数值分析试卷08~09
数值分析试题与答案
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
北京理工大学2008级数值分析试题及答案
课程编号:12000044 北京理工大学2009-2010学年第二学期2008级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题(每空2分,共30分)1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点弦截法产生的解序列收敛到方程f (x )=0的根。
2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 位有效数字,a +b 有 位有效数字。
4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 。
5. 设有矩阵⎥⎦⎤⎢⎣⎡-=4032A ,则‖A ‖1=_______。
6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。
7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。
8. 已知n=3时的牛顿-科特斯系数,83,81)3(1)3(0==C C 则=)4(2C ,=)3(3C 。
9. 三次样条函数是在各个子区间上的 次多项式。
10. 用松弛法 (9.0=ω)解方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225322321321x x x x x x x x x 的迭代公式是。
11. 用牛顿下山法求解方程033=-x x 根的迭代公式是 ,下山条件是 。
二、选择填空(每题2分,共10分)1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。
数值分析试题及答案汇总
数值分析试题及答案汇总TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】数值分析试题一、 填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]=0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 (B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
(完整版)数值分析整理版试题及答案,推荐文档
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
(2020年7月整理)数值分析试题集.doc
数值分析试题集(试卷一)一(10分)已知3409.1*1=x ,0125.1*2=x 都是由四舍五入产生的近似值,判断*2*1x x +及*2*1x x -有几位有效数字。
二(10三(15分)设],[)(4b a C x f ∈,H (x )是满足下列条件的三次多项式)()()(,)()(,)()(,)()(b c a c f c H c f c H b f b H a f a H <<'='===求)()(x H x f -,并证明之。
四(15分)计算dx x⎰+10312,210-=ε。
五(15分)在[0,2]上取2,1,0210===x x x ,用二种方法构造求积公式,并给出其公式的代数精度。
六(10分)证明改进的尢拉法的精度是2阶的。
七(10分)对模型0,<⋅='λλy y ,讨论改进的尢拉法的稳定性。
八(15分)求方程017423=--+x x x 在-1.2附近的近似值,310-=ε。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一 填空(4*2分)1 ∞=0})({k k x φ是区间[0,1]上的权函数为2)(x x =ρ的最高项系数为1的正交多项式族,其中1)(0=x φ,则=⋅⎰10)(dx x x φ-------------------,=)(1x φ------------------。
2 ⎪⎪⎭⎫ ⎝⎛-=4112A ,则=∞A -----------, =)(A ρ-----------------。
3 设⎪⎪⎭⎫⎝⎛-+=4121a A ,当a 满足条件----------------时,A 可作LU 分解。
数值分析试题及答案
武理数值分析考试试题纸(A 卷)课程名称 数值分析 专业年纪 一、计算题(本题满分100分,共5小题,每小题20分) 1. 已知函数表(1) 求f(x)的三次Lagrange 型插值多项式及其插值余项(要求化成最简形式). (2) 求f(x)的Newton 插值多项式(要求化成最简形式). 2. 已知A=[212013612],求‖A ‖1,‖A ‖∞,A 的LU 分解.3. 叙述m 阶代数精度的定义,写出求∫f (x )dx ba 的Simpson 公式,并验证Simpson 公式的代数精度为3阶.4. 设矩阵A=012α11,求当α为何值时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛.5. 叙述最小二乘法的基本原理,并举例说明其应用.参考答案一、计算题1、解:(1)L 3(x )=l 0(x )y 0+l 1(x )y 0+l 2(x )y 2+l 3(x )y 3=(x−0)(x−2)(x−2)(−1−0)(−1−1)(−1−2)×0+(x+1)(x−1)(x−2)(0+1)(0−1)(0−2)×(−1)+(x+1)(x−0)(x−2)(1+1)(1−0)(1−2)×2+(x+1)(x−0)(x−1)(2+1)(2−0)(2−1)×15=x 3+2x 2−1R 3(x )=f (x )−L 3(x )=f (4)(ε)4!ω4(x )(2) 均差表如下:N (x )=f (x 0)+f ,x 0,x 1-(x −x 0)+f ,x 0,x 1,x 2-(x −x 0)(x −x 1)+f ,x 0,x 1,x 2,x 3-(x −x 0)(x −x 1)(x −x 2)=0+(−1)(x +1)+2×(x +1)(x −0)+1×(x +1)(x −0)(x −1) =x 3+x 2−12、 解: ‖A ‖1=max 1≤j≤3∑|a ij |3i=1=2+0+6=8‖A ‖∞=max 1≤i≤3∑|a ij |3j=1=6+1+2=9A =LU =[1l 211l 31l 321][u 11u 12u 13u 22u 23u 33]=[212013612] 由u 11=2 u 12=1 u 13=2l 21=0 u 22=1 u 23=3 l 31=3 l 32=−2 u 33=2所以 A =LU =[1013−21][212132] 3. 解:定义:如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m 次代数精度。
数值分析历年考题
数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________ 2.将4111A ⎛⎫= ⎪⎝⎭分解成T A LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bxf x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是 5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6.设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________b =___________7.要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9.用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10.已知[1,1]-上的四次legendre 多项式为4241()(35303)8L x x x =-+,求积分1241()()ax bx c L x dx -++=⎰___________其中,,a b c 为常数。
(完整版)中北大学研究生数值分析试题(2009年8月)参考答案与评分标准
2008/2009 学年第 2 学期末考试试题(A 卷)数值分析参考答案使用班级: 高教硕士、工程硕士一、填空题(每空3分,共30分)1、 由于计算机的字长限制,计算机在存取原始数据以及每一次计算都会对数据进行四舍五入,由此产生的误差称为舍入误差;而数值计算方法得到的近似解与数学模型的准确解之间的误差称为截断 误差(或方法误差);2、 设*0.01320a =-是准确值a 经四舍五入得到的近似值,那么它的一个绝对误差限()*a ε=0.000005,相对误差()*r a ε=0.038%; 祖冲之的密率*355113π=作为圆周率3.1415926535897...π=的近似值具有 7 位有效数字;3、 方程cos x x =的根*x =0.73909(精确到小数点后5位);4、 设(1)0.5,(0)1,(1)2f f f -===,则一阶差商[1,0]f -=0.5,二阶差商[1,0,1]f -=0.25,函数()f x 的二次Newton 插值多项式2()p x =213144x x ++; 5、求积公式()()()1-1141()d 101333f x x f f f ≈-++⎰具有 3 次代数精度。
二、利用Doolittle 分解求解以下方程组(本题10分)123212321232123242528721074836712611203x x x x x x x x x x x xx x x x +++=-⎧⎪+++=-⎪⎨+++=-⎪+++=-⎪⎩ 解:采用紧凑格式的LU 分解,其过程为由方程组的增广矩阵所以,()T1111x =--。
注:若不按以上紧凑格式方法做的其它做法,只要正确也给分。
其中()LU2421523872107|148367112611203A b -⎫-⎛⎫⎪- ⎪⎪-⎪⎪=−−−→ ⎪-⎪- ⎪⎪-⎝⎭⎪⎭分解100042152210003003,,,,121000************L U y Ly b Ux y -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-⎪⎪ ⎪===== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭三、(本题10分)写出求解线性方程组1231231235212421025101x x x x x x x x x +=-⎧⎪++=⎨⎪-+=⎩+- 的Jacobi 迭代算法及其对应的迭代矩阵,并说明用Jacobi 迭代法求解此方程组是收敛的。
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
(完整版)辽工大2008年数值分析试题
(2008级)数值分析试题一、选择题(本大题共8小题,每小题2分,共16分)1. 计算()432-=f ,取7.13≈,利用下列等式计算,结果最好的是( )。
(A )()4321+(B )()2347-(C )35697-(D )356971+2. 设()132++=x x x f ,则[]=35.0,3.0,2.0,1.0f ( )。
(A )0(B )1(C )2 (D )33. 选择常数a ,使ax x x -≤≤310max 达到极小,所用的逼近为( ),可以选择的逼近多项式为( )。
(A )最佳平方逼近(B )最佳一致逼近(C )Legendre 多项式 (D )Chebyshev 多项式4.如果()0>''x f ,用梯形公式()⎰=b adx x f I 计算所得结果记为,则有( )。
(A )T I >(B )T I <(C )T I =(D )不能确定5. 用复化辛普森公式计算积分⎰=1dx e I x ,若使截断误差不超过51021-⨯,则区间[]2,1至少应分( )等分。
(A )1(B )2(C )3(D )46. 线性方程组的迭代公式f Bx x k k +=+1收敛的充要条件为( )。
(A )11<B(B )1<∞B(C )1)(<B ρ(D )以上都对7. 求方程a x =2正根的迭代公式⎪⎪⎭⎫⎝⎛+=+k k k x a x x 211,收敛阶为( )。
(A )1(B )2(C )3(D )非线性收敛8. 对于常微分方程的一阶初值问题,若数值方法的局部截断误差为()31h O T n =+,则( )。
(A )1 (B )2 (C )3 (D )4二、填空题(本大题共8小题,每小题2分,共16分) 1. 若x 的相对误差为ε,则3x 的相对误差为()。
2. 若()()()x bg x af x F +=,则[]=Λn x x x F ,,,10()。
华南理工大学研究生数值分析试卷
(一)1.计算81269322345++-+-=xx x x x P 时,为了减少乘除法运算次数,应把它改写成什么形式?成什么形式?2.设有递推公式,...2,1.1610=-==-n y y e y n n ,如果取'00718.2y e y =»=作近似计算,问计算到10y 时误差是初始误差的多少倍?这个计算过程数值稳定吗?时误差是初始误差的多少倍?这个计算过程数值稳定吗?(二)1.满足1+n 个相同插值条件的n 次牛顿插值多项式)(x N n 与n 次拉格朗日插值多项式)(x L n 是恒等的,对吗?(回答“对”或“错”)2.试用两种方法求满足插值条件2)2(,0)1()1(,1)0('====p p p p 的插值多项式)(x p 。
(三)1.若已有同一个量的多个近似值,通常取其算术平均作为该量的近似值。
指出这种做法的理论依据(不必详细推导)。
2.在某试验过程中,变量y 依赖于变量x 的试验数据如下:的试验数据如下::x 1 2 3 4 :y 0.8 1.5 1.8 2.0 试求其形如2bx ax y +=的拟合曲线。
的拟合曲线。
(四)1.设有插值型求积公式)()(011k n k k x f A dx x f åò=-»,则å=nk k A 0等于哪个常数?等于哪个常数?2.确定下列求积公式的求积系数101,,AA A -: )1()0()1()(10111f A f A f A dx x f ++-»--ò 使公式具有尽可能高的代数精度;并问所得公式是不是Gauss 型公式?型公式?(五)1.Gauss 消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?A .提高计算速度;B 提高计算精度;C 简化计算公式;D.提高算法的数值稳定性;E.节省存储空间存储空间2.用列主元Gauss 消去法解方程组(用增广矩阵表示过程,不用求系数矩阵行列式值):úúúûùêêêëé-11.031045321úúúûùêêêëé321x x x =úúúûùêêêëé201(六)给定线性方程组úûùêëé-5.1112úûùêëé21x x =úûùêëé-48 试构造解此方程组的Jacobi 迭代公式和Guass-Seidel 迭代公式,这两种迭代收敛吗?迭代公式,这两种迭代收敛吗?2.已知求解线性方程组b Ax =的分量迭代格式的分量迭代格式ii k k a x x w +=+)()1(n i x a b n j k j ij i ,...,2,1),(1)(=-å= 试导出其矩阵迭代格式及迭代矩阵;并证明当A 是严格对角占优阵且21=w 时此迭代格式收敛。
数值分析试题(卷)和答案解析
试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦(10分) 七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
2008年工程硕士研究生学位课程(数值分析)真题试卷A
2008年工程硕士研究生学位课程(数值分析)真题试卷A(总分:26.00,做题时间:90分钟)一、填空题(总题数:7,分数:14.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。
(分数:2.00)__________________________________________________________________________________________ 解析:2.为了提高数值计算精度,当正数z______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:3.设x为x *的近似值,则x的相对误差的______倍.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.已知cond(A) ∞ =_______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:9)解析:5.设线性方程组Ax=b的系数矩阵Gauss-Seidel迭代法求解收敛的充分必要条件是a满足______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:a>3或a<-5)解析:6.设f(x)=3x 4 +8x 3 -98x+1,则差商f[2,4,8,16,32]=_______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:3)解析:7.记h=(b-a)/n,x i =a+ih,0≤i≤n.计算T n (f)=______,代数精度等于______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:二、计算题(总题数:2,分数:4.00)8.用Newton迭代法求非线性方程x-lnx=2在(2,+∞)内的根,要求精确至6位有效数,并说明所用迭代格式为什么是收敛的.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:记f(x)=x-lnx-2,则f"(x)=1- .当x>2时,f"(x)>0.又f(3)=3—ln3—2=1-ln3<0,f(4)=2-ln4>0,故方程f(x)=0在(2,+∞)内有唯一解x *,且x *∈[3,4].Newton迭代格式为k=0,1,2,…,取x 0=3.5得x 1=3.153868,x 2=3.146198,x 3=3.146193,x 4<)解析:9.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:得x 3 =-3,x 2 =5,x 1 =6.)解析:三、综合题(总题数:4,分数:8.00)10.写出Jacobi迭代格式; 2)分析此迭代格式的收敛性.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:1)Jacobi迭代格式为2)Jacobi迭代矩阵J的特征方程为有故从而Jacobi迭代格式发散.)解析:11.给定如下数据表:求一个不超过4次的多项式H(x)(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:由Herrnite插值多项式得H(x)=f(-1)+f[-1,-1](x+1)+f[-1,-1,0)(x+1) 2+f[-1,-1,0,2](x+1) 2(x-0)+f[-1,-1,0,2,2](x+1) 2(x-0)(x-2),建立差商表如下:H(x)=10+(x+1)+3(x+1)2 - (x+1) 2(x+1) 2 x(x-2).)解析:12.试用simpson(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:令a=2,b=3,f(x)=e x,得所求近似值具有3位有效数字.)解析:13.给定常微分方程初值问题取正整数n,并记h=(b-a)/n,x i=a+ih,0≤i≤n.试分析求解公式的局部截断误差,并指出它是一个几阶的公式.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:所给求解公式是一个2阶公式.注所给求解公式是一个2阶公式.)解析:。
数值分析课程考试试卷(A)及答案
《 数值分析 》课程考试试卷(A )考试形式:闭卷√□、开卷□,允许带 计算器 入场考生姓名: 学号: 专业: 班级:一、填空(每个空3分,共30分)1,设 *3.1415, 3.141x x ==,则*x 有__________位有效数字。
2,*3587.6x =是经四舍五入得到的近似值,则其相对误差≤*r e ___________. 3,已知=⎪⎭⎫⎝⎛-=1,4032A A 则_______, =∞A _______.4,设0)(≥''x f , 则由梯形公式计算的近似值T 和定积分⎰=badx x f I )(的值的大小关系为___________.(大于或者小于)5, 已知,3,2,1,03210====x x x x 4,5.2,1.1,03210====f f f f ,则均差],,,[3210x x x x f _______________.6, 已知A=⎪⎪⎪⎭⎫ ⎝⎛2021012a a ,为使A 可分解为TLL A =,其中L 为对角线元素为正的下三角形矩阵,则a 的取值范围为_______________,如果a =1,则L =______________.7,若b a ,满足的正规方程组为:⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====n i n i ni i i i i n i ni i i y x b x a x y b x na 1112111 则x y 与之间的关系式为______________________8,若1λ是1-A 的按模最大的特征值,则A 的按模最小的特征值为___________二、设(1)0,(0)2,(1)4f f f -===,求 )(x p 使 )()(i i x f x p =,)2,1,0(=i ;又设 M x f ≤''')( ,则估计余项 )()()(x p x f x r -= 的大小 。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析试卷与答案8
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f1)求以3210,,,x x x x 为节点的3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节点的3次Newton 多项式;(6分) 3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析试题库与答案解析
A1 f (1)的求积公式,并求出
3.用 Newton 法求方程 x ln x 2 在区间 ( 2, ) 内的根 , 要求 xk xk 1 xk
4.用最小二乘法求形如 y a bx 2 的经验公式拟合以下数据:
10 8 .
xi
19
25
30
38
yi
19.0
32.3
49.0
73.3
5.用矩阵的直接三角分解法解方程组
, l 32 2
3
3
解方程组
1
y1
11
y2
5
y3
3 21
10
4
16 得 y1 10, y2 6, y3
,
3
30
再解方程组
5 1 1 3 x1
1 2 x2 1 x3
d1 1
10
d2 1
6 得 x1 1, x2
d3 1 4
3
1, x3 2 .
1 4 解 令 Y ,则 Y a bx 容易得出正规方程组
y
7. xk 1 xk xk f (xk ) ; 8. x j ; 9. 1 f (xk)
(B) 1;
10. 1 x3
x2
1 x,
f (4) ( )( x 1)x( x 1)(x 2) / 24
6
6
( 1,2)
二、综合题
1.差商表:
1 15
20
1 15
15
20
7
1 15
22
1
42
8
2 57
30
72
2 57
由于 ( x) [ x f ( x)] 1 f ( x) ,所以 | ( x) | |1 f ( x) | 1
数值分析真题
山东科技大学2008-2009学年第一学期《数值分析》考试试卷一、 (7')设x = 9.1234,y = 10.486均具有5位有效数字。
试分析x - y 和33x y +的绝对误差限和相对误差限。
二、 (5')求一条拟合3点A (0,1),B (1,3),C (2,2)的直线。
三、 (13')设2n ≥为正整数,c为正数,记*x =。
1) 说明不能用下面的迭代格式11,0,1,2,...n k k x cx k -+== 求*x 的近似值。
2) 构造一个可以求*x 的迭代格式,证明所构造迭代格式的收敛性,并指出收敛阶数。
四、 (15')给定线性方程组 12341021160142x a x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦其中a 为非零常数。
1) 写出Jacobi 迭代格式与Gauss-Seidel 迭代格式并分析其收敛性。
2) 分析a 在什么范围取值是以上迭代格式收敛。
五、 (10')做一个5次多项式()H x 使得*(1)3,(2)1,(4)3,'(1)2,'(2)1,(2)2H H H H H H ==-====六、 (6')求2()f x x =在区间[0,1]上的一次最佳一致逼近多项式。
七、 (20')给定积分公式: 11()(1)(0)(1)f x dx Af Bf Cf -≈-++⎰1) 试确定求积系数A,B,C,使其具有尽可能高的代数精度,并指出其代数精度。
2) 试判断该求积公式是否为高斯型求积公式,并说明理由。
3) 将区间[-1,1]作n 等分,并记2,1,0,1,...,i h x ih i n n==-+=,利用该求积公式构造一个负化求积公式。
八、 (14')考虑常微分方程初值问题'(,),()y f x y a x by a η=≤≤⎧⎨=⎩,取正整数n ,记b a h n-=,,0,1,2,...,i x a ih i n =+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河海大学2008-2009学年硕士生
《数值分析》试题(A )
任课教师
姓名_________专业________学号 得分
一、选择题(每小题3分,共15分)
1.设准确值=x 300
2,以=*x 006666.0作为x 的近似值,其有效数 字为( )。
A. 3位;
B. 4位;
C. 5位;
D. 6位
2.积分公式)31
()31()(1
1f f dx x f +-≈⎰-的代数精度为( )。
A.1阶;
B.2阶;
C.3阶;
D. 4阶
3.对于任意初始向量)0(x ,一阶定常迭代f Bx x k k +=+)()1(收敛的
充分必要条件是( ) 。
A. 1||||<B ;
B. 1||||≤B ;
C. 1)(<B ρ;
D. 1)(≤B ρ
4.下列关于条件数的性质错误是( )。
A.)(cond )(cond 1-=A A ;
B.1)(cond ≥A ;
C.)0()(cond )(cond ≠⋅=k A k kA ;
D.)0()(cond )(cond ≠=k A kA
5.设初等反射阵T ww I H 2-= )1(=w w T ,则下列错误的是( )。
A. H 是对称矩阵;
B. H 是正交矩阵;
C. 任给向量x ,有22||||||||x Hx =;
D. H 的行列式等于1
二、填空题(每小题3分,共15分)
1.非线性方程求根的Newton 迭代法在单根附近的收敛阶数
为____ ___,在重根附近的收敛阶数为_____ __。
2.用幂法(规范化)求矩阵A 的主特征值及对应的特征向量的迭代格式是
________________________________________。
3.设线性方程组b Ax =,当A 满足____________________时,
常用Cholesky 分解法,当A 满足__________________________
__________________时,常用追赶法。
4.已知Chebyshev 多项式x x x T 34)(33-=,则12)(23+++=x x x x f 的最佳2次逼近多项式为____________ ______。
5.设),2,1,0()},({ =k x k ϕ是区间[0,
1]上带权x x =)(ρ的最高次项系数 为1的正交多项式族,其中1)(0=x ϕ,则=)(1x ϕ_______。
三、(本题10分) 设4)(x x f =,取节点为1-,0,1,2。
(1)试用拉格朗日基函数写出)(x f 的三次插值多项式;
(2)试用余项公式写出)(x f 的三次插值多项式。
四、(本题10分) 试用Doolittle 三角分解法求解方程组
⎪⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛032484272321321x x x
五、(本题10分) 确定下列公式
⎰-++-≈2
2)1()0()1()(Cf Bf Af dx x f
中的参数A ,B ,C ,使其代数精度尽量高,并指出所得公式的 代数精度。
六、(本题12分) 设方程组⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----121122*********x x x ,分别写出
雅可比迭代格式和高斯-塞德尔迭代格式,并讨论它们的收敛性。
七、(本题10分) 利用Legendre 多项式,求x x f =)(在区间[0,1]上的一次最佳平方逼近多项式。
八、(本题8分) 设A 是对称正定矩阵,B 是对称矩阵,若BAB A -也正定,证明迭代格式
f Bx x k k +=+)()1(
对任意初始向量)0(x 收敛。
九、 (本题10分) 试证明由
[]),(),(2
1111+++++=n n n n n n y x f y x f h y y 所定义的隐式单步格式是二阶的。