2005年1月高三统考文科数学试题
2005年普通高等学校招生全国统一考试数学试卷全国卷I文
2005年普通高等学校招生全国统一考试文科数学(必修+选修I )第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k kn n P P C k P --=)1()(一.选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是 (A )1±(B )21±(C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且IS S S =⋃⋃321,则下面论断正确的是(A )C I S 1∩(S 2∪S 3)=Φ (B )S 1⊆(C I S 2∩C I S 3) (C )C I S 1∩C I S 2∩C I S 3=Φ (D )S 1⊆(C I S 2∪C I S 3)(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a = (A )2 (B )3 (C )4 (D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33 (C )34(D )23(6)已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为 (A )23(B )23(C )26(D )332(7)当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8))21( 22≤≤-=x x x y 反函数是 (A ))11( 112≤≤--+=x x y(B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y (9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞ (C ))3log ,(a -∞ (D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223(D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:其中正确的是①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+(A )①③ (B )②④(C )①④ (D )②③(12)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2005-2010高考试题-数学文全国卷1
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2 (B )3 (C )4 (D )5(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34(D )23(5)已知双曲线)0( 1222>=-a yax 的一条准线为23=x ,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4 (D )34(7))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y(B ))10( 112≤≤-+=x x y (C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y(8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin coscos=+其中正确的是(A )①③(B )②④(C )①④ (D )②③(11)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点(12)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1± (B )21± (C )33±(D )3±第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
数学2005年高考文科试题及解析
2005年普通高等学校招生全国统一考试(浙江卷)数学试题(文科)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )(A)2π(B) π (C) 2π (D) 4π 解:T=22π=π,选(B)2.设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()UP C Q =( )(A) {}1,2 (B) {}3,4,5 (C) {}1,2,6,7 (D){}1,2,3,4,5 解:U C Q ={1,2,},故()UPC Q ={1,2},选(A)3.点()1,1-到直线10x y -+=的距离是( )(A)12 (B)32解:点()1,1-到直线10x y -+=的距离2=,选(D) 4.设()1f x x x =--,则12f f⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=( ) (A) 12- (B)0 (C)12(D) 1解:1()2f =11|1|||22--=0, 12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=f(0)=1,选(D)5.在()()5611x x ---的展开式中,含3x 的项的系数是( ) (A)5- (B) 5 (C) 10- (D) 10解:()51x -中x 3的系数为10,()61x --中x 3的系数为-20,∴()()5611x x ---的展开式中x 3的系数为-10,选(C)6.从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) (A)0.53 (B) 0.5 (C) 0.47 (D) 0.37 解:取到号码为奇数的频率是1356181153100100++++==0.53,选(A)7.设αβ、为两个不同的平面,l m 、为两条不同的直线,且,l m αβ⊂⊂,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题解:命题②有反例,如图中平面α∩平面β=直线n,l ,m αβ⊂⊂ 且l ∥n,m ⊥n,则m ⊥l,显然平面α不垂直平面β 故②是假命题;命题①显然也是假命题, 因此本题选(D)8.已知向量()()5,3,2,a x b x =-=,且a b ⊥,则由x 的值构成的集合是( ) (A){}2,3 (B){}1,6- (C) {}2 (D) {}6解:由a b ⊥得a b ⋅=0,即(x-5)·2+3×x=0解得x=2,选(C) 9.函数21y ax =+的图象与直线y x =相切,则a =( )(A)18(B)14 (C)12 (D)1解:由题意,得210ax x -+=有两个等实根,得a=14,选(B) 10.设集合(){},|,,1A x y x y x y =--是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )解:由题意可知0010.111x y x y x y x y x y x yx y y x>⎧⎪>⎪⎪-->⎨+>--⎪⎪--+>⎪--+>⎩得102102112x y x y ⎧<<⎪⎪⎪<<⎨⎪⎪<+<⎪⎩由此可知A 所表示的平面区域(不含边界的阴影部分)是(A )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分。
2005年高考文科数学试卷及答案(福建)
2005年普通高等学校招生全国统一考试(福建卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合∈≤-=x x x P ,1|1|||R|,Q P N x x Q 则},|{∈=等于 ( )A .PB .QC .{1,2}D .{0,1,2} 2.不等式01312>+-x x 的解集是( ) A .}2131|{>-<x x x 或B .}2131|{<<-x xC .}21|{>x xD .}31|{->x x3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )A .15B .30C .31D .64 4.函数x y 2cos =在下列哪个区间上是减函数( )A .]4,4[ππ-B .]43,4[ππ C .]2,0[πD .],2[ππ5.下列结论正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .21,0≥+>xx x 时当C .xx x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 6.函数bx ax f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a7.已知直线m 、n 与平面α、β,给出下列三个命题: ①若m//α,n//α,则m//n ; ②若m//α,n ⊥α,则n ⊥m ; ③若m ⊥α,m//β,则α⊥β. 其中真命题的个数是( )A .0B .1C .2D .3 8.已知q p ab q a p 是则,0:,0:≠≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是 ( )A .21 B .23 C .27 D .510.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种11.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是 ( )A .515arccosB .4πC .510arccosD .2π 12.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是( )A .5B .4C .3D .2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡的相应位置. 13.(6)12xx -展开式中的常数项是 (用数字作答).14.在△ABC 中,∠A=90°,k AC k AB 则),3,2(),1,(==的值是 . 15.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .16.把下面不完整的命题补充完整,并使之成为真命题.若函数x x f 2log 3)(+=的图象与)(x g 的图象关于 对称,则函数)(x g = .(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形) 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知51cos sin ,02=+<<-x x x π. (Ⅰ)求x x cos sin -的值;(Ⅱ)求xxx tan 1sin 22sin 2-+的值.18.(本小题满分12分)甲、乙两人在罚球线投球命中的概率分别为5221与. (Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.19.(本小题满分12分)已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列.(Ⅰ)求q 的值;(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n的大小,并说明理由.20.(本小题满分12分)已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式; (Ⅱ)求函数)(x f y =的单调区间.21.(本小题满分12分)如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证AE⊥平面BCE;(Ⅲ)求点D到平面ACE的距离.22.(本小题满分14分)已知方向向量为)3,1(=v 的直线l 过点(32,0-)和椭圆)0(1:2222>>=+b a by a x C 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点E (-2,0)的直线m 交椭圆C 于点M 、N ,满足634=⋅ON OM cot ∠MON ≠0(O 为原点).若存在,求直线m 的方程;若不存在,请说明理由.2005年高考文科数学试题参考答案(福建卷)一、选择题:本大题考查基本知识和基本运算.每小题5分,满分60分.1.D2.A3.A4.C5.B6.D7.C8.B9.C 10.B 11.D 12.B 二、填空题:本大题考查基本知识和基本运算. 每小题4分,满分16分.13.240 14.23-15.9 16.如:①x 轴,x 2log 3-- ②y 轴,)(log 32x -+ ③原点,)(log 32x --- ④直线32,-=x x y三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查三角函数的基本公式、三角恒等变换、三角函数在各象限符号等基本知识,以及推理和运算能力.满分12分. 解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 整理得 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π故 .57cos sin -=-x x(Ⅱ).1752457512524sin cos )sin (cos cos sin 2cos sin 1)sin (cos sin 2tan 1sin 22sin 2-=⨯-=-+=-+=-+x x x x x x xx x x x x x x 解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x ⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54c o s ,53s i n ,02.54c o s 53c o sx x x x x π 或故 .57cos sin -=-x x①②(Ⅱ).1752454531)53(254)53(2cos sin 1sin 2cos sin 2tan 1sin 22sin 222-=---+⋅-⋅=-+=-+x x x x x x x x 18.本小题主要考查概率的基本知识,运用数学知识解决问题的能力,以及推理和运算能力. 满分12分. 解:(Ⅰ)依题意,记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则 .53)(,21)(,52)(,21)(====P P B P A P ∵“甲、乙两人各投球一次,恰好命中一次”的事件为B A B A ⋅+⋅.2152215321)()()(=⨯+⨯=⋅+⋅=⋅+⋅∴B A P B A P B A B A P 答:甲、乙两人在罚球线各投球一次,恰好命中一次的概率为.21(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 100953532121=⨯⨯⨯=P ∴甲、乙两人在罚球线各投球两次至少有一次命中的概率 .10091100911=-=-=P P 答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为.10091 19.本小题主要考查等差数列,等比数列及不等式的基本知识,考查利用分类讨论思想分析问题和解决问题的能力. 满分12分.(Ⅰ)由题设,2,21121213q a a q a a a a +=+=即 .012,021=--∴≠q q a.211-=∴或q(Ⅱ)若.2312)1(2,12nn n n n S q n +=⋅-+==则 当.02)2)(1(,21>+-==-≥-n n S b S n n n n 时 故.n n b S >若.49)21(2)1(2,212nn n n n S q n +-=--+=-=则 当,4)10)(1(,21---==-≥-n n S b S n n n n 时故对于.,11;,10;,92,n n n n n n b S n b S n b S n N n <≥==>≤≤∈+时当时当时当 20.本小题主要考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决 问题的能力. 满分12分.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f.23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x ,知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即 .3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数, 在),21(+∞+内是增函数.21.本小题主要考查直线、直线与平面、二面角及点到平面的距离等基础知识,考查空间想象能力,逻辑思维能力与运算能力. 满分12分. 解法一:(Ⅰ)⊥BF 平面ACE. .AE BF ⊥∴∴二面角D —AB —E 为直二面角,且AB CB ⊥, ⊥∴CB 平面ABE..AE CB ⊥∴ .B C E AE 平面⊥∴(Ⅱ)连结BD 交AC 于C ,连结FG , ∵正方形ABCD 边长为2,2,=⊥∴BG AC BG⊥BF 平面ACE ,由三垂线定理的逆定理得FG ⊥AC.BGF ∠∴是二面角B —AC —E 的平面角. 由(Ⅰ)AE ⊥平面BCE , 又EB AE = , ∴在等腰直角三角形AEB 中,BE=2.又 直角,6,22=+=∆BE BC EC BCE 中332622=⨯=⋅=EC BE BC BF , .362332sin ,===∠∆∴BG BF BGF BFG 中直角∴二面角B —AC —E 等于.36arcsin(Ⅲ)过点E 作AB EO ⊥交AB 于点O. OE=1.∵二面角D —AB —E 为直二面角,∴EO ⊥平面ABCD.设D 到平面ACE 的距离为h ,,ACD E ACE D V V --= .3131EO S h S ACD ACB ⋅=⋅∴∆∆ ⊥AE 平面BCE ,.EC AE ⊥∴ .3326221122212121=⨯⨯⨯⨯=⋅⋅⋅=∴EC AE EODC AD h∴点D 到平面ACE 的距离为.332 解法二:(Ⅰ)同解法一.(Ⅱ)以线段AB 的中点为原点O ,OE 所在直 线为x 轴,AB 所在直线为y 轴,过O 点平行 于AD 的直线为z 轴,建立空间直角坐标系 O —xyz ,如图.⊥AE 面BCE ,BE ⊂面BCE , BE AE ⊥∴, 在AB O AB AEB Rt 为中,2,=∆的中点,).2,1,0(),0,0,1(),0,1,0(.1C E A OE -∴=∴).2,2,0(),0,1,1(== 设平面AEC 的一个法向量为),,(z y x =, 则⎩⎨⎧=+=+⎪⎩⎪⎨⎧=⋅=⋅.022,0,0,0z y y x n AC 即解得⎩⎨⎧=-=,,x z x y令,1=x 得)1,1,1(-=n 是平面AEC 的一个法向量. 又平面BAC 的一个法向量为)0,0,1(=m ,.3331),cos(===∴n m ∴二面角B —AC —E 的大小为.33arccos(III )∵AD//z 轴,AD=2,∴)2,0,0(=AD ,∴点D 到平面ACE 的距离.33232,cos |||==>=<⋅=n AD AD d 22.本小题主要考查直线、椭圆及平面向量的基本知识,平面解析几何的基本方法和综合解题能力.满分14分. (I )解法一:直线333:-=x y l , ①过原点垂直l 的直线方程为x y 33-=, ② 解①②得.23=x ∵椭圆中心(0,0)关于直线l 的对称点在椭圆C 的右准线上,.32322=⨯=∴c a∵直线l 过椭圆焦点,∴该焦点坐标为(2,0)..2,6,222===∴b a c 故椭圆C 的方程为.12622=+y x ③ 解法二:直线333:-=x y l .设原点关于直线l 对称点为(p ,q ),则⎪⎪⎩⎪⎪⎨⎧-=⋅-⋅=.1332232p q p q 解得p=3. ∵椭圆中心(0,0)关于直线l 的对称点在椭圆C 的右准线上,.32=∴ca∵直线l 过椭圆焦点,∴该焦点坐标为(2,0)..2,6,222===∴b a c 故椭圆C 的方程为.12622=+y x ③ (II )解法一:设M (11,y x ),N (22,y x ).当直线m 不垂直x 轴时,直线)2(:+=x k y m 代入③,整理得,061212)13(2222=-+++k x k x k,13612,131222212221+-=⋅+-=+∴k k x x k k x x ,13)1(62136124)1312(14)(1||22222222212212++=+-⋅-+-+=-++=k k k k k k kx x x x kMN点O 到直线MN 的距离21|2|kk d +=,cot 634MON OM ∠=⋅ 即 ,0sin cos 634cos ||||≠∠∠=∠⋅MONMONMON ON OM ,634||.632,634sin ||||=⋅∴=∴=∠⋅∴∆d MN S MON ON OM OMN即).13(6341||6422+=+k k k 整理得.33,312±=∴=k k当直线m 垂直x 轴时,也满足632=∆OMN S .故直线m 的方程为,33233+=x y或,33233--=x y 或.2-=x经检验上述直线均满足0≠⋅ON OM .所以所求直线方程为,33233+=x y或,33233--=x y 或.2-=x解法二:设M (11,y x ),N (22,y x ).当直线m 不垂直x 轴时,直线)2(:+=x k y m 代入③,整理得,061212)13(2222=-+++k x k x k ,13122221+-=+∴k k x x ∵E (-2,0)是椭圆C 的左焦点,∴|MN|=|ME|+|NE|=.13)1(6262)1312(622)()()(2222212212++=++-⋅=++=+++k k k k a x x a c x c a e x c a e以下与解法一相同.解法三:设M (11,y x ),N (22,y x ).设直线2:-=ty x m ,代入③,整理得.024)3(22=--+ty y t,32,34221221+-=+=+∴t y y t t y y.)3(242438)34(4)(||222222212121++=+++=-+=-t t t t t y y y y y y ,cot 634MON OM ∠=⋅ 即 ,0sin cos 634cos ||||≠∠∠=∠⋅MONMON MON ON OM.632,634sin ||||=∴=∠⋅∴∆OMN S MON OM=-⋅=+=∆∆∆||||2121y y OE S S S OENOEM OMN .)3(2424222++t t∴222)3(2424++t t =632,整理得.324t t =解得,3±=t 或.0=t故直线m 的方程为,33233+=x y 或,33233--=x y 或.2-=x经检验上述直线均满足.0≠⋅所以所求直线方程为,33233+=x y 或,33233--=x y 或.2-=x。
2005年高考文科数学试卷及答案(江西)
2005年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,共150分.第I 卷注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,临考员将试题卷、答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合⋃--==∈<=A B A Z x x x I 则},2,1,2{},2,1{},,3|||{( B )= ( )A .{1}B .{1,2}C .{2}D .{0,1,2} 2.已知==ααcos ,32tan 则( ) A .54 B .-54 C .154 D .-533.123)(x x +的展开式中,含x 的正整数次幂的项共有 ( )A .4项B .3项C .2项D .1项I4.函数)34(log 1)(22-+-=x x x f 的定义域为( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]5.设函数)(|,3sin |3sin )(x f x x x f 则+=为( )A .周期函数,最小正周期为32πB .周期函数,最小正周期为3πC .周期函数,数小正周期为π2D .非周期函数6.已知向量的夹角为与则若,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°7.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( ) A .70 B .140 C .280 D .840 8.在△ABC 中,设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件9.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( )A .π12125B .π9125 C .π6125D .π312510.已知实数a 、b 满足等式,)31()21(ba =下列五个关系式:①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b 其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个11.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ( )A .6π B .4π C .3π D .2π12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b的值分别为( ) A .0,27,78 B .0,27,83C .2.7,78D .2.7,83第Ⅱ卷注意事项: 第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
2005年浙江省高考数学试卷及答案(文科)
绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式 台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π 2.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 3.点(1,-1)到直线10x y -+=的距离是( )A .21 B . 32C .2D .24.设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )A . 12-B .0C .12D .1 5.在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )A .5-B .5C .-10D .106.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.377.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题8.已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是 A .{}2,3 B .{}1,6- C .{}2 D .{}69.函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .110.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )A .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2005年高考全国卷1(文科数学)
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)(适用:河北、河南、山西、安徽、海南)一、选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.2等于 A.i B.i -C.iD.i -2.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I =,则下面论断正确的是A.123I C S S S =∅() B.122I I S C S C S ⊆() C.123(I I I C S C S C S =∅) D.122I I S C S C S ⊆() 3.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 A.π28 B.π8 C.π24 D.π44.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A.2B.3C.4D.55.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ∆、 BCF ∆均为正三角形,EF ∥AB ,2EF =,则该多面体的体积为 A.32 B.33 C.34 D.236.已知双曲线2221x y a -=(0a >)的一条准线为23=x ,则该双曲线的离心率为 A.23 B.23 C.26 D.332 7.当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 A.2 B.32 C.4 D.34AB CD E F8.y =12x ≤≤)反函数是A.1y =11x -≤≤)B.1y =(01x ≤≤)C.1y =(11x -≤≤)D.1y =(01x ≤≤)9.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使()0f x <的x 的取值范围是A.)0,(-∞B.),0(+∞C.)3log ,(a -∞D.),3(log +∞a10.在坐标平面上,不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩所表示的平面区域的面积为 A.2 B.23 C.223 D.2 11.在ABC ∆中,已知C B A sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是A.①③B.②④C.①④D.②③12.点O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC ∆的A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.若正整数m 满足m m 102105121<<-,则m = .(lg 20.3010)≈ 14.81()x x-的展开式中,常数项为 .(用数字作答) 15.6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.16.在正方形1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,则①四边形1BFD E 一定是平行四边形②四边形1BFD E 有可能是正方形③四边形1BFD E 在底面ABCD 内的投影一定是正方形④四边形1BFD E 有可能垂直于平面1BB D以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x . (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间[0,]π上的图像.18.(本大题满分12分)已知四棱锥P ABCD -的底面为直角梯形,AB ∥DC ,90DAB ∠=,PA ⊥底面ABCD ,且112PA AD AB ===,M 是PB 的中点。
2005全国高考数学1试卷与答案
2005全国数学1一、选择题:1. 复数=--ii 2123( A ) A. i B. i - C. i -22 D. i +-222. 设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( C )()()A S S S B S S S C S S S D S S S C C C C C C C C I I I I I I I I ....()123123123123 =∅⊆=∅⊆3. 一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( B ) A. 8π2 B. 8π C. 4π2 D. 4π4. 已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( C )A. )22,22(-B. )2,2(-C. )42,42(- D. )81,81(-5. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( A )A.32 B.33 C.34 D.23 6. 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( D )A. 23B. 23C. 26D. 3327. 当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为( C )A. 2B. 32C. 4D. 34 8. 设0>b ,二次函数122-++=a bx ax y 的图象为下列之一:则a 的值为( B )A. 1B. -1C.251-- D. 251+- 9. 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使x x f 的0)(<取值范围是( C ) A. )0,(-∞ B. ),0(+∞ C. )3log ,(a -∞D. ),3(log +∞a10. 在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( B )A. 2B.23 C.223 D. 211. 在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+ 其中正确的是( B )A. ①③B. ②④C. ①④D. ②③12. 过三棱柱任意两个顶点的直线共15条,其中异面直线有 ( ) A. 18对 B. 24对 C. 30对 D. 36对第Ⅱ卷注意事项:本卷共10小题,共90分。
A01--2005年普通高等学校招生全国统一考试数学(全国卷Ⅰ.文)
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2(B )3(C )4(D )5(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCFADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34(D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )23(B )23 (C )26 (D )332 (6)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(7))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y(B ))10( 112≤≤-+=x x y (C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y(8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③(B )②④ (C )①④ (D )②③(11)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点(12)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1±(B )21±(C )33±(D )3±第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年高考文科数学试题及答案(北京)
2005年普通高等学校招生全国统一考试(北京卷)数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷 1至2页,第II 卷3至9页,共150分。
考试时间120分钟。
考试结束,将本试卷和答题卡一并交回。
第I 卷(选择题共40分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
一、本大题共8小题.每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. (1)设集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是 (A )M =P (B )P ÜM (C )M ÜP ( D )M P R = (2)为了得到函数321x y -=-的图象,只需把函数2x y =上所有点 (A )向右平移3个单位长度,再向下平移1个单位长度 (B )向左平移3个单位长度,再向下平移1个单位长度 (C )向右平移3个单位长度,再向上平移1个单位长度 (D )向左平移3个单位长度,再向上平移1个单位长度 (3)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 (4)若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为(A )30° (B )60° (C )120° (D )150°(5)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 (A )6π (B )3π (C )2π (D )32π(6)对任意的锐角α,β,下列不等关系中正确的是第 2 页 共 8 页(A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ(7)在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 (A )BC //平面PDF (B )DF ⊥平面P A E (C )平面PDF ⊥平面ABC (D )平面PAE ⊥平面 ABC(8)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种二、填空题:本大题共6小题;每小题5分,共30分。
2005年高考浙江省数学试题(文科)
2005年高考浙江省数学试题(文科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 函数y = sin ( 2x +6π)的最小正周期是 (A)2π(B) π(C)2π(D)4π(2) 设全集U= {1, 2, 3, 4, 5, 6, 7}, P = {1, 2, 3, 4, 5}, Q = {3, 4, 5, 6, 7}, 则 P ⋂ (CuQ) =(A) {1, 2 } (B) {3, 4, 5 } (C) {1, 2, 6, 7 } (D) {1, 2, 3, 4, 5 } (3) 点(1, -1)到直线x – y + 1 = 0的距离是(A)12(B)32(C)2(D)2(4) 设 ()|1|||f x x x =--, 则1[()]2f f = (A) 12-(B) 0 (C)12(D) 1(5) 在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5 (B) 5 (C) -10 (D) 10(6) 从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到的号码为奇数的频率是 (A) 0.53 (B) 0.5(C) 0.47(D) 0.37(7) 设α、β 为两个不同的平面,,l m 为两条不同的直线,且 l α⊂, m β⊂。
有如下两个命题: ① 若 //αβ,则//l m ;②若l m ⊥,则αβ⊥. 那么(A )①是真命题,②是假命题 (B )①是假命题,②是真命题 (C )①②都是真命题(D )①②都是假命题(8)已知向量(5,3)x α=-, (2,)b x =,且a b ⊥, 则由x 的值构成的集合是 (A) {2,3}(B) {-1, 6}(C) {2}(D) {6}(9)函数21y ax =+的图像与直线y x =相切,则a =(A)18(B)14(C)12(D) 1(10) 设集合 A = {(,)|,,1x y x y x y --是三角形的三边长}, 则A 所表示的平面区域(不含边界的阴影部分)是(A) (B) (C) (D)第II 卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分。
2005年浙江省高考数学试卷及答案(文科)
绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1•答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2•每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式台体的体积公式1 __________V h(s .S1S2 S2)其中3 , S2分别表示台体的上、下面积,h表示台体的高柱体体积公式V Sh其中S表示柱体的底面积,h表示柱体的高1锥体的体积公式V Sh其中S表示锥体的底面积,h表示锥体的高3球的表面积公式S 4 R2球的体积公式4 3V 4 R33其中R表示球的半径如果事件代B互斥,那么P(A B) P(A) P(B)•选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 .函数y sin (2x )的最小正周期是63.点(1,— 1)到直线x y 10的距离是()A 13B .—C .3. 2D ..22224.设 f(x) x1 x ,则 ff(1)( )A 1. 2B . 0C . 1 2D . 15.在(1 x )5 (1 x )4的展开式中,含x 3的项的系数是(6.从存放号码分别为1 , 2,…,10的卡片的盒子中,有放回地取 100次,每次取一张卡片卡片号码1234 567 8 9 10 取到的次数1197.设 、为两个不同的平面,I 、m 为两条不同的直线,且 I , m,有如下的两个命题:①若// ,则I // m ;②若I 丄m ,贝U丄.那么A .①是真命题,②是假命题B .①是假命题,②是真命题2.设全集U 1,2,3,4,5,6,7 , P 1,2,3,4,5 , Q3,4,5,6,7 ,贝V Pp|(uQ) =A . 1,2B .3,4,5 C . 1,2,6,7 D . 1,2,3,4,5B . 5C . — 10D . 10A . 0.53B . 0.5C . 0.47D . 0.37C .①②都是真命题 8.已知向量D .①②都是假命题(2, X ),且a b ,则由x 的值构成的集合是A . 2,3B .1,69•函数y ax 3 1的图象与直线y x 相切,则a11B •-C •—D . 142边界的阴影部分)是( )非选择题部分(共100 分)注意事项:1•用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2005年全国统一高考数学试卷(文)及答案
2005年全国统一高考数学试卷Ⅰ(文)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设直线l过点(﹣2,0),且与圆x2+y2=1相切,则l的斜率是()A.±1 B.C.D.2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.4.(5分)函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.55.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.6.(5分)已知双曲线的一条准线为,则该双曲线的离心率为()A.B.C.D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)反函数是()A.B.C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)点O是三角形ABC所在平面内的一点,满足•=•=•,则点O是△ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)(x﹣)4的展开式中的常数项为.15.(4分)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有种.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA ⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值范围.20.(12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求有坑需要补种的概率.(精确到0.001)21.(12分)设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;(Ⅱ)求{nS n}的前n项和T n.22.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.2005年安徽省高考数学试卷Ⅰ(文)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)设直线l过点(﹣2,0),且与圆x2+y2=1相切,则l的斜率是()A.±1 B.C.D.【分析】首先根据已知圆判断其圆心与半径,然后解构成的直角三角形,求出夹角,继而求出倾斜角,解出斜率即可.【解答】解:∵直线l过点(﹣2,0),且与圆x2+y2=1相切由圆得:圆心为(0,0),半径为1∴构成的三角形的三边为:,解得直线与x轴夹角为30°的角∴x的倾斜角为30°或150°∴k=故选C.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.5【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值∴f′(﹣3)=0⇒a=5,验证知,符合题意故选:D.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线的一条准线为,则该双曲线的离心率为()A.B.C.D.【分析】由双曲线的一条准线为,可以得到,由此可以求出该双曲线的离心率.【解答】解:由题意可知,,解得a2=3,或(舍去).∴,∴,故选D.7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx 的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)反函数是()A.B.C.D.【分析】从条件中函数式中反解出x,再将x,y互换即得到反函数.【解答】解:在定义域为{x|1≤x≤2},原函数的值域为{y|0≤y≤1},∵,∴y2=2x﹣x2,解得x=1±,∵1≤x≤2,∴x=1+,∴y=1+(0≤x≤1),故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,=×(2×1+2×)=,其面积S△ABC故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)点O是三角形ABC所在平面内的一点,满足•=•=•,则点O是△ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点【分析】由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点【解答】解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点故选D二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m=155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•山西)(x﹣)4的展开式中的常数项为6.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.【解答】解:的通项为=(﹣1)r C4r x4﹣2r令4﹣2r=0得r=2∴展开式的常数项为T3=C42=6故答案为615.(4分)(2005•安徽)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有100种.【分析】根据题意,选用间接法,首先计算从6名男生和4名女生共10人中,任取3名代表的选法数目,再计算没有女生入选的情况数目,进而计算可得答案.【解答】解:根据题意,从6名男生和4名女生共10人中,任取3人作代表,有C103=120种,其中没有女生入选,即全部选男生的情况有C63=20种,故至少包含1名女生的同的选法共有120﹣20=100种;故答案为100.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)已知二次函数f(x)的二次项系数为a,且不等式f (x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值范围.【分析】(Ⅰ)f(x)为二次函数且二次项系数为a,把不等式f(x)>﹣2x变形为f(x)+2x>0因为它的解集为(1,3),则可设f(x)+2x=a(x﹣1)(x﹣3)且a<0,解出f(x);又因为方程f(x)+6a=0有两个相等的根,利用根的判别式解出a的值得出f(x)即可;(Ⅱ)因为f(x)为开口向下的抛物线,利用公式当x=时,最大值为=.和a<0联立组成不等式组,求出解集即可.【解答】解:(Ⅰ)∵f(x)+2x>0的解集为(1,3).f(x)+2x=a(x﹣1)(x ﹣3),且a<0.因而f(x)=a(x﹣1)(x﹣3)﹣2x=ax2﹣(2+4a)x+3a.①由方程f(x)+6a=0得ax2﹣(2+4a)x+9a=0.②因为方程②有两个相等的根,所以△=[﹣(2+4a)]2﹣4a•9a=0,即5a2﹣4a﹣1=0.解得a=1或a=﹣.由于a<0,a=﹣,舍去,故a=﹣.将a=﹣代入①得f(x)的解析式.(Ⅱ)由及a<0,可得f(x)的最大值为.就由解得a<﹣2﹣或﹣2+<a<0.故当f(x)的最大值为正数时,实数a的取值范围是.20.(12分)(2005•山西)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求有坑需要补种的概率.(精确到0.001)【分析】(Ⅰ)由题意知每粒种子发芽的概率为0.5,且每粒种子是否发芽是相互独立的,得到本题是一个独立重复试验,甲坑不需要补种的对立事件是甲坑内的3粒种子都不发芽,根据对立事件的概率公式得到结果.(Ⅱ)有坑需要补种包括3个坑中恰有1个坑需要补种;恰有2个坑需要补种;3个坑都需要补种,这三种情况之间是互斥的,根据互斥事件的概率公式得到结果.【解答】解:(Ⅰ)由题意知每粒种子发芽的概率为0.5,且每粒种子是否发芽是相互独立的,得到本题是一个独立重复试验,∵甲坑内的3粒种子都不发芽的概率为,∴甲坑不需要补种的概率为(Ⅱ)有坑需要补种包括3个坑中恰有1个坑需要补种;恰有2个坑需要补种;3个坑都需要补种,这三种情况之间是互斥的,∵3个坑中恰有1个坑需要补种的概率为,恰有2个坑需要补种的概率为,3个坑都需要补种的概率为∴有坑需要补种的概率为0.287+0.041+0.002=0.330.21.(12分)(2005•安徽)设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;(Ⅱ)求{nS n}的前n项和T n.【分析】(Ⅰ)由210S30﹣(210+1)S20+S10=0得210(S30﹣S20)=S20﹣S10,由此可推出,.(Ⅱ)由题设知.数列{nS n}的前n项和,.由此可知答案.【解答】解:(Ⅰ)由210S30﹣(210+1)S20+S10=0得210(S30﹣S20)=S20﹣S10,即210(a21+a22+…+a30)=a11+a12+…+a20,可得210•q10(a11+a12+…+a20)=a11+a12+…+a20.因为a n>0,所以210q10=1,解得,因而,.(Ⅱ)由题意知.则数列{nS n}的前n项和,.前两式相减,得=即.22.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.。
2005全国高考数学1试卷与答案
2005全国数学1一、选择题: 1. 复数=--ii 2123( ) A. i B. i - C. i -22 D. i +-222. 设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( )()()A S S S B S S S C S S S D S S S C C C C C C C C I I I I I I I I ....()123123123123 =∅⊆=∅⊆3. 一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( ) A. 8π2 B. 8π C. 4π2 D. 4π4. 已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A. )22,22(-B. )2,2(-C. )42,42(- D. )81,81(-5. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A.32 B.33 C.34 D.23 6. 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A. 23B. 23C. 26D. 3327. 当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )A. 2B. 32C. 4D. 34 8. 设0>b ,二次函数122-++=a bx ax y 的图象为下列之一:则a 的值为( )A. 1B. -1C.251-- D. 251+- 9. 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使x x f 的0)(<取值范围是( )A. )0,(-∞B. ),0(+∞C. )3log ,(a -∞D. ),3(log +∞a10. 在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A. 2B. 23C. 223 D. 211. 在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+ 其中正确的是( )A. ①③B. ②④C. ①④D. ②③12. 过三棱柱任意两个顶点的直线共15条,其中异面直线有 ( ) A. 18对 B. 24对 C. 30对 D. 36对第Ⅱ卷注意事项:本卷共10小题,共90分。
2005年高考文科数学(浙江卷)试题及答案(精品)
2005年高考文科数学浙江卷试题及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π (2)设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 (3)点(1,-1)到直线10x y -+=的距离是( )(A)21 (B) 32(C) 2 (D)2(4)设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )(A) 12- (B)0 (C)12(D) 1(5)在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) -10 (D) 10(6)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.37(7)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β. 那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题(8)已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是 A .{}2,3 B .{}1,6- C .{}2 D .{}6 (9)函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .1(10)设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数2xy x =+(x ∈R ,且x ≠-2)的反函数是_________. 12是直角梯形ABC D 两腰的中点,D E⊥A13.过双曲线22221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________. 14.从集合{P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答). 三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数()2sin cos cos2f x x x x =+ (Ⅰ) 求()4f π的值;(Ⅱ) 设α∈(0,π),()22f α=sin α的值.16.已知实数,,a b c 成等差数列,1,1,4a b c +++成等比数列,且15a b c ++=,求,,a b c17.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次求(i )恰好有3摸到红球的概率;(ii )第一次、第三次、第五次均摸到红球的概率.(Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(Ⅰ)求证OD ∥平面PAB(Ⅱ) 求直线OD 与平面PBC 所成角的大小;19.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.20.函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)B (2)A (3)D (4)D (5)C (6)A (7)D (8)C (9)B (10)A 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)5832三、解答题:(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力满分14分解:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 422f πππ⎛⎫=+=⎪⎝⎭(Ⅱ) cos sin 2f ααα⎛⎫=+= ⎪⎝⎭∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 13226sin sin 442224ππαα⎛⎫=+-=⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=(16)本题主要考查等差、等比数列的基本知识考查运算及推理能力14分解:由题意,得()()()()()()2151221413a b c a c b a c b ⎧++=⎪⎪+=⎨⎪++=+⎪⎩由(1)(2)两式,解得5b = 将10c a =-代入(3),整理得213220211,2,5,811,5, 1.a a a a a b c a b c -+=========-解得或故或经验算,上述两组数符合题意。
2005年普通高等学校招生全国统一考试(江西卷)-文科数学
2005年普通高等学校招生全国统一考试(江西卷)文科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合⋃--==∈<=A B A Z x x x I 则},2,1,2{},2,1{},,3|||{( B )= ( )A .{1}B .{1,2}C .{2}D .{0,1,2} 2.已知==ααcos ,32tan 则( ) A .54B .-54 C .154 D .-533.123)(x x +的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项 4.函数)34(log 1)(22-+-=x x x f 的定义域为( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]5.设函数)(|,3sin |3sin )(x f x x x f 则+=为( )A .周期函数,最小正周期为32πB .周期函数,最小正周期为3πC .周期函数,数小正周期为π2D .非周期函数6.已知向量与则若,25)(,5||),4,2(),2,1(=⋅+=--= ( )A .30°B .60°C .120°D .150°7.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( ) A .70 B .140 C .280 D .840 8.在△ABC 中,设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件9.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( )A .π12125B .π9125 C .π6125D .π312510.已知实数a 、b 满足等式,)31()21(b a =下列五个关系式:I2 ①0<b <a ②a <b <0 ③0<a <b ④b <a <0 ⑤a =b 其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个11.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ( )A .6πB .4π C .3π D .2π 12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为( ) A .0,27,78 B .0,27,83 C .2.7,78 D .2.7,83二、填空题:本大题共4小题,每小题4分,共16分,请将答案填在答题卡上. 13.若函数)2(log )(22a x x x f a ++=是奇函数,则a = .14.设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- .15.如图,在三棱锥P —ABC 中,PA=PB=PC=BC , 且2π=∠BAC ,则PA 与底面ABC 所成角为.16.以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21+=则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)2005年普通高等学校招生全国统一考试(江西卷)-文科数学3 / 11三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.18.(本小题满分12分)已知向量x f x x x x ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.419.(本小题满分12分)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率. 20.(本小题满分12分)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC -D 的大小为4.2005年普通高等学校招生全国统一考试(江西卷)-文科数学21.(本小题满分12分)如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.5 / 11622.(本小题满分14分)已知数列{a n }的前n 项和S n 满足S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式.2005年普通高等学校招生全国统一考试(江西卷)-文科数学7 / 112005年普通高等学校招生全国统一考试(江西卷)文科数学参考答案一、选择题1.D 2.B 3.B 4.A 5.A 6.C 7.A 8.C 9.C 10.B 11.D 12.A 二、填空题 13.22 14.23 15.3π16.③④ 三、解答题17.解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当1<k<2时,解集(1,k )∪(2,+∞);②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.18.解:)42tan()42tan()42sin(2cos 22)(πππ--++=⋅=x x x xx f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x xx x cos sin +==)4sin(2π+x .所以2)(的最大值为x f ,最小正周期为]4,0[)(,2ππ在x f 上单调增加,]4,0[π上单调减少.19.解:(1)设ξ表示游戏终止时掷硬币的次数,8设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-715||ξξn m n m ,可得:.7,5:;7,6,11,6;5,5,00,5的取值为所以时或当时或当ξξξ==========n m n m n m n m.649645322)21(2)21(2)7()5()7(7155=+=+⨯==+==≤C P P P ξξξ20.解法(一)(1)证明:∵AE ⊥平面AA 1DD 1,A 1D ⊥AD 1,∴D 1E ⊥A 1D(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2, 故.21,231==∆∆ACE C AD S S 而 .31,23121,3131111=∴⨯=⨯∴⋅=⋅=∴∆∆-h h h S DD S V C AD AEC AEC D(3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE , ∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,则BE=2-x,,,1,.1,4,211x EH DHE Rt x DE ADE Rt DH DHD DH D Rt =∆∴+=∆=∴=∠∆中在中在中在 π.4,32.32543.54,3122π的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆解法(二):以D 为坐标原点,直线DA ,DC ,DD 1分别为x,y,z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为即DA 1⊥D 1E. (2)因为E 为AB 的中点,则)0,2,1(),1,1,1(),0,1,1(1--=D E 从而.⎩⎨⎧=+-=+-⎪⎩⎪⎨⎧=⋅=⋅=-=002,00),,,().1,0,1(111c a b a AD c b a ACD AD 也即则的法向量为设平面,)2,1,2(,2=⎩⎨⎧==n ca ba 从而得,所以点E 到平面AD 1C 的距离为2005年普通高等学校招生全国统一考试(江西卷)-文科数学9 / 11.3132121=-+==h (3)设平面D 1EC 的法向量),,(c b a =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD D x由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b D 令b=1, ∴c=2,a =2-x , ∴).2,1,2(x -= 依题意.225)2(222||||4cos211=+-⇒=⋅=x DD n π ∴321+=x (不合,舍去),.322-=x∴AE=32-时,二面角D 1—EC —D 的大小为4π. 21.解:(1)设M (y 20,y 0),直线ME 的斜率为k(l>0)则直线MF 的斜率为-k ,).(200y x k y y ME -=-∴的方程为直线⎪⎩⎪⎨⎧=-=-∴xy y x k y y 2200)(由消0)1(002=-+-ky y y ky x 得 2200)1(,1kky x k ky y F F -=∴-=解得).(2142)1()1(1102022022000定值y k ky k k ky k ky k ky k ky x x y y k F E F E EF-=-=+---+--=--=∴ 所以直线EF 的斜率为定值(2),1,45,90==∠=∠k MAB EMF 所以时当).(200y x k y y ME -=-∴的方程为直线).1,)1((,0202200y y E xy y x y y --⎪⎩⎪⎨⎧=-=-得由 同理可得)).1(,)1((020y y F +-+10 设重心G (x , y ),则有⎪⎪⎩⎪⎪⎨⎧-=+--+=++=+=++-+=++=33)1()1(33323)1()1(3000020202020y y y y x x x x y y y y x x x x F E M F E M).32(2729120>-=x x y y 得消去参数 22.解:方法一:先考虑偶数项有:1212222)21(3)21(3---⋅-=-⋅=-n n n n S S 32324222)21(3)21(3----⋅-=-⋅=-n n n n S S ……….)21(3)21(23324⋅-=-⋅=-S S).1()21(2])41(2121[4411)41(21213]21)21()21()21[(3])21()21()21[(312332123321222≥+-=⋅--=--⋅-=++++-=+++-=∴-----n S S n n n n n n n n同理考虑奇数项有:.)21(3)21(3221212n n n n S S ⋅=-=---22223212)21(3)21(3----⋅=-⋅=-n n n n S S……….)21(3)21(32213⋅=-⋅=-S S.1).1()21(34))21(2()21(2).1()21(34))21(2()21(2).1()21(2])21()21()21[(31112122122221222121222222112==≥⋅+-=--+-=-=≥⋅-=+---=-=∴≥-=++++=∴----++-+S a n S S a n S S a n S S n n n n n n n n n n n n n n n n综合可得⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n2005年普通高等学校招生全国统一考试(江西卷)-文科数学11 / 11 方法二:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 两边同乘以n )1(-,可得: .)21(3)21()1(3)1()1(1111----⋅-=-⋅-⋅=---n n n n n n n a a 令).3()21(3,)1(11≥-⋅-=-∴-=--n b b a b n n n n n n 所以,)21(311---⋅-=-n n n b b ,)21(3221----⋅-=-n n n b b ………,)21(3223-⋅-=-b b 211)21(41413])21()21()21[(3222212-⋅-⨯-=+++-=∴---n n n n b b b ).3()21(32312≥⋅+-=-n b n ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=⋅-⋅+--=-=∴≥⋅+-=⋅+--=∴-=-=-=-=∴-=--=-===-----.,)21(34,,)21(34)21()1(3)1(4)1().1()21(34)21(32325.25)1(,1)1(,25123,11311122211112211为偶数为奇数又n n b a n b a b a b S S a S a n n n n n n n n n n n。
J01--2005年普通高等学校招生全国统一考试数学及答案(浙江卷.文)
2005年普通高等学校招生全国统一考试(浙江卷)数学试题(文科)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )(A)2π(B) π (C) 2π (D) 4π 2.设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()UP C Q =( )(A) {}1,2 (B) {}3,4,5 (C) {}1,2,6,7 (D){}1,2,3,4,5 3.点()1,1-到直线10x y -+=的距离是( )(A)12 (B)324.设()1f x x x =--,则12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=( )(A) 12- (B)0 (C)12(D) 15.在()()5611x x ---的展开式中,含3x 的项的系数是( ) (A)5- (B) 5 (C) 10- (D) 106.从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) (A)0.53 (B) 0.5 (C) 0.47 (D) 0.377.设αβ、为两个不同的平面,l m 、为两条不同的直线,且,l m αβ⊂⊂,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题8.已知向量()()5,3,2,a x b x =-=,且a b ⊥,则由x 的值构成的集合是( ) (A){}2,3 (B){}1,6- (C) {}2 (D) {}6 9.函数21y ax =+的图象与直线y x =相切,则a =( )(A)18(B)14 (C)12 (D)110.设集合(){},|,,1A x y x y x y =--是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分。
2005年高考江西卷(文科数学)
2005年普通高等学校招生全国统一考试文科数学(江西卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设集合{|3,}I x x x Z =<∈,{1,2}A =,{2,1,2}B =--,则()I A C B = A .{1} B .{1,2} C .{2} D .{0,1,2} 2.已知tan32α=,则cos α=A .54B .45-C .154D .35-3.123)(x x +的展开式中,含x 的正整数次幂的项共有A .4项B .3项C .2项D .1项 4.函数)34(log 1)(22-+-=x x x f 的定义域为 A .(1,2)(2,3) B .(,1)(3,)-∞+∞ C .(1,3) D .[1,3] 5.设函数()sin3sin3f x x x =+,则()f x 为 A .周期函数,最小正周期为3πB .周期函数,最小正周期为32πC .周期函数,数小正周期为π2D .非周期函数 6.已知向量(1,2)a =,(2,4)b =--,5c =,若5()2a b c +⋅=,则a 与c 的夹角为A .30B .60C .120D .1507.将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A .70B .140C .280D .8408.在ABC ∆中,设命题p :sin sin sin a b cB C A ==,命题q :ABC ∆是等边三角形,那么命题p 是命题q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件9.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B -AC D -,则四面体ABCD 的外接球的体积为 A .π12125 B .π9125 C .π6125 D .π312510.已知实数a ,b 满足等式11()()23a b =,下列五个关系式①0b a << ②0a b << ③0a b << ④0b a << ⑤a b =其中不可能...成立的关系式有 A .1个 B .2个 C .3个 D .4个11.在O A B ∆中,O 为坐标原点,(1,cos )A θ,(sin ,1)B θ,(0,]2πθ∈,则O A B ∆的面积达到最大值时,=θA .6πB .4πC .3πD .2π12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为A .0.27,78B .0.27,83C .2.7,78D .2.7,83二、填空题:本大题共4小题,每小题4分,共16分,请将答案填在答题卡上. 13.若函数()log (a f x x =是奇函数,则a = .14.设实数,x y 满足20240230x y x y y --≤⎧⎪+->⎨⎪-≤⎩,则y x 的最大值是 .15.如图,在直三棱锥P ABC -中,PA PB PC BC ===,2BAC π∠=,则PA 与底面ABC 所成角为 .ACP16.以下同个关于圆锥曲线的命题中①设A 、B 为两个定点,k 为非零常数,PA PB k -=,则动点P 的轨迹为双曲线;②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;③方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 .(写出所有真命题的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数b ax x x f +=2)((a ,b 为常数)且方程()120f x x -+=f 有两个实根为13x =,24x =.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设1k >,解关于x 的不等式;xkx k x f --+<2)1()(.18.(本小题满分12分)已知向量(2cos ,tan())224x x a π=+,(2sin(),tan())2424x x b ππ=+-,令()f x a b =⋅,求函数()f x 的最大值,最小正周期,并写出()f x 在[0,]π上的单调区间. 19.(本小题满分12分)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.20.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AD 上移动.(Ⅰ)证明:11D E A D ⊥;(Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离; (Ⅲ)AE 等于何值时,二面角1D EC D --的大小为4π.21.(本小题满分12分)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(Ⅰ)若M 为定点,证明:直线EF 的斜率为定值;(Ⅱ)若M 为动点,且90EMF ∠=,求EMF ∆的重心G 的轨迹方程. 22.(本小题满分14分)已知数列{}n a 的前n 项和n S 满足1213()2n n n S S ---=-(3n ≥), 且11S =,232S =-,求数列{}n a 的通项公式.ABCD A 1EB 1C 1D 12005年普通高等学校招生全国统一考试(江西卷)文科数学参考答案一、选择题1.D 2.B 3.B 4.A 5.A 6.C 7.A 8.C 9.C 10.B 11.D 12.A 二、填空题 13.22 14.23 15.3π16.③④ 三、解答题17.解:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当1<k<2时,解集(1,k )∪(2,+∞);②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.18.解:)42tan()42tan()42sin(2cos 22)(πππ--++=⋅=x x x x x f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x xx x cos sin +==)4sin(2π+x .所以2)(的最大值为x f ,最小正周期为]4,0[)(,2ππ在x f 上单调增加,]4,0[π上单调减少.19.解:(1)设ξ表示游戏终止时掷硬币的次数,设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-715||ξξn m n m ,可得:.7,5:;7,6,11,6;5,5,00,5的取值为所以时或当时或当ξξξ==========n m n m n m n m.649645322)21(2)21(2)7()5()7(7155=+=+⨯==+==≤C P P P ξξξ20.解法(一)(1)证明:∵AE ⊥平面AA 1DD 1,A 1D ⊥AD 1,∴D 1E ⊥A 1D(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2, 故.21,231==∆∆ACE C AD S S 而 .31,23121,3131111=∴⨯=⨯∴⋅=⋅=∴∆∆-h h h S DD S V C AD AEC AEC D(3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE , ∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,则BE=2-x,,,1,.1,4,211x EH DHE Rt x DE ADE Rt DH DHD DH D Rt =∆∴+=∆=∴=∠∆中在中在中在 π.4,32.32543.54,3122π的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆解法(二):以D 为坐标原点,直线DA ,DC ,DD 1分别为x,y,z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为即DA 1⊥D 1E. (2)因为E 为AB 的中点,则)0,2,1(),1,1,1(),0,1,1(1--=D E 从而.⎩⎨⎧=+-=+-⎪⎩⎪⎨⎧=⋅=⋅=-=002,00),,,().1,0,1(111c a b a AD n c b a n ACD AD 也即则的法向量为设平面,)2,1,2(,2=⎩⎨⎧==ca ba 从而得,所以点E 到平面AD 1C 的距离为 .313212||1=-+==n h (3)设平面D 1EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD D x由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b D 令b=1, ∴c=2,a=2-x , ∴).2,1,2(x -= 依题意.225)2(222||||4cos211=+-⇒=⋅=x DD n π ∴321+=x (不合,舍去),.322-=x ∴AE=32-时,二面角D 1—EC —D 的大小为4π. 21.解:(1)设M (y 20,y 0),直线ME 的斜率为k(l>0)则直线MF 的斜率为-k ,).(200y x k y y ME -=-∴的方程为直线⎪⎩⎪⎨⎧=-=-∴xy y x k y y 2200)(由消0)1(002=-+-ky y y ky x 得 2200)1(,1kky x k ky y F F -=∴-=解得).(2142)1()1(1102022022000定值y k ky k k ky k ky k ky k ky x x y y k F E F E EF-=-=+---+--=--=∴所以直线EF 的斜率为定值(2),1,45,90==∠=∠k MAB EMF 所以时当).(200y x k y y ME -=-∴的方程为直线).1,)1((,0202200y y E xy y x y y --⎪⎩⎪⎨⎧=-=-得由 同理可得)).1(,)1((020y y F +-+设重心G (x, y ),则有⎪⎪⎩⎪⎪⎨⎧-=+--+=++=+=++-+=++=33)1()1(33323)1()1(3000020202020y y y y x x x x y y y y x x x x F E M F E M).32(2729120>-=x x y y 得消去参数 22.解:方法一:先考虑偶数项有:1212222)21(3)21(3---⋅-=-⋅=-n n n n S S32324222)21(3)21(3----⋅-=-⋅=-n n n n S S……….)21(3)21(23324⋅-=-⋅=-S S).1()21(2])41(2121[4411)41(21213]21)21()21()21[(3])21()21()21[(312332123321222≥+-=⋅--=--⋅-=++++-=+++-=∴-----n S S n n n n n n n n同理考虑奇数项有:.)21(3)21(3221212n n n n S S ⋅=-=---22223212)21(3)21(3----⋅=-⋅=-n n n n S S……….)21(3)21(32213⋅=-⋅=-S S.1).1()21(34))21(2()21(2).1()21(34))21(2()21(2).1()21(2])21()21()21[(31112122122221222121222222112==≥⋅+-=--+-=-=≥⋅-=+---=-=∴≥-=++++=∴----++-+S a n S S a n S S a n S S n n n n n n n n n n n n n n n n综合可得⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n方法二:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以两边同乘以n )1(-,可得:.)21(3)21()1(3)1()1(1111----⋅-=-⋅-⋅=---n n n n n n n a a令).3()21(3,)1(11≥-⋅-=-∴-=--n b b a b n n n n n n所以,)21(311---⋅-=-n n n b b,)21(3221----⋅-=-n n n b b………,)21(3223-⋅-=-b b211)21(41413])21()21()21[(3222212-⋅-⨯-=+++-=∴---n n n n b b b ).3()21(32312≥⋅+-=-n b n⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=⋅-⋅+--=-=∴≥⋅+-=⋅+--=∴-=-=-=-=∴-=--=-===-----.,)21(34,,)21(34)21()1(3)1(4)1().1()21(34)21(32325.25)1(,1)1(,25123,11311122211112211为偶数为奇数又n n b a n b a b a b S S a S a n n n n n n n n n n n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷类型 A襄樊市高中调研测试题高三数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分,考试时间120分钟.第 Ⅰ 卷 (选择题,共60分)注意事项:1.请考生将自己的考号、姓名填写在第Ⅱ卷密封线内.2.每小题选出答案后填写在第Ⅱ卷前的答题栏内对应题号下面,不能答在试题卷上. 参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设实数集R 为全集,集合P ={x |f (x )=0},Q ={x |g (x )=0},H ={x |h (x )=0},则方程0)()()(22=+x h x g x f 的解集是 A . Q P ∁R HB . Q P ∁R HC .H Q PD .Q P2. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 A .20B .22C .24D .283. 函数xx xx x f sin tan )(3-+=的奇偶性是A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数4. 设O 是平面上任意一点,=a ,=b ,=m a +n b (m 、n ∈R ),若A 、B 、C 三点共线,则m 、n 满足 A .m +n =-1B .m +n =1C .m +n =0D .m -n =15. 要使mm --=-464cos 3sin αα有意义,则m 范围是 A .m ≤7B .m ≥-1如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 k n k k n n p p C k P --=)1()(C .m ≤-1或m ≥37 D .-1≤m ≤37 6. 设P =1+5(x +1)+10 (x +1)2+10(x +1) 3+5(x +1) 4+(x +1) 5,则P 等于A .x 5B .(x +2)5C .(x -1) 5D .(x +1) 57. 若a 、b ∈R ,则下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +a1≥2.其中一定成立是A .①②③B .①②④C .①②D .②④8. 若函数f (x )的定义域为(0,+∞),且f (x )>0,f / (x )>0,那么函数y =xf (x ) A .存在极大值B .存在极小值C .是增函数D .是减函数9. 已知函数x y 2log =的反函数是)(1x f y -=,则函数)1(1x f y -=-的图象是 A B C D10. 在6个电子产品中,有两个次品,4个合格品,每次任取一个测试,测试完后不放回,直到两个次品都找到为止,那么经过四次测试恰好将两个次品全部找出来的概率是A .154B .51C .52D .27411. 直线y =m (m 为常数)与正切曲线y =x ωtan (ω>0)相交,则相邻两个交点的距离是 A .πB .ωπC .ωπ2 D .π212. 若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是A .m ≤-1B .-1≤m <0C .m ≥1D .0<m ≤1第Ⅰ卷答题栏襄樊市高中调研测试题(2005.1)高三数学(文史类)第 Ⅱ 卷 (非选择题,共90分)注意事项:第Ⅱ卷共6页,用黑色签字笔直接答在试题卷中,答卷前将密封线内的项目填写清楚. 二.填空题:本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上. 13. 若sin2α<0,sin α-cos α>0,则cos αααsin 1sin1+-+sin αααcos 1cos 1+-= .14. 不等式22322)21(a x ax x +-<对一切实数x 都成立,则a 的取值范围是 .15. 采用简单随机抽样从个体数为6的总体中抽取一个容量为3的样本,则每个个体被抽到的概率为 .16. 设)(1x f -是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则f (a +b )的值为 .三.解答题:本大题共6小题,满分74分. 17. (本大题满分12分) 已知函数3cos 33cos 3sin)(2x x x x f +=.)sin(ϕω+x A +C 的形式,并求其图象对称中心的横坐标;(2) 如果△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f (x )的值域.18. (本大题满分12分)集合A 是由适合以下性质的函数)(x f 组成的:对于任意的x ≥0, f (x )∈[-2,4],且f (x )在[0,+∞)上是增函数.(1)判断函数2)(1-=x x f 及x x f )21(64)(2⋅-=(x ≥0)是否在集合A 中?并说明理由.(2)对于(1)中你认为是集合A 中的函数f (x ),不等式f (x )+ f (x +2)<2 f (x +1)是否对于任意的x ≥0总成立?证明你的结论.19. (本大题满分12分) 设向量a =(3,-1) ,b =( 21,23),若存在实数m (m ≠0)和角])44[(ππθθ,-∈,使c =a +(tan 2θ-3)b ,d =-m a+(tan θ)b ,且c ⊥d .(1)试求函数m =f (θ)的关系式; (2)求函数m =f (θ)的最大值和最小值.20.(本大题满分12分) 某售货员负责在甲、乙、丙三个柜面上售货,如Array果在某一个小时内各柜面不需要售货员照顾的概率分别为0.9、0.8、0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:(1)只有丙柜面需要售货员照顾的概率;(2)三个柜面最多有一个需要售货员照顾的概率;(3)三个柜面至少有一个需要售货员照顾的概率.21. (本大题满分12分)已知函数f (x )满足f ( xy )=f (x ) f (y ) (x 、y ∈R ),且x >1时,f (x )<1,又41)2(=f .(1)求证:当x >0时,f (x )>0; (2)求证:f (x )在(0,+∞)上的单调递减;(3)解关于x 的不等式:|)(|ax xf ->1.22. (本大题满分14分)已知一次函数f (x )的图象关于y =x 对称的图象为C ,且f (1)=0,若点)(1nn n a an A +, (∈n N*)在曲线C 上,a 1=1,对于不小于2的任意正整数n ,都有111=--+n n n n a aa a . (1) 求曲线C 的方程;(2) 求{a n }的通项公式;(3) 设)!2(!4!321++++=n a aa S n n ,求S n .高三数学(文史类)参考答案及评分标准说明:1.本解答指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 2.对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分数. 一.选择题:BCBBD BCCCA BB 二.填空题:13.)4sin(2πα- 14.(43,+∞) 15.2116.2 三.解答题:17.解:(1) )32cos 1(2332sin 213cos 33cos 3sin)(2xx x x x x f ++=+= 2分 3)2sin(++=πx 4分由0)2sin(=+πx 得:πππ213332-=⇒=+k x k x (k ∈Z ) ∴对称中心的横坐标为π213-k (k ∈Z ).6分(2)由已知得acacc a ac b c a x 22cos 22222-+=-+=≥21 8分又x 是△ABC 的内角,∴x 的取值范围是]30(π,10分这时,]953(332πππ,∈+x ,∴)332sin(3sin ππ+<x ≤1 故函数f (x )的值域是]2313(+,. 12分18.解:(1) 函数2)(1-=x x f 不在集合A 中 ∵当x =49时,f (49)=5>4,不满足条件4分∵当x ≥0时,0<x )21(≤1,∴-2≤x )21(64⋅-<4即f 2 (x )∈[-2,4],6分又设x 1<x 2,则21)21()21(x x >, 21)21(6)21(6x x ⋅-<⋅-, ⇒ f 2 (x 1)<f 2 (x 2)即f 2 (x )是增函数,∴f 2 (x )在集合A 中.8分(2)0)41()21(6)1(2)2()(<-⋅=+-++x x f x f x f∴不等式f (x )+ f (x +2)<2 f (x +1)对于任意的x ≥0总成立.12分19.解:(1)a ·b =03131=-⨯⨯ ∴c ·d =[a +(θ2tan -3)b ][-m a +(θtan )b ]=-m a 2+(θθtan 3tan 3-)b 2 4分∵c ⊥d ,∴c ·d =0,即-m a 2+(θθtan 3tan 3-)b 2=0,又| a |=2,| b |=1∴m =)(=θθθtan 3tan 41)(3-f ,其中]44[ππθ,-∈6分(2)令tan θ=t ,得m =g (t )=41(t 3-3t ),t ∈[-1,1] 求导得 g /(t )=43(t 2-1)≤0 8分 g (t )在[-1,1]上单调递减10分∴当t =-1,即4πθ-=时,函数g (t )有最大值21,当t =1,即4πθ=时,函数g (t )有最小值-21. 12分20.解:设事件A 为“甲柜面不需要售货员照顾”,事件B 为“乙柜面不需要售货员照顾”,事件C 为“丙柜面不需要售货员照顾”则事件A 、B 、C 相互独立,且P (A )=0.9,P (B )=0.8,P (C )=0.7. 2分(1)设事件D 表示“某一小时内只有丙柜面需要售货员照顾”,则C B A D ⋅⋅=,且事件A 、B 、C 相互独立∴P (D )=P (C B A ⋅⋅)=P (A ) P (B ) P (C )=0.9×0.8×0.3=0.216.4分(2) 设事件E 表示“某一小时内三个柜面最多有一个需要售货员照顾”, 则C B A C B A C B A C B A E ⋅⋅+⋅⋅+⋅⋅+⋅⋅=6分又C B A C B A C B A C B A ⋅⋅⋅⋅⋅⋅⋅⋅、、、彼此互斥,且A 、B 、C 、C B A 、、相互独立∴)()()()()(C B A P C B A P C B A P C B A P E P ⋅⋅+⋅⋅+⋅⋅+⋅⋅== 0.9×0.8×0.7+0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.902 8分 (3) 设事件F 表示“某一小时内三个柜面至少有一个需要售货员照顾”, 则C B A F ⋅⋅=10分 又A 、B 、C 相互独立∴)(F P =P (A ) P (B ) P (C )=0.9×0.8×0.7=0.504 ∴)(1)(F P F P -==0.496.12分 21.解:(1)∵x >0,∴ 2)]([)()()()(x f x f x f x x f x f ===≥0 又若0)(=x f ,则0)2()()2()2(==⋅=x f x f x x f f ,与41)2(=f 矛盾 ∴f (x )>0.4分(2)设0<x 1<x 2,则12x x >1,∴0<)(12x xf <1 ∴)()()()(1121122x f x xf x x x f x f =⋅= ∵f (x 1)>0,0<)(12x x f <1,∴f (x 1)< f (x 2) 故f (x )在(0,+∞)上是减函数.8分(3) 由f (xy )=f (x )f (y )得:f (1)=f (1×1)=f (1)f (1)=[f (1)]2由(1)知f (1)>0,∴f (1)=1不等式可化为:)1(|)(|f a x xf >-由(2)可得:||||1||a x x ax x-<⇔<- 10分两边平方得:2ax ―a 2<0,当a <0时,解得2ax >,当a >0时,解得2ax <,当a =0时,不等式化为:0<0,无解.综上所述,当a =0,不等式的解集是φ,当a <0时,不等式的解集是{x |2a x >},当a >0时,不等式的解集是{x |2ax <}.12分 22.解:(1)设f (x )=ax +b (a ≠0),则a +b =0∴曲线C 的方程为11+=x a y∵点)(1n n n a a n A +, (∈n N*)在曲线C 上,∴11+=+a na a nn2分 由111=--+n n n n a a a a 知{nn a 1+}是公差为1的等差数列,∴n an a aa an n +=-+=+1)1(1214分 ∴n aa n a an n +=+=+111 ⇒ a =1∴曲线C 的方程为y =x +1.6分 (2)由(1)得:11+=+n ann∴2211232211=-=-==-----a a n a a n a a n a an n n n n n ,,,,8分 相乘得:!2)2)(1(1232211n n n n a aa a a a a an n n n n n =⨯⨯--=⋅⋅-----即!1n a an = ⇒ a n =n !10分 (3)2111)1)(2(1)!2(!)!2(+-+=++=+=+n n n n n n n an12分 ∴)11()11()11(=-++-+-=nS n14分.。