T-type ca2+ channel SANTA文献

合集下载

Cav1.3钙离子通道在成年大鼠耳蜗的表达

Cav1.3钙离子通道在成年大鼠耳蜗的表达

Cav1.3钙离子通道在成年大鼠耳蜗的表达陈金;冰丹;周良强;褚汉启;陈请国;杜智会;祁繁;刘云;孙彦博;李鹏军【摘要】目的观察Cav1.3钙离子通道蛋白在成年大鼠耳蜗组织中的表达和分布,探讨其在听觉生理和病理中的作用.方法 35只成年SD大鼠随机分为A组(5只,分离耳蜗冰冻切片)、B组(10只,取耳蜗全部软组织及肾组织)、C组(20只,分离耳蜗基底膜、血管纹及螺旋神经节),采用免疫荧光染色方法检测Cav1.3钙离子通道蛋白在耳蜗组织中的分布,采用免疫印迹技术(Western blot,WB)以及逆转录聚合酶链反应(reverse transcriptionpolymerase chain reaction,RT-PCR)检测Cav1.3钙通道蛋白在耳蜗组织中的表达.结果免疫荧光显示Cav1.3钙通道蛋白主要分布在成年大鼠耳蜗毛细胞、血管纹细胞,螺旋神经板缘细胞、螺旋韧带、螺旋神经节、螺旋凸;RT-PCR以及Western blot的结果显示Cav1.3钙离子通道蛋白在耳蜗组织和肾脏中有均表达,其中耳蜗基底膜上最多,螺旋神经节次之,耳蜗侧壁血管纹的表达量与前两者相比相对较少.结论本研究初步揭示了Cav1.3钙离子通道蛋白在成年SD大鼠耳蜗中的表达具有一定的组织特异性,为进一步研究Cav1.3钙离子通道蛋白在听觉生理和病理中重要的作用提供了理论依据.%Objective To investigate the expression of Cav 1.3 calcium channel in adult rat cochlea and study its role in auditory physiology and pathology.Methods The sprague-dawley rats were used as experimental subjects.The distribution of Cav1.3 calcium channel in the cochlea was detected by immunofluorescence technique.The expression of Cav1.3 was measured with Western blot (WB) and RT-PCR.Results Immunofluorescence photographs revealed that Cav 1.3 calcium channel localized in the lateral wall membrane,hair cells,stria vascularis,spiral ganglion cell,spiral ligment,spiral prominence,and limbuslaminae spiralis.The results of WB and RT-PCR inform Cav1.3 calcium channel gene (CACNA1D) were measured in the cochlea and kidney.The expression of Cav1.3was mainly in the basilar membrane.Moderate expression was observed in the spiral ganglion and striavascularis.Conclusion The preliminary study revealed the distribution of Cav 1.3 calcium channel gene(CACNA1D)in adult rat cochle possesses tissue specificity,providing a theoretical basis for further research in auditory physiology and pathology.【期刊名称】《听力学及言语疾病杂志》【年(卷),期】2017(025)006【总页数】4页(P630-633)【关键词】耳蜗;Cav1.3钙离子通道;大鼠【作者】陈金;冰丹;周良强;褚汉启;陈请国;杜智会;祁繁;刘云;孙彦博;李鹏军【作者单位】华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030;华中科技大学同济医学院附属同济医院耳鼻咽喉头颈外科武汉430030【正文语种】中文【中图分类】R339.16Cav1.3钙离子通道蛋白是维持细胞内Ca2+浓度平衡的重要蛋白之一,它的主要作用是控制胞内Ca2+内流和细胞膜的去极化,从而维持内耳细胞内Ca2+稳态以及神经递质的释放,保证神经冲动的传导及内耳正常生理功能的发挥。

钙离子促进t细胞活化作用机制

钙离子促进t细胞活化作用机制

钙离子促进t细胞活化作用机制钙离子促进T细胞活化的作用机制引言:T细胞是免疫系统中重要的细胞类型,具有调节和执行免疫应答的功能。

活化的T细胞能够识别和消灭感染的病原体,并参与调节免疫应答的过程。

钙离子在T细胞活化中起着关键的作用,通过调节多个信号通路的活性,促进T细胞的活化和增殖。

本文将重点介绍钙离子促进T细胞活化的作用机制。

I. 钙离子信号通路钙离子是细胞内最重要的信号分子之一,在细胞活化过程中发挥着关键的作用。

T细胞活化时,钙离子的浓度在细胞内迅速增加。

钙离子信号通路主要通过细胞膜上的钙通道和细胞内钙储存器来调节。

1. 钙通道细胞膜上的钙通道包括电压门控钙通道和配体门控钙通道。

在T细胞活化过程中,电压门控钙通道主要由L型钙通道(Cav1.2)和T 型钙通道(Cav3.1)介导。

配体门控钙通道主要包括IP3受体和RyR通道。

这些钙通道的开放能够使细胞内的钙离子快速进入细胞。

2. 钙储存器细胞内钙储存器主要包括内质网(ER)和线粒体。

ER是主要的钙存储器,在T细胞中,ER内的钙离子主要由钙离子泵(SERCA)和钙离子泄漏通道(IP3R和RyR)来调节。

当细胞受到激活信号时,ER 内的钙离子被释放到细胞质中。

线粒体也参与钙离子的调节,通过钙离子通道和Na+/Ca2+交换器调节细胞内钙离子的浓度。

II. 钙离子在T细胞活化中的作用钙离子在T细胞活化中的作用主要包括调节T细胞受体(TCR)信号和细胞因子信号的转导。

1. T细胞受体信号钙离子信号是T细胞受体信号转导的重要组成部分。

当T细胞受到抗原刺激时,TCR与抗原肽-MHC复合物结合,激活钙离子通道和钙离子泵,导致细胞内钙离子浓度的上升。

钙离子与细胞内其他信号分子相互作用,最终导致T细胞活化的发生。

2. 细胞因子信号细胞因子信号在T细胞活化中也起着重要的作用。

当细胞因子结合其受体时,钙离子信号能够调节细胞因子受体的下游信号通路。

例如,在IL-2信号转导中,钙离子的浓度上升能够激活细胞内钙调蛋白(calcineurin),进而促进NFAT的核转位和转录活性的增加。

调制线粒体钙作为阿尔茨海默氏症的药物靶老龄化住宅

调制线粒体钙作为阿尔茨海默氏症的药物靶老龄化住宅

Ageing Research Reviews 9 (2010) 447–456Contents lists available at ScienceDirectAgeing ResearchReviewsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a rrReviewModulation of mitochondrial calcium as a pharmacological target for Alzheimer’s diseaseClara Hiu-Ling Hung a ,Yuen-Shan Ho a ,Raymond Chuen-Chung Chang a ,b ,c ,∗aLaboratory of Neurodegenerative Diseases,Department of Anatomy,LKS Faculty of Medicine,The University of Hong Kong,Pokfulam,Hong Kong,China bResearch Centre of Heart,Brain,Hormone and Healthy Aging,LKS Faculty of Medicine,The University of Hong Kong,Pokfulam,Hong Kong,China cState Key Laboratory of Brain and Cognitive Sciences,The University of Hong Kong,Pokfulam,Hong Kong,Chinaa r t i c l e i n f o Article history:Received 8February 2010Received in revised form 14May 2010Accepted 19May 2010Keywords:Mitochondria CalciumAlzheimer’s diseaseVoltage dependent anion channel Mitochondrial membrane potentiala b s t r a c tPerturbed neuronal calcium homeostasis is a prominent feature in Alzheimer’s disease (AD).Mito-chondria accumulate calcium ions (Ca 2+)for cellular bioenergetic metabolism and suppression of mitochondrial motility within the cell.Excessive Ca 2+uptake into mitochondria often leads to mitochon-drial membrane permeabilization and induction of apoptosis.Ca 2+is an interesting second messenger which can initiate both cellular life and death pathways in mitochondria.This review critically discusses the potential of manipulating mitochondrial Ca 2+concentrations as a novel therapeutic opportunity for treating AD.This review also highlights the neuroprotective role of a number of currently available agents that modulate different mitochondrial Ca 2+transport pathways.It is reasoned that these mitochondrial Ca 2+modulators are most effective in combination with agents that increase the Ca 2+buffering capacity of mitochondria.Modulation of mitochondrial Ca 2+handling is a potential pharmacological target for future development of AD treatments.© 2010 Elsevier B.V. All rights reserved.1.IntroductionAs the average life span of human population gradually increases,the prevalence of age-related diseases has significantly increased.Alzheimer’s disease (AD)is a fatal neurodegenerative disorder,affecting approximately 35.6million people worldwide (Prince and Jackson,2009).AD is the most common form of dementia.The disease is characterized by progressive synaptic dys-function and neuronal loss in various brain regions,especially in the cortex and hippocampus.Severe neurodegeneration in these brain regions results in cognitive,emotion,social and motor impair-ments.With more than a 100years of research,the underlying mechanism of this incurable disease still remains elusive.Per-turbed neuronal calcium (Ca 2+)homeostasis is a common feature in many neurodegenerative diseases including AD,amyotrophic lat-eral sclerosis (ALS),ischemic stroke and Parkinson’s disease (PD)(Mattson and Chan,2003).Increasing lines of evidence support the idea that Ca 2+dysregulation plays a key role in AD pathogenesis∗Corresponding author at:Rm.L1-49,Laboratory Block,Faculty of Medicine Building,Department of Anatomy,LKS Faculty of Medicine,21Sassoon Road,Pok-fulam,Hong Kong SAR,China.Tel.:+852********;fax:+852********.E-mail address:rccchang@hku.hk (R.C.-C.Chang).(Bezprozvanny,2009;Bojarski et al.,2008;LaFerla,2002;Mattson and Chan,2003;Yu et al.,2009).2.Neuronal Ca 2+dysregulation and Alzheimer’s disease Ca 2+signaling is essential for life and death processes includ-ing neuronal excitability,synaptic plasticity,gene transcription and apoptosis (Berridge,1998;Berridge et al.,1998).The Ca 2+dysregulation hypothesis postulates that sustained increase in cytosolic Ca 2+concentrations can lead to neurodegeneration in AD (Khachaturian,1994;Toescu and Verkhratsky,2007).Disturbances in Ca 2+signaling have been found in both sporadic and familial cases of AD (LaFerla,2002).Several age-related perturbations in pathways regulating Ca 2+homeostasis have been reported,sug-gesting a possible linkage between aging and the development of sporadic AD (Bezprozvanny,2009).A small proportion of AD patients (∼5%)suffer from an early-onset familial form that occurs under age of 65(Hardy,2006).The genes involved in familial AD include presenilins (presenilin 1and 2)and amyloid precursor pro-tein (APP)(Hardy and Gwinn-Hardy,1998).Both have been shown to play important roles in Ca 2+signaling (LaFerla,2002).The mech-anisms of how Ca 2+homeostasis is disrupted in AD have been extensively reviewed (Bezprozvanny,2009;Bojarski et al.,2008;LaFerla,2002;Mattson and Chan,2003;Yu et al.,2009).In the fol-1568-1637/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.arr.2010.05.003448 C.H.-L.Hung et al./Ageing Research Reviews9 (2010) 447–456lowing sections,we will briefly discuss this issue for readers to understand how Ca2+dyshomeostasis is linked with AD.2.1.APP mutation induces Ca2+influx and elevates cytosolic Ca2+ concentrationsAccumulation of senile plaques and neurofibrillary tangles are two important pathological hallmarks in AD brains.Senile plaques are made of beta-amyloid(A␤)peptides which are derived from APP.Mutations associated with familial AD result in increased pro-duction of the amyloidogenic A␤fragments(Mattson,1997).APP derivatives such as secreted forms of APP(sAPP),A␤-containing fragments,and APP intracellular domain(AICD)have been shown to modulate cellular Ca2+signaling(Leissring et al.,2002;Mattson et al.,1993,1992).A␤aggregates have been found to form cation-selective ion channels in the plasma membrane,resulting in increased cytosolic Ca2+concentrations(Arispe et al.,1993a,b; Kagan et al.,2002).Nevertheless,how A␤-induced membrane pores are related to human AD is still unclear.Oxidative dam-age is another mechanism by which A␤causes disruption in Ca2+ homeostasis and neurotoxicity(Hensley et al.,1994;LaFerla,2002). Accumulation of A␤leads to formation of reactive oxygen species (ROS),which promotes DNA damage,lipid peroxidation,protein carbonylation and nitrosylation.Lipid peroxidation modifies func-tions of membrane transporters and ion channels(Mark et al., 1995),which in turn further elevates basal cytosolic Ca2+concen-trations,forming a vicious cycle(LaFerla,2002;Mattson and Chan, 2003).2.2.Presenilins modulate ER Ca2+signaling and enhance ER Ca2+ releasePresenilins(PS1and PS2)are components of the␥-secretase complex which are involved in the proteolytic cleavage of APP.PS1 and PS2are located in various intracellular compartments such as the endoplasmic reticulum(ER)(Annaert et al.,1999),Golgi apparatus(Annaert et al.,1999),and mitochondria(Ankarcrona and Hultenby,2002).Notably,presenilins are highly enriched in a specific region where the ER membranes are in close contact with mitochondria namely the ER-mitochondrial-associated mem-branes(MAM)(Area-Gomez et al.,2009).FAD-linked presenilin mutations are believed to alter the activ-ity of␥-secretase such that more A␤are produced,especially the fibrillogenic A␤1–42peptides(Xia et al.,1997).FAD-related mutant presenilins can also affect ER Ca2+handling independent of A␤by exaggerating Ca2+release from the ER in response to agonist stim-ulation.FAD mutant PS1and PS2have been shown to interact with the inositol1,4,5-triphosphate receptor(InsP3R)Ca2+-releasing channels and enhance their gating activity by a gain-of-function effect(Cheung et al.,2010,2008).InsP3Rs are more likely to be in a high-probability burst mode,resulting in enhanced ER Ca2+release (Cheung et al.,2010).However the molecular mechanism of this modulation remains elusive.Depletion of ER Ca2+store triggers Ca2+influx from extracellu-lar space via store-operated Ca2+channels(Putney,1986).This is known as capacitive Ca2+entry(CCE or store-operated Ca2+entry). Stromal interacting molecule1(STIM1)protein acts as Ca2+-sensors on the ER which interacts with Orai1/TRPC channels in the plasma membrane and activates store-operated channels for Ca2+entry (Ong et al.,2007;Zhang et al.,2005).CCE has been shown to be attenuated by presenilin mutants,possibly due to increased Ca2+ in the ER store(Herms et al.,2003;Leissring et al.,2000;Yoo et al.,2000).Moreover,increased levels of STIM1have been found in mouse embryonicfibroblasts lacking presenilins,implicating that expression of STIM1may be presenilin-dependent(Bojarski et al., 2009).2.3.Ca2+-dependent tau phosphorylation and dephosphorylationNeurofibrillary tangles formed by hyperphosphorylation of the microtubule-associated protein tau are another hallmark in AD.The phosphorylation state of tau is highly Ca2+-dependent. Tau phosphorylation is regulated by Ca2+-dependent calmodulin-dependent protein kinase II(CaMKII)and calpain(Litersky et al., 1996;Maccioni et al.,2001).Activation of cyclin-dependent pro-tein kinase5(Cdk5)by calpain via p25has been suggested to play a role in tau hyperphosphorylation(Maccioni et al.,2001). On the other hand,calcineurin,a Ca2+/calmodulin-dependent pro-tein phosphatase is involved in tau dephosphorylation(Fleming and Johnson,1995).Tau dephosphorylation was completely atten-uated in rat cerebral-cortical slice pre-treated with the calcineurin inhibitor Cyclosporin A(Fleming and Johnson,1995).Injection of FK506(a calcineurin inhibitor)has been reported to enhance tau phosphorylation at various phosphorylation sites in mouse brain (Luo et al.,2008).On the other hand,calcineurin inhibitors have also been shown to increase phosphorylation of glycogen synthase kinase-3beta(GSK-3␤)at serine-9(Kim et al.,2009).Phosphoryla-tion of GSK-3␤at serine-9inhibits tau phosphorylation by GSK-3␤(Hughes et al.,1993).Hence,both increase and decrease cytosolic Ca2+concentrations contribute to tau phosphorylation,therefore perturbed Ca2+homeostasis may associate with the tau pathology in AD.2.4.Sporadic AD:ApoE4and CALHM1Apolipoprotein E is involved in transporting cholesterol from the blood to the cells.Individuals with the allele for the E4isoform of apolipoprotein E(ApoE4)have an increased risk of sporadic AD (Mahley et al.,2006).ApoE4was found to disrupt Ca2+homeosta-sis by triggering extracellular Ca2+influx and amplifying neuronal Ca2+responses(Hartmann et al.,1994;Tolar et al.,1999).Recent research has identified polymorphism of a gene called calcium homeostasis modulator1(CALHM1)that may link with sporadic AD.CALHM1encodes for a protein which forms a Ca2+channel on the plasma membrane and controls A␤levels(Dreses-Werringloer et al.,2008).Since then several studies have shown that the P86L polymorphism of CALHM1is associated with AD(Boada et al.,2010; Cui et al.,2010),whilst other studies failed tofind a link between CALHM1and risk of AD(Bertram et al.,2008;Minster et al.,2009; Nacmias et al.,2010;Sleegers et al.,2009).The relevance of CALHM1 in AD remains unclear.2.5.Current“Ca2+-targeted”drugsAs illustrated above,it is clear that Ca2+signaling pathways are highly involved in AD pathogenesis.Several FAD-approved drugs and drugs tested in clinical trials therefore aim to tar-get different Ca2+signaling pathways in order to re-establish the cytosolic Ca2+homeostasis.Memantine(Namenda)is the most common drug for moderate to severe AD.Memantine is a non-competitive N-methyl D-aspartate(NMDA)antagonist.It inhibits Ca2+entry into neurons through the NMDA receptors and therefore reduces excitotoxicity(Bezprozvanny,2009).How-ever,currently it only provides limited benefits for AD patients. Hu et al.(2009)found that specific antagonists targeting at NMDA receptors containing the GluN2B subunit e.g.ifenprodil and Ro25–6981,might be effective in protecting neurons from A␤-induced inhibition of synaptic plasticity in vivo.EVT-101 (Evotec AG,Hamburg,Germany;/)is a newly developed NMDA receptor subunit2B specific antagonist. Phase I trial of EVT-101is completed and cognitive performance of patients was improved(NCT00526968).This specific NMDA receptor antagonist is believed to greatly reduce the chance ofC.H.-L.Hung et al./Ageing Research Reviews9 (2010) 447–456449Fig.1.Life and death pathways of mitochondrial Ca2+accumulation.Left:Under normal conditions,Ca2+influx from extracellular matrix or Ca2+release from the ER causes increase in cytosolic Ca2+concentration([Ca2+]i).Mitochondria rapidly take up cytosolic Ca2+,which is crucial for life processes such as mitochondrial movement,Ca2+ homeostasis and bioenergetic metabolism.Right:When mitochondria are overloaded with Ca2+,mitochondrial permeability transition pores will be triggered to open. Several pro-apoptotic factors will be released to the cytosol,thereby inducing apoptosis.side effects caused by the unspecific NMDAR antagonist meman-tine.Nimodipine is an isopropyl Ca2+channel blocker which has been shown to improve cognitive performance of dementia patients including AD(Lopez-Arrieta and Birks,2002).MEM-1003(Memory Pharmaceuticals,Montvale,New Jersey,USA; /)is a nimodipine-related neu-ronal L-type Ca2+channel antagonist.Phase IIa clinical trial has recently been completed(NCT00257673),but failed to show sig-nificant improvements in patients(Hareyan,2007).Evidence from NMDA receptor antagonists and Ca2+channel blockers indicates that decreased Ca2+flux into neurons may benefit AD patients.Indeed,classic therapies which aim to compensate the level of acetylcholine in AD patients also cause alteration in Ca2+home-ostasis.FAD-approved acetylcholinesterase(AChE)inhibitors e.g. Donepezil,Galatamine,and Rivastigmine inhibit degradation of acetylcholine and therefore increase acetylcholine concentrations in the brain which is believed to associate with improvement in cognitive functions.In fact,the AChE inhibitors will cause an increase opening of acetylcholine receptors,which are receptor-activated Ca2+channels themselves.The two major classes of FAD-approved AD drugs(NMDA receptor antagonists and AChE inhibitors)apparently will have opposite effects on cytosolic Ca2+ concentration,implying that there is evidence for both increased and decreased cytosolic Ca2+in AD.Dimebon(Latrepirdine)(Medivation Inc.,San Francisco,CA)is an antihistamine drug used in Russia(Bachurin et al.,2001).Recent studies have discovered the novel role of Dimebon as a neuropro-tective agent as well as a cognition-enhancing agent(Bachurin et al.,2001).As an antagonist of NMDAR and Ca2+channels,Dimebon protects neurons by preventing NMDA and Ca2+-induced neurotox-icity(Bachurin et al.,2001).On the other hand,it also increases the level of acetylcholine by inhibiting the AChE(Bachurin et al.,2001). Phase II clinical trial reported that Dimebon is well tolerated and exhibit significant improvements in patients with mild to moder-ate AD(Doody et al.,2008).However,a recent Phase III clinical trial failed to show the same promising results(Neale,2010).Additional Phase III clinical trials of Dimebon are still on-going at the moment; therefore the effectiveness of Dimebon in AD remains debatable.Most of the current AD treatments such as AChE inhibitors can provide a one-time elevation of cognitive performance.How-ever,the decline of cognitive ability from this elevated level will occur with the same speed as in non-treated patients.This urges researchers to seek for disease-modifying drugs.3.Mitochondrial Ca2+governs neuronal life and death pathwaysMitochondria are important in maintaining neuronal Ca2+ homeostasis.Normal mitochondrial functions are extremely important for neurons,as neuronal activities such as synaptic transmission and axonal transport require high level of energy. In particular,mitochondrial Ca2+levels are crucial for maintaining cellular functions including bioenergetic metabolism.On the other hand,excessive Ca2+uptake into mitochondria results in rupture of the outer mitochondria membrane,which may then lead to ini-tiation of apoptosis.However,this phenomenon is likely to occur only in vitro.The regulatory systems maintaining the mitochondrial Ca2+homeostasis thus provide an attractive therapeutic target in treating AD.In the following sections we will explain how mito-chondrial Ca2+is involved in life and death pathways in the cell (Fig.1),and how mitochondrial Ca2+is linked to AD.3.1.The cell life pathway:physiological roles of mitochondrialCa2+uptakeCa2+uptake into mitochondria plays a key role in cellular ATP production and mitochondrial motility.Bioenergetic metabolism in mitochondria highly relies upon Ca2+.In the mitochondrial matrix,activity of the metabolic enzymes involved in the Krebs450 C.H.-L.Hung et al./Ageing Research Reviews9 (2010) 447–456cycle(pyruvate,␣-ketoglutarate,and isocitrate dehydrogenases) is all Ca2+-dependent(Rizzuto et al.,2000).Ca2+directly regulates ␣-ketoglutarate and isocitrate dehydrogenases,whilst pyruvate dehydrogenases are activated by Ca2+-dependent phosphatases (Rizzuto et al.,2000).Ca2+concentration in mitochondria therefore determines the rate of ATP synthesis for the cell.Mitochondria are mobile organelles which travel along the axons to regions of increased energy need in the cell,such as synapses(Chang et al.,2006;Hollenbeck and Saxton,2005). Microtubules-dependent mitochondrial motility is regulated by the kinesin1/Miro/Milton complex(Glater et al.,2006;Guo et al., 2005;Stowers et al.,2002).Miro(mitochondrial Rho GTPase)is a mitochondrial outer membrane protein.The activity of Miro is Ca2+-dependent due to the presence of a pair of Ca2+-binding EF hand motifs(Frederick et al.,2004).Milton is a cytoplasmic protein which binds with Miro to form a protein complex that links kinesin-1to mitochondria for anterograde transport(Glater et al.,2006;Guo et al.,2005;Stowers et al.,2002).The Ca2+-binding EF-hand domain of Miro is essential for Ca2+-dependent mitochondrial movement. Elevated Ca2+causes kinesin heavy chain to dissociate with micro-tubules,suppressing mitochondrial motility(Wang and Schwarz, 2009).Ca2+-dependent mitochondrial motility is crucial for dis-tribution of mitochondria in neurons.It recruits mitochondria to cellular regions with the need of ATP supply and Ca2+buffering e.g. activated synapses(Macaskill et al.,2009).In addition,Miro is essential for regulation of mitochondrial morphology.At resting low cytosolic Ca2+levels,Miro facil-itates the formation of elongated mitochondria by inhibiting dynamin-related protein1(Drp-1or dynamin-like protein1,DLP-1)-mediatedfission(Saotome et al.,2008).On the other hand, high cytosolic Ca2+triggers fragmentation and shortening of mito-chondria(Saotome et al.,2008).Miro-mediated redistribution of mitochondria has also been shown to increase their ability to accumulate Ca2+(Saotome et al.,2008).Evidence from the above studies demonstrates that Miro acts as a cytosolic Ca2+-dependent regulator of mitochondrial dynamics.Meanwhile,calcineurin,a Ca2+-dependent phosphatases,has been shown to regulate the translocation of cytosolic Drp-1via dephosphorylation duringfis-sion(Cereghetti et al.,2008).Clearly,Ca2+regulates motility,distribution,morphology and functions of mitochondria in physiological conditions.It is there-fore crucial to maintain mitochondrial Ca2+homeostasis for normal cellular functioning.If this homeostasis is disrupted,a death signal can be resulted.3.2.The cell death pathway:mitochondrial Ca2+overload triggers intrinsic apoptosisThe physiological Ca2+signal can switch to a death signal when the Ca2+level is beyond the threshold.Hence,excessive Ca2+ uptake into mitochondria can be lethal to neurons.The intrinsic (mitochondrial)pathway of apoptosis is triggered by intracellu-lar stress,such as Ca2+overload and oxidative stress(Galluzzi et al.,2009).Mitochondria integrate pro-and anti-apoptotic signals and determine the fate of the cell.If death signals predomi-nate,mitochondrial-membrane-permeabilization(MMP)occurs, and large conductance permeability-transition-pores(PTP)opens (Galluzzi et al.,2009).PTP opening allows uncontrolled entry of solutes and water into the mitochondrial matrix by osmotic forces (Galluzzi et al.,2009).This causes mitochondria to swell and leads to rupture of the outer mitochondria membrane,releasing proteins from the intramembrane space e.g.cytochrome c into the cytosol (Galluzzi et al.,2009).MMP results in mitochondrial depolariza-tion,uncoupling of oxidative phosphorylation,overproduction of ROS and release of pro-apoptotic proteins to the cytosol,eventually leading to cell death.When MMP is permanent and numerous mito-chondria are continuously affected,neurons can no longer cope with the stress and apoptosis is initiated(Galluzzi et al.,2009). Physiological mitochondrial Ca2+concentrations do not induce PTP opening,but will work in synergy with pro-apoptotic stim-uli(Rizzuto et al.,2009).The“double hit”hypothesis proposes that apoptotic stimuli have dual targets(Pinton et al.,2008).On one hand,it causes Ca2+release from the ER and subsequent Ca2+uptake by mitochondria.On the other hand,it makes mitochondria more sensitive to potential Ca2+damaging effects(Pinton et al.,2008).The above pathways are summarized in Fig.1.Given the dual roles of mitochondria Ca2+in neurons,we will critically discuss the possibility of modulating Ca2+in mitochondria as a potential pharmacological target for AD in this review.4.Mitochondrial Ca2+handling and ADMitochondrial dysfunction is a prominent feature in AD.A␤has been found in mitochondria of AD brain and transgenic mouse model of AD overexpressing A␤.A␤peptides accumulate in mito-chondria and are associated with oxidative stress,disrupted Ca2+ homeostasis,impaired energy metabolism and induction of apop-tosis(Mattson et al.,2008).Mitochondria from aged cerebellar granular neurons are depolarized and less efficient in handling Ca2+ load(Toescu and Verkhratsky,2007).Cortical mitochondria from 12-month-old mice also show a reduced capacity for Ca2+uptake when challenged with CaCl2pulses,compared to that of6-month-old mice(Du et al.,2008).Mitochondria isolated fromfibroblasts of AD patients exhibit reduced Ca2+uptake compared to age-matched control,suggesting that Ca2+buffering ability may be impaired in the mitochondria of ADfibroblasts(Kumar et al.,1994).Follow-ing oxidative stress,the increase in Ca2+uptake in mitochondria of ADfibroblasts is much greater than that in control,implicat-ing that mitochondria from ADfibroblasts have a higher sensitivity towards oxidative stress(Kumar et al.,1994).Mitochondria with over-expression of human APP also show a lower Ca2+capacity compared to non-transgenic mitochondria(Du et al.,2008).A␤1–42 oligomer induces Ca2+overload in mitochondria in both cortical and cerebellar granular neurons(Sanz-Blasco et al.,2008).The increase is limited to a pool of mitochondria close to the sites of Ca2+entry and release(Sanz-Blasco et al.,2008).Ca2+overload in mitochondria causes increased ROS production and impairment of bioenergetic metabolism which eventually leads to cell death. Mutations in presenilins may promote mitochondrial dysfunction by perturbing ER Ca2+handling,which promotes synaptic mito-chondrial Ca2+overload and in turn triggers apoptosis.A recent study has also shown that mutated CALHM1may cause slower kinetics of mitochondrial Ca2+uptake and release,increasing the risk of mitochondrial Ca2+overload(Moreno-Ortega et al.,2010).The importance of mitochondrial Ca2+in apoptosis has been emphasized in neuronal death in AD.However,mitochondrial Ca2+ is also important in earlier stages of the disease.The rupture of mitochondrial membrane caused by Ca2+overload reduces the number of“healthy”mitochondria,and this will affect crucial neu-ronal functions including synaptic transmission and axonal trans-port.This could perhaps account for some of the early symptoms of the disease e.g.memory impairment.In this notion,the main-tenance of mitochondrial Ca2+homeostasis is important for both early and later stages of the disease.In the following paragraphs, we will illustrate different influx and efflux pathways regulating the mitochondrial Ca2+homeostasis,and how different agents tar-geting these pathways can provide neuroprotection in AD.5.Mitochondria in neuronal Ca2+signalingCa2+signaling causes transient changes in cytosolic Ca2+con-centration.Mitochondria rapidly take up Ca2+when a physiologicalC.H.-L.Hung et al./Ageing Research Reviews 9 (2010) 447–456451Table 1Current agents showing neuroprotective effect via modulation of mitochondrial Ca 2+concentrations. «(mitochondrial membrane potential);Ca 2+(calcium ions);FCCP [carbonyl cyanide-p-(trifluoromethoxy)phenylhydrazone];mAPP (mutant amyloid precursor protein);mPTP (mitochondrial permeability transition pore);NMDA (N-methyl D-aspartate);NSAIDs (non-steroid anti-inflammatory drugs),TAB (Tournefolic acid B);VDAC (voltage-dependent anion channel).Agent/Drug Site of action EffectModelNeurotoxicity model ReferenceFCCP DepolarizationReduce Ca 2+uptake Rat cerebellar granule neurons Rat cortical neuronsA ␤1–42oligomer Sanz-Blasco et al.(2008)NSAIDS DepolarizationReduce Ca 2+uptake Rat cerebellar granule neurons A ␤1–42oligomer Sanz-Blasco et al.(2008)Minocycline VDACDepolarizationReduce Ca 2+uptake Rat cerebellar granule neurons NMDAGarcia-Martinez et al.(2010)KB-R7943Na +/Ca 2+exchanger Reduce Ca 2+uptake Rat cerebellar granule neurons Glutamate Storozhevykh et al.(2009)TABUnknown Reduce Ca 2+uptake Rat cortical neurons A ␤25–35Chi et al.(2008)DimebonmPTPInhibit mPTP opening Rat liver mitochondriaA ␤25–35Bachurin et al.(2003)Cyclosporin ACyclophilin DInhibit mPTP opening Increase Ca 2+buffering capacityMouse cortical mitochondriamAPPTrangenic miceDu et al.(2008)stimulus elicits an increase in cytosolic Ca 2+concentrations.This uptake machinery allows mitochondria to act as “Ca 2+buffers”to maintain the normal homeostasis.At the same time,it also provides Ca 2+for various mitochondrial functions.Mitochondrial Ca 2+sig-naling therefore plays an important role in determining the fate of neurons.Mitochondria possess various Ca 2+influx and efflux path-ways (Fig.2),which provide attractive targets for manipulation of Ca 2+concentrations within the organelle (Table 1).5.1.Pathways for Ca 2+uptake5.1.1.Voltage-gated anion channel regulates Ca 2+uptake in theouter mitochondrial membraneThe outer mitochondrial membrane (OMM)is relatively per-meable to Ca 2+due to the high conductance voltage dependent anion channel (VDAC)located in this membrane.Over-expression of VDAC has been shown to promote Ca 2+uptake into mitochon-dria (Rapizzi et al.,2002).Closure of VDAC enhances Ca 2+influx into mitochondria,thereby promoting mitochondrial permeabil-ity transition and subsequent cell death (Rizzuto et al.,2009;Rostovtseva et al.,2005;Tan and Colombini,2007).5.1.2.Mitochondrial membrane potential regulates Ca 2+entry via the uniporter in the inner mitochondrial membraneIn the inner mitochondrial membrane (IMM),the mitochon-drial Ca 2+uniporter regulates Ca 2+entry into mitochondria.The uniporter is a highly selective divalent cation channel (Kirichok et al.,2004).The electron transport chain (ETC)in the IMM con-Fig.2.Mitochondrial Ca 2+signaling pathways. «m (mitochondrial membrane potential);[Ca 2+]m (mitochondrial Ca 2+concentration);[Ca 2+]c ,(cytosolic Ca 2+con-centration);H +(hydrogen ions);PTP (mitochondria permeability transition pore);Na +(sodium ions),VDAC (voltage-dependent anion channel);CypD (cyclophilin D);ANT (adenine nucleotide translocase).sists of five protein complexes for the production of ATP.The ETC maintains an electrochemical gradient of −180mV across the IMM,and is known as the mitochondrial membrane potential ( «m ). «m provides a driving force for Ca 2+to enter the mitochondria via the uniporter.Given that mitochondrial Ca 2+overload can lead to cell death,depolarization of «m (hence reduced driving force for Ca 2+entry)can be a drug target for stopping excessive Ca 2+from entering mitochondria.5.2.Pathways for calcium efflux5.2.1.Antiporters and permeability transition pores for mitochondrial calcium sequestrationBesides various Ca 2+uptake systems mentioned,there are also a few pathways for Ca 2+efflux.The Na +/Ca 2+and H +/Ca 2+antiporters are two main routes for Ca 2+release from mitochondria.Generally,3Na +and 3H +enter mitochondria via the respective antiporters when a Ca 2+is extruded (Fig.2).Hence,concentrations of Na +and H +can affect Ca 2+concentration in the mitochondria.These efflux pathways can become saturated when there is high Ca 2+concentration in the matrix,which can lead to mitochondrial Ca 2+overload (Rizzuto et al.,2009).As mentioned earlier,mitochon-drial Ca 2+overload triggers opening of PTP which locates across the OMM and IMM.The molecular identity of PTP is still uncer-tain,but it is suggested to be a multimeric complex composed of the VDAC,an integral protein called adenine nucleotide translo-case (ANT)on the IMM,and a matrix protein called cyclophilin D (CypD).However,mitochondria lacking VDAC (Szalai et al.,2000)and ANT (Kokoszka et al.,2004)have been shown to undergo Ca 2+-induced PTP opening,implying that the two components may not be prerequisite for MPT (Rizzuto et al.,2009).PTP is a non-selective channel of which operation is dependent on the mitochondrial matrix Ca 2+.High Ca 2+levels in the mitochondrial matrix activate translocation of CypD to the IMM.CypD binds to ANT and inhibits ATP/ADP binding,thereby inducing opening of PTP (Rizzuto et al.,2009).5.3.ER/mitochondria calcium crosstalk is important for efficient mitochondrial calcium signalingMitochondria rapidly take up Ca 2+released from the ER.The proximate juxtaposition between these two organelles ensures efficient Ca 2+transfer (Rizzuto et al.,1993,1998).In fact,the contact between the ER and mitochondria is estimated to be 5–20%of the total mitochondrial surface (Rizzuto et al.,1998).MAM is a region between the ER and mitochondria enriched with enzymes and proteins involved in lipid biosythesis and Ca 2+sig-naling between the organelles (Vance,1990).Indeed,VDAC on the OMM is located in the interface between the ER and mitochon-。

钙调神经磷酸酶活化T细胞核因子信号通路在心血管发育中的作用

钙调神经磷酸酶活化T细胞核因子信号通路在心血管发育中的作用
出道形态发生阶段对后续的半月瓣重塑是必要的¨…。Wu
促进冠状血管、成熟的心脏纤维基质形成的异源群体,是普 氏纤维分化和心肌细胞胶原合成的必要条件。Gittenberger— deGroot等"1‘研究发现EPDC功能障碍与成人心脏病有关, 如三尖瓣下移畸形、心律失常、心肌病。EPDC在缺血性损 伤后,有潜在的再活化基因表达发育和帮助新生血管形成、 心肌细胞存活的作用1 32]。NFATcl在小鼠和鸡胚的心外问 皮缅跑(proeplcaMium。rE)表达。PE是覆盖在小鼠横膈或 鸡静脉窦上的一C,)I-问皮细胞的产物,它能转移入心肌形成心 外膜。心外膜细胞的亚型经过EMT,侵入心外膜层和心肌 层成为EPDC。NFATcl在心内膜垫内皮纽胞表达,经过 EMT移人心内膜垫。EPDC有助于形成的冠状血管和胶原
・799・
胞。由于心内膜垫是形成心脏房室隔及瓣膜的前体结构,因 此NFATcl敲除小鼠会出现心脏室间隔缺损及主肺动脉瓣 的严重缺陷。从而胚胎在E13.5后由于心力衰竭而流产。 NFATcl基因敲除的小鼠胚胎将在E14.5由于缺乏心内膜垫
增长和重塑而死亡。
四、caN/NFATcl信号通路与血管内皮细胞的发育 NFATcl介导心脏心内膜VEGF信号传导通路,与心内 膜垫的形成有关口“。研究表明,在心脏正常发育过程中血 管生成前VEGF便开始起作用【26j,而在心内膜垫形成区域 表达VEGF的内皮细胞是惟一的内皮细胞向问质细胞转化 的细胞类型。2“,而且通过转基因动物的研究发现,转基因小 鼠导致其VEGF表达增加或减少均可以引起先天性心脏病 的发生。钙离子信号、VEGF/NFATcl表达被证明是在心内 膜内皮细胞向间质细胞转化过程中起重要作用、2…。 NFATcl可在胚胎期的外周血管组织中表达,调控血管 平滑肌细胞和血管肉皮细胞的发育。NFATcI敲除的裸鼠往 往表现出血管组织的分解和血管壁的不完整性,从而导致其 在胚胎期的死亡”J。在VEGF对血管内皮细胞的作用中, NFATcl也起着关键作用,VEGF作用于内皮绍胞后,NFATcl 进人细胞核内,与环氧化酶一2(COX一2)启动子上的特定位点 相结合,激活COX一2的转录,而COX一2是前列腺素合成的关 键酶,前列腺素在血管内皮的迁移和血管形成过程中是一种 必不可少的物质。 五、CaN/NFATcl信号通路与冠状血管、成熟的心脏纤 维基质形成 Zeini等¨叫研究证明CaN/NFATcl信号通路在血管丛形 成期间,是冠状血管发生的必要条件。NFATcl促进心外膜

IL6上调CaV3.2T型钙离子通道参与神经病理性疼痛的机制研究

IL6上调CaV3.2T型钙离子通道参与神经病理性疼痛的机制研究

中国疼痛医学杂志 Chinese Journal of Pain Medicine 2019, 25 (4)
Cav3.2T 型 钙 离 子 通 道 [J]. 中 国 疼 痛 医 学 杂 志 , 2018, 24(6):401, 406. [62] 王英 . DNA 甲基化在神经病理性疼痛发病机制中的 作用 [J]. 中南大学 , 2012. [63] Sun L, Zhao JY, Gu X, et al . Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons[J]. Pain, 2017, 158: 1153-1165. [64] Leinders M, Üçeyler N, Pritchard RA, et al. Increased miR-132-3p expression is associated with chronic neuropathic pain[J]. Exp Neurol, 2016, 283:276-286. [65] Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA, et al . Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential bloodbased biomarker[J]. Exp Ther Med, 2016, 12:815-822. [66] Chen X, Ba Y, Ma L, et al . Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18:9971006.

新西莫特 SANTA FE 车载设施说明说明书

新西莫特 SANTA FE 车载设施说明说明书

STEERING WHEEL ADJUSTMENTS
B C
Tilt
Telescopic
NOTE: Do not adjust while driving.
1. Push the lever A down to release.
A
2. Set the angle B and distance C .
Automatic Climate Control Type C
AUTOMATIC HEATING AND COOLING
1. Press the AUTO button.
2. Set the driver's temperature control to the desired setting.
SYSTEM OFF MODE
Lumbar support
D
A
BD
C
FRONT SEAT ADJUSTMENT (POWER) Forward / backward
A
Seat cushion height (for driver’s seat)
A
Seatback angleB NhomakorabeaAB
C
Lumbar support
C
SANTA FE
3
5. Bluetooth® becomes connected. NOTE After pairing is completed, transfer of the contact list to the audio system will begin (if your phone is supported.)
Climate control information screen selection button

受体通道三重体传导Ca2+信号让花粉管接收

受体通道三重体传导Ca2+信号让花粉管接收
当花粉管中的信号RALFs被助细胞上的FER感知以后,FER-LRE将胞内的NTA招募到细胞膜上,形成一个有活性的钙 离子通道复合体,介导胞外的Ca2+进入助细胞,进而诱导花粉管破裂和精子释放(图2j-m)。
RALFs 增强 FER–LRE–NTA 的活性
RALFs对NTA三重体活动有什么影响呢? RALF4和RALF19,显著增强了NTA三重体的Ca2+通道活性(图3a-d) 。通过重组了非洲爪蟾卵母细胞中的RALF-FERLRE-NTA通路,进一步证实了该结果(图3e,f)。与FER和LRE共表达的嵌合NTA-MLO1也被RALF4和RALF19增强 (图 3g-j)。在到达花粉管后,RALF4和RALF19,以及可能的其他花粉管信号,可能通过将这三个分子吸引到特定的位置, 进一步激活Ca2+通道。
FER-LRE-NTA三重体介导Ca2+进入
NTA三重体是否在PM产生了一个功能通道? 在COS7和HEK293T细胞中共表达FER、LRE和NTA,结果表明NTA介导Ca2+内流 (图2d-f)。La3+和Gd3+抑制了NTA 的Ca2+通道活性,也阻断了助细胞Ca2+激增。FER的激酶死亡也能形成一个活跃的NTA三重体(图2d,g,h),这表明FER 的激酶活性对于花粉管接收不是必需的。
结论
该研究展示了一个综合了FER、LRE和NTA三个基因连接的协同花粉管相互作用的机制过程。花粉管来源的RALF 肽作为FER - LRE共受体复合物的配体,该复合物招募NTA (CAM门控Ca2+通道)到细胞膜上,形成一个有活性的钙 离子通道复合体,介导胞外的Ca2+进入助细胞,进而诱导花粉管破裂和精子释放,当胞内Ca2+浓度过高时,呈Ca2+ 结合态的钙调素(CaM)会与NTA的CaM结合区域结合,抑制Ca2+内流,形成一个反馈抑制从而产生胞内Ca2+浓度 的震荡(图4l)。

T- 型钙离子通道在上皮性卵巢癌中表达的临床意义的研究

T- 型钙离子通道在上皮性卵巢癌中表达的临床意义的研究

T- 型钙离子通道在上皮性卵巢癌中表达的临床意义的研究摘要】目的:利用RT-PCR( 逆转录- 聚合酶链反应) 和免疫组化技术检测T- 型钙离子通道Cav3.1、Cav3.2 蛋白在上皮性卵巢癌组织的表达水平与临床期别的关系,以期为临床诊断和治疗提供参考。

方法:选取南通市第一人民医院妇科初次进行治疗52 例原发性卵巢癌患者的标本,卵巢上皮良性肿瘤组织经手术切除的标本20 例,卵巢上皮交界性肿瘤标本 10 例及正常卵巢组织标本( 由于子宫病变要求行全宫+ 附件切除) 20 例为研究对象,应用RT-PCR 检测卵巢癌、卵巢上皮良性肿瘤组织、卵巢上皮交界性肿瘤组织及正常卵巢组织中的Cav3.1、Cav3.2 mRNA 的水平,采用辣根过氧化物酶标记的链霉素卵白素免疫组织染色方法检测以上组织中的Cav3.1、Cav3.2 蛋白表达水平,染色结果判定由两名病理科医师盲法独立阅片完成。

采用SPSS17.0 数据统计软件,计数资料采用百分比描述,免疫结果分值使用x2 检验,计数资料采用确切概率法,分期体系和分期的比较用成组设计两样本比较的秩和检验,检验水准α=0.05,P 值小于或等于0.05 被认为所检验差别有统计学意义。

结果:⑴上皮性卵巢癌中T- 型钙离子通道Cav3.1、Cav3.2 mRNA 的表达水平高于卵巢上皮良性肿瘤组织、卵巢上皮交界性肿瘤组织及正常卵巢组织,差异具有统计学意义(P<0.05)。

⑵ T- 型钙离子通道Cav3.1、Cav3.2 蛋白在上皮性卵巢癌组织中的表达高于良性、交界性卵巢上皮组织以及正常卵巢组织,差异有统计学意义(P<0.05)。

而两者在良性、交界性卵巢上皮组织以及正常卵巢组织中的表达差异无统计学意义(P>0.05)。

⑶ T- 型钙离子通道Cav3.1、Cav3.2 蛋白的表达与上皮性卵巢癌的分化程度、临床分期、有无淋巴结转移有关,而与年龄、病理类型、肿瘤大小程度无关。

高糖激活Ca2+-CaN-NFAT3信号通路致H9c2细胞肥大

高糖激活Ca2+-CaN-NFAT3信号通路致H9c2细胞肥大

高糖激活Ca2+-CaN-NFAT3信号通路致H9c2细胞肥大徐小红;阮骆阳;田小华;潘凤娟;杨彩兰;柳国胜【期刊名称】《中国病理生理杂志》【年(卷),期】2015(000)011【摘要】目的:利用细胞实验探讨不同高糖浓度培养H9c2细胞是否引起心肌细胞肥大,探讨Ca2+-CaN-NFAT3信号通路是否参与高糖引起H9c2心肌细胞肥厚过程。

方法:体外培养H9c2大鼠心肌细胞48 h,分为5 mmol/L糖对照组、25mmol/L糖培养组、50 mmol/L糖培养组、25mmol/L糖培养加L型钙通道阻滞剂苯磺酸氨氯地平[商品名络活喜(Norvasc)]组和50 mmol/L糖培养加Norvasc组5组。

观察H9c2细胞形态并测量细胞表面积大小;荧光分光光度法检测心肌细胞内钙离子浓度[ Ca2+] i;ELISA测细胞内CaN浓度;real-time PCR法及Western blot检测CaNAβ、NFAT3和β-MHC的mRNA及蛋白表达。

结果:细胞大小、单细胞平均[ Ca2+] i 测定荧光值及细胞内CaN浓度在随糖浓度升高呈阶梯上升,50 mmol/L时达到最高点。

加入Norvasc后细胞大小较相同条件不加Norvasc者降低。

CaNAβ、NFAT3和β-MHC的mRNA及蛋白表达随糖浓度升高逐步升高,50 mmol/L时达最高。

加入Norvasc后CaNAβ、NFAT3和β-MHC的mRNA及蛋白表达均较未加Narvasc组明显降低。

结论:高糖通过激活Ca2+-CaN-NFAT3信号通路引起H9c2心肌细胞肥大。

【总页数】5页(P2016-2020)【作者】徐小红;阮骆阳;田小华;潘凤娟;杨彩兰;柳国胜【作者单位】广东省农垦中心医院儿科,广东湛江524002;广东省农垦中心医院儿科,广东湛江524002;广东省农垦中心医院儿科,广东湛江524002;广东省农垦中心医院儿科,广东湛江524002;暨南大学第一临床医学院儿科,广东广州510632;暨南大学第一临床医学院儿科,广东广州510632【正文语种】中文【中图分类】R363【相关文献】1.肝X受体通过NF-κB信号通路减轻高糖诱导的H9C2细胞凋亡 [J], 雷梅先;王云开;殷然;李卫勇;王迎春2.MAPK信号通路在高糖高脂诱导的心肌细胞肥大中的差异调节作用 [J], 闫佳敏;王瑞玲;马琴;崔桂丽;王亚静3.花旗松素通过激活Nrf2/HO-1/HIF1α/Autophagy信号通路对H2O2所致H9C2细胞氧化应激保护作用的研究 [J], 苏其利;王晓莉;谭小华;陆亚朋;旷寿金;蔡骞;赵明一4.过表达SIRT1基因通过PI3K/AKT信号通路抑制高糖刺激心肌H9c2细胞凋亡和活性氧水平 [J], 翟铁;郝凤杰;田雪品;张宗群5.玉郎伞查尔酮激活Nrf2/ARE信号通路减轻缺氧/复氧所致的H9c2细胞凋亡及氧化应激损伤 [J], 覃斐章;董敏;秦秋华;禤霏霏;黄媛恒因版权原因,仅展示原文概要,查看原文内容请购买。

T型Ca2+通道在心脏中的表达

T型Ca2+通道在心脏中的表达

T型Ca2+通道在心脏中的表达
杨慧娣;刘燕强
【期刊名称】《生理科学进展》
【年(卷),期】2008(039)001
【摘要】电生理学研究表明心脏组织细胞主要存在L型和T型两种不同的Ca2+通道,其中T型Ca2+通道主要存在于正常成熟心脏的浦肯野纤维和起搏点细胞以及胚胎心室肌细胞,而正常成熟心肌细胞中存在很少,但在心脏肥大和心衰等心脏疾病的心肌细胞中表达明显增加,提示T型Ca2+通道与心脏正常节律的形成和心脏发育以及一些心脏疾病的发生与发展密切相关.
【总页数】3页(P79-81)
【作者】杨慧娣;刘燕强
【作者单位】南开大学生命科学学院,天津,300071;南开大学生命科学学院,天津,300071
【正文语种】中文
【中图分类】R331.31
【相关文献】
1.大鼠创伤性深静脉血栓形成中Ca2+通道相关基因表达研究 [J], 黄河;赵智;张春强;何飞;殷亮;唐锡章;周兆文;赵学凌;李世和
2.T型钙通道α1亚基在早产小鼠子宫平滑肌组织中的表达及意义∗ [J], 张丽娟;王林;郑东明;刘彩霞
3.心脏中的T型钙通道 [J], 李沪生;刘远谋
4.丹参素与小鼠心脏中的内质网Ca2+渗漏通道SEC61α相互调节心肌梗死后纤维化的作用 [J], 刘俊雄;王毅
5.L及T型钙离子通道α1亚基在风湿性房颤心房组织中的表达变化 [J], 史昀青;杨成;丁文军;唐景梁;邹云增;王春生
因版权原因,仅展示原文概要,查看原文内容请购买。

植物细胞内钙信号机制的研究进展

植物细胞内钙信号机制的研究进展
植物细胞内的钙信号
河北师范大学生命科学学院
尚忠林
植物细胞内的钙信号
• 钙信号的产生 • 钙信号的特异性
• 钙信号研究方法
钙信号产生的基础---钙离子梯度
• 细胞质中Ca2+水平:10-7 mol/L, • 质外体Ca2+浓度:10-5 ~10-4mol/L, • 液泡Ca2+ 浓度:10-3mol/L • 内质网中Ca2+浓度:10-6mol/L
Hyperpolarization-activated calcium channel
根毛尖端细胞质膜上参与尖端钙离子内流的钙通道由超极化
条件激活。该通道对钙离子具有强选择性,受到La、Al、 Gd的强烈抑制,对二价阳离子的通透性从强到弱分别为 Ba>Ca>Mg,推测这种钙通道是参与根毛尖端生长过程中钙 离子内流的固有因素。
-Gilroy, Nature, 1990; Pennisi, Science, 1997; Leckie, Proc Natl Acad Sci USA, 1998
cADPR促使保卫细胞内钙离子浓度升高并导致气孔关闭。
液泡膜膜片上IP3激活钙通道的检测
保卫细胞液泡膜上cADPR激活钙通道的检测
洋葱表皮上发现机械敏感性钙通道,这种通道对牵张刺激敏
感,而且该通道对牵张刺激的敏感性受温度、电势、生长素、 酸碱度的调节。认为该通道可能普遍存在于植物界,几乎所 有细胞都可能有这种对机械敏感、能通透Ca2+的阳离子通道。 -Ding et al. Plant J, 1993, 3: 83~110
A. Resting calcium distribution B. ABA-induced calcium increase 15s

T型钙通道与乳腺癌

T型钙通道与乳腺癌

T型钙通道与乳腺癌韩朝;邹伟;刘晶【摘要】T型钙通道是激活电位低、失活速度快、单通道电导小的电压依赖性钙通道,具有高组织特异性、突出的生理功能及药理学选择性等特点.近年来的研究表明,T型钙通道通过独特的激活失活效应参与细胞内外钙流的振荡,影响肿瘤细胞的增殖过程.值得关注的是正常人乳腺上皮细胞中没有T型钙通道,而在不同分化阶段的乳腺癌细胞中该通道却有表达.实验证实,T型钙通道的表达影响乳腺癌细胞的增殖,通道拮抗剂能够显著地抑制乳腺癌细胞增殖.这一发现为乳腺癌的诊断及靶向治疗药物的研发提供了新的思路.本文概要介绍了近年来T型钙通道与乳腺癌关系的研究进展.【期刊名称】《生物技术进展》【年(卷),期】2012(002)001【总页数】5页(P29-33)【关键词】乳腺癌;T型钙通道;肿瘤治疗【作者】韩朝;邹伟;刘晶【作者单位】大连医科大学附属第一医院,中英再生医学应用研究中心,辽宁大连116011;辽宁师范大学生命科学学院,辽宁省生物技术与分子药物研发重点实验室,辽宁大连116029;辽宁师范大学生命科学学院,辽宁省生物技术与分子药物研发重点实验室,辽宁大连116029;大连医科大学附属第一医院,中英再生医学应用研究中心,辽宁大连116011【正文语种】中文乳腺癌是女性最常见的恶性肿瘤,发病率占所有癌症的10.4%,是第二种最常见的非皮肤癌(仅次于肺癌),且在癌症引起死亡中列第五位,严重威胁着女性健康。

离子通道与乳腺癌的研究一直是学者关注的重点研究领域之一。

T型钙离子通道(transient calcium channels)是激活电位低、失活速度快、单通道电导小的电压依赖性钙通道,具有高组织特异性、突出的生理功能及药理学选择性等特点。

该通道的激活电压范围接近两次兴奋间的静息电位或在其之内,所以存在一种“窗电流”允许信号在较长时间(数小时或数天)内存在,使其在调节细胞生长增殖中起重要作用。

近年来研究发现,T型钙通道与肿瘤细胞增殖密切相关,尤其在正常乳腺上皮细胞及乳腺癌细胞中表达的明显差异令众多学者深感兴趣。

T型钙通道生理病理学功能及其分子调节机制

T型钙通道生理病理学功能及其分子调节机制

T型钙通道生理病理学功能及其分子调节机制黄东阳;刘雅妮;张海林【期刊名称】《中国药理学通报》【年(卷),期】2013(29)2【摘要】T-type calcium channel, or low voltage-activate calcium channel, is an important subtype of the calcium channel family. T-type calcium channels not only play a critical role in the physiological states, but also are involved in the pathophysiologi-cal processes, such as epilepsy, autism spectrum disorder, hypertension, heart diseases, pain and cancer. Therefore it is important to understand the regulation mechanisms of T-type calcium channels. Our current understanding of the precise underlying molecular mechanisms remains relatively limited, but many new insights into the T-type channel regulation were gained in the last years. In this review, the recent progress on the understanding of the physiological and pathophysiological roles of the T-type calcium channel and the molecular modulation mechanisms are discussed.%T型钙通道是钙通道家族中重要的一员,又名低电压激活钙通道.T型钙通道不仅有重要的生理学意义,同时在病理状态下如癫痫,自闭症,高血压,心脏病,疼痛和癌症等也有很重要的作用.因此,了解T型钙通道的功能调节有重要意义.目前对T型钙通道的分子调节机制虽然有了相当的了解,但仍有许多不明之处.现对T型钙通道的生理病理学功能及其已发现的分子调节机制进行综述.【总页数】4页(P166-169)【作者】黄东阳;刘雅妮;张海林【作者单位】河北医科大学药理教研室,河北,石家庄,050017;河北医科大学药理教研室,河北,石家庄,050017;河北医科大学药理教研室,河北,石家庄,050017【正文语种】中文【中图分类】R-05;R329.24;R341;R977.6【相关文献】1.人类T型钙通道α1G和α1H亚单位基因在细胞增殖中的功能 [J], 王跃群;李永青;袁婺洲;朱传炳;吴秀山2.T型钙通道的生理和病理生理 [J],3.蝙蝠葛苏林碱对转染人胚肾细胞T型钙通道亚型(Cav3.1)电生理特性的作用 [J], 余玲;丁杰;郭莲军4.G蛋白偶联受体对T型钙通道调节机制的研究进展 [J], 黄沙;黄东阳;张海林5.T型钙通道对心脏功能的调节作用 [J], 金松南;文今福;金景玉;曹景宇因版权原因,仅展示原文概要,查看原文内容请购买。

t型钙离子通道

t型钙离子通道

T型钙离子通道引言T型钙离子通道是一类与维持神经系统正常功能密切相关的离子通道。

它在神经元膜上调控着钙离子的进出,从而影响着神经传导的速度和稳定性。

本文将从以下几个方面对T型钙离子通道进行全面探讨。

T型钙离子通道的发现和特性发现历程1.1959年,拉吉(P. Rageneau)首次发现谷氨酸引起的电流响应与细胞钙离子浓度增加有关。

2.1989年,Tyce等人记录到谷氨酸感受性电导的低阈电位。

3.1991年,T的命名来源于英文中突出的transient特性。

特性概述•T型钙离子通道是低阈电位钙离子通道,其激活电位通常为-60mV至-40mV。

•钙离子的进入通道引起神经元膜去极化,产生冲动。

•T型钙离子通道的打开时间较短暂,迅速关闭。

T型钙离子通道与神经传导与兴奋性传导相关1.T型钙离子通道调控神经元膜去极化,参与神经冲动的产生与传导。

2.在神经元膜上形成钙依赖性钠电流。

3.T型钙离子通道在除极化过程中发挥重要作用,并在调节神经元的兴奋性上发挥基础作用。

单一神经元与神经网络的相互作用1.T型钙离子通道参与神经元间的突触传递。

2.T型钙离子通道通过影响网络活动模式,调节神经网络的整体功能。

T型钙离子通道与神经系统疾病与帕金森病相关1.T型钙离子通道对帕金森病患者脑细胞异常放电有直接影响。

2.T型钙离子通道的调节剂可以用于帕金森病的治疗。

与癫痫相关1.T型钙离子通道异常导致癫痫发作。

2.调节T型钙离子通道活性可用于癫痫的治疗。

与阿尔茨海默病相关1.T型钙离子通道在阿尔茨海默病的神经元活动中起到重要作用。

2.调节T型钙离子通道对阿尔茨海默病具有治疗潜力。

T型钙离子通道的药物靶点1.哌嗪类药物能抑制T型钙离子通道,用于治疗高血压和心血管疾病。

2.T型钙离子通道调节剂可用于治疗癫痫、帕金森病和阿尔茨海默病等神经系统疾病。

结论T型钙离子通道作为神经系统中重要的离子通道,不仅参与神经传导和网络活动,而且与多种神经系统疾病的发生和发展密切相关。

T 型钙通道 Cav3?.1、Cav3.2蛋白在宫颈癌组织中的表达及其意义

T 型钙通道 Cav3?.1、Cav3.2蛋白在宫颈癌组织中的表达及其意义

T 型钙通道 Cav3?.1、Cav3.2蛋白在宫颈癌组织中的表达及其意义郭艳蒲;李亚;张娜;张冬梅【期刊名称】《疑难病杂志》【年(卷),期】2015(000)012【摘要】Objective To explore the expressions of T type Ca 2+channels Cav3.1 and Cav3.2 in cervical cancer and the relationships with clinical and pathological characteristics .Methods From June 2012 to December 2014, 74 cases of pa-tients, according to hysterectomy and pathologically diagnosed cervical cancer were enrolled as the cancer group , same period, 74 patients with internal uterine fibroids and received hysterectomy enrolled as the control group , specimens taken from surgery were stained with the SP immunity staining in the two groups to observe the relationship between T -type calcium channel Cav 3. 1, Cav3.2 positive expression ,and their relationship with clinicopathological features .Results Cervical cancer ’ s positive ex-pression rate of Cav3.1 and Cav3.2 (94.59%, 90.54%) were significantly higher than control group (12.16%, 14.86%), the difference was statistically significant (χ2 =101.029,χ2 =85.005, P<0.01);Cav3.1, Cav3.2 protein expression did not related to patient age, duration, pathological type, tumor size (Cav3.1:χ2 =2.381,χ2 =1.782,χ2=0.982,χ2 =0.338, P >0.05;Cav3.2:χ2 =0.773,χ2 =0.673,χ2 =0.862,χ2=0.762, P >0.05);but correlated to clinical stage , cell differ-entiation,lymph node metastasis (Cav3.1:χ2 =5.336,χ2 =6.772,χ2 =16.882, P <0.01; Cav3.2:χ2 =10.934,χ2 =12.762,χ2 =6.542, P <0.01).Conclusion The expression of Cav3.1 and Cav3.2 in cervical cancer patients were in-creased, and the expression of T type Ca 2+channels Cav3.1 and Cav3.2 might be a therapeutic target for cervical cancer and molecular markers for tumor detection .%目的:研究T型钙通道Cav3.1、Cav3.2蛋白在宫颈癌患者中的阳性表达率及其与宫颈癌临床病理学特征的关系。

钙通道与调节性T细胞效应功能的研究进展

钙通道与调节性T细胞效应功能的研究进展

钙通道与调节性T细胞效应功能的研究进展孙志娟;刘毅【摘要】调节性T细胞(Treg)为一类具有免疫抑制作用的T细胞,在维持免疫系统正常的外周耐受中发挥了重要作用,其中经典的CD4+ CD25+ Foxp3+Treg,无论是其数量还是抑制功能异常均可导致自身免疫性疾病.钙离子通道在免疫细胞发挥功能效应中是必不可少的,同样在Treg的发展和效应功能中也起着重要的作用,特别是STIM,ORAI,calcineurin-NFAT通路.现对钙离子通道在Treg的作用作—归纳总结.【期刊名称】《现代诊断与治疗》【年(卷),期】2012(023)003【总页数】3页(P144-146)【关键词】钙通道;调节性T细胞【作者】孙志娟;刘毅【作者单位】泸州医学院,四川泸州646000;四川大学华西医院,四川成都610000【正文语种】中文【中图分类】R392.11调节性T细胞(Regulatory T cell,Treg)约占外周CD4+T细胞的5%~10%。

该类细胞以“主动”的方式参与免疫应答/免疫耐受的调控,在肿瘤免疫和移植免疫中具有重要的作用。

Treg亚群主要有:CD4+CD25+Treg、Tr1型CD4+Treg、Th3型 CD4+Treg、CD8+Treg、NK细胞等。

本文主要讨论的为CD4+CD25+Treg。

Treg分为两种:(1)天然的CD4+CD25+Treg细胞(nTreg),来源于胸腺然后迁移到外周发挥作用;(2)诱导的CD4+CD25+Treg细胞(iTreg),主要来源于iDC、IL-10、IFN-α、TGF-beta或者低剂量抗原诱导下由外周CD4+CD25+细胞转变而来。

其表面表达IL-2αR、IL-2βR、CTLA-4、TNFRSF、GITR、HLA-DR、CCR4、Toll样受体等。

Foxp3是其特征性的标志。

Treg作用机制分为两种:(1)直接作用:在趋化因子的作用下,迁移到免疫反应区,通过细胞表面CTLA-4和膜型TGF-β的作用,以细胞-细胞接触的方式,抑制靶细胞表面IL-2Rα链的表达,抑制靶细胞增殖,或是通过释放颗粒酶和穿孔素来杀伤APC或反应性T细胞,或是通过直接分泌免疫抑制因子(TGF-β、IL-10、IL-35、Galectin-1)。

T型钙通道的生理和病理生理

T型钙通道的生理和病理生理

T型钙通道的生理和病理生理
佚名
【期刊名称】《上海医药》
【年(卷),期】1998(019)002
【摘要】在心血管系统中发现有两种钙通道:L通道和T通道。

L通道的特征已被充分地阐述,它们和人们所熟悉的钙拮抗剂如:双氢吡啶类(例如硝苯地平和氨氯地平)、苯烷胺类(如维拉帕米)以及苯噻嗪类(如地尔硫(艹卓))结合。

目前正引起基础和临床学者感兴趣的是T通道。

T通道在心血管系统中似乎有一些重要功能。

例如,它们参与维持血管张力和心脏自律性,控制细胞生长并调节某些内分泌细胞。

本文回顾了有关T通道的资料,展现了关于这些通道在心血管系统中作用的推断。

【总页数】2页(P39-40)
【正文语种】中文
【中图分类】R331.3
【相关文献】
1.病理生理学自主设计性实验改革初探*病理生理学自主设计性实验改革初探 [J], 李宜培;牛朝霞
2.蝙蝠葛苏林碱对转染人胚肾细胞T型钙通道亚型(Cav
3.1)电生理特性的作用 [J], 余玲;丁杰;郭莲军
3.T型钙通道生理病理学功能及其分子调节机制 [J], 黄东阳;刘雅妮;张海林
4.中国病理生理学会关于举办2018年全国病理生理学青年教师讲课比赛的通知[J], 中国病理生理学会
5.粤澳合作首届病理生理学术交流会暨广东省病理生理学会第六届第二次学术会议在澳门召开 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

T型钙通道在心肌肥厚大鼠心肌细胞钙内流中的作用

T型钙通道在心肌肥厚大鼠心肌细胞钙内流中的作用

T型钙通道在心肌肥厚大鼠心肌细胞钙内流中的作用徐东杰;陈相健;盛红专;徐晋丹;卞智萍;杨笛;曹克将;张寄南【期刊名称】《中国药理学与毒理学杂志》【年(卷),期】2005(19)5【摘要】目的研究T型钙通道在心肌细胞钙离子内流中的作用及其对心脏兴奋-收缩耦联的可能影响.方法测定选择性T型钙通道阻滞剂米贝拉地尔对培养的SD乳大鼠心室肌细胞和二肾一夹心肌肥厚大鼠心室肌细胞[Ca2+]i的影响.结果血管紧张素Ⅱ(Ang Ⅱ)刺激使乳大鼠心室肌舒张期细胞[Ca2+]i增高,收缩期细胞[Ca2+]i降低,[Ca2+]i上升和下降的时间延长.米贝拉地尔1.25~5μmol·L-1浓度依赖性降低AngⅡ引起的细胞[Ca2+]i变化.在心肌肥厚模型大鼠,咖啡因刺激后,[Ca2+]i增幅和最高[Ca2+]i明显降低.而米贝拉地尔25 mg·kg-1·d-1(灌胃给药7~9周)组加入咖啡因刺激后细胞内[Ca2+]i增幅和最高[Ca2+]i明显增高.结论T型钙通道异常开放可以引起心肌细胞内钙超载.阻断T型钙通道,可能通过改善肌浆网摄取及释放钙的功能而抑制心肌细胞钙超载.【总页数】5页(P338-342)【作者】徐东杰;陈相健;盛红专;徐晋丹;卞智萍;杨笛;曹克将;张寄南【作者单位】南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029;南京医科大学第一附属医院心脏科,心血管病研究所,江苏,南京,210029【正文语种】中文【中图分类】R972【相关文献】1.缬沙坦对心力衰竭大鼠心肌细胞钙通道和钠-钙交换体电流的影响 [J], 邓春玉;林曙光;吴伟康;钱卫民;阮小薇;吴书林2.黄芪对感染病毒大鼠心肌细胞钙通道及钠钙交换载体的效应 [J], 刘恭鑫;杨英珍;顾全保;郭棋;虞勇3.Amiloride预防性给药对压力超负荷心肌肥厚大鼠左室肥厚形成及心肌细胞内游离钙的影响 [J], 季勇;饶曼人;王金唏;杨思军4.T型钙通道α1G亚单位在慢性肾衰竭大鼠左心室心肌中的表达及钙三醇干预的研究 [J], 谭若芸;赵卫红;王笑云;刘翠萍5.大鼠心肌细胞L型和T型钙通道的特性 [J], 刘恭鑫因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Expression and di¡erential cell distribution of low-threshold Ca 2þchannels in mammalian male germ cells and spermClaudia L.Trevin ‹o a ;1,Ricardo Felix b ,Laura E.Castellano a ,Carolina Gutie¤rrez a ,Delany Rodr|¤guez a ,Judith Pacheco c ;d ,Ignacio Lo ¤pez-Gonza ¤lez a ,Juan Carlos Gomora e ,Victor Tsutsumi d ,Arturo H erna¤ndez-Cruz e ,Tatiana Fiordelisio e ,Allison L.Scaling f ,Alberto Darszon a ;ÃaDepartment of Genetics of Development and Molecular Physiology,Institute of Biotechnology,UNAM,Avenida Universidad #2001,Col.Chamilpa,CP 62210,Cuernavaca,Mor.,MexicobDepartment of Physiology,Biophysics and Neuroscience,Cinvestav-IPN,Mexico City,MexicocSchool of Medicine,La Salle University,Mexico City,MexicodDepartment of Experimental Pathology,Cinvestav-IPN,Mexico City,Mexico eDepartment of Biophysics,Institute of Cell Physiology,UNAM,Mexico City,MexicofDepartment of Chemistry and Biochemistry,New Mexico State University,Las Cruces,NM,USAReceived 16February 2004;accepted 24February 2004First published online 16March 2004Edited by Maurice MontalAbstract Numerous sperm functions including the acrosome reaction (AR)are associated with Ca 2+in£ux through vol-tage-gated Ca 2+(Ca V )channels.Although the electrophysiolog-ical characterization of Ca 2+currents in mature sperm has prov-en di⁄cult,functional studies have revealed the presence of low-threshold (Ca V 3)channels in spermatogenic cells.However,the molecular identity of these proteins remains unde¢ned.Here,we identi¢ed by reverse transcription polymerase chain reaction the expression of Ca V 3.3mRNA in mouse male germ cells,an iso-form not previously described in these cells.Immunoconfocal microscopy revealed the presence of the three Ca V 3channel isoforms in mouse spermatogenic cells.In mature mouse sperm only Ca V 3.1and Ca V 3.2were detected in the head,suggesting its participation in the AR.Ca V 3.1and Ca V 3.3were found in the principal and the midpiece of the £agella.All Ca V 3channels are also present in human sperm,but only to a minor extent in the head.These ¢ndings were corroborated by immunogold transmission electron microscopy.Tail localization of Ca V 3channels suggested they may participate in motility,however,mibefradil and gossypol concentrations that inhibit Ca V 3chan-nels did not signi¢cantly a¡ect human sperm motility.Only higher mibefradil doses that can block high-threshold (HVA)Ca V channels caused small but signi¢cant motility alterations.Antibodies to HVA channels detected Ca V 1.3and Ca V 2.3in human sperm £agella.ß2004Published by Elsevier B.V.on behalf of the Federation of European Biochemical Societies.Key words:Ca 2þchannel;Acrosome reaction;Sperm motility;Gossypol;Mibefradil1.IntroductionSperm motility,capacitation and the acrosome reaction (AR)are fundamental processes for fertilization [1^4].Thee¡ects of certain physiological agonists of these processes are mediated by changes in the intracellular concentration of Ca 2þ([Ca 2þ]i )[1^5].In particular,the mouse AR is asso-ciated with a zona pellucida-induced fast transient [Ca 2þ]i in-crease (V 250ms)involving the activation of low-threshold activated (LVA or T-type)Ca 2þchannels which is followed by a sustained increase lasting minutes that is linked to store-operated channel (SOC)opening [6].In spite of the crucial role of LVA channels in sperm physiology [3,7,8],their de¢n-itive molecular identi¢cation and localization remains elusive.This issue is further complicated by reports indicating that high-threshold activated (HVA)channels are also present and functional in mammalian spermatogenic cells and mature sperm [9].The inability of sperm to synthesize proteins impedes the use of standard molecular approaches.Their minute size,complex geometry and motile nature have precluded a system-atic electrophysiological characterization.For these reasons,more recent e¡orts have focused on the germ-line cells,the progenitors of sperm [3,7,8].Three di¡erent classes of LVA Ca 2þchannels (known as Ca V 3.1^Ca V 3.3)have been cloned and expressed [10^12].The presence of mRNAs for Ca V 3.1and Ca V 3.2,but not for Ca V 3.3,has been previously docu-mented in mouse [13,14]and human [15]spermatogenic cells.None of these channels has been immunolocalized in sperm.Very recently,using reverse transcription polymerase chain reaction (RT-PCR)the expression of the mRNAs for all Ca V 3channels in motile human sperm was detected [16].H ere,we report the detection of a transcript for Ca V 3.3from mouse male germ cells and the distribution of the di¡er-ent low-threshold Ca 2þchannel proteins in mouse spermato-genic cells and mature mouse and human sperm.Consistent with the expression of di¡erent low-threshold Ca 2þchannel proteins,Ni 2þinhibition of whole-cell patch-clamp native cur-rents in mouse spermatogenic cells unveiled the presence of subtypes of Ca V 3channels in these cells.Lastly,since Ca V 3.2and Ca V 3.3channels are expressed prominently in sperm £agella,studies were carried out to ex-plore their involvement in motility.Although gossypol had previously been shown to inhibit motility in human sperm0014-5793/04/$30.00ß2004Published by Elsevier B.V.on behalf of the Federation of European Biochemical Societies.doi:10.1016/S0014-5793(04)00257-1*Corresponding author.Fax:(52777)3172388.E-mail address:darszon@ibt.unam.mx (A.Darszon).1Present address:Department of Chemistry and Biochemistry,New Mexico State University,Las Cruces,NM,USA.FEBS 28224FEBS Letters 563(2004)87^92[17],our results using computer-assisted sperm motility anal-ysis(CASA)showed that concentrations of mibefradil[11] and gossypol[18]that inhibit low-threshold Ca2þchannels in mouse spermatogenic cells did not reduce basal motility. Other Ca2þ-permeable channels like Catsper and SOCs have been shown to modulate this important function[19^21]. Higher mibefradil concentrations that can block L-type HVA channels inhibited sperm motility and antibodies to HVA channels detected Ca V1.2and Ca V2.3in human sperm £agella.H owever,other blockers of L-type channels such as nifedipine and calciseptine did not signi¢cantly a¡ect sperm basal motility.2.Materials and methods2.1.RT-PCRThe isolation of RNA from mouse spermatogenic cells,preparation of cDNA and RT-PCR were conducted as described previously [22,23].The PCR primers employed were:sense5P-ATCTGCTCCC-TGTCGG-3P and antisense5P-GAGAACTGGGTCGCTATG-3P.The conditions employed were as follows:after an initial treatment for 5min at94‡C,the following cycle was repeated40times:30s at 94‡C,1min at54‡C,and1min at72‡C.Final extension was5min at72‡C.cDNA fragments ampli¢ed by PCR were analyzed in a1% agarose gel;the expected size for the PCR product corresponding to Ca V3.3was404bp.2.2.Immunolocalization of Ca2+channels in spermatogenic cells andsperm2.2.1.Controls(not shown).HEK-293cells stably expressing K1G (Ca V3.1),K1H(Ca V3.2)and K1I(Ca V3.3)channels[24]were used to determine the speci¢city of the primary antibodies(anti-Ca V3.1, Ca V3.2and Ca V3.3from Santa Cruz Biotechnology,and anti-Ca V3.1from Alomone Labs).Anti-Ca V3.2and anti-Ca V3.3gave quite speci¢c signals that were competed by the corresponding antigen in the cells expressing the matching channel isoform.Anti-Ca V3.1from Santa Cruz had some cross reaction with Ca V3.3and was competed by its corresponding antigen in HEK-293cells expressing Ca V3.1or Ca V3.3.Anti-Ca V3.1from Alomone was speci¢c for HEK-293cells expressing Ca V3.1.In addition,the speci¢city of the antibodies was evaluated in mouse and human sperm using antibodies preadsorbed with the synthetic antigenic peptides(1:2^1:8antibody:peptide ra-tios).In human sperm antibodies were further tested for speci¢city by showing that only the corresponding peptide antigen,and not the others,competed antibody binding.2.2.2.Spermatogenic cells.Aliquots of mouse spermatogenic cells were obtained and processed as described previously[22,23].After ¢xation with5%paraformaldehyde and permeabilization with0.1% Triton X-100,cells were incubated overnight with primary T-type Ca2þchannel polyclonal antibodies(1:100dilution)and then for1h with Alexa594-conjugated secondary antibodies(1:100;Molecular Probes).2.2.3.Mouse sperm.Cells were collected from CD1mouse epidi-dymis.Sperm were separated into two groups:(i)non-capacitated, handling cells in non-capacitating medium(Medium199without bo-vine serum albumin,H CO33and Ca2þ),and(ii)acrosome-reacted,where sperm after capacitation(30min at37‡C in capacitating me-dium)were incubated with the Ca2þionophore A23187(15W M). Aliquots of these cells were¢xed with5%paraformaldehyde,permea-bilized with0.1%Triton X-100and incubated overnight at4‡C with primary antibodies at1:stly,samples were incubated for1h with the Alexa594-conjugated antibody(1:100).Images were acquired in a confocal microscope using Comos7.0and analyzed using Confocal Assistant software4.02(Bio-Rad Microscience).2.2.4.Human sperm.Semen was obtained from normal,fertile volunteers by masturbation after at least2days of abstinence.Sam-ples were subjected to swim-up preparation(see below)and used for indirect immuno£uorescence analysis as described above for mouse sperm.Control experiments were also processed as indicated for mouse samples(corresponding peptides at1:4,1:2and1:8ratios were used for anti-Ca V3.1,Ca V3.2and Ca V3.3,respectively).H VA channel antibodies against Ca V1.2,Ca V1.3,Ca V2.1,Ca V2.2,and Ca V2.3were from Alomone Labs,and they were diluted1:100(cor-responding peptides were used at1:2ratio,except for the Ca V1.3 peptide that was used at1:4).2.2.5.Immunogold transmission electron microscopy.Human sperm were¢xed in a4%paraformaldehyde^0.5%glutaraldehyde so-lution in100W M cacodylate bu¡er(pH7.3)for2h and stored until processed.Cells were dehydrated in20%ethanol for20min and then in40^100%ethanol.The¢nal pellet was embedded in LR-White resin for5days at50‡C.Ultrathin sections were mounted on nickel grids. Samples were¢rst incubated in a blocking solution containing10% fetal bovine serum(FBS)and0.005%Tween20,and then incubated overnight with Ca V3channel primary antibodies diluted1:25in phos-phate-bu¡ered saline^3%FBS.Subsequently,samples were incubated for1h with a rabbit anti-goat IgG secondary antibody(1:30)con-jugated to10nm colloidal gold particles(Sigma).The sections were counterstained with uranyl acetate and lead citrate and then examined using a Jeol100SX electron microscope.2.3.ElectrophysiologyCa2þcurrents were recorded in spermatogenic cells using the whole-cell con¢guration of the patch-clamp technique as described previ-ously[13].Brie£y,cells were bathed in a solution containing(in mM):CaCl210;NaCl130;KCl3;MgCl22;NaHCO31;NaH2PO4 0.5;HEPES5;glucose10(pH7.3).The internal solution consisted of (mM):CsMeSO3110;CsF10;CsCl15;CaCl2 4.6;EGTA10; HEPES5;ATP-Mg24;phosphocreatine10(pH7.3).Currents were sampled at10kHz and recorded(following¢ltering5kHz)by a patch-clamp ampli¢er(Axopatch200A;Axon Instruments)interfaced to a personal computer via an A-to-D board(DigiData1200A;Axon) using computer-driven software(pCLAMP 6.0.3;Axon).Capacity transients were electronically compensated,and linear leak and resid-ual capacity currents were subtracted on-line using a P/4protocol.2.4.Evaluation of human sperm motilityAfter liquefaction,1ml of H am’s F-10was applied to1ml of semen to allow the motile sperm to swim up into the upper layer of the suspension(1h at37‡C).Swim-up sperm were collected,adjusted to8^12U106cells/ml and their motility determined as previously de-scribed[19].For each sample,V1000motile sperm were tracked and analyzed with the Hamilton-Thorne HTM-IVOS-12CASA system. Sperm motility parameters measured included progressive velocity (VSL),path velocity(VAP),and curvilinear velocity(VCL),as well as amplitude of lateral head displacement(ALH),beat cross fre-quency(BCF),linearity(LIN=VSL/VCL U100%)and straightness (STR=VSL/VAP U100%).Ca2þchannel antagonists were prepared as100mM stock solutions in deionized water(mibefradil and calci-septine)or dimethylsulfoxide(gossypol and nifedipine).3.Results and discussionMouse spermatogenic cells functionally express mainly T-type currents,and RT-PCR studies have indicated the expres-sion of two di¡erent genes encoding T-type channels(Ca V3.1 and Ca V3.2)in both mouse and human male germ cells[13^ 15].H owever,the expression of the third member of the Ca V3 family had not been determined.Our PCR experiments using speci¢c primers generated a band of404bp,which was con-¢rmed by sequencing to be a fragment of the mouse Ca V3.3 channel(Fig.1A).The RNA expression of this isoform had been shown to be restricted to the brain[12,25],but recently its presence was also found in human ejaculates[16].Given that mRNAs for the three T-type Ca2þchannels are present in mouse spermatogenic cells,it became necessary to establish whether the proteins are also expressed in these cells and in mature sperm.To this end,speci¢c polyclonal anti-bodies against both N-and C-terminal sequences of Ca V3 channels were used.Most of the results shown in both imma-ture germ cells and mature sperm were obtained with anti-bodies against the C-terminus,however qualitatively similar ¢ndings were observed with the N-terminus antibodies.Con-focal immunoimages of spermatogenic cells incubated with anti-Ca V 3antibodies revealed a punctate pattern of £uores-cence possibly indicating clusters of channels at the plasma membrane,or intracellular accumulation of channel protein (Fig.1B ).The strongest signal was observed with the Ca V 3.1antibody (Fig.1Ba ).Nuclei,shown in green due to staining with SYTOX Green,excluded immunostaining.Likewise,practically no signal was detected when the antibodies were preincubated with their corresponding antigen peptide (Fig.1Bb,d,f ),demonstrating that the staining shown in panels a,c,and e is speci¢c.Consistent with the expression of di¡erent Ca V 3proteins,the dose^response analysis for Ni 2þblockade performed on native Ca 2þcurrents in mouse spermatogenic cells revealed the presence of subtypes of low-threshold channels.Represen-tative whole-cell patch-clamp recordings (Fig.1C ,upper pan-el)indicated that the IC 50for Ni 2þblockade was V 21W M (Fig.1C ,lower panel).In contrast,as reported by Lee and colleagues [24],the Ni 2þIC 50for Ca V 3.2is V 12W M and the IC 50values determined for Ca V 3.1and Ca V 3.3are V 20-fold higher.Considering the data in recombinant channels,the potency of Ni 2þin spermatogenic cells is intermediate.These results,analyzed as indicated by Lee et al.[24],suggest that the native current may arise from the activity of di¡erent types of low-threshold channels,with Ca V 3.2contributing around 60%.We next examined the expression of Ca V 3channels in ma-ture mouse sperm.Although our results for Ca V 3.1were in-conclusive with the anti-K 1G antibody from Santa Cruz,the use of a new polyclonal anti-Ca V 3.1antibody (Alomone Labs)corroborated speci¢c immunostaining in the head (50%of sperm)and principal £agellar piece (Fig.2A ).Fig.2B also shows illustrative confocal images before (left)and after in-duction of the sperm AR with a Ca 2þionophore (right).Panel Ba illustrates that Ca V 3.2immunoreactivity was con¢ned to the head overlying the acrosome.Upon AR the Ca V 3.2signal did not undergo redistribution and remained associated with the head.H owever,this process decreased £uorescence stain-ing giving a vesiculated pattern (panel Bb)consistent with the formation of hybrid vesicles [26].Panel Bc shows that the Ca V 3.3channel is located in the £agellar midpiece and not in the head or the principal piece of the tail.As anticipated its distribution was unchanged in acrosome-reacted sperm (panel Bd).Controls discussed in Section 2using anti-Ca V 3antibod-ies on HEK-293cells separately expressing the three Ca V 3channel isoforms indicate that the staining illustrated in Fig.2is speci¢c.Thereafter we sought to determine the expression of T-type channels in human sperm.As in the case of mouse sperm,expression of Ca V 3.1in human sperm could not be con¢-dently determined with the Santa Cruz antibody since immu-nostaining was not fully blocked by the corresponding antigen peptide.H owever,anti-Ca V 3.1from Alomone gave speci¢c binding in the head as well as in the mid and principal pieces of the tail (Fig.3Aa ).The Ca V 3.2antibody recognized the principal piece with an intense punctate signal andexcludedFig.1.Ca V 3proteins are expressed in spermatogenic cells.A:RNA was extracted from spermatogenic cells and subjected to RT-PCR with speci¢c primers based on the sequence of Ca V nes 2^4show PCR products generated from mouse testis (T),pachytene spermatocytes (PS),and round spermatids (RS),ne 5is a negative control (3).The product was sequenced to verify speci¢c ampli¢cation.Molecular weights of the standards are shown on the left.B:Representative confocal micrographs from cells immunostained with Ca V 3.1(a),Ca V 3.2(c)and Ca V 3.3(e)channel antibodies,showing the cluster arrangement of the proteins (red),or stained with the anti-Ca V 3antibodies preincubated with the corresponding antigen peptide to demonstrate that speci¢c staining is blocked by the peptide (b,d,and f);nuclei are shown in green.C:Representative superimposed whole-cell patch-clamp Ca 2þcurrent traces activated in mouse spermatogenic cells by 200ms pulses to 320mV from a holding potential of 390mV (upper panel)before and after application of 35W M and 1mM Ni 2þ.The lower panel shows the dose^response analysis of Ni 2þblockade.Following exposure to the indicated concentration of the inhibitor,peak current amplitude was normalized to the control.The percentage of inhibition is compared with that obtained from HEK-293cells expressing Ca V 3.1,Ca V 3.2or Ca V 3.3.Smooth curves were generated with the Hill equation according to the parameters reported from currents through the cloned channels [24].(For interpretation of the references to color in this ¢gure legend,the reader is referred to the web version of this article.)the end piece of the £agellum (Fig.3Ab ).In addition,a faint Ca V 3.2immuno£uorescent signal was noted in the base of the human sperm head.On the other hand,the £uorescent signal for Ca V 3.3(N-terminal antibody)was restricted to the mid-piece of the £agellum (as in mouse sperm)(Fig.3Ac ).Binding of the Ca V 3antibodies was competed only by the correspond-ing peptide antigen but not by the other peptides (not shown),thus indicating their speci¢city.To our knowledge this is the ¢rst evidence for the localization of Ca V 3channels in human sperm.Ca V 3protein expression and localization in human sperm was corroborated using transmission electron microscopy.Ul-trathin sections from embedded cells were incubated with the Ca V 3antibodies followed by a secondary antibody conjugated to colloidal gold.Control sections showed only background levels of gold particles with no speci¢c sperm localization.The micrographs in Fig.3B show that gold particles were prefer-entially associated with tail plasma membrane,less in the head and rarely in the cell interior.The lower abundance of Ca V channel in the head and speci¢cally Ca V 3.1found with this technique may help to explain our di⁄culty to detect these channels by immuno£uorescence.Given that Ca V 3channels are present in the human sperm £agella,we tested whether two T-type channel inhibitors,mi-befradil [11,27,28]and gossypol [18],in£uence motility.Tothis end,a post-swim-up sperm suspension was diluted in cul-ture medium in the absence or presence of di¡erent concen-trations of the channel antagonists and motility was analyzed using CASA.Interestingly,concentrations of these two com-pounds that inhibit Ca V 3channels only reduced basal motility by 63%after 1min,in agreement with our previous ¢ndings with low Ni 2þconcentrations (50W M)that block these chan-nels [19].These observations indicate that Ca V 3channels es-sentially do not in£uence the basal motility of human sperm.H owever,higher doses of mibefradil (30W M)and gossypol (40W M)that block HVA channels decreased human sperm velocity parameters making their trajectories less progressive (Table 1).These results may explain,at least inpart,whyFig.2.Ca V 3proteins are expressed and di¡erentially localized in mouse epididymal sperm.Cells were attached to glass slides,and subjected toindirect immuno£uorescence.A:Shown are confocal immuno£uorescence images of mature sperm stained with anti-Ca V 3.1antibodies (panel a).Panel b shows the corresponding phase contrast image.B:Ca V 3confocal immuno£uorescence images in mouse sperm before and after undergoing the AR.Paired phase contrast (inset)and £uorescence micrographs of anti-Ca V 3.2and Ca V 3.3in acrosome-intact (a,c)and acro-some-reacted sperm (b,d).Nuclei are shown in green.(For interpretation of the references to color in this ¢gure legend,the reader is referred to the web version of this article.)Table 1E¡ects of Ca V channel antagonists on human sperm motility CASA parameter Mibefradil 30W M (%inhibition)Gossypol 40W M (%inhibition)Basal motility 25þ821þ6VAP 33þ923þ6VSL 31þ1027þ5VCL31þ513þ8Data are expressed as mean þS.E.M.(n =3^8separate determina-tions;three di¡erent donors).Fig.3.Ca V3proteins are di¡erentially expressed in human sperm.A:Representative confocal micrographs from cells stained with Ca V3.1-(a), Ca V3.2-(b)and Ca V3.3-(c)speci¢c antibodies showing the immuno£uorescence localization of the proteins.Insets represent the corresponding phase contrast images.B:Immunogold electron microscopy detected Ca V3channels in human sperm.Ultrathin sections of human sperm were incubated with Ca V3.1(a),Ca V3.2(b)and Ca V3.3(c)antibodies.Gold particles(arrows)are associated with the plasma membrane of the sperm head(left panel of each¢gure).In longitudinal£agellar sections,gold labeling is observed associated with the plasma membrane as well as in the ribs of the¢brous sheath at the principal piece(right panel of each¢gure).Ca V3.3antibody labeled the mitochondrial sheath at the midpiece of the£agellum(c).Scale bar=0.5W m.Fig.4.Ca V1.2and Ca V2.3channels are present in human sperm.Representative confocal micrographs from sperm cells immunostained with Ca V1.2antibodies(a)showing strong speci¢c staining at the mid and the end pieces of the tail,as well as with Ca V2.3antibodies(c)showing signal in the principal piece of the£agellum and the equatorial segment of sperm head.Panels b and d are control experiments in which the antibodies were preincubated with the corresponding antigen peptide to demonstrate speci¢city.gossypol and possibly mibefradil,like other Ca V channel an-tagonists,can a¡ect human sperm fertilizing ability[29,30]. The previous results also suggest the possible presence of HVA channels in human sperm.Ca V1.2and Ca V2.1are present in the tail of mouse sperm[21,22,31]and Ca V1.2in the acrosomal region of human sperm[32].In our hands, speci¢c antibodies for these channels revealed positive immu-nostaining for Ca V1.2strong in the midpiece and less intense in the principal piece(Fig.4a),and for Ca V2.3in the principal piece and the equatorial segment of the head(Fig.4b).Anti-bodies against Ca V1.3,Ca V2.1and Ca V2.2did not produce speci¢c signals.In spite of the presence of HVA channels in the human sperm£agella,two other blockers of Ca V1chan-nels,nifedipine(up to20W M)and calciseptine(up to5W M) [33],did not signi¢cantly a¡ect motility,ruling out an impor-tant role of Ca V1channels in this function.On the other hand,recently it was reported that a transgenic mouse lacking Ca V2.3had motility alterations[34].In conclusion,we identi¢ed the expression of Ca V3.3 mRNA in mouse male germ cells,an isoform not previously described in these cells.This study also provides what is to our knowledge the¢rst evidence that all three types of Ca V3 channels are detected in male germ cells and display di¡er-ential distribution in sperm.After di¡erentiation and matura-tion Ca V3.1and Ca V3.2channels are present on the mouse sperm head,indicating that they may participate in regulating acrosomal exocytosis.Recently mice de¢cient in Ca V3.2were found to be fertile,which suggests Ca V3.1might be enough to allow the sperm AR[36].Interestingly,Ca V3channel activity, particularly Ca V3.2,has been associated with the AR in hu-man sperm[14,35].Likewise,tail localization of Ca V3chan-nels suggested they may in£uence sperm motility.This was also the case for Ca V1.2and Ca V2.3channels.However, blockers of Ca V1and Ca V3channels did not signi¢cantly a¡ect basal motility,indicating they do not play a major role in this sperm function.The possibility that these channels participate in hyperactivated motility,as Catsper does[21], cannot be ruled out.Acknowledgements:Supported by grants from CONACyT to A.D., R.F.and J.C.G.;and from DGAPA(UNAM)to A.D.,J.C.G., C.L.T.and A.H.-C and from TWAS to C.L.T.We thank X.Alvar-ado,R.H erna¤ndez,E.Mata,E.Bustos,A.Ronda¤n and A.Mar|¤n for expert technical assistance.We thank also the Laboratorio Cl|¤nico y de Biogene¤tica Eugenio Sue for allowing us to use the Hamilton-Thorne HTM-IVOS-12sperm analysis system.References[1]Suarez,S.S.and H o,H.C.(2001)Reproduction122,519^526.[2]Baldi,E.,Luconi,M.,Bonaccorsi,L.,Muratori,M.and Forti,G.(2000)Front.Biosci.5,E110^E123.[3]Darszon,A.,Beltra¤n,C.,Felix,R.,Nishigaki,T.and Trevin‹o,C.L.(2001)Dev.Biol.240,1^14.[4]Visconti,P.E.,Westbrook,V.A.,Chertihin,O.,Demarco,I.,Sleight,S.and Diekman,A.B.(2002)J.Reprod.Immunol.53, 133^150.[5]Wassarman,P.M.,Jovine,L.and Litscher,E.S.(2001)Nat.Cell.Biol.3,E59^E64.[6]O’Toole,C.M.,Arnoult,C.,Darszon,A.,Steinhardt,R.A.andFlorman,H.M.(2000)Mol.Biol.Cell11,1571^1584.[7]Darszon,A.,Labarca,P.,Nishigaki,T.and Espinosa,F.(1999)Physiol.Rev.79,481^510.[8]Jagannathan,S.,Publicover,S.J.and Barratt,C.L.(2002)Repro-duction123,203^215.[9]Wennemuth,G.,Westenbroek,R.E.,Xu,T.,H ille,B.and Bab-cock,D.F.(2000)J.Biol.Chem.275,21210^21217.[10]Perez-Reyes,E.,Cribbs,L.L.,Daud,A.,Lacerda,A.E.,Barclay,J.,Williamson,M.P.,Fox,M.,Rees,M.and Lee,J.H.(1998) Nature391,896^900.[11]Cribbs,L.L.,Lee,J.H.,Yang,J.,Satin,J.,Zhang,Y.,Daud,A.,Barclay,J.,Williamson,M.P.,Fox,M.,Rees,M.and Perez-Reyes,E.(1998)Circ.Res.83,103^109.[12]Lee,J.H.,Daud,A.N.,Cribbs,L.L.,Lacerda,A.E.,Pereverzev,A.,Klockner,U.,Schneider,T.and Perez-Reyes,E.(1999)J.Neurosci.19,1912^1921.[13]Espinosa,F.,Lo¤pez-Gonza¤lez,I.,Serrano,C.J.,Gasque,G.,dela Vega-Beltra¤n,J.L.,Trevin‹o,C.L.and Darszon,A.(1999)Dev.Genet.25,103^114.[14]Son,W.Y.,Lee,J.H.,Lee,J.H.and H an,C.T.(2000)Mol.H um.Reprod.6,893^897.[15]Jagannathan,S.,Punt,E.L.,Gu,Y.,Arnoult,C.,Sakkas,D.,Barratt,C.L.and Publicover,S.J.(2002)J.Biol.Chem.277, 8449^8456.[16]Park,J.Y.,Ahn,H.J.,Gu,J.G.,Lee,K.H.,Kim,J.S.,Kang,H.W.and Lee,J.H.(2003)Exp.Mol.Med.35,285^292.[17]Porat,O.(1990)Mol.Reprod.Dev.25,400^408.[18]Bai,J.and Shi,Y.(2002)Eur.J.Pharmacol.440,1^6.[19]Castellano,L.E.,Trevin‹o,C.L.,Rodr|¤guez,D.,Serrano,C.J.,Pacheco,J.,Tsutsumi,V.,Felix,R.and Darszon,A.(2003) FEBS Lett.541,69^74.[20]Ren,D.,Navarro,B.,Perez,G.,Jackson,A.C.,H su,S.,Shi,Q.,Tilly,J.L.and Clapham,D.E.(2001)Nature413,603^609.[21]Carlson,A.E.,Westenbroek,R.E.,Quill,T.,Ren,D.,Clapham,D.E.,H ille,B.,Garbers,D.L.and Babcock,D.F.(2003)Proc.A100,14864^14868.[22]Serrano,C.J.,Trevin‹o,C.L.,Felix,R.and Darszon,A.(1999)FEBS Lett.462,171^176.[23]Trevin‹o,C.L.,Serrano,C.J.,Beltran,C.,Felix,R.and Darszon,A.(2001)FEBS Lett.509,119^125.[24]Lee,J.H.,Gomora,J.C.,Cribbs,L.L.and Perez-Reyes,E.(1999)Biophys.J.77,3034^3042.[25]Talley,E.M.,Cribas,L.L.,Lee,J.H.,Daud,A.,Perez-Reyes,E.and Bayliss,D.A.(1999)J.Neurosci.19,1895^1911.[26]Yudin,A.I.,Gottlieb,W.and Meizel,S.(1988)Gamete Res.20,11^24.[27]Lacinova,L.,Klugbauer,N.and H ofmann,F.(2000)Gen.Phys-iol.Biophys.19,121^136.[28]Perez-Reyes,E.(1999)Cell.Mol.Life Sci.56,660^669.[29]Beno¡,S.,Jacob,A.and H urley,I.R.(2000)H um.Reprod.Update6,107^121.[30]Goodwin,L.O.,Leeds,N.B.,H urley,I.,Mandel,F.S.,Pergolizzi,R.G.and Beno¡,S.(1997)Mol.H um.Reprod.3,255^368. [31]Westenbroek,R.E.and Babcock,D.F.(1999)Dev.Biol.207,457^469.[32]Goodwin,L.O.,Leeds,N.B.,H urley,I.,Cooper,G.W.,Pergo-lizzi,R.G.and Beno¡,S.(1998)Mol.H um.Reprod.4,215^226.[33]de Weille,J.R.,Schweitz,H.,Maes,P.,Tartar,A.and Lazdun-ski,M.(1991)A88,2437^2440. [34]Sakata,Y.,Saegusa,H.,Zong,S.,Osanai,M.,Murakoshi,T.,Shimizu,Y.,Noda,T.,Aso,T.and Tanabe,T.(2002)FEBS Lett.516,229^233.[35]Blackmore,P.F.and Eisoldt,S.(1999)Mol.H um.Reprod.5,498^506.[36]Chen,C.C.,Lamping,K.G.,Nuno,D.W.,Barresi,R.,Prouty,S.J.,Lavoie,J.L.,Cribbs,L.L.,England,S.K.,Sigmund,C.D., Weiss,R.M.,Williamson,R.A.,H ill,J.A.and Campbell,K.P.(2003)Science302,1416^1418.。

相关文档
最新文档