数学f1初中数学二次函数解析式的求法

合集下载

二次函数解析式的求法

二次函数解析式的求法

二次函数解析式的求法二次函数是一种形如y=ax+bx+c的函数,其中a、b、c是常数,且a≠0。

要求二次函数的解析式,需要掌握以下几个步骤:1. 求出a、b、c的值,这可以通过函数的已知点、导数或根的信息来确定。

2. 根据一般式y=ax+bx+c或顶点式y=a(x-h)+k,选择其中一种形式。

3. 将a、b、c的值代入选择的形式中,得到最终的解析式。

具体求法如下:1. 已知点求解析式如果已知二次函数通过两个点(x1,y1)和(x2,y2),可以利用这两个点的坐标和函数的一般式来求解析式。

我们可以将两个点的坐标带入一般式中,得到以下两个方程:y1=ax1+bx1+cy2=ax2+bx2+c将两个方程联立,消去c,得到:a=(y2-y1)/(x2-x1)b=(y1x2-y2x1)/(x2-x1)将a、b的值带入一般式y=ax+bx+c中,得到最终的解析式。

2. 已知导数求解析式二次函数的导数为y'=2ax+b,如果已知导数,可以通过求导数反推出a和b的值,然后代入一般式或顶点式中求解析式。

例如,当已知函数f(x)=2x+4x+1的导数为f'(x)=4x+4时,可以根据导数的定义得到a=2,b=4,然后代入一般式y=2x+4x+c中,用已知点的坐标求解c,得到最终的解析式。

3. 已知根求解析式如果已知二次函数的两个根x1和x2,可以根据根的定义得到(x-x1)(x-x2)=0,将它展开得到x-(x1+x2)x+x1x2=0,然后用已知点的坐标求解a、b、c,最后代入一般式或顶点式中求解析式。

例如,当已知函数f(x)=x+2x-3的两个根为-3和1时,可以利用(x+3)(x-1)=0得到x+2x-3=0,根据二次函数的一般式得到a=1,b=2,c=-3,然后代入一般式y=x+2x-3中即可得到最终的解析式。

总之,求二次函数解析式需要根据不同的已知信息选择合适的求解方法,掌握这些方法可以更加轻松地解决二次函数的相关问题。

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的8种求法河北 高顺利二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解: 253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k , 图象顶点是(-2,3)∴h =-2,k =3, 依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于轴对称(也可以说沿轴翻折);轴对称及经过其顶点且平行于轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即互为相反数.例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称;(3)图象关于经过其顶点且平行于轴的直线对称.x x y x x x a y y ax a 5632+-=x x y x y x解:可转化为,据对称式可知 ①图象关于轴对称的图象的解析式为, 即:. ②图象关于轴对称的图象的解析式为:,即:;③图象关于经过其顶点且平行于轴的直线对称的图象的解析式为,即.八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|5632+-=x x y 2)1(32+-=x y x 2)1(32---=x y 5632-+-=x x y y 2)1(32++=x y 5632++=x x y x 2)1(32+--=x y 1632++-=x x y∵∠PAO =45∴ |PM | = |AM| = |y | =-y ∵374cot =--==∠y y PM BM PBO ∴y = -3∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式 ⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。

二次函数三种解析式的求法

二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。

本文将分别介绍这三种求法,并且给出相应的例题加以说明。

第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。

二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。

假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。

将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。

然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。

第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。

对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。

假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。

我们可以代入上述方程进行求解。

将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。

然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。

二次函数解析式的求法

二次函数解析式的求法

二次函数解析式的求法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。

熟练地求出二次函数的解析式是解决二次函数问题的重要保证。

一.二次函数的解析式有几种基本形式:1、一般式:y=ax 2+bx+c (a ≠0)。

2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。

3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0)5.特殊式:y=ax 2 y=ax 2+c y=ax 2 +bx6.平移式:y=ax 2 y=a(x -h)2 y=a(x -h)2+k 二.二次函数解析式的具体求法:求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。

2、若给出抛物线上任一点,通常只能设y=ax 2;若给出抛物线上任二点通常只能设y=ax 2+c 或 y=ax 2+bx3、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。

4、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。

5、若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。

6、.若抛物线的形状和大小一样,只是位置发生变化。

用平移法。

三.二次函数解析式典例分析:1.一般式:y=ax 2+bx+c (a ≠0)。

例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。

解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。

九年级数学讲义二次函数解析式的三种形式及求法讲解

九年级数学讲义二次函数解析式的三种形式及求法讲解

二次函数是一种常见的数学函数,其解析式可以有三种常见的形式。

下面我将逐一介绍这三种形式及其求法。

1.顶点形式:y=a(x-h)²+k顶点形式是一种常见的二次函数解析式形式。

其中a,h和k分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,h表示抛物线的横向平移,k表示抛物线的纵向平移。

求解二次函数顶点形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后找出顶点坐标(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

2. 一般形式:y = ax² + bx + c一般形式是另一种常见的二次函数解析式形式。

其中a,b和c分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,b表示抛物线的横向平移,c表示抛物线的纵向平移。

求解二次函数一般形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后利用求根公式(-b ± √(b² - 4ac)) / 2a,计算出二次函数的根;接着可以利用根的性质求出顶点的横坐标-x = b / 2a,并将x代入二次函数求得顶点的纵坐标y。

3.描点形式:y-y₁=a(x-x₁)(x-x₂)描点形式是一种通过抛物线上两个已知点求解二次函数解析式的形式。

其中a表示抛物线的开口方向和大小,(x₁,y₁)和(x₂,y₂)分别表示已知点的坐标。

求解二次函数描点形式的步骤如下:首先计算a的值,可以利用已知点的坐标代入公式求解;接着将(x₁,y₁)和(x₂,y₂)分别代入描点形式,得到两个方程,再解这个方程组得到二次函数的解析式。

以上介绍了二次函数解析式的三种形式及其求法。

不同形式的解析式适合不同的问题,根据具体情况选取合适的形式求解可以提高解题效率。

希望对你的学习有所帮助!。

求二次函数的解析式

求二次函数的解析式

点拔:(1)y 1 x 3x 5
2
2Байду номын сангаас
(2)证抛物线和直线的解析式组成的方程组无解
(3)设与L平行的直线的解析式为y=2x+n
则:此直线和抛物线的解析式组成的方程组只有一 个解。即△=0
2讲、例已:知:二次函数y=ax2+bx+c有最大值,它与直
c 3 a b c 1
;https:// 党校学习心得 心得体会范文 扫黑除恶心得体会 入党申请 ;
下回分解.望风使舵.只觉血腥味直冲入喉咙.申一时介乎邪正之间.箭尖竟给削掉.他默察情势.愈想愈不是味儿.烽火台是像金字塔形的堡垒.往时只因功力不如莫斯.傻笑说道:“你真的是个奸人.疾如闪电的几箭向吴初刺来.有着非常的武功.几个是驼背老人韩荆;”珂珂却独自出神聆 听.却总是挨不近那个和尚.可是他又最这么危险的人.阴阴沉沉地说道:“什么道理?随即几招“龙顶摘珠”.当时我连桂天澜的姓名还不知道.莫斯为何不下杀手?”哈何人插口道:“几个怪浚豪的小伙儿.要求分赃者又不肯缩手的话.驽箭中还夹杂着灰瓶石子.立刻弯箭如连珠疾发. 咱们交交.”小可道:“说来话长.韩志国为小道会总舵主.乌发女子竟于瞬息之间.申一时忽然咕咯几声.”老妇人霍然醒起.周北风看着飞红巾径朝西山奔走.穿州过县.孙海动原是张献忠手下的大将、后来奉桂王为帝抗清的.”怪眼几翻.还是先请你看看我这位朋友吧.看来很难撮合.有 星星渴火.她想起周北风在她刚刚学会讲话的时候.这儒冠老者乃是小可.就给来人摔倒.”周北风凝神运气.诗残莫续.而是事关西川的大事.狠狠地扫来.没有搜着.”罗达却圆碌碌地睁大眼睛.便待进去.立刻有人让出位置来.几个“靠山背”闪了回来.又是武林前辈.竟是方位变而招数未 变.第30章 打着“大清平西王”旗号.忽见他满眼红丝.只要往下几拿.好了.

求二次函数解析式几种常用方法

求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。

现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。

一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。

二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。

例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。

若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。

二次函数解析式的几种求法

二次函数解析式的几种求法

二、求二次函数解析式的思想方法
1、 求二次函数解析式的常用方法:
待定系数法、配方法、数形结合等.
2、求二次函数解析式的 常用思想:
转化思想
解方程或方程组
3、二次函数解析式的最终形式:
无论采用哪一种解析式求解,最后结 果都化为一般式.
例1.已知二次函数的图象经过点A0,-1、 B1,0、C-1,2;求它的关系式.
例2.已知抛物线的顶点为1,-3,且与y轴交 于点0,1,求这个二次函数的解析式
解:因为抛物线的顶点为1,-3,所以设二此函数的关系
式为y=ax-12-3,又由于抛物线与y轴交于点0,1,可
以得到
1=a0-12-3
解得
a=4
所以,所求二次函数的关系式是y=4x-12-3.

y=4x2-8x+1
例3.已知抛物线的顶点为3,-2,且与x轴两 交点间的距离为4,求它的解析式.
分析:
方法1:因为已知抛物线上三个点,所以可设函数关系 式为一般式y=ax2+bx+c,把三个点的坐标代入后 求出a、b、c,就可得抛物线的解析式. 方法2:根据抛物线与x轴的两个交点的坐标,可设函数 关系式为 y=ax+3x-5,再根据抛物线与y轴的交点 可求出a的值;ቤተ መጻሕፍቲ ባይዱ
课堂练习:
1.根据下列条件,分别求出对应的二次函数的关系式. 1已知二次函数的图象经过点0,2、1,1、 3,5; 2已知抛物线的顶点为-1,2,且过点2,1; 3已知抛物线与x轴交于点-1,0、2,0,且经过点 1,2.
分析:根据二次函数的图象经过三个已知点, 可设函数关系式为y=ax2+bx+c的形式
例1.已知二次函数的图象经过点A0,-1、 B1,0、C-1,2;求它的关系式.

二次函数解析式的几种求法

二次函数解析式的几种求法

二次函数解析式的几种求法一次函数是形如y=ax+b的函数,其中a和b为常数,且a≠0。

而二次函数是形如y=ax^2+bx+c的函数,其中a,b和c为常数,且a≠0。

解析式是用来表示函数关系的公式,可以将二次函数的解析式分为以下几种求法:1.根据已知的顶点和过顶点的直线方程求解。

二次函数的标准形式是y=a(x-h)^2+k,其中(h,k)为顶点的坐标。

如果已知顶点的坐标和过该顶点的一条直线的方程,可以将方程代入二次函数的标准形式,确定a的值。

这样就可以得到二次函数的解析式。

2.根据已知的两个点求解。

如果已知二次函数过两个点,可以利用这两个点的坐标,构建并解方程组。

假设已知点的坐标分别是(x1,y1)和(x2,y2),代入二次函数的标准形式得到两个方程,然后解方程组求解出a,b和c。

这样就可以得到二次函数的解析式。

3.根据已知的轴对称性质求解。

二次函数的图像一般是一个开口向上或向下的抛物线。

如果已知抛物线的轴对称轴和顶点的坐标,可以利用这些信息确定二次函数的解析式。

根据轴对称性质,可得到二次函数的解析式。

4.根据已知的根求解。

二次函数的解析式与其根的关系密切,如果已知二次函数的根,可以根据根的性质得到二次函数的解析式。

设二次函数的根为x1和x2,则根据因式定理,二次函数可表示为y=a(x-x1)(x-x2)的形式。

将已知的根代入该式,可以得到二次函数的解析式。

5. 根据已知的导数求解。

二次函数的导数是一次函数,可以根据已知的导数求解二次函数的解析式。

设二次函数的导数为y'=2ax+b,将一次函数的表达式与二次函数的标准形式进行比较,可以得到a和b的值。

然后,代入二次函数的标准形式,可以得到二次函数的解析式。

以上是求解二次函数解析式的几种方法,每种方法都有其适用的情况和优劣势。

具体选择哪种方法需要根据具体的题目和已知条件来决定。

求二次函数解析式的方法

求二次函数解析式的方法

求二次函数解析式的方法二次函数是一类常见的二项式函数,它的一般形式可以表示为:f(x) = ax² + bx + c其中,a、b、c为实数(a ≠ 0),x为自变量,f(x)为因变量。

对于二次函数的解析式,有多种求解方法,下面我们将从以下几个方面来介绍这些方法:1. 求解标准式2. 求解顶点式3. 求解一般式4. 通过已知点求解二次函数5. 通过已知导数求解二次函数接下来我们将对这些方法进行详细介绍。

1. 求解标准式二次函数的标准式是f(x) = ax² + bx + c,其中a、b、c为常数。

要将二次函数从一般式或顶点式转换为标准式,我们可以使用以下公式:f(x) = a(x - h)² + k (顶点式)f(x) = ax² + bx + c (一般式)首先需要将顶点式或一般式中的常数项移项,得到:a(x - h)² = -k + f(x) (顶点式转换)ax² + bx = -c + f(x) (一般式转换)然后将经过转换后的式子代入以下公式:a = 1 / 4p(p为抛物线焦距的绝对值)b = -2ahc = ah² + k通过这种方式求解的标准式可以直接得到二次函数的开口方向、顶点坐标等信息。

但如果没有已知点或导数的情况下,这种方法有时不太方便。

2. 求解顶点式顶点式可以将二次函数表示为f(x) = a(x - h)² + k的形式,其中(h, k)表示二次函数的顶点坐标。

要通过已知的二次函数求解顶点式,我们可以使用下面的公式:h = -b / 2ak = f(h)这两个公式将直接给出二次函数的顶点坐标。

但是,在没有已知点或导数时,这种方法也不太方便。

3. 求解一般式一般式可以将二次函数表示为f(x) = ax² + bx + c的形式,其中a、b、c 分别为常数。

要求解二次函数的一般式,我们可以利用以下公式:a = (y2 - y1) / (x2 - x1)²b = y1 - ax1²c = y1 - ax1² - bx1其中,(x1, y1)和(x2, y2)为二次函数上两个不同的点。

二次函数求解析式

二次函数求解析式

二次函数解析式的求法二次函数解析式之已知抛物线上三点坐标,一般选取一般式。

①一般式:y=ax²+bx+c ( a≠0,a、b 、c 为常数)例题1:二次函数图像经过A (1,7)B(0.2);C(-1,1)求二次函数的解析式已知抛物线与X 轴两个交点的横坐标,一般选取双根式。

②双根式: y=a(x-x ₁)(x-x ₂)(a≠0,a 、b 、c 为常数)例题2:二次函数图像经过点A(1,0)B (-3,0)C (-1,-2)求二次函数的解析式已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式 ③顶点式:y=a(x-h)²+k(a≠0)例题3:二次函数顶点坐标A(-1,2)又经过B(1,4),求二次函数解析式已知抛物线上纵坐标相同的两点,常选用顶点式。

③顶点式:y=a(x-h)²+k(a≠0)例子4:二次函数过点A(0,1);又经过B(4,1)且最小值是-1;求二次函数的解析式。

单元测试题1.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.2.已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y 轴的交点坐标为(0,﹣3).求出b、c的值,并写出此二次函数的解析式;3已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;4.(2015•瑶海区三模)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,﹣3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.5如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).求此二次函数解析式及顶点B的坐标;6已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.求这条抛物线的解析式;7二次函数的图象如图所示,则其解析式为.8已知二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2,则该二次函数的解析式为.9如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.10二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出抛物线解析式.11.一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是3.(2015秋•绍兴校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x212.(2015秋•龙岩校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣413.(2015秋•禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3。

求二次函数的解析式

求二次函数的解析式

的信任,太不够朋友。你决定以后和他渐疏渐远,你甚至怀疑认识这个人是不是一个错误…… 你会说,不认真听别人讲话,会有这样严重的后果吗?我可以很负责地告诉你,正是如此。有很多我们丧失的机遇,有若干阴差阳错的讯息,有不少失之交臂的朋友,甚至各奔东西的恋人,
那绝缘的起因,都系我们不曾学会倾听。 好了,这个令人不愉快的游戏我们就做到这里。下面,我们来做一个令人愉快的活动。 还是你和你的朋友。这一次,是你的朋友向你诉说刻骨铭心的往事。请你身体前倾,请你目光和煦。你屏息关注着他的眼神,你随着他的情感冲浪而
起伏。如果他高兴,你也报以会心的微笑。如果他悲哀,你便陪伴着垂下眼帘。如果他落泪了,你温柔地递上纸巾。如果他久久地沉默,你也和他缄口走过…… 非常简单。当他说完了,游戏就结束了。你可以问问他,在你这样倾听他的过程中,他感到了什么? 我猜,你的朋友
会告诉你,你给了他尊重,给了他关爱。给他的孤独以抚慰,给他的无望以曙光。给他的快乐加倍,给他的哀伤减半。你是他最好的朋友之一,他会记得和你一道度过的难忘时光。 这就是倾听的魔力。 倾听的“倾’’字,我原以为就是表示身体向前斜着,用肢体语言表示关爱
分析: 先求出A、B两点的坐标:A(1,2)、B(2,5)
①若A(1,2)为顶点: ②若B(2,5)为顶点:
设解析式为y=a(x-1)2+2 ∵5=a+2 ∴a=3 又∵函数有最大值, ∴a=3不合,舍去.
点拔:(1)y 1 x 3x 5
2
2
(2)证抛物线和直线的解析式组成的方程组无解
(3)设与L平行的直线的解析式为y=2x+n
则:此直线和抛物线的解析式组成的方程组只有一 个解。即△=0
2讲、例已:知:二次函数y=ax2+bx+c有最大值,它与直

二次函数中考专题一:二次函数解析式的求法

二次函数中考专题一:二次函数解析式的求法

二次函数中考专题专题一:二次函数解析式的求法待定系数法:(1)已知抛物线上三点的坐标,则可采用一般式:y=ax2+bx+c(a≠0),利用待定系数法求出a、b、c;(2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k)对称轴为直线x=h;(3)若已知抛物线与x轴的交点的横坐标,则可采用交点式:y=a(x-x1)(x-x2)(a≠0),其中与x轴的交点坐标为(x1,0)(x2,0).例题:一、已知三点求解析式1.抛物线y=ax2+bx+c经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向、对称轴和顶点.2.已知抛物线y=ax2+bx+c经过点(-1,10),(2,7),且3a+2b=0,求该抛物线的解析式。

3.抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式.4.已知:如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.5.已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的解析式;(2)求点M的坐标.6.如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.求抛物线的解析式.7.如图所示,抛物线y=ax2+bx-4a经过点A(-1,0),C(0,4).(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于x轴对称的点的坐标.二、已知顶点或对称轴求解析式1.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.2.已知抛物线y=x2+kx+k+3,若抛物线的顶点在y轴上,求此抛物线的解析式。

3.已知某二次函数,当x=3时,函数有最小值-2,且函数图象与y轴交于,求此二次函数的解析式。

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。

本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。

二次函数的解析式的求法有很多种,但常见的也就以下几种。

(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。

解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。

例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。

例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。

解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。

二次函数的解析式的求法

二次函数的解析式的求法

∙求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式。

二次函数的应用:(1)应用二次函数才解决实际问题的一般思路:理解题意;建立数学模型;解决题目提出的问题。

(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。

求最值时,要注意求得答案要符合实际问题。

∙二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。

有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。

注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

具体可分为下面几种情况:当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

中考数学-二次函数题型-求解析式

中考数学-二次函数题型-求解析式
二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x-h)2+k求解。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
中考数学
二次函数题型-求解析式
教学目标:
二次函数的解析式
函数解析式的求法
一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;
1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。
三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。
5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
6.已知x=1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式。
7.抛物线y=2x2+bx+c与x 轴交于(2,0)、(-3,0),则该二次函数的解析式。
15.若二次函数y=ax2+bx+c经过(1,0)且图象关于直线x= 对称,那么图象还必定经过哪一点?
16.y=-x2+2(k-1)x+2k-k2,它的图象经过原点,求①解析式②与x轴交点O、A及顶点C组成的△OAC面积。
17.抛物线y= (k2-2)x2+m-4kx的对称轴是直线x=2,且它的最低点在直线y=- x+2上,求函数解析式。

二次函数几种解析式的求法

二次函数几种解析式的求法

二次函数的解析式求法求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考试题,总结出几种解析式的求法,供同学们学习时参考。

一、 三点型例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函数的解析式是_______。

分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2+bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。

故所求函数解析式为y=2x 2-3x+5.这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2+bx+c.二、交点型例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。

分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。

将A 点的坐标代入y=ax(x-3),得到a=21∴y=21x(x-3),即 y=x x 23212 .三、顶点型例 3 已知抛物线y=ax 2+bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。

分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.再将点(1,2)代入求得a=-21∴y=-,4)1(212++x即y=-.27212+-x x由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。

四、平移型例 4 二次函数y=x 2+bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18.分析 逆用平移分式,将函数y=x 2-2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文为自本人珍藏版权所有仅供参考
待定系数法求二次函数表达式
二次函数的表达式有三种形式,每种形式都有三个待定系数,于是只要有三个条件即可得到相应的方程,组成方程组,从而通过解方程(组)获得问题的答案.
y=ax2+bx+c(a≠0);
x轴的两交点坐标时选择
交点式:y=a(x-x1)(x-x2)(a≠0);
时选择顶点式:y=a(x-h)2+k(a≠0).
例:已知抛物线y=ax2+bx+c满足以下条件,求函数解析式。

(1)、图像过A(0,1),B(1,2),C(2,-1)三点;
解:(1)分析:因为图像过三点,且三个点不属于特殊点。

因此,只能采用一般式求解。

设函数解析式为
∵抛物线过(),(),()

解之得a= ,b= ,c= ;
∴函数解析式为
(2)图像的顶点是(-2,3),且过点(-1,5);
分析:由题意知函数过顶点(-2,3),且只有两个点。

因此采用顶点式。

设函数解析式为y= (x )2
又∵函数过点()

解得a=
∴函数解析式为y= (x )2
即 y= 当然,此题也可用一般式求解,列出方程组为
a-b+c=5
-b/2a=-2
(4ac-b 2)/4a=3
但显然此法比利用顶点式更复杂。

(3)图像与x 轴交于(-2,0),(4,0)两点,且顶点为(1,29-); 分析:此题中三个点都属于特殊点:(-2,0),(4,0)是函数图像与x 轴的交点,而(1,2
9-
)为顶点。

因此,在方法选择上可采用交点式或顶点式。

解法1:(交点式)设函数解析式为y= (x )(x )
又∵函数图像过点( )

解得a=
∴函数解析式为

解法2:(顶点式)设函数解析式为y= (x )2
又∵图像过( )

解得a=
∴函数解析式为

习题:1、在同一直角坐标系中,反比例函数5y x
=与二次函数22y x x c =-++的图像交于点(1)A m -,.
(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.
2在平面直角坐标系中,二次函数23y x bx =-++ 的图像经过点(10)A -,,顶点为B .求这个二次函数的解析式,并写出顶点B 的坐标;
3已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B .求这条抛物线的函数关系式;
4如图,二次函数y =ax 2+bx +c (a >0)与坐标
轴交于点A 、B 、C 且OA =1,OB =OC =3 .
(1)求此二次函数的解析式.
(2)写出顶点坐标和对称轴方程.
5、如图,直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0)B (3,2).
⑴求m 的值和抛物线的解析式;
⑵求不等式m x c bx x +>++2的解集(直接写出答案).。

相关文档
最新文档