimen-sion,are not known for all systems used in this study.An-other constraint of this work is that only noise-free multi-variate time series from discrete systems are encountered, so that the delay parameter is not involved in the state space reconstruction and the effect of noise is not studied. It is expected that the addition of noise would perplex further the process of selecting optimal embedding di-mension and degrade the performance of the algorithms. For example,we found that in the case of the Henon map the addition of noise of equal magnitude to the two time series of the system makes the criteria to select any of the three equivalent embeddings((2,0),(0,2),(1,1))at random.It is in the purpose of the authors to extent this work and include noisy multivariate time series,also fromflows,and search for other measures to assess the performance of the embedding selection methods.AcknowledgmentsThis paper is part of the03ED748research project,im-plemented within the framework of the”Reinforcement Programme of Human Research Manpower”(PENED) and co-financed at90%by National and Community Funds(25%from the Greek Ministry of Development-General Secretariat of Research and Technology and75% from E.U.-European Social Fund)and at10%by Rik-shospitalet,Norway.[1]F.Takens,Lecture Notes in Mathematics898,365(1981).[2]T.Sauer,J.A.Yorke,and M.Casdagli,Journal of Sta-tistical Physics65,579(1991).[3]H.Kantz and T.Schreiber,Nonlinear Time Series Anal-ysis(Cambridge University Press,1997).[4]J.Guckenheimer and G.Buzyna,Physical Review Let-ters51,1438(1983).[5]M.Paluˇs,I.Dvoˇr ak,and I.David,Physica A StatisticalMechanics and its Applications185,433(1992).[6]R.Hegger and T.Schreiber,Physics Letters A170,305(1992).[7]D.Prichard and J.Theiler,Physical Review Letters73,951(1994).[8]H.D.I.Abarbanel,T.A.Carroll,,L.M.Pecora,J.J.Sidorowich,and L.S.Tsimring,Physical Review E49, 1840(1994).[9]L.Cao,A.Mees,and K.Judd,Physica D121,75(1998),ISSN0167-2789.[10]J.P.Barnard,C.Aldrich,and M.Gerber,Physical Re-view E64,046201(2001).[11]S.P.Garcia and J.S.Almeida,Physical Review E(Sta-tistical,Nonlinear,and Soft Matter Physics)72,027205 (2005).[12]Y.Hirata,H.Suzuki,and K.Aihara,Physical ReviewE(Statistical,Nonlinear,and Soft Matter Physics)74, 026202(2006).[13]M.B.Kennel,R.Brown,and H.D.I.Abarbanel,Phys-ical Review A45,3403(1992).[14]D.T.Kaplan,in Chaos in Communications,edited byL.M.Pecora(SPIE-The International Society for Optical Engineering,Bellingham,Washington,98227-0010,USA, 1993),pp.236–240.[15]B.Chun-Hua and N.Xin-Bao,Chinese Physics13,633(2004).[16]R.Hegger and H.Kantz,Physical Review E60,4970(1999).[17]M.H´e non,Communications in Mathematical Physics50,69(1976).[18]R.Hegger,H.Kantz,and T.Schreiber,Chaos:An Inter-disciplinary Journal of Nonlinear Science9,413(1999).[19]K.Ikeda,Optics Communications30,257(1979).[20]C.Grebogi,E.Kostelich,E.O.Ott,and J.A.Yorke,Physica D25(1987).[21]S.J.Schiff,P.So,T.Chang,R.E.Burke,and T.Sauer,Physical Review E54,6708(1996).[22]A.Politi and A.Torcini,Chaos:An InterdisciplinaryJournal of Nonlinear Science2,293(1992).。
基于MOOC的混合式教学模式研究——以《物联网技术》为例
基于MOOC的混合式教学模式研究——以《物联网技术》为例刘晓爽,李建锋,康红俊(河北经贸大学,河北石家庄050061)摘要:作为一门交叉学科,《物联网技术》所需要的基础知识很多,如电子信息、计算机网络等专业基础知识,也涉及管理学、软件开发等诸多方面。
因此,想学好这门课就需要学生具有较好的理论基础,所需课时也较多。
鉴于《物联网技术》的理论性、实践性都很强,这里将MOOC和混合式学习理论应用于《物联网技术》教学过程中,探讨该教学模式的可行性。
首先,简要介绍MOOC和混合式学习理论;其次,针对《物联网技术》课程理论性强、实验条件较差的特点,提出了基于MOOC 的混合式教学模式,加深了学生对《物联网技术》课程内容的理解,提高学生的系统分析和综合设计能力。
关键词:MOOC;混合式学习理论;物联网技术;教学研究中图分类号:G642文献标识码:A文章编号:1009-3044(2021)03-0161-02开放科学(资源服务)标识码(OSID):Research on Blended Learning Mode Based on MOOC—Taking"Internet of Things Technology"as an ExampleLIU Xiao-shuang,LI Jian-feng,KANG Hong-jun(Hebei University of Economics and Business,Shijiazhuang050061,China)Abstract:As an interdisciplinary subject,"Internet of Things technology"requires a lot of basic knowledge,such as electronic infor⁃mation,computer network and other professional basic knowledge,but also involves management science,software development and many other aspects.Therefore,students want to learn this course well needing good theory foundation.The course also needs many hours to be instructed.In view of the strong theoretical and practical nature of"Internet of Things Technology",this paper ap⁃plies MOOC and Blended learning theory to the teaching process of"Internet of Things Technology"and discusses the feasibility of this teaching mode.First,MOOC and hybrid learning theory are introduced briefly;Secondly,in view of the strong theoretical na⁃ture and poor experimental conditions of"Internet of Things Technology",a Blended Learning Mode based on MOOC is proposed, which deepens students'understanding of this course content and improves students'ability of systematic analysis and comprehen⁃sive design.Key words:MOOC;Blended Learning Theory;Internet of things technology;Teaching Research1引言随着在高等教育教学中应用互联网与信息技术,传统教学模式发生了颠覆性的变革。
saaAAA人工智能
使用结构化人群保持种群多样性的进化艺术摘要维持种群的多样性在多数的进化计算中的,尤其是在进化艺术方面是一项重要而艰巨的任务。
缺乏种群多样性会导致效率低下的搜索行为和过早收敛。
在本文中,我们研究种群在进化艺术群体多样性的影响。
为了达到这个目的,我们用使用了随机交配模型的美化图片的无监督进化(在这循环中未使用人类)进行了几个实验,其中这个模型是一个分布式孤岛模型(一个最优选择模式和一个目标算法。
)在我们的孤岛模型实验中,我们使用了不同的参数来设置岛屿的数目,岛的规模,迁移间隔,迁移大小和初始化方法。
在我们的蜂窝EA实验中,我们在宽度,高度和邻居中使用了不同的设置。
我们也用具有增强遗传操作比较了结构化的人口的应用与随机交配EA的应用。
我们发现,使用结构化的种群有利于维持两表型和基因型分集。
孤岛模型和细胞EA的所有配置优于我们的种群多样性标准的随机交配EA。
关键字:进化艺术,人口密度,基因工程,细胞进化算法,孤模型。
进化艺术(EvoArt)是一个蓬勃发展的研究学科,它从进化计算(EC)调查了在创造美观的内容的方法应用。
人口的多样性是在群体中个体差异的数量,并且在一般的EC和EvoArt 中是特别重要。
种群多样性的丧失会导致效率低下的搜索行为,并可能导致过早收敛。
不受监督的进化艺术是在EvoArt一个子场调查美观的图像的进化(或“艺术”),而没有人类的审美评价;全民健身评价由审美措施执行。
许多审美措施都来自一个新兴的领域“计算美学”。
审美变成模型和算法是一项艰巨的任务,且对观察合理的共识,即目前大多数的审美措施,主要是作为在搜索过程中启发函数。
另一种看法是,EvoArt比起应用,天生更看重探索。
一个执行探索的EvoArt系统和有创新性的潜在输出有关;Margaret Boden定义创新能力是创造小说的能力,是令人惊奇的和有价值的想法。
Margaret Boden描述了三个方面的创新:组合,探索和有变革性的创意。
人工智能原理名人文献
人工智能原理名人文献
以下是一些与人工智能原理相关的重要文献和名人:
1. "Computing Machinery and Intelligence" - 艾伦·图灵(Alan Turing)- 发表于1950年,提出了著名的图灵测试和思考机器智能的问题。
2. "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence" - 约翰·麦卡锡(John McCarthy)等合著- 1956年提出了人工智能领域的名称,标志着人工智能正式成为一个独立学科。
3. "Perceptrons: An Introduction to Computational Geometry" - 弗兰克·罗森布拉特(Frank Rosenblatt)- 发表于1958年,引入了感知机模型,这是神经网络的早期形式。
4. "Artificial Intelligence: A Modern Approach" - 斯图尔特·拉塞尔(Stuart Russell)和彼得·诺维格(Peter Norvig)- 这本教材出版于1995年,并成为人工智能领域的经典参考书之一。
5. "Deep Learning" - 亚历山大·库兹涅佐夫(Alexey Kuznetsov)等合著- 该书于2015年发表,详细介绍了深度学习的基本原理和算法。
自主迁移的并行遗传算法用于马斯京根模型参数估计
Pa a l lGe e i g r t m t e fm i r to o r le n tc Al o ih wih S l- g a i n t Pa a e e tm a i n o u ki g m o e r m t r Es i to fM s n u M d l
f l i t c l p i a. iyt e p r l l e h o o y a d t eg n t lo ih ,as o d c st e r s a c n v e o h fu al n o l a t o o m 1Un f h a al c n l g n h e e i ag rt m et c lo c n u t h e e r h i iw ft ei l — n
传算法 优化 模 型 参 数 的 过 程 , 应 用 实 例 进 行 检 并
验 , 验结 果表 明本 文算 法是 一 种有效 求解 马斯 京 检 根模 型参数 的方 法 。
单, 计算快 捷 , 对河 道 地 形和 糙 率资 料要 求 低 , 在 且
一
般 的河 道洪 水 中演算 效 果较 好 , 因而 已在 世界 上
传 算 法相 结合 , 针 对 影 响 并 行 遗 传 算 法 性 能 的 迁 移 时机 进 行 研 究 , 出 自主 迁 移 的 并 行 遗 传 算 法 用 于 马 且 提
斯京根模型参数估计 。实验结果表明 , 该算 法为估计马斯 京根模型参数提供 了一种有效 的方法。
关键词 : 自主 迁 移 ;并 行 遗 传 算 法 ;马斯 京根 模 型 ;参数 估 计 中 圈 分 类 号 : 1 TP 8 文献标识码 : A
1 引 言பைடு நூலகம்
马斯 京 根 流 量 演 算 法 是 Mc aty于 1 3 ~ C rh 94 13 9 5年在 美 国马斯 京 根河 上 首 先提 出和 应用 的一 种 洪水流 量演 算方 法[ , 1 由于 该方 法 数学 上 比较 简 ]
人机互动中的移情问题探析
DCWExperience Exchange经验交流185数字通信世界2023.011 社交机器人的移情现象在人工智能技术持续发展的过程中,社会上出现了能够和人交流的社交机器人。
社交机器人是在确保自身身份、遵守伦理规范的条件下,与人类或其他自主实体进行交互和交流的机器人。
人同社交机器人交流的过程是社交机器人利用人工智能情感技术,对使用者进行情感识别,通过相应的情感计算,再对使用者进行情感输出的过程。
因此,移情也不可避免地出现在人与社交机器人的交往互动过程中。
顾名思义,移情有传达情感的作用,能够将人的主观情感、意志、动作等一系列的行为活动物化,是在主客体之间互为主体的情况下产生的情感投射,是人的物化和物的人化,是一个从客观物理性经过感觉知觉达到精神性的深化过程。
学者们通常认为移情在对设计社交机器人的反应形成中也起着重要作用。
一些研究人员甚至指出,它是实现和维持人与人之间以及人与社交机器人之间社会关系的关键因素之一。
然而,在人与社交机器人交往互动的过程中,“移情”一词的社会基础使得我们很难将它应用于社交机器人的研究,我们会考虑对这些无生命机器使用社会术语和解释在理论上是否合理。
移情在理论上通常被认为是一个与社会认知和社会情感二者相关的过程,但是这个理论在人机交互方面是存在一定问题的,因为社会关系传统上被理解为两个有意识的、理性的实体之间的相互作用。
然而社交机器人不符合有意识的和理性的主观性标准,因此不能参与以这种方式理解的社会关系。
尽管如此,仍然有一些理论的存在可以为我们谈论社交机器人作为社会关系的参与者提供合理性。
社交机器人技术的发展越来越注重将其置于一种互动循环中,即赋予它社会性特征,使其在互动中让人们发生情感,表达情感,完成相关情感反应的社会情境。
移情应该以主体间的、过程性的、社会性的方式来理解。
多米奥诺(Luisa Damiano )表示情感是参与特定社会情境的许多参与者共享和共同创造的现象[1]。
英语作文Robots
Robots have become an integral part of modern society,transforming various industries and aspects of daily life.Here is an exploration of their impact,capabilities, and potential future developments.Introduction to Robots:Robots are machines designed to perform tasks autonomously or under human supervision.They are equipped with sensors,processors,and actuators that allow them to interact with their environment.The history of robotics dates back to the early20th century,but it was not until the latter half of the century that significant advancements were made.Types of Robots:1.Industrial Robots:These are commonly used in manufacturing for tasks such as assembly,welding,and painting.They are designed for precision and efficiency.2.Service Robots:They assist in various services,including healthcare,hospitality,and home assistance.Examples include robotic vacuum cleaners and robotic arms in hospitals.3.Exploratory Robots:Used for exploring environments that are dangerous or inaccessible to humans,such as deepsea exploration or space missions.4.Humanoid Robots:Designed to resemble humans in appearance and movement,they are often used for research and entertainment.Capabilities of Robots:Artificial Intelligence AI:Modern robots are equipped with AI,enabling them to learn from experience,make decisions,and perform complex tasks.Sensing and Perception:They can perceive their environment through cameras,sensors, and other input devices.Actuation:Robots can manipulate objects and move through their environment using motors and other actuators.Communication:Some robots are capable of interacting with humans and other machines through speech or data exchange.Impact on Society:Economic Impact:Robots have increased productivity in industries,leading to economic growth but also raising concerns about job displacement.Social Impact:They offer assistance to elderly and disabled individuals,improving quality of life and independence.Educational Impact:Robots are used in educational settings to teach programming, engineering,and problemsolving skills.Ethical Considerations:Job Displacement:The increased use of robots raises questions about the future of employment and the need for retraining workers.Privacy Concerns:Robots equipped with surveillance capabilities can infringe on personal privacy.Autonomy and Responsibility:As robots become more autonomous,determining responsibility in case of errors or accidents becomes complex.Future of Robotics:Advancements in AI:Continued development in AI will make robots more capable and versatile.Integration into Daily Life:We can expect robots to become more common in homes and public spaces,performing tasks from cooking to security.HumanRobot Interaction:The development of more intuitive interfaces will improve the way humans interact with robots.Conclusion:Robots are not just a product of science fiction they are a reality that is shaping our world in profound ways.As technology progresses,the role of robots in society will continue to evolve,offering both opportunities and challenges that we must navigate thoughtfully.。
变胞四足机器人倾覆后的变胞恢复机理及其特性研究
中国机械工程CHINA MECHANICAL ENGINEERING第32卷第11期2021 年6 月Vol.32 No.11pp.1274-1282变胞四足机器人倾覆后的变胞恢复机理及其特性研究王圣捷1戴建生121.天津大学机械工程学院,天津,3003502.伦敦国王学院自然科学与数学学院,伦敦,WC2R 2LS摘要:机器人在无人环境下工作时,受外力及地形等因素影响而发生倾覆失去运动能力的情况难以避免,因此机器人需要具备倾覆后的自我恢复能力。
在以静态方法为基础的恢复方法中,传统的恢复方式只能依靠腿部的运动来实现,而基于变胞四足机器人的可动躯干,可以提出一种区别于传统方法的利 用躯干运动来实现四足机器人自我恢复的策略,该策略借鉴仿生灵感对动作进行规划。
从力和能量的 角度将这一方法与躯干无变胞的情况进行了对比,得到了优化的质心轨迹与减振方法。
此外,利用仿真软件与变胞机器人样机对该策略进行了仿真与实物实验,验证了该方法的可行性并证明其可降低实现静态自我恢复的难度,并且通过不同条件下的实验证明了其在不同地形下具有一定的稳定性与适应性。
关键词:自我恢复;四足机器人;可动躯干;静态方法;变胞中图分类号:TH112DOI :10.3969/j.issn.1004132X.2021.11.002开放科学(资源服务)标识码(OSID):Research on Metamorphic Self-recovery Strategy and Characteristics ofMetamorphic Quadruped Robots after OverturningWANG Shengjie 1DAI Jiansheng 1'21. School of Mechanical Engineering , Tianjin University , Tianjin, 3003502. School of Natural and Mathematical Sciences , King's College London , London , WC2R 2LSAbstract : When the robots were working in unmanned environments , it was difficult to avoid o verturning and loss of movement due to external forces and terrains. Therefore , it was necessary that the robots had the self-recovery ability. In the static self-recovery method , the traditional recovery method could only be achieved by the movement of the legs. Based on the movable trunks of the meta morphic robots , different from traditional method a self-recovery strategy with the movement of thetrunk was proposed when the quadruped robot overturned. The strategy used bionic inspiration to de- signtheactionandcomparedthismethodwiththecaseofthetrunkwithoutmetamorphosisfromtheperspective of force and energy. The optimized centroid trajectory and the shock absorption method were obtained. In addition , the simulation software and the prototype experiments were used to verifythe feasibility of this method and it is proved that the strategy reduces the difficulty of achieving static self-recovery. Besides , experiments under different conditions prove that the strategy has certain sta bility and adaptability on different terrains.Key words : self-recovery ; quadruped robot ; movable trunk ; static method ; metamorphic0引言四足机器人作为移动机器人研究的一个重要 分支,它在面对复杂地形时具有良好的适应性,因 此引起了人们广泛的研究兴趣。
隐马尔可夫模型 状态空间模型
隐马尔可夫模型状态空间模型
隐马尔可夫模型(Hidden Markov Model,HMM)和状态空间模型都是用于描述时间序列数据的统计模型。
隐马尔可夫模型是一种基于概率的图模型,用于描述一个序列的状态随时间变化的过程。
其中,观测序列代表着我们观察到的数据序列,而状态序列则是指导着这些数据生成的隐藏状态序列。
HMM的核心是建立起一个概率转移矩阵,描述了当前状态之间的转移概率;以及一个观测概率矩阵,描述了当前状态下生成观测序列的概率。
HMM常用于语音识别、自然语言处理、音乐分析、生物信息学等领域。
状态空间模型(State Space Model,SSM)也是一种描述时间序列数据的统计模型。
状态空间模型通常由两个部分组成:状态方程和观测方程。
状态方程描述了系统的状态如何随着时间推移而变化,而观测方程则描述了如何从这个状态产生观测值。
SSM也可以看作是一个概率图模型,其中状态变量是在时间上链接的随机变量,不可被直接观测到;观测变量是其生成的可观测结果。
SSM常用于时间序列分析、金融预测、天气预报等领域。
人工智能领域机器学习算法的发展和改进方面50个课题名称
人工智能领域机器学习算法的发展和改进方面50个课题名称以下是人工智能领域机器学习算法发展和改进方面的50个课题名称:1. 强化学习算法的深化和改进2. 基于深度学习的半监督学习算法3. 迁移学习在机器学习中的应用4. 集成学习算法的优化与改进5. 高效的大规模机器学习算法设计6. 多任务学习算法的发展与改进7. 深度学习模型压缩与加速技术8. 基于深度神经网络的生成模型算法9. 无监督学习算法的发展与改进10. 多模态学习算法的设计与应用11. 非凸优化问题在机器学习中的应用12. 弱监督学习算法的发展与改进13. 多样性和不确定性建模技术的研究14. 高维数据降维算法的设计与改进15. 时序数据建模与预测算法的研究16. 针对小样本学习问题的算法设计17. 对抗性学习算法的发展与应用18. 机器学习算法的可解释性研究19. 优化算法在深度学习中的应用20. 类别不平衡问题的机器学习算法21. 多源数据融合算法的研究与应用22. 复杂网络上的机器学习算法设计23. 时间序列分析与预测算法的改进24. 大规模图数据上的机器学习算法25. 自然语言处理中的机器学习算法研究26. 基于流形学习的机器学习算法优化27. 概率图模型与机器学习算法的结合28. 聚类算法在机器学习中的优化与应用29. 动态与在线学习算法的改进与发展30. 增强学习算法在机器人控制中的应用31. 基于深度学习的图像分割算法改进32. 基于强化学习的自适应控制算法33. 零样本学习算法的改进与发展34. 多标签学习算法的优化与研究35. 主动学习算法在机器学习中的应用36. 时间序列分类算法的改进与研究37. 基于深度学习的目标检测算法优化38. 分类器不一致性问题的研究与改进39. 稀疏学习算法在机器学习中的应用40. 多实例学习算法的优化与改进41. 近似推断算法在机器学习中的应用42. 基于深度学习的序列生成算法改进43. 高斯过程与贝叶斯优化的研究与应用44. 大规模非线性优化问题的算法设计45. 多目标优化算法在机器学习中的应用46. 鲁棒性和可靠性问题在机器学习中的研究47. 低秩矩阵分解算法的改进与优化48. 随机梯度下降算法的优化与改进49. 自适应学习算法在机器学习中的应用50. 可持续性和可扩展性问题的研究与改进。
mdp的格式 -回复
mdp的格式-回复为了更好地解释和探讨中括号内的主题,请允许我以文章的形式进行回答。
[MDP的格式]:驱动强化学习中的马尔可夫决策过程在强化学习领域中,马尔可夫决策过程(Markov Decision Process,简称MDP)是一个重要的数学框架,用于描述智能体在序列决策问题中的动态和策略选择。
本文将详细介绍MDP的格式,包括状态空间、行动空间、奖励函数以及状态转移概率。
首先,MDP的核心组成部分之一是状态空间。
状态空间是指智能体可能处于的所有具体状态的集合。
每个状态都是问题环境中的一个观测结果,可以是离散的或连续的。
例如,在一个飞机自动驾驶的问题中,状态空间可以包括飞机的位置、速度、姿态等状态变量。
第二个组成部分是行动空间,它是智能体可以采取的所有可能行动的集合。
行动可以是离散的或连续的,取决于具体的问题。
在飞机自动驾驶问题中,行动空间可以包括飞机的飞行方向、推力大小等。
除了状态空间和行动空间,MDP还需要一个奖励函数。
奖励函数是一个将状态和行动映射到实数奖励的函数。
它反映了智能体在某个状态下采取某个行动的好坏程度。
奖励函数的设计对强化学习算法的性能有很大影响,可以通过合理设置来引导智能体学习到期望的行为。
最后,状态转移概率是MDP的另一个重要部分。
它描述了智能体在某个状态下采取某个行动后,转移到下一个状态的概率分布。
在确定性环境中,状态转移是确定性的,即智能体在某个状态下采取某个行动后只能转移到一个确定的下一个状态。
而在随机环境中,状态转移是随机的,即智能体在某个状态下采取某个行动后可能以不同的概率转移到不同的下一个状态。
在MDP的框架下,强化学习算法的主要目标是通过学习和优化策略来最大化累积奖励。
学习算法可以通过迭代更新价值函数或策略函数的方式来实现。
价值函数衡量了在某个状态下采取某个策略的长期累积奖励期望值,而策略函数定义了在每个状态下采取的行动概率。
通过不断迭代更新这些函数,智能体可以逐渐学习到最优的策略,实现最大化累积奖励的目标。
人工智能论文写作句式分析
人工智能论文写作句式分析人工智能作为当今科技领域的热点话题,其发展速度之快、应用范围之广,已经渗透到我们生活的方方面面。
在学术界,人工智能相关论文的写作也日益增多,而论文写作句式的运用对于表达清晰、逻辑严密的学术观点至关重要。
本文旨在分析人工智能论文写作中常见的句式,并探讨这些句式如何帮助作者更有效地传达研究内容。
首先,人工智能论文写作中常见的句式包括陈述句、疑问句、祈使句和感叹句。
这些基本句式在论文中的运用,各有其特点和作用。
陈述句是论文写作中最常用的句式之一,它用于陈述事实、观点或研究成果。
例如,在介绍人工智能的发展历程时,作者可能会使用如下句式:“自20世纪50年代以来,人工智能经历了多次发展高潮。
”这种句式直接、明确,有助于读者迅速把握论文的核心内容。
疑问句在论文中主要用于提出问题或引发思考。
在人工智能论文中,疑问句常常用于引导读者关注研究中的关键问题,如:“人工智能能否真正理解人类语言?”通过提出这样的问题,作者可以激发读者的好奇心,引导他们深入思考论文的主题。
祈使句在论文中的运用相对较少,但当需要指导读者进行某项操作或注意某个问题时,祈使句就显得尤为重要。
例如,在讨论人工智能伦理问题时,作者可能会写道:“我们必须认真考虑人工智能的道德责任。
”这种句式直接、有力,能够引起读者的重视。
感叹句在论文中的使用较为罕见,但当作者需要表达强烈的情感或强调某个观点时,感叹句可以起到画龙点睛的作用。
例如,在讨论人工智能对人类社会的影响时,作者可能会写道:“人工智能的发展速度之快,令人惊叹!”这种句式能够增强论文的感染力,使读者对研究主题产生共鸣。
除了上述基本句式,人工智能论文写作中还经常使用一些特定的句式结构,如条件句、并列句、递进句和转折句等。
这些句式结构有助于作者构建复杂的逻辑关系,使论文的论证更加严密。
条件句用于表达条件与结果之间的关系,如:“如果人工智能能够实现自我学习,那么它将能够解决更多复杂问题。
mr-egger的原理 -回复
mr-egger的原理-回复mregger 的原理是一种机器学习算法,它基于深度强化学习的思想,在解决强化学习问题时表现出色。
mregger 算法的核心思想是通过模拟人类的认知过程,将问题抽象为一个马尔可夫决策过程,并使用深度神经网络实现策略的学习和优化。
马尔可夫决策过程(Markov Decision Process,简称MDP)是一种数学模型,用于描述一个决策问题的动态过程。
MDP 包括一个状态空间、行动集合、状态转移概率、即时奖励函数和折扣因子。
mregger 将强化学习任务看作一个MDP,并利用深度神经网络来学习和优化策略。
下面将分步骤详细介绍mregger 的原理。
第一步:建立状态空间在mregger 中,状态空间是指问题中可能的所有状态的集合。
通常情况下,状态可以使用特征向量来表示。
mregger 利用现有的数据或专家知识来定义状态空间,以便将问题的复杂度降低到可处理的程度。
第二步:定义行动集合行动集合包含所有可能的行动。
mregger 的任务是在每个状态下选择最优的行动,以最大化累积奖励。
行动集合的定义通常取决于具体问题的要求和约束。
第三步:确定状态转移概率状态转移概率指在给定状态下,执行某个行动后,下一步进入的状态的概率分布。
mregger 利用现有的数据或根据问题的特性来估计状态转移概率。
第四步:选取即时奖励函数即时奖励函数用于评估在某个状态下执行某个行动的即时奖励。
mregger 需要通过模拟不同的行动并观察奖励的反馈来确定即时奖励函数。
第五步:引入折扣因子折扣因子用于平衡当下即时奖励和未来累积奖励的重要性。
mregger 通过调整折扣因子的值来权衡即时奖励和未来奖励。
第六步:构建深度神经网络mregger 使用深度神经网络来学习和优化策略。
深度神经网络是一种由多个神经网络层组成的模型,可以通过反向传播算法来训练网络参数。
第七步:使用强化学习算法mregger 使用强化学习算法来训练深度神经网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STATE COMPLEXES FOR METAMORPHIC ROBOTS∗A.ABRAMS†AND R.GHRIST‡Abstract.A metamorphic robotic system is an aggregate of homogeneous robot units which can individually and selectively locomote in such a way as to change the global shape of the system.We introduce a mathematical framework for defining and analyzing general metamorphic robots.With this formal structure,combined with ideas from geometric group theory,we define a new type of configuration space for metamorphic robots—the state complex—which is especially adapted to parallelization. We present an algorithm for optimizing an input reconfiguration sequence with respect to elapsed time.A universal geometric property of state complexes—non-positive curvature—is the key to proving convergence to the globally time-optimal solution obtainable from the initial path.1.Introduction.In recent years,several groups in the robotics community have been modeling and building reconfigurable or,more specifically,metamorphic robots (e.g.,[7,8,15,17,19,23,27,28]).Such a system consists of multiple identical robotic cells in an underlying lattice structure which can disconnect/reconnect with adjacent neighbors,and slide,pivot,or otherwise locomote to neighboring lattice points following prescribed rules:see Fig.1.1.There are as many models for such robots as there are researchers in the sub-field:2-d and3-d lattices;hexagonal,square,and dodecahedral cells;pivoting or sliding motion:see,e.g.,[8,15,16,17,18,6,20,27,28]and the refer-ences therein.The common feature of these robots is an aggregate of lattice-based cells having prescribed local transitions from one shape to another.Fig.1.1.Metamorphic systems may be built on a variety of lattice structures with sliding or pivoting motion.The primary challenge for such systems is shape-planning:how to move from one shape to another via legal moves.One centralized approach[9,10,22]is to build a transition graph whose vertices are the various shapes and whose edges are elementary legal moves from one shape to the next.It is easily demonstrated that the size of this graph is exponential in the number of cells.This paper extends the notion of a configuration space to metamorphic robots in a novel manner.The idea:consider the transition graph described above as a one-dimensional skeleton of a higher-dimensional cubical complex,the state complex.Assume that from a given state there are two legal moves which are physically independent(or,more suggestively,“commutative”):i.e.,these moves can be executed simultaneously.In ∗AA SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0089927.RG SUP-PORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0134408.†Department of Mathematics,University of Georgia,Athens,GA30602,USA‡Department of Mathematics,University of Illinois,Urbana,IL61801,USA12AARON ABRAMS&ROBERT GHRISTthe transition graph,this corresponds to the four edges of a square.For any pair of commutative moves,fill in the four edges of the graph with an abstract square2-cell. Continue inductively adding k-dimensional cubes corresponding to k-tuples of physically independent motions.The result is a cubical complex which has several advantages over the transition graph:1.Simplicity.The state complex,though larger than the(already large)tran-sition graph,is often topologically much simpler: e.g.,the1-d graph of an n-dimensional cube has n2n−1edges.The number of edges is not necessarily the best measure of complexity:it belies the simplicity of the single cube.2.Speed.Geodesics on this complex cut across the diagonals of cubes wheneverpossible.One performs all possible commutative motions simultaneously,maxi-mizing parallelization and yielding a speed-up by a factor equal to the number of coordinated motions.3.Shape.The global geometry/topology of the state complex carries informa-tion about the metamorphic system.For certain examples,the topology of the state complex“converges”upon refining the lattice.In addition,only special geometries can be realized as the state complex of a local metamorphic system: commutativity in reconfiguration leads to an abhorrence of positive curvature in the state complex.Sections2through4give definitions and examples of[abstract]metamorphic systems and their state complexes.The next two sections(Sections5-6)detail topological and geometric features of the state complex.For large systems,the problem of computing the state complex and designing geodesics in order to perform shape planning is computationally infeasible,primarily because the size of the complex is often exponential in the number of robot cells.In addition,any control scheme induced by geodesic construction is necessarily centralized.Several researchers have begun building decentralized control algorithms for shape planning[5,25,24,26, 29,30].Such algorithms have the advantage of speed and scalability;however,the reconfiguration paths are typically not optimal.We present an algorithm which works in conjunction with these fast planners to optimize their paths.In Sections7-8,we present an algorithm for trajectory optimization which takes as its argument an arbitrary edge path in the transition graph.Algorithm8.2 then performs a type of curve shortening within the state complex.A deep theorem about the curvature of all state complexes(Theorem6.2)is then used to prove that this algorithm returns a shape trajectory which is the global minimum obtainable from this path with respect to elapsed time.Our definitions and theorems are phrased for systems involving“discrete”reconfigura-tion.More general types of robots which employ continuous reconfiguration for locomo-tive gaits(such as the Polybot developed by M.Yim’s lab at PARC)are not covered by our definitions.We note,however,that certain locomotive reconfigurable robots can be thought of as lattice-based tiles by amalgamating subsystems[16].In addition,our definitions can easily be extended to more general non-lattice reconfigurable systems[3].2.A mathematical definition.While it is easy to generate examples of what is meant by a metamorphic robot,it is more challenging to write a clean mathematical definition.We propose a set of definitions which is broad enough to include some non-STATE COMPLEXES 3obvious examples.The paper [6]suggests a similar type of structure using cellular automata rule sets.A local metamorphic system is a collection of states on a lattice (or,more generally,a graph),where each state is thought of as a labeling function for the aggregate.In most examples,the alphabet of labels will be {0,1}and will be used to denote the absence or presence (resp.)of a module at that lattice point.Any state can be modified by local rearrangements,these local changes being coordinated by a catalogue of models realized under the actions of isometries into the workspace.The adjective “local”refers to legality criteria:anywhere in the workspace at which a local change from the catalogue can be applied,it is legal to do so.To incorporate obstacles and basepoints into our systems,we distinguish between the amount of information needed to determine the legality of an elementary move (the “support”of the move)and the precise place in which modules are actually in motion (the “trace”of the move).Definition 2.1.Let L denote a lattice in R k ,let W ⊂L denote a compact workspace,and let A denote an alphabet of labels.The catalogue C for a local metamorphic system on W is a collection of generators .Each generator φ∈C consists of (1)the support ,sup (φ)⊂L ;(2)the trace of the move,tr (φ)⊂sup (φ);and (3)an unordered pair of local states ˆU0,1:sup (φ)→A satisfying 1ˆU 0 sup (φ)−tr (φ)=ˆU 1 sup (φ)−tr (φ).(2.1)Otherwise said,the local states are equal on sup (φ)−tr (φ).Definition 2.2.An action of a generator φ∈C is a rigid translation Φ:sup (φ) →W .Given a state U :W →A ,an action Φis said to be admissible at U if ˆU0=U ◦Φ.In this case,we writeφ[U ]:= U :on W −Φ(sup (φ))ˆU 1◦Φ−1:on Φ(sup (φ)).(Note that Φis left out of the notation.)Definition 2.3.A local metamorphic system on W is a collection of states {U α:W →A}closed under all possible admissible actions of generators in the catalogueC .To repeat,the catalogue and the workspace are the “seeds”for a local metamorphic system.From this pair,all possible translations of the supports into W yield the actions.Then,a collection of states on the workspace is a local metamorphic system if,whenever an action Φof a generator φon a state U is admissible,then the corresponding state φ[U ]is also included.A metamorphic system with obstacles O ⊂W satisfies in additionΦ(tr (φ))∩O =∅,(2.2)for each φ∈C .Obstacle sets count as legal positions for determining the admissibility of a move (the support of an action may intersect O ),but no motion of metamorphic agents may incorporate the obstacle sites (the trace of an action must not intersect O ).1All generators are assumed to be nondegenerate in the sense that ˆU0=ˆU 1.4AARON ABRAMS&ROBERT GHRIST3.Examples.Some of the following examples are inspired by metamorphic robots already developed;other examples are more abstract.Unless otherwise noted,the al-phabet A is{0,1},denoting unoccupied or occupied cells.Example3.1.[2-d hex with pivots]We present two slightly different catalogues,each with six generators(or one,up to discrete rotations),in Fig.3.1.Both of these systems, modeled after that of[8],have local moves which pivot a planar hexagon about a neigh-bor.For all generators presented,the trace is equal to the two central hexagons.In the first system,the support is chosen so that the aggregate does not change its topology but only its shape.The slightly smaller support of the second catalogue allows for local topology changes.To model afixed“base”cell(which is,say,affixed to a power source as in[20]),one establishes this cell as an obstacle O.Fig.3.1.Two different catalogues for a2-d hexagonal lattice system with pivots.Black cells are occupied,white are unoccupied.The local statesˆU0andˆU1are shown for each generator.Example3.2.[2-d square lattice]In Fig.3.2,we display a generator for a planar system in which rows[as pictured]and columns[not pictured]of an aggregate of square cells can slide.There are in fact several generators represented in“shorthand,”one for each k≥0.A dot inside a cell indicates that it can be either occupied or unoccupied, but if occupied,then its neighbor(indicated by an arrow)must also be occupied.This condition guarantees that the aggregate does not disconnect(even locally)under slides. The trace of this set of generators is the entire middle row except the two endpoints.To keep the cataloguefinite,one would include only those generators with k≤N,where N is the number of occupied cells in any state.Fig.3.2.The row-sliding generators for a sliding-squares system.Example3.3.[2-d articulated planar arm]Consider as a workspace W the set of edges in the planar integer lattice.The catalogue consists of two generators,pictured in Fig.3.3.Beginning with a state having N vertical edges end-to-end,the metamorphic system thus generated models the position of an articulated robotic arm withfixed base which can(1)rotate at the top end and(2)flip corners as per the diagram.If one includes rotations of these generators,more intricate types of configurations are possible,including deadlocked configurations.Examples with multiple interacting arms can be realized by adding new generators:an“attach-detach”generator which allows endpoints of arms to merge(thus yielding a“marked point”at the attachment);and a “sliding”generator which allows this marked point to slide,having the effect of allowingSTATE COMPLEXES5Fig.3.3.A positive articulated robot arm[left].One generator[center]flips corners and has as its trace the central four edges.The other generator[right]rotates the end of the arm,and has trace equal to the two activated edges.the attached arms to trade segments.These generators are pictured(up to Euclidean symmetries)in Fig.3.4.Fig.3.4.Additional generators allow for attachment and detachment of arm endpoints[left,center] and sliding of the coupling points[right].Example3.4.[2-d expansion-compression square system]Consider a planar square lattice workspace.This system will use an alphabet of labels A={0,1,=, }whose interpretation is as follows:“0”means that a cell is unoccupied;“1”means that the cell is occupied by one module;“=”and“ ”imply that the cell is occupied by two modules compressed together in a horizontal or vertical orientation(resp.).The catalogue consists of six generators,illustrated in Fig.3.5(the lower two generators are only represented up toflips).The trace is equal to the support for the top two generators illustrated; for the bottom two generators,the trace is equal to the support minus the single square which remains unoccupied(label“0”).This example is a local system based on the Crystalline robots of Rus et al.[23].Ex-tensions to3-d cubical systems and more elaborate motions can be accommodated with minor modifications.One of the benefits of writing down a rigorous definition of a metamorphic system is the discovery of systems which have little resemblance to the systems of,say,Fig.1.1.In particular,our definitions easily extend to metamorphic systems which are not lattice-based.The following example is especially interesting.Example3.5.Consider afinite graphΓin which every edge is assigned a length of one.(Every graph can be embedded in some R k so as to have this property.)The catalogue consists of a single generator whose support and trace are precisely the closure of a single abstract edge.The local states of this generator consist of the pairˆU0and ˆUwhich evaluate to1on one of the endpoints and0on the other.The actions in this 1case are length-preserving maps from the abstract edge intoΓ.The metamorphic system6AARON ABRAMS&ROBERT GHRISTFig.3.5.Generators for a simple compression-expansion system on the square planar lattice[left]; an example of a typical state[right].generated from a state U onΓwith N vertices evaluating to1mimics an ensemble of N unlabeled non-colliding Automated Guided Vehicles onΓ,cf.[13].To work with labeled vehicles,one need merely increase the alphabet A to accommodate the different labels. More abstract examples of metamorphic examples include spaces of triangulations of polygons with edge-flipping as the generator,examples arising from word representations in group theory,and certain multi-step assembly processes[3].4.The state complex.In the robotics literature,one often models a configuration space for a metamorphic system with a transition graph which represents actions of elementary moves on states.That is,the vertex set is the collection of all states{Uα}, and the edges are unoriented pairs of states which differ by the action of one generator. Transition graphs are discussed for shape-planning in several particular cases in the literature(planar hex case:[9,22]).Our departure is to make the transition graph the 1-skeleton of a cubical complex(an analogue of a simplicial complex,but made out of abstract cubes)which coordinates parallel or“commutative”motions.Definition4.1.In a local metamorphic system,a collection of actions of(not neces-sarily distinct)generators{(φαi ,Φαi)}is said to commute ifΦαi (tr(φαi))∩Φαj(sup(φαj))=∅∀i=j.(4.1)Example4.2.Two simple examples suffice to illustrate the difference between com-muting and noncommuting actions.First,consider the pair of commuting moves for a planar hexagonal pivoting system,as represented in Fig.4.1[left].Compare this with a planar sliding block example as illustrated in Fig.4.1[right].Although the pair of moves illustrated forms a square2in the transition graph,this particular pair of actions does not commute.Physically,it is obvious why these moves are not independent:sliding the column part-way obstructs sliding a transverse row.Mathematically,this is captured by the traces of the actions intersecting.The state complex has an abstract k-cube for each collection of k admissible commuting actions:2The individual robotic cells are not labeled:only the shape of the aggregate is recorded.STATE COMPLEXES7Fig.4.1.Examples of commuting [left]and noncommuting [right]actions in planar systems.Definition 4.3.The state complex S of a local metamorphic system is the fol-lowing abstract cubical complex.Each abstract k -cube e (k )of S is an equivalence class[U ;(Φαi )k i =1]where1.(Φαi )k i =1is a k -tuple of commuting actions of generators φαi ;2.U is some state for which all the actions (Φαi )k i =1are admissible;and3.[U 0;(Φαi )k i =1]=[U 1;(Φβi )k i =1]if and only if the list (βi )is a permutation of (αi )and U 0=U 1on the set W − i Φαi (sup (φαi )).The boundary of each abstract k -cube is the collection of 2k faces obtained by deleting the i th action from the list and using U and φαi [U ]as the ambient states.Specifically,∂[U ;(Φαi )k i =1]=k i =1 [U ;(Φαj )j =i ]∪[φαi [U ];(Φαj )j =i ] .(4.2)It follows easily that the k -cells are well-defined with respect to admissibility of actions.The proof of the following obvious lemma is given in detail to flesh out the previous definition.Lemma 4.4.(a)The 0-dimensional skeleton of S ,S (0),is the set of states in the recon-figurable system.(b)The 1-dimensional skeleton of S ,S (1),is precisely the transition graph.proof:(a)Vertices of S consist of equivalence classes consisting of zero (i.e.,no)actions of generators up to permutation,together with a state defined on the complement of the supports of the actions.As there are no actions,each 0-cell is precisely a single state of the reconfigurable system.(b)A 1-cell of S is an equivalence class of the form [U ;(Φ)].The only other representative of the equivalence class is [φ[U ];(Φ)];hence,the 1-cells are precisely the edges in the transition graph.Clearly,the boundary of [U ;(Φ)]is the pair of 0-cells [U ;(·)]and[φ[U ];(·)].For small numbers of cells,it is easy to illustrate the state complex.Example 4.5.Consider the 2-d square lattice row/column sliding system whose cata-logue is illustrated in Fig.3.2.If we consider a system with fixed obstacles in the form of8AARON ABRAMS&ROBERTGHRISTqFig.4.2.The planar sliding square example[left]with two movable blocks[in grey]and a p-by-q obstacle set[in black]yields a state complex S that is topologically a circle[right].Sample configurations in the state complex are illustrated.a p-by-q rectangle generated from the state of Fig.4.2[left],one obtains a planar transi-tion graph with4(pq+1)+2(p+q)vertices and8(pq+1)−2(p+q)edges.In contrast, the state complex is that of Fig.4.2[right]:this is topologically a circle,corresponding to the fact that the pair of free squares can circulate about the obstacle set through a sequence of slides.The large2-d regions correspond to states in which the two free squares are on separate(but adjacent)sides of the obstacle set.Example4.6.Consider the planar hex system of Fig.3.1[left]with a workspace W consisting of a long channel of four rows with a line of occupied cells attached to afixed obstacle at the right.This line of cells can“climb”on itself from the left and migrate to the right,one by one.The entire state complex is illustrated in Fig.4.3[right].Although the transition graphs appear complicated,this state complex is contractible for any lengthchannel.Fig.4.3.For a line of hexagonsfiling out of a constrained tunnel[left],the state complex is contractible[right].Black cells represent obstacle sets.A short tunnel is shown:for longer tunnels,the state complex has higher dimension,but is still contractible.Example4.7.The state complex associated to the positive articulated robot arm of Example3.3in the case N=5is given in Fig.4.4.Note that there can be at most three independent motions(when the arm is in a“staircase”configuration);hence the state complex has top dimension three.Notice also that although the transition graph for this system is complicated,the state complex itself is topologically trivial(contractible). Example4.8.In the system of Example3.5with the graph being a K5(the complete graph onfive vertices)and N=2,the state complex is a two-dimensional closed surface.A simple combinatorial argument(as in[1,2])reveals that the Euler characteristic is −5,implying that the state complex is non-orientable.If the AGV’s are labeled,the state complex becomes a closed orientable surface of genus6.STATE COMPLEXES9Fig.4.4.The state complex of a5-link positive arm has one cell of dimension three,along with several cells of lower dimension.5.The topology of S.If one looks at a transition graph without knowing the particulars of the metamorphic system,very little information can be extracted.This paper argues that completing the transition graph to the state complex is“natural”—the state complex simplifies the transition graph and endows it with topological and geometric content.Ourfirst example of naturality is motivated by the desire to build metamorphic systems with large numbers of micro-or nano-scale cells.While large numbers of cells would yield a type of continuum-limit convergence on the dynamics of shape change,the resulting transition graphs have no such convergence.The size of the transition graph goes up exponentially in the number of cells;more ominous is that the topology of the transition graph(the number of basic cycles)blows up as well.This is not always so with the state complex:in certain key examples,the topology of S is either invariant or converges to a limiting type.We have already seen one such example of this stabilization.In Example4.5,the state complex of a pair of squares sliding along a rectangular obstacle of size p-by-q is topolog-ically a circle,independent of p and q.This can be interpreted as a type of convergence: consider the effect of refining the underlying lattice structure,increasing p and q while maintaining a pair of sliding squares.Then the dimension of the state complex remains the same,as does the topological type of the space.Intuitively speaking,the“limit”as this refining process is repeated yields a“topological”configuration space of two points sliding smoothly along the boundary of a rectangle,which can dock or un-dock at the corners.Example5.1.Recall the state complex associated to the metamorphic system of N points on a graphΓ,Example3.5.Consider a refinement ofΓwhich inserts additional vertices along edges.It follows from the techniques of[1]that the state complex of this refined system has the same topological type(up to homotopy equivalence)after afixed bound on the refinement(N additional vertices per edge).Furthermore,this “stabilized”state complex is in fact homotopic to the topological configuration space of N non-colliding points ofΓ—precisely what one expects as the number of refinements goes to infinity.Example5.2.Recall the positive articulated robot arm of Example3.3.Consider a refinement of the underlying lattice which shrinks the lattice by a factor of two(or, equivalently,which inserts an additional joint in the middle of each edge).This is a more dramatic change since the dimension of the state complex doubles.Nevertheless, the topological type is invariant:the state complex remains contractible.Proposition5.3.Let S N denote the state complex of the positive articulated arm from10AARON ABRAMS&ROBERT GHRISTExample3.3with N segments.The complexes S N are all contractible.proof:For these articulated arms,there is a nice inductive structure on the state complexes.Fixing N,each state(vertex)in S N is represented as a length N word in the symbols x and y,where x denotes the arm going to the right and y denotes the arm going up.In this language,the two generators are(1)transposing a subword xy↔yx, and(2)changing the last letter of the word.Consider the subcomplex X⊂S N consisting of all cells whose vertices have words beginning with the letter x.Likewise,let Y denote the subcomplex all of whose vertices begin with the letter y.These subcomplexes are each a copy of S N−1which we may assume inductively is contractible.One passes between the subcomplexes X and Y only when a move exchanges the initial two letters of the word from xy to yx.The connecting set is thus homeomorphic to S N−2×[0,1]and attached to X and Y along S N−2×{0} and S N−2×{1}respectively.Again,by induction,these sets are contractible.A pair of contractible sets joined along contractible subsets is contractible.This should come as no surprise:in the limit as N→∞,the metamorphic system ap-proximates the configuration space of a smooth curve offixed length which is positive in the sense that the curve is always nondecreasing in the horizontal and vertical com-ponents.That the(infinite dimensional)space of such smooth curves is contractible is easily demonstrated:given any such curve with endpointfixed at the origin in the plane, pull the other end along the straight line connecting it to the origin until the strand is taut.Then,rotate the line segment rigidly until it is,say,vertical.This is a continuous deformation on the space of all smooth positive curves offixed length to a single vertical segment.It is certainly not the case that an arbitrary reconfigurable system possesses such con-vergence properties:the manner in which one refines the states is important.Still,it appears that state complexes can often be viewed as“discretizations”of some underlying smooth configuration space.This is an important focus for future inquiry.6.The geometry of S.There are several natural ways to measure distances in state complexes.Wefirst discuss the geometry arising from considering each cube of S to be Euclidean(i.e.,flat),with unit side length;we call S with this metric a Euclidean cube complex.However,this does not imply that the complex,as a whole,isflat.Indeed, non-zero curvature can be concentrated at places where several cells meet.A simple example appears in Fig.6.1:here,a surface built fromflat2-cells can be seen to have curvature which depends on the number of2-cells incident to a vertex.Four incident cells implies zero curvature;three cells implies positive curvature;andfive or more cells implies negative curvature.For a two-dimensional complex,this is equivalent to computing the total angle about a vertex.Fig.6.1.Curvature about a vertex in a2-d Euclidean and negative.Such an extension of curvature to general metric spaces is made precise in Gromov’s work on curved metric spaces[14](extending the classical work of Alexandrov,Busemann,and others)in which triangles with geodesic edges are used to measure curvature bounds.In brief,let X be a metric space and p∈X a point.To bound the curvature of X at p, consider a small triangle T about p with geodesic edges of length a,b,and c.Build a comparison triangle T in the Euclidean plane whose sides also have length a,b,and c respectively.Choose a geodesic chord of T and measure its length d.In T ,measure the length d of the chord whose endpoints correspond to those of the chord in X. Definition6.1.A metric space X is nonpositively curved(or NPC)if for every sufficiently small geodesic triangle T and for every chord of T,it follows that d≤d .a bc da bcdX R2parison triangles measure curvature bounds.In other words,geodesic chords are no longer than Euclidean comparison chords.It should be stressed that the NPC property is very special and highly desirable.Indeed, being NPC implies a variety of topological consequences reminiscent of smooth nonpos-itively curved manifolds.Despite the variety of(local)metamorphic systems,all state complexes share this special geometric property.Theorem6.2.The state complex S of any local metamorphic system is nonpositively curved.The proof of this theorem is simple,but requires some additional machinery. Definition6.3.Let X denote a complex(either simplicial or cubical)and let v denote a vertex of X.The link of v, k[v],is defined to be the abstract complex which has one k-dimensional simplex for each(k+1)-dimensional cube in X incident to v.The boundary relations are those inherited from X:namely,the boundary of a k-simplex in k[v]represented by a(k+1)-cube in X is the set of all simplices represented by the faces of the(k+1)-cube.Links can be thought of as a simplicial version of the locus of points a smallfixed distance from the vertex v.Definition6.4.A Euclidean cube complex X satisfies the link condition if,for each vertex v∈X, k[v]satisfies the following:for each k,if any k+1vertices in k[v]are pairwise connected by edges in k[v],then those vertices bound a unique k-simplex in k[v].An important and deep theorem of Gromov[14]asserts that a Euclidean cube complex is nonpositively curved if and only if it satisfies the link condition.This criterion makes it easy to prove Theorem6.2.。