中考数学二次函数综合题突破——线段最大值,三角形面积最大值,直角三角形,等腰三角形,平行.doc

合集下载

中考数学二次函数问题中三角形面积最值问题解题策略

中考数学二次函数问题中三角形面积最值问题解题策略

中考数学二次函数问题中三角形面积最值问题解题策略考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

解决此类题目的基本步骤与思路:1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想.3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。

考试题型,大多类似于此。

求面积最大值的动点坐标,并求出面积最大值。

一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值,即出。

解法一:补形,割形法。

方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。

请看解题步骤。

解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。

这是三角形面积表达方法的一种非常重要的定理。

铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。

因为,铅锤定理,在很多地方都用的到。

这里,也有铅锤定理的简单推导,建议大家认真体会。

2023年中考数学高频压轴题突破——二次函数与相似三角形

2023年中考数学高频压轴题突破——二次函数与相似三角形

2023年中考数学高频压轴题突破——二次函数与相似三角形1.在平面直角坐标系xOy中(如图),已知点A在x轴的正半轴上,且与原点的距离为3,抛物线y=ax2﹣4ax+3(a≠0)经过点A,其顶点为C,直线y=1与y轴交于点B,与抛物线交于点D(在其对称轴右侧),联结BC、CD.(1)求抛物线的表达式及点C的坐标;(2)点P是y轴的负半轴上的一点,如果△PBC与△BCD相似,且相似比不为1,求点P的坐标;(3)将∠CBD绕着点B逆时针方向旋转,使射线BC经过点A,另一边与抛物线交于点E(点E在对称轴的右侧),求点E的坐标.2.如图,在平面直角坐标系中,将抛物线平移,使平移后的抛物线C2经过点A (﹣3,0),B(1,0),与y轴的交点为E.(1)求抛物线C2的函数解析式;(2)点P(m,n)(﹣3<m<0)是抛物线C2上的动点,设四边形OAPE的面积为S,求S与m的函数关系式,并求四边形OAPE的面积的最大值;(3)若y=x2与平移后的抛物线对称轴交于D点,在抛物线C2的对称轴上,是否存在一点M,使得以M,O,D为顶点的三角形与△BOD相似?若存在,求点M的坐标;若不存在,说明理由.3.如图,在直角坐标系中,直线y=﹣x﹣1与x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=x2+bx+c与x轴分别交于点A、C,直线x=﹣1与x轴交于点D.(1)求抛物线的解析式;(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;(3)若点Q在第三象限内,且tan∠AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.4.已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.5.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,抛物线y =﹣x2+bx+c过A、B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)求△ABE面积的最大值.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D坐标;若不存在,说明理由.6.如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.7.如图所示,抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,(1)求cos∠CAO的值;(2)求直线AC的函数关系式;(3)如果有动点P是y轴上,且△OP A与△OAC相似,求P点坐标.8.如图,二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E 的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙M与y轴相切,切点为D.以C,D,M 为顶点的三角形与△AOC相似,求点M的坐标.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q 的坐标;若不存在,说明理由.10.如图,已知二次函数y=ax2﹣4x+c的图象与x轴交于点A(﹣1,0)、点C,与y轴交于点B(0,﹣5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.11.已知:如图,二次函数图象的顶点坐标为C(1,﹣2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB 上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.(1)求这个二次函数的解析式;(2)设点P的横坐标为x,求线段PE的长(用含x的代数式表示);(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.12.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点M,连接AC.(1)求该抛物线的解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当△AHC周长最小时,求此时点H 坐标.(3)设对称轴与x轴交于点E,在对称轴上是否存在点G,使以B、E、G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.13.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+8与x轴相交于A,B两点,与y 轴相交于点C,OA=4,OB=2,点D是抛物线上一动点,且在y轴的左侧,连接AD,BC,AC,CD.(1)求抛物线的解析式;(2)已知直线m:y=kx+8(不经过点B),同时与x轴和y轴相交,若直线m与x轴和y轴围成的三角形与△BCO相似,求k的值;(3)连接OD,若△ACD的面积是△ABC的面积的时,求△DOC的面积.14.如图,抛物线y=a(x﹣2)2+1与x轴交于点A(1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式及点C的坐标;(2)点E是直线BC上一动点,求出△ADE周长的最小值;(3)点P,M分别是抛物线和直线BC上的动点,是否存在以P,M,C为顶点的三角形与△AOC相似.若存在,请直接写出点P的坐标;若不存在,请说明理由.15.如图,点A(0,2),B(1,0),连接AB并将线段AB绕点B顺时针旋转90°,点A 转到点C处.一抛物线经过C、B两点,与x轴交于另一点D(3.5,0).(1)求点C的坐标和抛物线的解析式.(2)在BC上方抛物线上是否存在一点P,使得四边形PBDC的面积最大?若存在,求出P的坐标及最大面积;若不存在,请说明理由.(3)连接CD,①求证:CD∥AB;②直线CD上是否存在一点M,使得△MBC与△AOB相似?若存在,求出点M的坐标;若不存在,请说明理由.16.如图,抛物线与坐标轴交于A,B,C三点,且4CO=2BO=OA=4,点D是线段AB 上的动点,过点D作DF⊥x轴,交x轴于点F,交抛物线于点E.(1)求抛物线的解析式;(2)当点D的坐标是多少时,DE最长,最长是多少?(3)当DE最长时,在直线DE上是否存在点P,使得以P、A、F为顶点的三角形与△ABC相似,若存在,直接写出点P的坐标,若不存在,说明理由.17.已知抛物线与直线AC相交于A、C两点,且A(﹣2,0)、C(4,3).(1)填空:b=,c=;(2)长度为的线段DE在线段AC上移动,点G与点F在上述抛物线上,且线段DG 与EF始终平行于y轴.①连接FG,求四边形DEFG的面积的最大值,并求出对应点D的坐标;②CH⊥AB,垂足为点H,线段DE在移动的过程中,是否存在点D,使△DEG与△ACH相似?若存在,请求出此时点D的坐标;若不存在,试说明理由.18.如图1,抛物线y=ax2+bx+4的顶点为(1,),抛物线交x轴于A,B两点(A在B 的左边),交y轴于C.(1)求抛物线的解析式;(2)如图2,沿射线AC方向平移抛物线y=ax2+bx+4,分别记A、C两点的对应点为E、F,在平移过程中,是否存在以A,E,B为顶点的三角形与△ABF相似,若存在,请求出此时平移后的E的横坐标;若不存在,请简要说明理由;(3)如图3,点N在y轴负半轴上,点A绕点N顺时针旋转,恰好落在第四象限的抛物线上点M处,且∠ANM+∠ACM=180°,求N点坐标.19.如图,二次函数y=a(x+1)(x﹣3)(a>0)的图象与x轴交于点A,B(A在B的左边),与y轴交于点C,点P是二次函数图象上一动点.(1)若点C的坐标为(0,﹣3),求二次函数及直线BC的函数关系式.(2)如图①,在(1)的条件下,若点P在第四象限,过P作PQ∥AC,交直线BC于点Q,求线段PQ长的最大值.(3)如图②,若点P在第一象限,且△ABP有△ABC相似,求点P的坐标.20.如图,若抛物线y=﹣x2+bx+c与x轴相交于A(﹣1,0),B两点,与y轴相交于点C,直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)点P为抛物线位于第二象限上的一点,连接BP交线段AC于点Q,若△AQB与△AOC相似,求点P的坐标;(3)若点D为抛物线位于第一象限上的一点,过点D作x轴的垂线,垂足为F,直线DF交直线BC于点E,若△CDE为等腰三角形,请直接写出点D的坐标.参考答案:1.【分析】(1)把点A的坐标代入抛物线的解析式中可得:a的值,从而得抛物线的解析式,配方得顶点C的坐标;(2)根据∠DBC=∠PBC=45°,且相似比不为1,所以只能△CBP∽△DBC,列比例式可得BP的长,从而得点P的坐标;(3)连接AC,过E作EH⊥BD于H,先根据勾股定理的逆定理证明△ABC是直角三角形,且∠ACB=90°,由等角三角函数得tan∠ABC=tan∠EBD==,设EH=m,则BH=2m,表示E(2m,m+1),代入抛物线的解析式,可得结论.【解答】解:(1)∵点A在x轴的正半轴上,且与原点的距离为3,∴A(3,0),把A(3,0)代入抛物线y=ax2﹣4ax+3中得:0=9a﹣12a+3,∴a=1,∴抛物线的表达式为:y=x2﹣4x+3,y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1);(2)当y=1时,x2﹣4x+3=1,解得:x1=2﹣,x2=2+,由题意得:D(2+,1),∵B(0,1),C(2,﹣1),∴BC==2,BD=2+,∵∠DBC=∠PBC=45°,且相似比不为1,只能△CBP∽△DBC,∴,即,∴BP=8﹣4,∴P(0,4﹣7);(3)连接AC,过E作EH⊥BD于H,由旋转得:∠CBD=∠ABE,∴∠EBD=∠ABC,∵AB2=32+12=10,BC2=22+22=8,AC2=12+12=2,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠ACB=90°,∴tan∠ABC==,∴tan∠EBD==,设EH=m,则BH=2m,∴E(2m,m+1),∵点E在抛物线上,∴(2m)2﹣4×2m+3=m+1,4m2﹣9m+2=0,解得:m1=2,m2=(舍),∴E(4,3).2.【分析】(1)设抛物线C2的函数解析式为y=x2+bx+c,把A、B的坐标代入上式,即可求解;(2)S=S△OAP+S△OEP=(﹣m2﹣2m+3)+×3(﹣m)即可求解;(3)分、,两种情况分别求解即可.【解答】解:(1)设抛物线C2的函数解析式为y=x2+bx+c,把A、B的坐标代入得,解得:,故抛物线C2的函数解析式为y=x2+2x﹣3;(2)连接OP,作PH⊥x轴,作PQ⊥y轴,把P(m,n)代入y=x2+2x﹣3得n=m2+2m ﹣3,由抛物线y=x2+2x﹣3得:点E(0,﹣3),则S=S△OAP+S△OEP=(﹣m2﹣2m+3)+×3(﹣m)=﹣(m+)2+,所以四边形OAPE的面积最大值是;(3)由y=x2+2x﹣3得对称轴是直线x=﹣1,所以D(﹣1,1),则DF=OF=1,则△DOF为等腰直角三角形,∴∠DOF=∠ODF=45°,OD=,BD=,∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当时,以M、O、D为顶点的三角形与△BOD相似.①,则解得DM=2,此时点M坐标为(﹣1,3);②若,则解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).3.【分析】(1)利用对称性和待定系数法求函数关系式;(2)分类讨论三角形相似情况即可;(3)由已知,满足条件的Q点在以A、D、F(﹣1,﹣1)的圆E在第三象限的部分,连接CE交圆于Q,则CQ最小.【解答】解:(1)由已知,点A坐标为(﹣3,0)∵直线x=﹣1为对称轴∴点C坐标为(1,0)∴抛物线解析式为:y=(x+3)(x﹣1)=x2+2x﹣3(2)存在由已知点D坐标为(﹣1,0)设点P的横坐标为(a,﹣a﹣1)当△AOB∽△ADP时∴a=﹣1点P坐标为(﹣1,)当△AOB∽△APD时过点P作PE⊥x轴于点E则△APE∽△APDE∴PE2=AE•ED∴(﹣a﹣1)2=(a+3)(﹣a﹣1)解得a1=﹣3(舍去),a2=﹣∴点P坐标为(﹣,﹣)(3)存在,CQ最小值为如图,取点F(﹣1,﹣1),过点ADF作圆,则点E(﹣2,﹣)为圆心.∵tan∠AFD=2∴(A、D除外)上的点都是满足条件的Q点.连CE交⊙E于点Q,则CQ为满足条件的最小值此时CE=,⊙E半径为∴CQ最小值为4.【分析】(1)根据题意求得点A、C的坐标,将它们分别代入函数解析式,列出关于系数b、c的方程组,通过解方程组求得它们的值;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F.利用三角形的面积公式得到二次函数关系式,由二次函数最值的求法解答;(3)需要分类讨论:①当∠DCE=∠BCO时,∠DCE=∠OAC;②当∠DCE=∠CBO 时,∠DCE=∠OCA.根据相似三角形的对应边成比例求得相关线段的长度,从而得到点D的坐标.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于点A、C,∴A(4,0),C(0,2),OA=4,OC=2,(1分)将A(4,0),C(0,2)分别代入y=﹣+bx+c中,解得,∴y=﹣+x+2;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F,设D(t,﹣t2+t+2),其中0<t<4,则F(t,﹣t+2)∴DF=﹣t2+t+2﹣(﹣t+2)=﹣t2+2tS△ACD=S△CDF+S△ADF=DF•OG+DF•AG=DF•(OG+AG)=DF•OA=×4×(﹣t2+2t)=﹣(t﹣2)2+4.∴当t=2时,S△ACD最大=4.(3)设y=0,则﹣t2+t+2=0,解得x1=4,x2=﹣1,∴B(﹣1,0),OB=1∵tan∠OCB==,tan∠OAC===∴∠OCB=∠OAC∴∠OCA=∠OBC;①当∠DCE=∠BCO时,∠DCE=∠OAC,∴CD∥OA,点D的纵坐标与点C纵坐标相等,令y=2,则﹣t2+t+2=2,解得x1=0,x2=3,∴D1(3,2);②如图2,当∠DCE=∠CBO时,∠DCE=∠OCA,将△OCA沿AC翻折得△MCA,点O的对称点为点M,过点M作MH⊥y轴于点H,AN⊥MH于点N,则CM=CO=2,AM=AO=4,设HM=m,MN=HN﹣HM=OA﹣HM=4﹣m,由∠AMC=∠AOC=∠ANM=∠MHC=90°易证△CHM∽△MNA,且相似比=,∴AN=2MH=2m,CH=MN=2﹣m,在Rt△CMH中,由勾股定理得:m2+(2﹣m)2=22,解得m1=0,m2=∴MH=,OH=,M(,).设直线CM的表达式为y=kx+n,则,解得,∴y=x+2,由解得,∴D2(,)综上所述,点D的坐标为D1(3,2)、D2(,).5.【分析】(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),则点E坐标为(m,﹣m2﹣3m+4),从而得出OC=﹣m、OF=﹣m2﹣3m+4、BF=﹣m2﹣3m,根据S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF 得出S=﹣2(m+2)2+8,据此可得答案;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.【解答】解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4.(2)如图,连接AE、过点E作EF⊥y轴于点F,设点C坐标为(m,0)(m<0),则点E坐标为(m,﹣m2﹣3m+4),则OC=﹣m,OF=﹣m2﹣3m+4,∵OA=OB=4,∴BF=﹣m2﹣3m,则S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF=×(﹣m+4)(﹣m2﹣3m+4)﹣×4×4﹣×(﹣m)×(﹣m2﹣3m).=﹣2m2﹣8m=﹣2(m+2)2+8,∵﹣4<m<0,∴当m=﹣2时,S取得最大值,最大值为8.即△ABE面积的最大值为8.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).6.【分析】(1)设交点式y=a(x+1)(x﹣4),再展开可得到﹣4a=2,解得a=﹣,然后写出抛物线解析式;(2)①作PN⊥x轴于N,交BC于M,如图,先利用待定系数法求出直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),则M(t,﹣t+2),用t表示出PM=﹣t2+2t,再证明△PQM∽△BOC,利用相似比得到PQ=﹣t2+t,然后利用二次函数的性质解决问题;②讨论:当∠PCQ=∠OBC时,△PCQ∽△ABC,PC∥x轴,利用对称性可确定此时P点坐标;当∠CPQ=∠OBC时,△CPQ∽△ABC,则∠CPQ=∠MPQ,所以△PCM为等腰三角形,则PC=PM,利用两点间的距离公式得到t2+(﹣t2+t+2﹣2)2=(﹣t2+2t)2,然后解方程求出t得到此时P点坐标.【解答】解:(1)抛物线解析式为y=a(x+1)(x﹣4),即y=ax2﹣3ax﹣4a,则﹣4a=2,解得a=﹣,所以抛物线解析式为y=﹣x2+x+2;(2)①作PN⊥x轴于N,交BC于M,如图,BC==2,当x=0时,y=﹣x2+x+2=2,则C(0,2),设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)得,解得,∴直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),则M(t,﹣t+2),∴PM=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,∵∠NBM=∠NPQ,∴△PQM∽△BOC,∴=,即PQ=,∴PQ=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,线段PQ的最大值为;②当∠PCQ=∠ABC时,△PCQ∽△ABC,此时PC∥OB,点P和点C关于直线x=对称,∴此时P点坐标为(3,2);当∠CPQ=∠OBC时,△CPQ∽△ABC,∵∠OBC=∠NPQ,∴∠CPQ=∠MPQ,而PQ⊥CM,∴△PCM为等腰三角形,∴PC=PM,∴t2+(﹣t2+t+2﹣2)2=(﹣t2+2t)2,解得t=,此时P点坐标为(,),综上所述,满足条件的P点坐标为(3,2)或(,).7.【分析】(1)根据抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,可以求得A、B、C三点的坐标,从而可以求得OA、OC、AC的长,进而可以得到cos∠CAO 的值;(2)根据点A、C两点的坐标,可以求得直线AC的函数关系式;(3)根据第三问的条件,可知符合要求的三角形OP A存在三种情况,然后分别画出相应的图形,即可求得点P的坐标.【解答】解:(1)∵抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,∴x2﹣4x+3=0,得x=1或x=3,x=0时,y=3,∴点A的坐标为(1,0),点B的坐标为(3,0),点C的坐标为(0,3),∴OA=1,OC=3,∴,∴cos∠CAO=;(2)设直线AC的解析式为:y=kx+b,∵点A的坐标为(1,0),点C的坐标为(0,3),∴解得k=﹣3,b=3.即直线AC的解析式为:y=﹣3x+3;(3)如果有动点P是y轴上,且△OP A与△OAC相似,则有如下三种情况,第一种情况如下图1所示,当∠OP A=∠OCA,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),∴OP=OC=3,∴点P的坐标为(0,﹣3);第二种情况如下图2所示,点P位于y轴正半轴,当∠OP A=∠OAC,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),点A的坐标为(1,0),∴OA=1,OC=3,即点P的坐标为(0,);第三种情况如下图3所示,点P位于y轴负半轴,当∠OP A=∠OAC,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),点A的坐标为(1,0),∴OA=1,OC=3,∴,即点P的坐标为(0,﹣).由上可得,点P的坐标为:(0,﹣3),(0,),(0,﹣).8.【分析】(1)根据题意把点A(﹣1,0),B(2,0)代入二次函数解析式,得到b和c 的二元一次方程组,求出b和c的值即可;(2)设E(a,b),且a>0,b>0,首先用a和b表示出S四边形ABEC,再结合点E在二次函数的图象上,得到S四边形ABEC=﹣a2+2a+3,即可求解;(3)首先画出图形,以C,D,M为顶点的三角形与△AOC相似,得到,或,根据n的取值范围求出m的值即可.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象与x轴相交于点A(﹣1,0),B(2,0),∴,∴二次函数的解析式为y=﹣x2+x+2.(2)如图1.∵二次函数的解析式为y=﹣x2+x+2与y轴相交于点C,∴C(0,2).设E(a,b),且a>0,b>0.∵A(﹣1,0),B(2,0),∴OA=1,OB=2,OC=2.则S四边形ABEC==1+a+b,∵点E(a,b)是第一象限的抛物线上的一个动点,∴b=﹣a2+a+2,∴S四边形ABEC=﹣a2+2a+3=﹣(a﹣1)2+4,当a=1时,b=2,∴当四边形ABEC的面积最大时,点E的坐标为(1,2),且四边形ABEC的最大面积为4.(3)如图2.设M(m,n),且m>0.∵点M在二次函数的图象上,∴n=﹣m2+m+2.∵⊙M与y轴相切,切点为D,∴∠MDC=90°.∵以C,D,M为顶点的三角形与△AOC相似,∴,或.①当n>2时,或,解得m1=0(舍去),m2=,或m3=0(舍去),m4=﹣1(舍去).②同理可得,当n<2时,m1=0(舍去),m2=,或m3=0(舍去),m4=3.综上,满足条件的点M的坐标为(,),(,),(3,﹣4).9.【分析】(1)把点A、B的坐标代入二次函数解析式,利用待定系数法求二次函数解析式解答;(2)先求出点C的坐标,再利用待定系数法求出直线AC的解析式,然后判断出平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,再联立直线与二次函数解析式,消掉y,利用根的判别式Δ=0时方程只有一个根求解即可;(3)设点E的横坐标为c,表示出BE、QE,然后根据相似三角形对应边成比例,分OA 和BE,OA和QE是对应边两种情况列出比例式求解即可.【解答】解:(1)∵二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,∴,解得,∴二次函数的解析式为y=﹣x2﹣x+2;(2)令x=0,则y=2,∴点C(0,2),设直线AC的解析式为y=kx+m(k≠0),则,解得,∴直线AC的解析式为y=x+2,由三角形的面积可知,平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,此时设过点P的直线为y=x+n,联立,消掉y得,﹣x2﹣x+2=x+n,整理得,2x2+6x﹣6+3n=0,△=62﹣4×2×(﹣6+3n)=0,解得n=,此时x1=x2=﹣=﹣,y=×(﹣)+=,∴点P(﹣,)时,△ACP的面积最大;(3)存在点Q(﹣2,2)或(﹣,)使以点B、Q、E为顶点的三角形与△AOC 相似.理由如下:设点E的横坐标为c,则点Q的坐标为(c,﹣c2﹣c+2),BE=1﹣c,①OA和BE是对应边时,∵△BEQ∽△AOC,∴=,即=,整理得,c2+c﹣2=0,解得c1=﹣2,c2=1(舍去),此时,﹣×(﹣2)2﹣×(﹣2)+2=2,点Q(﹣2,2);②OA和QE是对应边时,∵△QEB∽△AOC,∴=,即=,整理得,4c2﹣c﹣3=0,解得c1=﹣,c2=1(舍去),此时,﹣×(﹣)2﹣×(﹣)+2=,点Q(﹣,),综上所述,存在点Q(﹣2,2)或(﹣,)使以点B、Q、E为顶点的三角形与△AOC相似.10.【分析】(1)利用A(﹣1,0)、点B(0,﹣5)代入解析式求出即可;(2)利用轴对称图形的性质得出P点位置,进而得出直线BC的解析式,进而求出P点坐标;(3)利用相似三角形的性质利用对应边不同分别得出E点坐标即可.【解答】解:(1)根据题意,得,解得,故二次函数的表达式为y=x2﹣4x﹣5;(2)令y=0,得二次函数y=x2﹣4x﹣5的图象与x轴的另一个交点坐标C(5,0).由于P是对称轴x=2上一点,连接AB,由于AB==,要使△ABP的周长最小,只要P A+PB最小.由于点A与点C关于对称轴x=2对称,连接BC交对称轴于点P,则P A+PB=BP+PC=BC,根据两点之间,线段最短,可得P A+PB的最小值为BC=5,故△ABP的周长最小值为:+5.因为BC与对称轴x=2的交点P就是所求的点.设直线BC的解析式为y=kx+b,根据题意,可得:,解得,所以直线BC的解析式为y=x﹣5.因此直线BC与对称轴x=2的交点坐标是方程组的解,解得,所求的点P的坐标为(2,﹣3).(3)存在.∵A(﹣1,0),C(5,0),∴AC=6,∵P(2,﹣3),C(5,0),∴PC=3,∵B(0,﹣5),C(5,0),∴BC=5,当△PEC∽△ABC,∴=,∴=,解得:EC=5,∴E(0,0);当△EPC∽△ABC,∴=,∴=,解得:EC=3.6,∴OE=5﹣3.6=1.4,故E点坐标为:(1.4,0),综上所述:以C、P、E为顶点的三角形与三角形ABC相似,点E的坐标为:(0,0),(1.4,0).11.【分析】(1)首先设二次函数的解析式为y=a(x﹣1)2﹣2,由A点坐标为(3,0),则可将A点的坐标代入函数解析式,利用待定系数法即可求得这个二次函数的解析式;(2)首先利用待定系数法求得直线AB的解析式,然后由P在直线上,将x代入直线方程,即可求得P的纵坐标,又由E在抛物线上,则可求得E的纵坐标,它们的差即为PE 的长;(3)分别从当∠EDP=90°时,△AOB∽△EDP与当∠DEP=90°时,△AOB∽△DEP 两种情况去分析,注意利用相似三角形的对应边成比例等性质,即可求得答案,注意不要漏解.【解答】解:(1)设二次函数的解析式为y=a(x﹣1)2﹣2,∵A(3,0)在抛物线上,∴0=a(3﹣1)2﹣2∴a=,∴y=(x﹣1)2﹣2,(2)抛物线与y轴交点B的坐标为(0,),设直线AB的解析式为y=kx+m,∴,∴,∴直线AB的解析式为y=x﹣.∵P为线段AB上的一个动点,∴P点坐标为(x,x﹣).(0<x<3)由题意可知PE∥y轴,∴E点坐标为(x,x2﹣x﹣),∵0<x<3,∴PE=(x﹣)﹣(x2﹣x﹣)=﹣x2+x,(3)由题意可知D点横坐标为x=1,又D点在直线AB上,∴D点坐标(1,﹣1).①当∠EDP=90°时,△AOB∽△EDP,∴.过点D作DQ⊥PE于Q,∴x Q=x P=x,y Q=﹣1,∴△DQP∽△AOB∽△EDP,∴,又OA=3,OB=,AB=,又DQ=x﹣1,∴DP=(x﹣1),∴,解得:x=﹣1±(负值舍去).∴P(﹣1,)(如图中的P1点);②当∠DEP=90°时,△AOB∽△DEP,∴.由(2)PE=﹣x2+x,DE=x﹣1,∴,解得:x=1±,(负值舍去).∴P(1+,﹣1)(如图中的P2点);综上所述,P点坐标为(﹣1,)或(1+,﹣1).12.【分析】(1)运用待定系数法把点A、B、C的坐标代入求解即可;(2)连接BC与对称轴的交点即为点H,此时AH+CH=BH+CH=BC最小,故△AHC 周长最小,运用待定系数法求得直线BC的解析式为y=﹣x+3,即可求得答案;(3)当以B、E、G为顶点的三角形与△AOC相似时,分两种情况:①△BEG∽△AOC,②△GEB∽△AOC,分别利用相似三角形性质建立方程求解即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴抛物线的对称轴为直线x=﹣=1,∵点A(﹣1,0)和点B(3,0)关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH=BH+CH=BC最小,如图,∴AC+AH+CH=AC+BH最小,即△AHC周长最小,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,∵当x=1时,y=﹣1+3=2,∴点H的坐标为(1,2);(3)存在.理由如下:由题意得:OA=1,OC=3,∵抛物线对称轴为直线x=1,∴E(1,0),设G(1,m),则EG=|m|,∵B(3,0),∴BE=3﹣1=2,当以B、E、G为顶点的三角形与△AOC相似时,①△BEG∽△AOC,∴=,即=,∴|m|=6,解得:m=±6,∴点G的坐标为(1,6)或(1,﹣6);②△GEB∽△AOC,∴=,即=,∴|m|=,解得:m=±,∴点G的坐标为(1,)或(1,﹣);综上所述,以B、E、G为顶点的三角形与△AOC相似时,点G的坐标为(1,6)或(1,﹣6)或(1,)或(1,﹣).13.【分析】(1)由OA和OB的长得到点A和点B的坐标,然后用待定系数法求得抛物线的解析式;(2)先求得点C的坐标得到OC的长,然后求得直线m与坐标轴的两个交点的坐标,最后利用相似三角形的性质分类讨论求得k的值;(3)先求得直线AC的解析式,过点D作DE⊥x轴,交AC于点E,设点D的坐标得到点E的坐标,从而表示出△ACD的面积,再求得△ABC的面积,从而列出方程求得点D 的坐标,最后求得△COD的面积.【解答】(1)解:∵OA=4,OB=2,∴A(﹣4,0),B(2,0),将点A和点B的坐标代入y=ax2+bx+8,得,解得:,∴抛物线的解析式为y=﹣x2﹣2x+8.(2)对y=﹣x2﹣2x+8,令x=0,得y=8,∴点C的坐标为(0,8),∴OC=8,对直线y=kx+8,当x=0时,y=8,当y=0时,x=﹣,∴直线y=kx+8与y轴的交点为点C(0,8),与x轴的交点为(﹣,0),记为点M,∴OM=|﹣|,如图1,当△MOC∽△BOC时,∴=1,∴MO=BO=2,∴M1(﹣2,0),代入y=kx+8中,得﹣2k+8=0,解得:k=4;当△MOC∽△COB时,,∴==4,∴MO=32,∴M2(﹣32,0),M3(32,0),分别代入y=kx+8中,得﹣32k+8=0或32k+8=0,解得:k=或k=﹣;综上所述,k=4或k=或k=﹣.(3)设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=2x+8,如图2,当点D在AC之间的抛物线上时,过点D作DE⊥x轴,交AC于点E,设点D的坐标为(x,﹣x2﹣2x+8),则点E的坐标为(x,2x+8),∴DE=﹣x2﹣2x+8﹣(2x+8)=﹣x2﹣4x,∴S△ACD=S△AED+S△ECD==,∴S△ACD==﹣2x2﹣8x,∵OA=4,OB=2,OC=8,∴S△ABC==24,又∵S△ACD=S△ABC,∴﹣2x2﹣8x=×24,解得:x=﹣2+或x=﹣2﹣,∵S△COD=,∴S△COD==8﹣4或S△COD==8+4;如图3,当点D在点A左侧抛物线上时,过点D作DE⊥x轴,交AC于点E,设点D的坐标为(x,﹣x2﹣2x+8),则点E的坐标为(x,2x+8),∴DE=2x+8﹣(﹣x2﹣2x+8)=x2+4x,∴S△ACD=S△ECD﹣S△AED==,∴S△ACD==2x2+8x,∵OA=4,OB=2,OC=8,∴S△ABC==24,又∵S△ACD=S△ABC,∴2x2+8x=×24,解得:x=﹣2﹣或x=﹣2+(舍),∵S△COD=,∴S△COD==8+4;综上所述,△COD的面积为8﹣4或8+4或8+4.14.【分析】(1)把A(1,0)代入y=a(x﹣2)2+1即可求解;(2)作A点关于直线BC的对称点A',连接A'D交BC于点E,连接AE,A'B,当A'、D、E三点共线时,△ADE的周长最小,求出A'(3,﹣2),再求A'D=,AD=,即可求解;(3)分三种情况讨论:①当∠CMP=90°时,过点M作MG⊥y轴交于点G,过点P作PH⊥y轴交于点H,可得△GCM∽△HPC,设M(t,t﹣3),当∠CPM=∠ACO时,=,则P(3t,﹣3﹣3t),可求P(5,﹣8);当∠CMP=∠ACO时,=3,可求P(5,﹣8);②当∠CMP=90°时,过点M作EF∥x轴,交y轴于点E,过点P作PF ⊥EF交于点F,证明△ECM∽△FMP,设M(t,t﹣3),则P(4t,﹣2t﹣3),可求P (,﹣);当∠CMP=∠OCA时,=3,则P(t,t﹣3),可求P(,﹣);③当∠CPM=90°时,过点P作KL⊥y轴交于点L,过点M作MK⊥LK交于K 点,证明△CLP∽△PKM,设P(m,﹣m2+4m﹣3),则M(3m2﹣11m,﹣m2+7m﹣3),可求P(,﹣);当∠MCP=∠OCA时,=3,M(m2﹣m,﹣m2+m﹣3),可求P(,﹣).【解答】解:(1)把A(1,0)代入y=a(x﹣2)2+1得:a+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+4x﹣3,在y=﹣x2+4x﹣3中,令x=0得y=﹣3,∴C(0,﹣3);(2)设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣3,作A点关于直线BC的对称点A',连接A'D交BC于点E,连接AE,A'B,∴AE+DE+AD=A'E+DE+AD≥A'D+DE,当A'、D、E三点共线时,△ADE的周长最小,∵OB=OC,∴∠OBC=45°,∴∠ABA'=90°,∵AB=A'B,∴A'(3,﹣2),∵D(2,1),∴A'D=,AD=,∴△ADE周长的最小值为+;(3)存在以P,M,C为顶点的三角形与△AOC相似,理由如下:∵A(1,0),C(0,﹣3),∴OA=1,OC=3,∴tan∠OCA=,①当∠CMP=90°时,过点M作MG⊥y轴交于点G,过点P作PH⊥y轴交于点H,∴∠GCM+∠HCP=90°,∵∠GCM+∠GMC=90°,∴∠HCP=∠GMC,∴△GCM∽△HPC,∴==,设M(t,t﹣3),∴GM=t,GC=t,当∠CPM=∠ACO时,=,∴CH=3t,HP=3t,∴P(3t,﹣3﹣3t),∴﹣3﹣3t=﹣9t2+12t﹣3,解得t=0(舍)或t=,∴P(5,﹣8);当∠CMP=∠ACO时,=3,∴CH=t,HP=t,∴P(t,﹣3﹣t),∴﹣3﹣t=﹣t2+t﹣3,解得t=0(舍)或t=15,∴P(5,﹣8);②当∠CMP=90°时,过点M作EF∥x轴,交y轴于点E,过点P作PF⊥EF交于点F,∴∠EMC+∠FMP=90°,∵∠EMC+∠ECM=90°,∴∠FMP=∠ECM,∴△ECM∽△FMP,∴==,设M(t,t﹣3),∴EM=EC=t,当∠CPM=∠OCA时,=,∴MF=FP=3t,∴P(4t,﹣2t﹣3),∴﹣2t﹣3=﹣16t2+16t﹣3,解得t=0(舍)或t=,∴P(,﹣);当∠CMP=∠OCA时,=3,∴MF=FP=t,∴P(t,t﹣3),∴﹣t﹣3=﹣t2+t﹣3,解得t=0(舍)或t=,∴P(,﹣);③如图3,当∠CPM=90°时,过点P作KL⊥y轴交于点L,过点M作MK⊥LK交于K点,∴∠CPL+∠MPK=90°,∵∠CPL+∠PCL=90°,∴∠MPK=∠PCL,∴△CLP∽△PKM,∴==,设P(m,﹣m2+4m﹣3),∴LP=m,CL=m2﹣4m,当∠CMP=∠OCA时,=,∴MK=3m,PK=3m2﹣12m,∴M(3m2﹣11m,﹣m2+7m﹣3),∴﹣m2+7m﹣3=3m2﹣11m﹣3,解得m=0(舍)或m=,∴P(,﹣);当∠MCP=∠OCA时,=3,∴MK=m,PK=m2﹣m,∴M(m2﹣m,﹣m2+m﹣3),∴﹣m2+m﹣3=m2﹣m﹣3,解得m=0(舍)或m=,∴P(,﹣);综上所述:P点坐标为(5,﹣8)或(,﹣)或(,﹣)或(,﹣)或(,﹣).15.【分析】(1)过点C作CE⊥x轴于点E,先求得点C的坐标,然后由点B和点D的坐标设函数的交点式,再将点C的坐标代入求得函数的解析式即可;(2)过点P作PH⊥x轴,交BC于点H,先求得直线BC的解析式,再设点P的坐标,得到点H的坐标,然后求得△PBC的面积,结合点B、C、D求得△BCD的面积,从而求得四边形PBDC的面积,最后由二次函数的性质求得四边形PBDC的面积最大值,及点P的坐标;(3)①分别求得tan∠ABO和tan∠CDE的大小,从而得到∠ABO=∠CDE,然后得证CD∥AB;②由∠ABO=∠CDE,∠ABC=90°得到BC⊥CD,即∠BCD=90°,由旋转得BC=AB,然后分情况讨论,(i)△BCM∽△AOB;(ii)△BCM∽△BOA,先由相似三角形的性质求得CM的长,再求得直线CD的解析式,设点M的坐标,借助两点间的距离公式求得点M的坐标即可.【解答】(1)解:如图1,过点C作CE⊥x轴于点E,则∠BEC=∠AOB=90°,由旋转得,∠ABC=90°,AB=CB,∴∠ABO+∠CBE=90°,∵∠ABO+∠OAB=90°,∴∠CBE=∠OAB,∴△AOB≌△BEC(AAS),∴BE=AO,CE=OB,∵点A(0,2),B(1,0),∴BE=2,CE=1,∴点C的坐标为(3,1),由点B(1,0),点D(3.5,0)可设函数的解析式为y=a(x﹣1)(x﹣3.5),将点C(3,1)代入,得a(3﹣1)×(3﹣3.5)=1,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)(x﹣3.5)=﹣x2+x﹣.(2)解:过点P作PH⊥x轴,交BC于点H,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x﹣,设点P的坐标为(x,﹣x2+x﹣),则点H的坐标为(x,x﹣),∴PH=﹣x2+x﹣﹣x+=﹣x2+4x﹣3=﹣(x﹣2)2+1,∵S△PBC=S△PBH+S△PCH=,∴S△PBC=×2×[﹣(x﹣2)2+1]=﹣(x﹣2)2+1,∵B(1,0),C(3,1),D(3.5,0),∴BD=2.5,CE=1,∴S△BCD==,∴S四边形PBDC=S△PBC+S△BCD=﹣(x﹣2)2+1+=﹣(x﹣2)2+,∴当x=2时,四边形PBDC的面积最大值为,此时,点P的坐标为(2,).(3)①证明:由(1)得,AO=BE=2,BO=CE=1,BD=2.5,∴tan∠ABO=,ED=BD﹣BE,2.5﹣2=0.5,∴tan∠CDE==2,∴∠ABO=∠CDE,∴CD∥AB.②解:∵∠ABC=90°,∴∠ABO+∠CBD=90°,由①得,∠ABO=∠CDB,∴∠CBD+∠CDB=90°,∴∠BCD=90°,由旋转得,BC=AB==,设直线CD的解析式为y=mx+n,则,解得:,∴直线CD的解析式为y=﹣2x+7,设点M(x,﹣2x+7),则CM=,如图2,(i)当△BCM∽△AOB时,,∴,∴CM=,∴=,解得:x1=,x2=,∴点M1(,2),M2(,0);(ii)当△BCM∽△BOA时,,∴,∴CM=2,∴=2,解得:x3=1,x4=5,∴点M3(1,5),M4(5,﹣3);综上所述,当点M的坐标为(,2)或(,0)或(1,5)或(5,﹣3)时,△MBC 与△AOB相似.16.【分析】(1)根据线段关系求出A点、B点、C点的坐标,用待定系数法求出解析式即可;(2)求出直线AB的解析式,设出D点坐标,得出DE的表达式,根据二次函数的性质求出最大值即可;(3)根据(2)设出P点的坐标,分请款根据线段比例关系求出P点的坐标即可.【解答】解:(1)∵4CO=2BO=OA=4,∴OA=4,OB=2,OC=1,即A(4,0),B(0,2),C(﹣1,0),设抛物线的解析式为y=ax2+bx+c,∵抛物线与坐标轴交于A,B,C三点,∴,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知A(4,0),B(0,2),设直线AB的解析式为y=kx+d,∴,解得,∴直线AB的解析式为y=﹣x+2,设D(t,﹣t+2),则E(t,﹣t2+t+2),∴DE=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t=﹣(t﹣2)2+2,∴当t=2时DE有最大值,最大值为2,即D点坐标为(2,1)时,DE有最大值为2;(3)存在,由(2)知F点和P点的横坐标为2,OA=4,OB=2,OC=1,∴F(2,0),AB==2,BC==,AC=4+1=5,。

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。

专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)

专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)

专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。

初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决

初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决

初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决动点问题一直是初中热点,近几年往往考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

今天老师针对初中数学的二次函数及动点问题整理了这篇文章,并通过中考真题的详细讲解让同学们掌握所有知识点。

内容较长,由于篇幅限制,上传不完整,老师已整理好word打印版,需要的同学或家长可以在文末免费获取。

也可以关注后,发送私信“学习”来免费领取。

动点问题题型方法归纳总结动态几何特点——问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)共同点:1.特殊四边形为背景2.点动带线动得出动三角形;3.探究动三角形问题(相似、等腰三角形、面积函数关系式);4.求直线、抛物线解析式;5.探究存在性问题时,先画出图形,再根据图形性质探究答案。

解法四:数学往往有两个思考方向:代数和几何,有时可以独立思考,有时需要综合运用。

代数讨论:计算出△PQB三边长度,均用 t 表示,在讨论分析R t△PHQ中用勾股定理计算PQ长度,而PB、BQ长度都可以直接用 t 表示,进行分组讨论即可计算。

点评:此题综合性较强,涉及函数、相似性等代数、几何知识,1,2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的事在进行讨论并且得出结论后应当检验,在本题中若求出的 t 值与题目中的0<t<1矛盾,应舍去点评:这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题。

由于文章篇幅限制,完整word版老师已整理好,内容免费获取方式如下:关注后,发送私信“学习”即可免费获取。

除以上内容,老师还整理了关于初中数学各模块题型的精讲,上面展示的题型库+配套练习,课堂中关于如何学好数学的视频课,希望你们认真领会并按照课程中所讲坚持下去,必见成效。

中考数学总复习《二次函数与三角形》综合题(含答案)

中考数学总复习《二次函数与三角形》综合题(含答案)

二次函数与三角形一 、填空题(本大题共2小题)1.已知二次函数交轴于,两点,交轴于点,且是等腰三角形,请写出一个符合要求的二次函数的解析式 .2.二次函数的图象的顶点为,与轴正方向从左至右依次交于,两点,与轴正方向交于点,若和均为等腰直角三角形(为坐标原点),则 .二 、解答题(本大题共9小题)3.如图,抛物线与轴交与,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴与点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?,若存在,求出点的坐标及的面积最大值.若没有,请说明理由.4.如图,已知二次函数的图象经过点、和原点.为二次函数图象上的一个动点,过点作轴的垂线,垂足为,并与直线交于点.2y ax bx c =++x A B y C ABC △2y x bx c =++D x A B y C ABD △OBC △O 2b c +=2y x bx c =-++x ()10A ,()30B -,y C Q QAC △Q P PBC △P PBC△()33A ,()40B ,O P P x ()0D m ,OA C(1)求出二次函数的解析式;(2)当点在直线的上方时,求线段的最大值;(3)当时,探索是否存在点,使得为等腰三角形,如果存在,求出的坐标;如果不存在,请说明理由.5.已知二次函数22(2)4y m x mx n =--+的图象的对称轴是直线2x =,且它的最高点在直线 112y x =+上. ⑴ 求此二次函数的解析式;⑵ 若此二次函数的图象开口方向不变,定点在直线112y x =+上移动到M 点时,图象与x 轴恰好交于A 、B 两点,且8ABM S ∆=,求这时的二次函数的解析式.6.已知二次函数212y x bx c =++的图象经过点(36)A -,并且与x 轴相交于点(10)B -,和点C ,顶点为P(1)求二次函数的解析式;(2)设D 为线段OC 上一点,满足DPC BAC ∠=∠,求点D 的坐标P OA PC m >0P PCO △P7.如图,已知二次函数图象的顶点为原点,直线的图象与该二次函数的图象交于点,直线与轴的交点为,与轴的交点为. (1)求点的坐标与这个二次函数的解析式;(2)为线段上的一个动点(点与、不重合),过点作轴的垂线与这个二次函数的图象交于点,与轴交于点.设该线段的长为,点的横坐标为,求与之间的函数解析式,并写出自变量的取值范围; (3)在(2)的条件下,在线段上是否存在点,使得以点、、为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.142y x =+A ()88,x C y B B P AB P A B P x D x E PD h P t h t t AB P P D B BOC △P8.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.9.已知二次函数图象的对称轴是直线,且过点.(1)求、的值;(2)求出该二次函数图象与轴的交点、的坐标;(3)如果某个一次函数图象经过坐标原点和该二次函数图象的顶点.问在这个一次函数图象上是否存在点,使得是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.10.如图,抛物线2122y x bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且()10A -,. (1)求抛物线的解析式及顶点D 的坐标;) (2)判断ABC △的形状,证明你的结论;(3)点(0)M m ,是x 轴上的一个动点,当MC MD +的值最小时,求m 的值.2y x bx c =++2x =()03A ,b c x B C O M P PBC △P11.如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线过、两点.(1) 直接写出点的坐标,并求出抛物线的解析式;(2) 动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒1个单位长度,运动时间为秒.过点作交于点.① 过点作于点,交抛物线于点当为何值时,线段最长? ② 连接.在点、运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值.ABCD ()40B ,()80C ,()88D ,2y ax bx =+A C A P A AB B Q C CD D t P PE AB ⊥AC E E EF PE ⊥F G t EG EQ P Q CEQ △t二次函数与三角形答案解析一 、填空题1.等(答案不唯一);∵二次函数交轴于,两点,交轴于点,且是等腰三角形∴当时,点坐标为只要不为即可.2.2;由已知,得、、、. 过作于点,则,即,得:. 又∵.又∵,即:,得:.故答案为:2.【解析】二次函数综合题.此题主要考查了二次函数与坐标轴交点的表示方法,以及等腰直角三角形的性质等知识,得出,是解决问题的关键.22y x =-2y ax bx c=++x A B y C ABC △AO BO =C 0C ()0c ,0A ⎫⎪⎪⎝⎭0B ⎫⎪⎪⎝⎭2424b b c D ⎛⎫--- ⎪⎝⎭,D DE AB ⊥E 2DE AB =2424b c-⨯=24b c -=02=240b c ->2OC OB =c =22b c +=2DE AB =二 、解答题3.(1)将,代中得,,∴∴抛物线解析式为:(2)存在理由如下:由题知、两点关于抛物线的对称轴对称. ∴直线与的交点即为点,此时周长最小∵ ∴C 的坐标为:∵直线解析式为:.∴点坐标即为的解,∴∴ (3)存在.理由如下:设点且 ∵,若有最大值,则就最大. ∴当时,.∴ 当时, ∴点坐标为【解析】二次函数与三角形综合,轴对称与线段和差最值问题,坐标与面积4.(1)设,把代入得:,函数的解析式为,()10A ,()30B -,2y x bx c =-++10930b c b c -++=⎧⎨--+=⎩23b c =-⎧⎨=⎩223y x x =--+A B 1x =-BC 1x =-Q QAC △223y x x =--+()03,BC 3y x =+Q 13x y x =-⎧⎨=+⎩12x y =-⎧⎨=⎩()12Q -,P ()223x x x --+,()30x -<<92BPC BOC BPCO BPCO S S S S =-=-△△四边形四边形BPCO S 四边形BPC S △=Rt BPE BPCO PEOC S S S +△四边形直角梯形()11=22BE PE OE PE OC ⋅++()()()()221132323322x x x x x x =+--++---++2339272228x ⎛⎫=-+++ ⎪⎝⎭32x =-927=+28BPCO S 四边形最大值927927=+2828BPC S -=△最大值32x =-215234x x --+=P 31524⎛⎫- ⎪⎝⎭,()4y ax x =-()33A ,1a =-24y x x =-+(2),,∵,开口向下,∴有最大值,当时,,当点在直线的上方时,线段的最大值是. (3)当时,仅有, 所以, 解得,∴; 当时,,, 由勾股定理得:,①当时,,解得:,∴; ②当时,,解得:,(舍去),∴;③当时,,解得:,∴,综上所述:存在,的坐标是或或或.5.(1)242y x x =-+-;(2)2(6)4y x =--+【解析】⑴ 由已知条件2222422(2)124(2)(4)1214(2)2mm m n m n m m ⎧=⎪-=-⎧⎪⇒⎨⎨=---⎩⎪=⋅+⎪⋅-⎩, ∴所求二次函数的解析式为242y x x =-+-. ⑵ 设定点1(1)2M a a +,,(0)A a t -,,(B a t +,0), 则所求二次函数形如2()12a y x a =--++, 又由已知8AMB S ∆=,∴182AB y ⋅=,03m <<2239324PC CD PD m m m ⎛⎫=-=-+=--+ ⎪⎝⎭-1<0302D ⎛⎫⎪⎝⎭,max 94PC =P OA PC 9403m <<OC PC=23m m -+=3m =(31P +3m ≥23PC CD PD m m =-=-+OC ()2222224OP OD DP m m m =+=+-OC PC=23m m -3m =(31P +-OC OP=)()22224m m m =+-15m =23m =()55P -,PC OP =()()2222234m m m m m -=+-4m =()40P ,P (31+(31-()55-,()40,∴2112(1)82226102t a t a a t ⎧⋅⋅+=⎪=⎧⎪⇒⎨⎨=⎩⎪-++=⎪⎩, ∴所求二次函数为2(6)4y x =--+.6.(1)21322y x x =--;(2)503⎛⎫⎪⎝⎭, 【解析】(1)函数图象经过点(36)(10)A B --,,,,∴2216(3)3210(1)2b cb c ⎧=⨯--+⎪⎪⎨⎪=⨯--+⎪⎩,解得312b c ⎧=-=-⎨⎩,。

2023年中考数学高频压轴题突破——二次函数与角度问题

2023年中考数学高频压轴题突破——二次函数与角度问题

2023年中考数学高频压轴题突破——二次函数与角度问题1.如图1,抛物线y=ax2﹣x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)若点P为直线BC下方的抛物线上一动点(不与点B,C重合),则△PBC的面积能够等于△BOC的面积吗?若能,求出相应的点P的坐标;若不能,请说明理由;(3)如图2,现把△BOC平移至如图所示的位置,此时三角形水平方向一边的两个端点点O′与点B′都在抛物线上,称点O′和点B′为△BOC在抛物线上的一“卡点对”;如果把△BOC旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出△BOC在已知抛物线上所有“卡点对”的坐标.2.如图,已知抛物线y=ax2+bx经过点A(4,0),点B是其顶点,∠AOB=45°,OC⊥OB交此抛物线于点C,动直线y=kx与抛物线交于点D,分别过点B、C作BE、CF垂直动直线y=kx于点E、F.(1)求此抛物线的解析式;(2)当直线y=kx把∠AOC分成的两个角的度数之比恰好为1:2时,求k的值;(3)BE+CF是否存在最大值?若存在,请直接写出此最大值和此时k的值;若不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求此抛物线的函数表达式;(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;(3)△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO1C1.当旋转后的△BO1C1有一边在直线BD上时,求△BO1C1不在BD上的顶点的坐标.4.如图1,在平面直角坐标系中,已知抛物线y=﹣x2﹣x+交x轴A,B两点,交y轴于点C,抛物线上一点D的横坐标为﹣5.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线分别交抛物线于点F,交x轴于点G.当折线段EF+BE最大时,在直线EF上任取点P,连接BP,以BP为斜边向上作等腰直角△BPQ,连接CQ、QG,求CQ+QG的最小值.(3)如图2,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBC′,现将△OBC′沿着x轴平移,平移后的△OBC′记为△O′B′C″,连接DO′、C′B,记C″B与x轴形成较小的夹角度数为α,当∠O′DB=α时,直接写出此时C″的坐标.5.如图1,抛物线与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数表达式;(2)如图1,抛物线上点D的横坐标为﹣4,且DD′⊥x轴于点D′,∠DBD′=300.点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当EF+EB取得最大值时,在抛物线对称轴上找一点P,使EP+FP的值最小,求:EP+FP的最小值及点P 的坐标;(3)如图2,在(2)的条件下,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBG,现将△OBG沿着x轴向左平移,△OBG平移后记为△MNK,连接DM、KB,记KB与x轴形成的较小夹角度数为θ,当∠MDB=θ时,求出此时K的坐标.6.如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A 在点B左侧),与y轴交于C点,点E在第一象限且四边形ACBE为矩形.(1)求∠BCE的度数;(2)如图2,F为线段BC上一动点,P为第四象限内抛物线上一点,连接CP、FP、BP、EF,M,N分别是线段CP,FP的中点,连接MN,当△BCP面积最大,且MN+EF最小时,求PF的长度;(3)如图3,将△AOC绕点O顺时针旋转一个角度α(0°<α<180°),点A,C的对应点分别为A',C',直线A'C'与x轴交于点G,G在x轴正半轴上且.线段KH 在直线A'C'上平移(K在H左边),且KH=5,△KHC是否能成为等腰三角形?若能,请求出所有符合条件的点K的坐标;若不能,请说明理由.7.如图,抛物线y=﹣x2+(m+2)x+与x轴交于A(﹣2﹣n,0),B(4+n,0)两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求此抛物线的解析式;(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;(3)将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.当旋转后的△BO′C′有一边与BD重合时,求△BO′C′不在BD上的顶点的坐标.8.如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣2分别与x轴交于A,B两点,与y轴交于C点,直线EF垂直平分线段BC,分别交BC于点E,y轴于点F.(1)判定△ABC的形状;(2)在线段BC下方的抛物线上有一点P,当△BCP面积最大时,点P沿适当的路径运动到直线AC上的点M处,再沿垂直于AC的方向运动到直线EF上的点N处,最后沿适当的路径运动到点B处停止运动,当点P的运动路径最短时,求点N的坐标及点P经过的最短路径长.(3)如图2,过点E作EH⊥x轴于点H,将△EHD绕点E逆时针旋转一个角度α(0°≤α≤90°),∠DEH的两边分别交BO,CO于点T,点K,当△KET为等腰三角形时,求此时KT的值.9.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).10.如图1,在平面直角坐标系中,已知抛物线y=﹣x2﹣x+交x轴于A,B两点,交y轴于点C,抛物线上一点D的横坐标为﹣5.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当折线EF+BE 最大时,在对称轴上找一点P,在y轴上找一点Q,连接QE、OP、PQ,求OP+PQ+QE 的最小值;(3)如图2,连接BC,把△OBC沿x轴翻折,翻折后的△OBC记为△OBC′,现将△OBC′沿着x轴平移,平移后△OBC′记为△O′B′C″,连接DO′、C″B,记C″B 与x轴形成较小的夹角度数为α,当∠O′DB=α时,求出此时C″的坐标.11.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y =x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△P AQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.12.已知:直线y=﹣x+3与x轴y轴分别交于点A、点B,抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线的解析式;(2)点C(0,2),点P(m,0)是线段OA上的一点(不与O、A重合),过点P作PM垂直x轴,交抛物线于点M,连接BM、AC、AM,设四边形ACBM的面积为S,求S与m的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,点D是线段OP的中点,连接BD,当S取最大值时,试求直线BD与AC所成的锐角度数.13.已知抛物线y=ax2﹣2ax+a﹣4与x轴分别交于A,B,与y轴交于C点,顶点为P.(1)直接写出此抛物线的对称轴.(2)连接BP,Q点是抛物线上一动点(不与P点重合),过Q点的直线y=﹣3x+b与直线BP相交所成的锐角为45度,求此抛物线的解析式;(3)平移(2)中的抛物线,使抛物线的顶点在直线CP上滑动,滑动之后的抛物线顶点记为点P',且与PC交于另一点R.若点M在直线AC上方,且为(2)中的抛物线上点,当以M,P',R三点为顶点的三角形是含30°角的直角三角形时,求出所有符合条件的M的坐标.14.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,M为抛物线的顶点,试在直线BC 上找一点N,使△MND的周长最小,求此时的N点坐标;(3)在(2)的条件下,在抛物线是上找一点P,使△PBD中有一个角为45度,求点P的坐标.14.如图,已知△ABO中,点B在x轴上,∠ABO=90°,点A(1,),把△ABO绕点A按逆时针方向旋转到△ACD的位置,使点O的对应点D在x轴上,抛物线以点A 为顶点且经过点C.(1)求旋转角∠OAD的度数,并求点C的坐标;(2)求出抛物线的解析式;(3)在抛物线的对称轴上是否存在一点P,使PC+PD的值最小?若存在,求出点P的坐标;若不存在,说明理由.16.张亮是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a>0)的性质时,将一把直角三角形的直角顶点平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得OA=OB=2,(如图1),求a的值;(2)对于同一条抛物线,张亮将三角板绕点O旋转到如图2位置时,过B作BD⊥x轴于点D,测得OD=1,写出此时点B的坐标,并求点A的横坐标;(3)对该抛物线,张亮将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.17.如图,直角∠AOB顶点置于平面直角系的原点O,两直角边与抛物线C1;y=﹣x2交于A,B两点.(1)∠AOB绕点旋转到如图位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时B 点的坐标,并求出点A的横坐标;(2)∠AOB绕点O旋转任意角度时,交点A,B的连线段总经过一个固定的点,试说明理由,并求出该点的坐标;(3)若将抛物线C1右移1个单位后在向上移2个单位得到抛物线C2,其顶点为G,与x轴交于M,N两点(M左N右),现已知点P(1,t)(t>0),是否存在实数t,使得以点P为圆心的⊙P恰好与线段MN和线段NG相切?若存在,求出t的值;若不存在,说明理由.18.把一块三角板置于平面直角坐标系中,三角板的直角顶点为P,两直角边与x轴交于A、B,如图1,测得P A=PB,AB=2.以P为顶点的抛物线y=﹣(x﹣2)2+k恰好经过A、B两点,抛物线的对称轴x=a与x轴交于点E.(1)填空:a=,k=,点E的坐标为;(2)设抛物线与y轴交于点C,过P作直线PM⊥y轴,垂足为M.如图2,把三角板绕着点P旋转一定角度,使其中一条直角边恰好过点C,另一条直角边与抛物线的交点为D,试问:点C、D、E三点是否在同一直线上?请说明理由.(3)在(2)的条件下,若Q(m,n)为抛物线上的一动点,连接CF、QC,过Q作QF⊥PM,垂足为F.试探索:是否存在点Q,使得△QCF是以QC为腰的等腰三角形?若存在,请求出m的值;若不存在,请说明理由.19.如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2).(1)抛物线y=﹣x2+bx+c经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA′B′C′,设A′C′的中点为点E,连接CE,当θ=°时,线段CE 的长度最大,最大值为.20.如图,二次函数y=﹣x2+bx+c的图象与x轴交于点B(﹣3,0),与y轴交于点C(0,﹣3).(1)求直线BC及二次函数的解析式;(2)设抛物线的顶点为D,与x轴的另一个交点为A.点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.参考答案:1.【分析】(1)分别把x=0,y=0代入一次函数表达式得:点C、B的坐标分别为(0,3)、(4,0),同理将点B、C的坐标代入二次函数表达式即可求解;(2)直线y=﹣x和直线BC平行,直线y=﹣x和抛物线的交点就是满足条件的点P,即可求解;(3)分O′B′在水平位置时、O′C′在水平位置时、B′C′在水平位置时,三种情况分别求解即可.【解答】解:(1)分别把x=0,y=0代入一次函数表达式得:点C、B的坐标分别为(0,3)、(4,0),将点B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣x+3;(2)直线y=﹣x和直线BC平行,直线y=﹣x和抛物线的交点就是满足条件的点P,则,解得:,即当(2,﹣)时,两个三角形面积相同;(3)抛物线的对称轴为:x=,①当O′B′在水平位置时,如图2所示,O′B′=4,则点B′和O′的横坐标分别为、,将横坐标代入二次函数表达式得:y=,故此时的“卡点对”坐标为(,)和(,);②当O′C′在水平位置时,O′C′=3,则点B′和O′的横坐标分别为4、1,将横坐标代入二次函数表达式得:y=0,故此时的“卡点对”坐标为(1,0)和(4,0);③当B′C′在水平位置时,同理可得:此时的“卡点对”坐标为(0,3)和(5,3);故抛物线上所有“卡点对”的坐标是(,)和(,)、(1,0)和(4,0)、(0,3)和(5,3).【点评】本题为二次函数综合运用题,涉及到一次函数、图形面积计算等知识点,其中(3),要注意分类求解,避免遗漏.2.【分析】(1)过点B作BH⊥x轴于点H,求出点B的坐标,用待定系数法可求出解析式;(2)先求出点C的坐标,分两种情况:∴①当∠AOD=30°时,过点D作DP⊥x轴于点P,可求出k的值;②当∠COD=30°时,如图,设CQ与OF的交点为K,过点D 作DP⊥x轴于点P,过点K作KN⊥OC于N,证明△ODP∽△OKQ,求出CN、CK、KQ 的长,则k的值可求出;(3)连接BC,由垂线段最短可知BE+CF≤BC,当且仅当直线y=kx与BC垂直,即点E、F重合时,BE+CF=BC,此时BE+CF取得最大值,可求出最大值和k的值.【解答】解:(1)∵A(4,0),∴OA=4,过点B作BH⊥x轴于点H,如图1,∴∠OHB=90°,OH=AH=2,∵∠AOB=45°,∴∠OBH=∠AOB=45°,∴OH=BH=2,∴点B的坐标为(2,﹣2),∴,解得,,∴此抛物线的解析式为y=;(2)如图2,过点C作CQ⊥x轴于点Q,∵OC⊥OB,∠AOB=45°,∴∠COA=∠AOB=45°,∴CQ=OQ,∴,解得,x1=0,x2=6,∴点C的坐标为(6,6),∵直线y=kx把∠AOC分成的两个角的度数之比恰好为1:2,∴①当∠AOD=30°时,过点D作DP⊥x轴于点P,k=,②当∠COD=30°时,如图3,设CQ与OF的交点为K,过点D作DP⊥x轴于点P,过点K作KN⊥OC于N,∴DP∥CQ,∠CNK=∠ONK=90°,∴,∴K=,又∵∠OCQ=45°,∴CN=KN,CK=,∴OC=ON+NC=()CN,∵∠BOC=90°,点B、C的坐标分别为(2,﹣2),(6,6)∠COF=∠AOB=45°,∴OB=,OC=,∴,∴CN=3,∴,∴KQ=CQ﹣CK=6﹣()=12﹣6,∴K=,(3)如图4,连接BC,由垂线段最短可知BE+CF≤BC,当且仅当直线y=kx与BC垂直,即点E、F重合时,BE+CF=BC,此时BE+CF取得最大值,∴BE+CF=,D点的坐标为(3,﹣1.5).k=﹣.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质,等腰直角三角形的性质,锐角三角函数及相似三角形的判定与性质等知识点.3.【分析】(1)将A、B两点的坐标代入抛物线y=﹣x2+bx+c,即可求b、c的值;(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,由条件可证得PC=PE=PB,证明△PCG≌△PBH,得出PG=PH,则P点坐标易求;(3)有两种可能:当BC1在直线BD上时,过点O1作O1M⊥OB,证明△MBO1∽△CBD,得出比例线段可求出BM、O1M的长,则点O1的坐标可求出;当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,可求出BN、NC1的长,则C1的坐标可求出.【解答】解:(1)把A(﹣1,0),B(3,0)两点代入y=﹣x2+bx+c,得:,解得b=2,c=3,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,(2)过点P作PH⊥x轴于H,PG⊥y轴于G,连接PB,设P(m,﹣m2+2m+3),易知C(0,3),∵OC=OB,∴∠OCB=∠OBC=45°,∵PC=PB,∴∠PBC=∠PCB,∴∠PCG=∠PBC,又∵PC=PB,∴Rt△PCG≌Rt△PBH(AAS),∴PG=PH,∴m=﹣m2+2m+3,解得:m=.∴P为()或();(3)如图2,当BC1在直线BD上时,过点O1作O1M⊥OB,由y=﹣x2+2x+3可得D(1,4).∴DC=,BC=3,DB=2,∴DC2+BC2=BD2,∴△BCD为直角三角形,且∠BCD=90°,∵∠DBC+∠CBO1=∠CBO1+∠ABO1=45°,∴∠ABO1=∠DBC,∴△MBO1∽△CBD,∴,即,∴BM=,,∴点O1的坐标为(3﹣),如图3,当BO1与BD重合时,过点B作x轴的垂线BN,过点C1作C1N⊥BN于点N,易证△NBC1∽△CBD,∴,∴,∴BN=,NC1=,则C1的坐标为(3+).【点评】本题考查了待定系数法求二次函数解析式、全等三角形的判定与性质、相似三角形的判定与性质、二次函数图象上点的坐标特征、勾股定理以及解一元二次方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用二次函数图象上点的坐标特征求出点P的坐标;(3)根据相似三角形的性质求出线段的长.4.【分析】(1)先求出点A、B、C的坐标,再由D点横坐标求出D点坐标,即可求解;(2)先通过折线段EF+BE最大,求出点E的坐标,再通过证明△PMQ≌△BNQ(AAS),确定四边形MQNG为正方形,得出MQ=MG,当C、M、Q三点共线,且QM⊥EF 时,CQ+QG取得最小值,即可求解;(3)利用△O′MD∽△C″O′B,求出线段OO′的长度,即可求解.【解答】解:(1)令y=0,则x=﹣4或1,令x=0,则y=,故:点A、B、C的坐标分别为(﹣4,0)、(1,0)、(0,),当x=﹣5时,y=﹣2,即点D(﹣5,﹣2),设直线BD的表达式为:y=kx+b,则,解得:,则直线BD的表达式为:y=x﹣;(2)如图,设BD交y轴于点K,则K(0,﹣),设:点E(m,m﹣),点F(m,﹣m2﹣m+),tan∠ABD=,∴∠ABD=30°,EF+EB=﹣m2﹣m+﹣(m﹣)+2(﹣m)=﹣(m+3)2+,故:当m=﹣3时,折线段EF+BE最大,此时,点E(﹣3,﹣);如图,过点Q分别作QN⊥x轴交于点N,作QM⊥y轴交于点M,∵∠MQP+∠PQN=90°,∠PQN+∠NQB=90°,∴∠NQB=∠PQM,又∠PMQ=∠QNB=90°,QP=QB,∴△PMQ≌△BNQ(AAS),∴QM=QN,∴GMQN为正方形,∴QM=QG,∴CQ+QG=QM+QC,当C、M、Q三点共线,且QM⊥EF时,CQ+QG取得最小值,最小值为3;(3)如图,作O′M⊥BD于点M,设:O′B=a,则O'M=a,MB=a,DM=BD﹣BM=4﹣a,∠O′DM=∠C″BO′,∠O′MD=∠BO′C″=90°,∴△O′MD∽△C″O′B,∴,∴,解得:a=4或﹣8(负值相当于点O′在点B的右侧),故:点C″的坐标为(﹣3,﹣)或(9,﹣).【点评】本题考查的是二次函数综合应用,涉及到三角形全等、相似、平移、正方形性质等诸多知识点,其中(2),确定四边形MQNG为正方形是本题解题的关键,该题难度很大.5.【分析】(1)由题意,设抛物线的解析式为y=a(x+3)(x﹣1),将点C(0,﹣)代入y=a(x+3)(x﹣1)即可得到结论;(2)根据已知条件得到D(﹣4,),求得直线BD的解析式为:y=﹣x+;则设E(),F(),得到EF+EB=﹣(m+)2+,当m=﹣时,EF+EB取得最大值,求得E(),F(),于是得到结论;(3)过M作MH⊥BD于点H,记BM=t,根据勾股定理得到BD==,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意,设抛物线的解析式为y=a(x+3)(x﹣1),将点C(0,﹣)代入y=a(x+3)(x﹣1)中,得a=.∴y=(x+3)(x﹣1),即y=x2+x﹣;(2)∵点D的横坐标为﹣4,∴y=,∴D(﹣4,),∴直线BD的解析式为:y=﹣x+;则设E(),F(),∵∠D B D′=30°,∴EF+EB=﹣m+﹣(m2+m﹣)+2(﹣m+)=﹣m2﹣m+2=﹣(m+)2+,∴当m=﹣时,EF+EB取得最大值,此时E(),F(),抛物线y=x2+x﹣的对称轴是直线x=﹣1,作点E关于对称轴x=﹣1的对称点E′,由对称性可知E′()连接E′F交对称轴x=﹣1于点P,则EP+FP=E′P+FP,当E′,F,P三点共线时,E′P+FP的值最小,即E′P+FP===,由作图可知点P是线段E′F的中点,所以点P();(3)过M作MH⊥BD于点H,记BM=t,因∠D B D′=300,则MH=,BH=BM=t,∵BD==,∴DH=BD﹣BH=﹣,∵∠MDH=∠KBM=θ,∠MHD=∠KMB=90°,∴△MDH∽△KBM,∴=,即=,解得:t=或,∴点K(,).【点评】本题考查了待定系数法确定函数关系式,勾股定理,相似三角形的判定和性质,最值问题,正确的作出辅助线是解题的关键.6.【分析】(1)在Rt△OBC中,tan∠OBC==,推出∠OBC=30°,由四边形ACBE 是矩形,推出QB=QC,可得∠BCE=∠QBC=30°;(2)如图2中,作CD⊥y轴,FH⊥CD于H,EH′⊥CD于H′交BC于F′.设P(m,m2﹣m﹣3),根据S△PBC=S△POC+S△POB﹣S△OBC,构建二次函数,了也重合时的性质,确定点P坐标,由CM=MP,FN=NP,推出MN=CF,在Rt△FCH中,易知∠FCH=30°,推出FH=CF,推出FH=MN,推出MN+EF=EF+FH,推出当F 与F′重合,H与H′重合时,MN+EF的值最小,求出点F的坐标即可解决问题;(3)如图3中,作OM⊥KH于M,直线KH交y轴于P,作CN⊥KH于N.首先确定直线KH的解析式,求出点N的坐标,分三种情形分别求解即可解决问题.【解答】解:(1)如图1中,设AB交CE于Q.令y=0,得到x2﹣﹣3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),在Rt△OBC中,tan∠OBC==,∴∠OBC=30°,∵四边形ACBE是矩形,∴QB=QC,∴∠BCE=∠QBC=30°.(2)如图2中,作CD⊥y轴,FH⊥CD于H,EH′⊥CD于H′交BC于F′.设P(m,m2﹣m﹣3),S△PBC=S△POC+S△POB﹣S△OBC=×3×m+×3×(﹣m2+m+3)﹣×3×3=﹣m2+m=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,此时P(,﹣),∵CM=MP,FN=NP,∴MN=CF,在Rt△FCH中,易知∠FCH=30°,∴FH=CF,∴FH=MN,∴MN+EF=EF+FH,∴当F与F′重合,H与H′重合时,MN+EF的值最小.易知E(2,3),F′(2,﹣1),∴PF==.(3)如图3中,作OM⊥KH于M,直线KH交y轴于P,作CN⊥KH于N.在Rt△OMG中,易知,OM=,OG=,∴MG==2,∵tan∠POG==,∴=,∴OP=,∴直线PG的解析式为y=﹣x+,∵CN⊥PG,∴直线CN的解析式为y=x﹣3,由,解得,∴N(,),①当CK=CH时,NK=NH=,点N向上平移个单位,向左平移2个单位得到K,∴K(,).②当CK=KH时,设K(m,﹣m+),∴m2+(﹣m++3)2=52,解得m=,∴K(,)或(,),③当CH=KH=5时,同法可得H(,)或(,),点H向上平移3个单位,向左平移4个单位得到K,∴K(,)或(,),综上所述,满足条件的点K的坐标为K(,)或(,)或(,)或(,)或(,).【点评】本题考查二次函数综合题.一次函数的应用、垂线段最短、等腰三角形的判定和性质,平移变换的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短,解决最短问题,学会利用参数构建方程解决问题,属于中考压轴题.7.【分析】(1)利用根与系数的关系,列出方程求出m即可解决问题;(2)如图1中,设P(m,﹣m2+2m+3).易知A(﹣1,0),B(3,0),C(0,3).根据PC=PB,利用两点间距离公式,列出方程即可解决问题;(3)应分两种情况考虑:1)BC′与BP重合,此时O′为所求点.过O′作x轴的垂线,设垂足为D,在①中已证得∠CBO=∠C′BO′=45°,这两个等角同时减去∠CBO′后可得到∠PBC=∠O′BD,即可证得△PBC∽△O′BD,根据PC、BC的比例关系,可求得O′D、BD的比例关系,进而可由勾股定理和O′B(即OB)的长求出O′D、BD的长,即可得到点O′的坐标;2)当BO′与BP重合时,C′为所求的点.可过B作直线BE⊥x轴,过C′作C′E⊥BE于E,按照1)的思路,可证△EBC′∽△CBP,同样能得到C′E、BE的比例关系,进而由勾股定理出这两条线段的长,即可得到点C′的坐标.【解答】解:(1)由题意﹣2﹣n+4+n=m+2,解得m=0,∴y=﹣x2+2x+3(2)如图1中,设P(m,﹣m2+2m+3).易知A(﹣1,0),B(3,0),C(0,3).∵PC=PE,∠CBE=90°,∴PB=PC=PE,∴m2+(﹣m2+2m+3﹣3)2=(m﹣3)2+(﹣m2+2m+3)2,整理得:m2﹣m﹣3=0,∴m=,∴P(,)或P(,).(3)如图2中,当BC′与BP重合时,过点O′作O′D⊥OB于D.因为∠PBC+∠CBO′=∠CBO′+∠ABO′=45°,所以∠ABO′=∠PBC.则△DBO′∽△CBP,所以=,所以=,所以BD=3O′D.设O′D=x,则BD=3x,根据勾股定理,得x2+(3x)2=32,解得x=,所以BD=,所以点O′的坐标为(3﹣,).如图3中,当BO′与BP重合时,过点B作x轴的垂线BE,过点C′作C′E⊥BE于E,因为∠PBE+∠EBC′=∠PBE+∠CBP=45°,所以∠EBC′=∠PBC.所以△EBC′∽△CBP,所以=,所以=,所以BE=3C′E.设C′E为y,则BE=3y,根据勾股定理,得y2+(3y)2=(3 )2,解得y=,所以BE=,所以C′的坐标为(3+,).【点评】此题考查了二次函数解析式的确定、直角三角形的判定、图象的旋转变换、相似三角形的判定和性质、勾股定理的应用等知识.在(3)中,能够通过辅助线正确的构建与所求相关的出相似三角形是解决问题的关键.8.【分析】(1)结论:△ABC是直角三角形.求出A、B、C三点坐标,求出AC、BC、AB 的长,利用勾股定理的逆定理证明即可.(2)如图1中,设P(m,m2﹣m﹣2),由S△BCP=S△OCP+S△OBP﹣S△OBC,构建二次函数,理由二次函数的性质,求出点P的坐标,作P关于直线AC的对称点P′,连接P′E交直线AC于M,作MN⊥EF于N,则线路P→M→N→B的路径最短,理由对称求出点P′坐标,求出想EP′与AC的交点M,再利用平移的性质可得N的坐标,再求出最短路径=EP′+EB即可解决问题.(3)①如图2中,当K与O重合,T与D重合时,△EKT的等腰三角形,求出KT即可解决问题.②如图3中,当TE=KE时,作KN⊥CE于N,EQ⊥OC于Q,则四边形OQEH是矩形,由△KEN≌△ETH,推出KN=EH=1,再想办法求出OK,OT即可解决问题.【解答】解:(1)结论:△ABC是直角三角形.理由如下:对于抛物线抛物线y=x2﹣x﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣或2,∴A(﹣,0),B(2,0),令x=0得到y=﹣2,∴C(0,﹣2),∴OA=,OC=2,OB=2,AB=∴AC==,BC=4,∴AC2+BC2=,AB2=,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1中,设P(m,m2﹣m﹣2),S△BCP=S△OCP+S△OBP﹣S△OBC=•2•m+•2•(﹣m2+m+2)﹣•2•2=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时P(,﹣),作P关于直线AC的对称点P′,连接P′E交直线AC于M,作MN⊥EF于N,则线路P→M→N→B的路径最短,理由:易证四边形MNBE是平行四边形,可得MN=EC=EB,EM=BN,∴PM+MN+NB=P′M+EM+EB,根据两点之间线段最短可知,此时线路P→M→N→B 的路径最短.∵直线AC的解析式为y=﹣x﹣2,P、P′关于直线AC对称,∴P′(﹣,﹣),∴直线EP′的解析式为y=x﹣,由,解得,∴M(,﹣),∵CM=EN,CM∥EN,由平移的性质可知N(,﹣).(把点E向左平移个单位,向下平移个单位得到N),最短路径=EP′+EB=+2=.(3)①如图2中,在Rt△BOC中,tan∠CBO==,∴∠CBO=30°,∵EF⊥BC,∴∠FEB=90°,∠EDB=60°,∵EH⊥OB,∴∠DEH=30°,当K与O重合,T与D重合时,△EKT的等腰三角形,易知TE=TK=•EB=.②如图3中,当TE=KE时,作KN⊥CE于N,EQ⊥OC于Q,则四边形OQEH是矩形,易知:HE=1,∠CKN=30°,∵∠QEH=90°,∠KET=30°,∴∠TEH=60°﹣∠QEK,∴∠EKN=90°﹣∠QEC﹣∠QEK=60°﹣∠QEK,∴∠EKN=∠TEH,∵ET=EK,∠KNE=∠EHT=90°,∴△KEN≌△ETH,∴KN=EH=1,在Rt△CNK中,易知CN=,CK=,∴EN=2﹣,∴TH=EN=2﹣,∴OT=﹣2,OK=2﹣,∴KT2=OK2+OT2=﹣8,∴KT=.综上所述,当△ETK是等腰三角形时,KT的值为、.【点评】本题考查二次函数综合题、涉及矩形的性质、直角三角形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识角问题,学会用分类讨论的思想思考问题,综合程度较高,属于中考压轴题.9.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②可将求d1+d2最大值转化为求AC的最小值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+∴当m=时,S取得最大值.(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD =d1,ME=d2,∵S△ABM′=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.【点评】本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.10.【分析】(1)先求出B、D两点坐标,再利用待定系数法即可解决问题.(2)如图1中,设BD交y轴于K,则K(0,﹣),设E(m,m﹣),则F(m,﹣m2﹣m+),构建二次函数确定m的值,求出点E坐标,如图2中,作点E关于y轴的对称点N,EM⊥AB于M,连接MN,交对称轴于P,交y轴于Q,当M、N、P、Q共线时,OP+PQ+QE最小,最小值为MN,(3)如图3中,作O′M⊥BD于M,设O′B=a,则O′M=a,BM=a,DM =BD﹣BM=4﹣a,由△O′MD∽△C″O′B,得=,列出方程即可解决问题.【解答】解:(1)令y=0,则=﹣x2﹣x+=0,解得x=﹣4或1,∴A(﹣4,0),B(1,0),令x=0,则y=,∴C(0,),当x=﹣5时,y=﹣+5+=﹣2,∴点D坐标(﹣5,﹣2),设直线BD解析式为y=kx+b则有,解得,∴直线BD的解析式为y=x﹣.(2)如图1中,设BD交y轴于K,则K(0,﹣),设E(m,m﹣),则F(m,﹣m2﹣m+),∴tan∠ABD=,∴∠ABD=30°,∴EF+EB=﹣m2﹣m+﹣(m﹣)+2(﹣m)=﹣(m+3)2+,∴m=﹣3时,EF+EB的值最大,此时点E坐标(﹣3,﹣),如图2中,作点E关于y轴的对称点N,EM⊥AB于M,连接MN,交对称轴于P,交y 轴于Q,∵M、O关于对称轴对称,∴OP=PM,E、N关于y轴对称,∴QE=QN,∴OP+PQ+QE=PM+PQ+QN,∴当M、N、P、Q共线时,OP+PQ+QE最小,最小值为MN,在Rt△MNE中,MN===.∴OP+PQ+QE的最小值为.(3)如图3中,作O′M⊥BD于M,设O′B=a,则O′M=a,BM=a,DM =BD﹣BM=4﹣a,∵∠O′DM=∠C″BO′,∠O′MD=∠BO′C″=90°,∴△O′MD∽△C″O′B,∴=,∴=,∴a2+4a﹣32=0,解得a=4或﹣8(舍弃),∴C″坐标为(﹣3,﹣).根据对称性可知当点C″在y轴的右边时,C″(5,﹣).【点评】本题考查二次函数综合题、一次函数、相似三角形的判定和性质、最小值问题等知识,解题的关键是熟练掌握基本知识的应用,学会利用对称的思想解决最小值问题,学会利用相似三角形的性质构建方程解决问题,属于中考压轴题.11.【分析】(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD ⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH 是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.【解答】方法一:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是直线x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,。

2023年重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类

2023年重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类

重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类(2022-2023学年版)1.二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使得△PBC为等腰三角形?若存在,请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位长度的速度在AB上向点B运动,另一个点N从点D同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,设运动时间是t且0≤t≤5,当点M,N运动到何处时,△MNB的面积最大,试求出最大面积.2.如图,已知点A的坐标为(−2,0).直线y=−3x+3与x轴,y轴分别交于点B和点C,连接AC,4顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)求拋物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN//AB,交AC于点N,Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当以MN为直角边的▵QMN是等腰直角三角形时,直接写出此时t的值.3.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动MB的最小值以及此时点M、N的坐标.点,请直接写出CN+MN+124.抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的解析式;(2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.5.已知:如图,抛物线y=ax2+bx+c(a≠0)与坐标轴分别交于点A(0,6),B(6,0),C(−2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE//x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=−23x2−23x+4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D是抛物线的顶点,对称轴与x轴交于点E,过点E作BC的平行线交AC于点F.(1)如图1,求点D的坐标和直线BC的解析式;(2)如图1,在对称轴右侧的抛物线上找一点P,使得∠PDE=45°,点M是直线BC上一点,点N是直线EF上一点,MN//AC,求PM+MN+NB的最小值;(3)如图2,将△BOC绕点O逆时针旋转至△B′O′C′的位置,点B,C的对应点分别为点B′,C′,点B′恰好落在BC上,点T为B′C′的中点,过点T作y轴的平行线交抛物线于点H,将点T沿y轴负方向平移3个单位长度得到点K.点Q是y轴上一动点,将△QHK沿直线QH折叠为△QHK′,△BKK′是否能为等腰三角形?若能,请直接写出所有符合条件的点Q的坐标;若不能,请说明理由.7.如图,直线y=−3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x−2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.8.如图,抛物线y=ax2+bx−3经过点A(2,−3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)若抛物线上有一点N,且S△OCN=6,求点N的坐标;(3)点P是对称轴上的一个动点,若存在P使△ABP是等腰三角形,请求出此时P点的坐标.9.如图,已知二次函数y=−x2+bx+3的图象与x轴的两个交点为A(4,0)与点C,与y轴交于点B.(1)求此二次函数关系式和点C的坐标;(2)请你直接写出△ABC的面积;(3)在x轴上是否存在点P,使得△PAB是等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−2,0)、B(6,0)两点,与y轴交于点C(0,6),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.11.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A,B,C,已知A(−1,0),C(0,3).(1)求抛物线的表达式.(2)如图①,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标.(3)如图②,抛物线的顶点为点E,EF⊥x轴于点F.若N是直线EF上一动点,M(m,0)是x轴上MB的最小值以及此时点M,N的坐标.一个动点,请直接写出CN+MN+1212.如图,抛物线y=ax2+bx+2交x轴于点A(−3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(−1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,求出点N的坐标;若不存在,请说明理由.13.如图,抛物线y=−35x2+125x+3与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,连接BC.(1)直接写出A、B、C三点坐标及直线BC的函数表达式;(2)如图1,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.点P是直线AB上的动点.当△NBC面积取得最大值时,求出点N的坐标及△NBC面积的最大值,并求此时PN+CP 的最小值;(3)如图2,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.14.抛物线y=ax2+bx+c(a、b、c为参数)与x轴交于A、B两点,与y轴交于点C,其中A(−2,0).已知M(−1+n,m)和N(5−n,m)是抛物线上两点.图1图2(1)求抛物线的解析式(结果用含a的式子表示);(2)如图1,对称轴与x轴的交点为D,若△AOC绕原点顺时针旋转90°得到△COD,点E为x轴正半轴上一点,且满足∠CDO=∠CEO+∠CBO,求点E的坐标;(3)如图2,若△OBC为等腰三角形,点F为OC中点,连接BF;若点P在B点左侧的抛物线上,过点P作PQ⊥BF,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.15.如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.对称轴交x轴于点H,直线y=12备用图(1)求抛物线的解析式.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=1x+1的对称点恰好落在x轴上时,请直接2写出此时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连结AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作ON⊥BC,垂足为点N.设点M的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点且以AC为腰长的三角形是等腰三角形.若存在,求出此时点Q的坐标;若不存在,请说明理由.17.已知抛物线y=ax2+34x+c经过点A(−2,0)和C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由;18.如图,抛物线y=1x2+bx+c与x轴交于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,3BC,点M是抛物线在第四象限内的一个动点,过点M作MN⊥BC于点N,点M的横坐标为m.(1)求抛物线的表达式;(2)请用含m的代数式表示线段MN的长;(3)试探究在点M运动的过程中,是否存在点N,使得△ACN是等腰三角形?若存在,直接写出点N的坐标;若不存在,请说明理由.第11页,共1页。

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

2022年中考数学二次函数压轴突破 专题09 面积比例问题(教师版含解析)

2022年中考数学二次函数压轴突破 专题09 面积比例问题(教师版含解析)

知识导航除了三角形、四边形面积计算之外,面积比例也是中考题中常见的条件或结论,对面积比例的分析,往往比求面积要复杂得多,这也算是面积问题中最难的一类.大部分题目的处理方法可以总结为两种:(1)计算;(2)转化.本文结合19年各地中考题,简要介绍关于比例条件的一些运用方法.策略一:运用比例计算类综合与探究:如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)BCD ∆的面积等于AOC ∆的面积的34时,求m 的值;【分析】(1)可重设解析式为交点式:()()24y a x x =+-,展开得:228y ax ax a =--,常数项对应相等,-8a =6,解得:34a =-,故抛物线解析式为:233642y x x =-++.(2)考虑△AOC 和△BCD 并无太多关联,并且△AOC 是确定的三角形,面积可求,故可通过面积比推导△BCD 的面积.1=26=62AOCS⨯⨯, 3396442BCD AOCSS =⨯=⨯=, 此问题变为面积定值问题,就不难了.【小结】利用面积比计算出所求三角形面积,再运用处理面积定值的方法即可解决问题. 策略二:转化面积比如图,B 、D 、C 三点共线,考虑△ABD 和△ACD 面积之比.CBA转化为底:共高,面积之比化为底边之比:则::ABDACDSSBD CD =.HABCD更一般地,对于共边的两三角形△ABD 和△ACD ,连接BC ,与AD 交于点E ,则:::ABDACDSSBM CN BE CE ==.M N EDCBA策略三:进阶版转化 在有些问题中,高或底边并不容易表示,所以还需在此基础上进一步转化为其他线段比值,比如常见有:“A ”字型线段比、“8”字型线段比. “A ”字型线段比::::ABDACDSSBD CD BA AM ==.MDCBA“8”字型线段比::::ABDACDSSBD CD AB CM ==.MDCBA以2019连云港中考填空压轴为例: 【2019连云港中考】如图,在矩形ABCD 中,4AB =,3AD =,以点C 为圆心作C 与直线BD 相切,点P 是C 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是 . TA BCDP【分析】AP 、AT 均为动线段,并不易于分析比值的最大值,故需转化线段. 构造“A ”字型线段比:过点P 作PQ ∥DB 与AB 的延长线交于点Q ,QTA BCDP由平行得:AP AQ AT AB=,若要APAT 取到最大值,只要AQ 最大即可. M PDCBATQBC =3,39344BM =⨯=,515344CM =⨯=,15121234520PM =+=, 1235412034MQ =⨯=,41941244AQ =+-=, 故最大值为1234AP AQ AT AB ===.思路2:构造“8”字型线段比是否可行? 虽然问题是AP AT 的比值,为便于构造“8”字,可转化为“TP AT +1”,即求TPAT的最大值, 过点P 作PQ ∥AB 交BD 延长线于Q 点,可得:TP PQAT AB=,考虑到AB 是定线段,故只要PQ 最大即可. 但是本题P 点在圆上运动,故很难分析出点P 在何位置,PQ 取到最大值,若P 点换个轨迹路线,或许就很容易分析了.PD CBA TQ例一、已知抛物线23y ax bx =++经过点(1,0)A 和点(3,0)B -,与y 轴交于点C ,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图,连接OP 交BC 于点D ,当:1:2CPD BPD S S ∆∆=时,请求出点D 的坐标.【分析】(1)223y x x =--+;顶点坐标为(-1,4). (2)根据:1:2CPD BPD S S ∆∆=可得CD :BD =1:2,故D 点是线段BC 靠近点C 的三等分点,又B (-3,0)、C (0,3), ∴D 点坐标为(-1,2). 例二、如图,抛物线22(0)y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==. (1)求该抛物线的函数解析式.(2)如图,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当:3:2COF CDF S S ∆∆=时,求点D 的坐标.【分析】(1)解析式:223y x x =-++(2)显然△COF 和△CDF 共高,可将面积之比化为底边之比.::3:2COFCDFOF DF SS==,思路1:转化底边之比为“A ”字型线段比在y 轴上取点E (0,5),(为何是这个点?因此此时OC :CE =3:2) 过点E 作BC 的平行线交x 轴于G 点,EG 与抛物线交点即为所求D 点,根据平行线分线段成比例,OF :FD =OC :CE =3:2. 直线EG 解析式为:y =-x +5,与抛物线联立方程,得:2235x x x -++=-+, 解得:11x =,22x =.故D 点坐标为(1,4)或(2,3).思路2:转化底边之比为“8”字型线段比过点D 作DG ∥y 轴交BC 边于点G ,则OF OCFD DG=,又OC =3,故点G 满足DG =2即可.这个问题设D 点坐标即可求解.也可以构造水平“8”字,过点D 作DG ∥x 轴交BC 于点G ,则OF OBFD DG=,又OB =3,∴DG =2即可.但此处问题在于水平线段不如竖直线段易求,方法可行但不建议.其实本题分析点的位置也能解:思路3:设点D 坐标为()2,23m m m -++,根据OF :DF =3:2,可得F 点坐标为23369,5555m m m ⎛⎫-++ ⎪⎝⎭,点F 在直线BC 上,将点坐标代入直线BC 解析式:y =-x +3,23693+35555m m m -+=-+, 解得11m =,22m =,故D 点坐标为(1,4)或(2,3).这个计算的方法要求能理解比例与点坐标之间的关系,即由D 点坐标如何得到F 点坐标.1.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C .顶点为点D . (1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S ∆∆=,求直线CE 的解析式;(3)若点P 在抛物线上,点Q 在x 轴上,当以点D ,C ,P ,Q 为顶点的四边形是平行四边形时,求点P 的坐标; (4)已知点45(0,)8H ,(2,0)G ,在抛物线对称轴上找一点F ,使HF AF +的值最小.此时,在抛物线上是否存在一点K ,使KF KG +的值最小?若存在,求出点K 的坐标;若不存在,请说明理由.【分析】(1)因为抛物线经过(1,0)A -,(3,0)B ,可以假设抛物线的解析式为(1)(3)y a x x =+-,利用待定系数法解决问题即可.(2)求出点E 的坐标即可解决问题.(3)分点P 在x 轴的上方或下方,点P 的纵坐标为1或1-,利用待定系数法求解即可.(4)如图3中,连接BH 交对称轴于F ,连接AF ,此时AF FH +的值最小.求出直线HB 的解析式,可得点F 的坐标,设(,)K x y ,作直线174y =,过点K 作KM ⊥直线174y =于M .证明KF KM =,利用垂线段最短解决问题即可.【解答】解:(1)因为抛物线经过(1,0)A -,(3,0)B ,∴可以假设抛物线的解析式为(1)(3)y a x x =+-,把(0,3)C 代入,可得1a =-,∴抛物线的解析式为2(1)(3)23y x x x x =-+-=-++.(2)如图1中,连接AC ,BC .:3:5ACE CEB S S ∆∆=,:3:5AE EB ∴=,4AB =,33482AE ∴=⨯=,0.5OE ∴=,设直线CE 的解析式为y kx b =+,则有30.50b k b =⎧⎨+=⎩,解得63k b =-⎧⎨=⎩,∴直线EC 的解析式为63y x =-+.(3)由题意(0,3)C ,(1,4)D .观察图像可知CD 只能说平行四边形的边,不可能是对角线,当四边形11PQ CD ,四边形22P Q CD 是平行四边形时,点P 的纵坐标为1, 当1y =时,2231x x -++=, 解得13x =±,1(13P ∴1),2(13P ,1),当四边形33PQ DC ,四边形44P Q DC 是平行四边形时,点P 的纵坐标为1-,当1y =-时,2231x x -++=-, 解得15x =±,1(15P ∴+,1)-,2(15P -,1)-,综上所述,满足条件的点P 的坐标为(13+,1)或(13-,1)或(15-,1)-或(15+,1)-.(4)如图3中,连接BH 交对称轴于F ,连接AF ,此时AF FH +的值最小.45(0,)8H ,(3,0)B , ∴直线BH 的解析式为154588y x =-+, 1x =时,154y =, 15(1,)4F ∴, 设(,)K x y ,作直线174y =,过点K 作KM ⊥直线174y =于M . 2215(1)()4KF x y =-+-2223(1)4y x x x =-++=--+, 2(1)4x y ∴-=-, 222151717174()()||4244KF y y y y y ∴=-+--+=-, 17||4KM y =-, KF KM ∴=,KG KF KG KM ∴+=+,根据垂线段最短可知,当G ,K ,M 共线,且垂直直线174y =时,GK KM +的值最小,最小值为174, 此时(2,3)K .【点评】本题属于二次函数综合题,考查了待定系数法,一次函数的性质,平行四边形的判定和性质,垂线段最短等知识,解题的关键是学会用分类讨论的思想思考问题,第四个问题的关键是学会用转化的思想思考问题,把最短问题转化为垂线段最短,属于中考压轴题.2.如图1,抛物线2y x bx c =-++过点(1,0)A -,点(3,0)B ,与y 轴交于点C .在x 轴上有一动点(E m ,0)(03)m <<,过点E 作直线l x ⊥轴,交抛物线于点M .(1)求抛物线的解析式及C 点坐标;(2)当1m =时,D 是直线l 上的点且在第一象限内,若ACD ∆是以DCA ∠为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设AEM ∆的面积为1S ,MON ∆的面积为2S ,若122S S =,求m 的值.【分析】(1)用待定系数法即可求解;(2)若ACD ∆是以DCA ∠为底角的等腰三角形,则可以分CD AD =或AC AD =两种情况,分别求解即可; (3)112M S AE y =⨯⨯,22M S ON x =⋅,即可求解. 【解答】解:(1)将点A 、B 的坐标代入抛物线表达式得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,故抛物线的表达式为223y x x =-++, 当0x =时,3y =,故点(0,3)C ;(2)当1m =时,点(1,0)E ,设点D 的坐标为(1,)a ,由点A 、C 、D 的坐标得,22(01)(30)10AC =++-=,同理可得:24AD a =+,21(3)CD a =+-, ①当CD AD =时,即2241(3)a a +=+-,解得1a =; ②当AC AD =时,同理可得6a =±(舍去负值); 故点D 的坐标为(1,1)或(1,6);(3)(,0)E m ,则设点2(,23)M m m m -++,设直线BM 的表达式为y sx t =+,则22303m m sm t s t ⎧-++=+⎨=+⎩,解得133s m t m =--⎧⎨=+⎩,故直线BM 的表达式为(1)33y m x m =--++,当0x =时,33y m =+,故点(0,33)N m +,则33ON m =+; 2111(1)(23)22M S AE y m m m =⨯⨯=⨯+⨯-++,22112(33)(1)(23)2M S ON x m m S m m m =⋅=+⨯==⨯+⨯-++,解得27m =-1-(舍去负值), 故72m =.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.3.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点(点A 在点B 左侧),交y 轴正半轴于点C ,M 为BC 中点,点P 为抛物线上一动点,已知点A 坐标(1,0)-,且24OB OC OA ==. (1)求抛物线的解析式;(2)当PCM POM ∆≅∆时,求PM 的长; (3)当45ABC BCP S S ∆∆=时,求点P 的坐标.【分析】(1)先求出点B ,点C 坐标,利用待定系数法可求解析式;(2)由全等三角形的性质可得PO PC =,可得点M 在CO 的垂直平分线上,即可求解; (3)分两种情况讨论,利用面积关系可求解. 【解答】解:(1)(1,0)A -,1OA ∴=,又24OB OC OA ==, 2OC ∴=,4OB =,(4,0)B ∴,(0,2)C ,点B ,点C ,点A 在抛物线上, ∴216400c a b c a b c =⎧⎪++=⎨⎪-+=⎩解得:12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,、∴抛物线解析式为:213222y x x =-++; (2)连接OM ,M 为BC 中点,(2,1)M ∴,PCM POM ∆≅∆, CM OM ∴=,PC PO =,MP ∴是OC 的垂直平分线,//PM x ∴轴,∴点P 的纵坐标为1,当1y =时,代入213222y x x =-++,解得:3172x ±=, ∴317(,1)2P +或317(,1)2-, 1712PM -∴=或1712+; (3)152ABC S AB OC ∆=⨯⨯=,45ABC BCP S S ∆∆=,4BCP S ∆∴=,(4,0)B ,(0,2)C ,∴直线BC 解析式为122y x =-+,当点P 在BC 上方时,如图2,过点P 作PE x ⊥轴,交BC 于点E ,设点213(,2)22P p p p -++,则点1(,2)2E p p -+,2122PE p p ∴=-+,21144(2)22p p ∴=⨯⨯-+,2p ∴=,∴点(2,3)P ;当点P 在BC 下方时,如图3,过点P 作PE x ⊥轴,交BC 于点E ,2122PE p p ∴=-, 21144(2)22p p ∴=⨯⨯-,222p ∴=±,∴点(222,12)P +--或(222,12)--+;综上,点P 的坐标为:(2,3)或(222,12)+--或(222,12)--+.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,全等三角形的性质等知识,利用分类讨论思想解决问题是本题的关键.4.如图1,抛物线2y x bx c =-++过点(1,0)A -和点(0,3)C ,抛物线与x 轴的正半轴交于点B ,点D 是抛物线上的一点.(1)求抛物线的表达式;(2)如图2,连接OD ,BD ,若点D 是抛物线的顶点,求此时OBD ∆的面积;(3)如图3,连接OD ,BD ,CD ,CB ,设OCD ∆的面积为1S ,BCD ∆的面积为2S ,是否存在点D ,使12S S =,若存在,请直接写出点D 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可求解解析式. (2)求出定点坐标,即可求出三角形的面积.(3)假设存在,先求出直线BC 的解析式,设点出点P 的坐标,利用坐标表示出1S 面积,利用铅垂高表示2S 的面积,最后利用面积相等即可求解.【解答】解:(1)将点(1,0)-、(0,3)代入2y x bx c =-++. ∴013b c c =--+⎧⎨=⎩.解得:23b c =⎧⎨=⎩.∴抛物线的表达式:223y x x =-++.(2)2223(1)4y x x x =-++=--+. (1,4)D ∴令0y =,2230x x -++=. 11x =-,23x =.(1,0)A ∴-、(3,0)B .OBD ∴∆的面积为:13462⨯⨯=.(3)设点2(,23)D m m m -++OCD ∴∆的面积为1S 为:133||||22m m ⨯⨯=.设直线BC 的解析式为:y kx b =+. 将(3,0)B 、(0,3)C 代入. ∴303k b b +=⎧⎨=⎩.∴13k b =-⎧⎨=⎩.∴直线BC 的解析式为:3y x =-+.作//DE y 轴,交BC 于点E .(,3)E m m ∴-+.2|3|DE m m ∴=-+.∴根据铅垂高定义,BCD ∆的面积为2S 为:22133|3||3|22m m m m ⨯⨯-+=-+. 12S S =.∴233|||3|22m m m =-+. 解得:2m =或4. (2,3)D ∴或(4,5)D -.【点评】本题考查待定系数法求解析式,以及三角形面积与函数之间的关联,比较综合,属于压轴题. 5.已知二次函数2y x bx c =-++的图象与直线3y x =+相交于点A 和点B ,点A 在x 轴上,点B 在y 轴上.抛物线的顶点为P .(1)求这个二次函数的解析式;(2)现将抛物线向右平移m 个单位,当抛物线与ABP ∆有且只有一个公共点时,求m 的值;(3)在直线AB 下方的抛物线上是否存在点Q ,使得2ABQ ABP S S ∆∆=,若存在,请求出点Q 的坐标,若不存在,请说明理由.【分析】(1)直线3y x =+中,分别令0x =和0y =可得点A 和B 的坐标,将点A 和B 的坐标分别代入抛物线的解析式中列方程组,解出即可;(2)由图象可知,当抛物线经过点B 或点A 时,抛物线与PBA ∆有且只有一个公共点,求得平移后的解析式,代入A 、B 的坐标,即可求得m 的值;(3)先计算ABP ∆的面积,根据2ABQ ABP S S ∆∆=,可得ABQ ∆的面积,分两种情况:点Q 在对称轴的左侧和右侧,根据面积公式列方程可得结论. 【解答】解:(1)当0x =时,3y =, (0,3)B ∴,当0y =时,30x +=, 3x ∴=-,(3,0)A ∴-,把(3,0)A -和(0,3)B 代入二次函数2y x bx c =-++中得: 9303b c c --+=⎧⎨=⎩,解得:23b c =-⎧⎨=⎩, ∴这个二次函数的解析式为:223y x x =--+;(2)2223(1)4y x x x =--+=-++, (1,4)P ∴-,将抛物线向右平移m 个单位,P 对应点为(1,4)m -+,∴平移后的抛物线解析式为2(1)4y x m =-+-+,把(0,3)B 代入得,23(1)4m ==--+, 解得12m =,20m =(舍去), 把(3,0)A -代入得20(2)4m =---+, 解得34m =-,40m =(舍去), 故m 的值为2或4-;(3)()()111431341333222ABP APD AOB PDOB S S S S ∆∆∆=+-=⨯⨯-+⨯+⨯-⨯⨯=梯形,26ABQ ABP S S ∆∆∴==,设点Q 的坐标为2(,23)a a a --+, 分两种情况:①如图1,当Q 在对称轴的左侧,过点P 作PD x ⊥轴于点D ,过点Q 作//QE y 轴交直线AB 于E ,21(323)(3)62ABQ S a a a a a ∆∴=+++--++=,解得:14a =-,21a =(舍), (4,5)Q ∴--;②如图2,当Q 在对称的右侧,过点P 作PD x ⊥轴于点D ,过点Q 作//QE y 轴交直线AB 于E ,同理可得1a =, (1,0)Q ∴,综上,点Q 的坐标为(4,5)--或(1,0).【点评】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数图象与坐标轴的交点,二次函数的图象与几何变换,第二问明确当抛物线只经过点B 或点A 时,抛物线与PBA ∆有且只有一个公共点是解题的关键.6.如图,抛物线24(0)y ax bx a =++≠与x 轴交于点(1,0)A -和点(4,0)B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E . (1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,若35PBC ABC S S ∆∆=,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC ∆相似?若存在,直接写出点M 的坐标;若不存在,说明理由.【分析】(1)设抛物线的表达式为212()()(1)(4)(34)y a x x x x a x x a x x =--=+-=--,即44a -=,解得1a =-,可得结论.(2)过点P 、A 分别作直线m 、n ,使两条直线均与BC 平行,则5CN =,由35PBC ABC S S ∆∆=知335CM CN ==,故点(0,7)M ,进而求解.(3)由题意得出三角形BOC 为等腰直角三角形,然后分MN EM =,MN NE =,NE EM =三种情况讨论结合图形得出边之间的关系,即可得出答案.【解答】解:(1)设抛物线的表达式为212()()(1)(4)(34)y a x x x x a x x a x x =--=+-=--, 即44a -=,解得1a =-,故抛物线的表达式为234y x x =-++①;(2)由抛物线的表达式知,点(0,4)C ,如图,过点P 、A 分别作直线m 、n ,使两条直线均与BC 平行,设直线m 、n 分别交y 轴于点M 、(0,1)N -,则5CN =, 由35PBC ABC S S ∆∆=,ABC BCM S S ∆∆=,PBC CMB S S ∆∆=, 35BCM BCN S S ∆∆∴=, 335CM CN ∴==, 故点(0,7)M -,由点B 、C 的坐标知,直线BC 的表达式为4y x =-+, 而//m BC ,则直线m 的表达式为7y x =-+②, 联立①②并解得1x =或3, 故点P 的坐标为(1,6)或(3,4).(3)(0,4)C ,(4,0)B ,90COB ∠=︒, OBC ∴∆为等腰直角三角形, 抛物线234y x x =-++的对称轴为32x =, ∴点E 的横坐标为32, 又点E 在直线BC 上, ∴点E 的纵坐标为52,3(2E ∴,5)2, 设3(2M ,)(m N n ,234)n n -++, ①如图2中,当MN EM =,90EMN ∠=︒,由~NME COB ∆∆,则2532234m n m n n ⎧-=-⎪⎨⎪=-++⎩,解得34n m =⎧⎨=⎩或10n m =-⎧⎨=⎩(舍去), ∴此时点M 的坐标为3(2,4),②当ME EN =,当90MEN ∠=︒时,则253225342m n n n ⎧-=-⎪⎪⎨⎪-++=⎪⎩, 解得:515315m n ⎧+=⎪⎪⎨+⎪=⎪⎩或515315m n ⎧-=⎪⎪⎨-⎪=⎪⎩(舍去), ∴此时点M 的坐标为3(2515)+.③当MN EN =,90MNE ∠=︒时, 此时MNE ∆与COB ∆相似,此时的点M 与点E 关于①的结果3(2,4)对称, 设3(2M ,)m , 则5442m -=-, 解得112m =, 3(2M ∴,11)2, 此时点M 的坐标为3(2,11)2.故在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC ∆相似,点M 的坐标为:3(2,4),3(2515+或3(2,11)2. 【点评】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。

二次函数中三角形面积最大值综合题

二次函数中三角形面积最大值综合题

)))))))))2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题2x轴交于点2017甘肃白银)如图,已知二次函数的图象与28.(4?ax??bxy????8,0BC?2,0,与,点轴交于点.Ay24??y?axbx(1)求二次函数的表达式;NBCN作,若点上运动(不与点在线段重合),过点(2)连接CBAB,AC,N?ACAMNNM//点的坐标;,当面积最大时,求于点,交MAB COMAOM与)的结论下,求(3)连接的数量关系.,在(22,B,点C的坐标分别代入解:(1)将点4?bxaxy??0??44a?2b?,得:?0?b?464a?8? 1分31.解得:,?a?b?24∴该二次函数的表达式为3123分.4?x?y?x?24),<8)(2<n0(2)设点N的坐标为(n,?,.则n?8?BN?n?2CN, 0)C),(8,,∵B(-20=10. ∴BC ,令,解得:4y?0x? =44),OA,,(∴点A0 ACMN∵∥,)))))))))).)))))))))AMNC8?n.4分∴??10BCAB,BC=10,=4∵OA115 .∴20??10?S?BC?OA?4ABCV22分11?2)S2)?4=(2n+BN?OA?(n+ABNV22 Sn8?AMCN AMNV,??又Q?10ABCBS ABNV1?n1826∴.5S?3)?nS?(8?)(n??2)??(n ABNAMNVV5105分7 的面积最大.∴当n=3时,即N(3,0)时,△AMN分.边中点0)时,N为BC(3)当N(3,1边中点,∴∴M为AB AB.?OM2分822∵,5?4?OA16?AB?OB2?22,5?4?64?AC?OC16?OA1∴AC,AB?2分9∴1分10 .AC?OM4????25,01,0BA3bx??y?ax。

海南)24(2017.抛物线和点经过点(1)求该抛物线所对应的函数解析式;3DC、是抛物线上的动点且(2 相交于)该抛物线与直线两点,点3x?y?P5xx NCDM、位于轴下方。

2022年中考数学二次函数压轴突破 专题06 铅垂法求三角形面积最值问题(学生版)

2022年中考数学二次函数压轴突破 专题06 铅垂法求三角形面积最值问题(学生版)

知识导航求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:()111222ABCACDBCDSSSCD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离. 由题意得:AE +BF =6. 下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4, 将4代入直线AB 解析式得D 点纵坐标为2, 故D 点坐标为(4,2),CD =5,165152ABCS =⨯⨯=.【方法总结】 作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABCS⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似: 【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高, =2ABCABDBCDSSS⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.例一、如图,已知抛物线25=++经过(5,0)y ax bxA-,(4,3)B--两点,与x轴的另一个交点为C.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为m.当点P在直线BC的下方运动时,求PBC∆的面积的最大值.【分析】(1)265=++,y x x(2)取BC两点之间的水平距离为水平宽,过点P作PQ⊥x轴交直线BC于点Q,则PQ即为铅垂高.根据B、C两点坐标得B、C水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1), 得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高. 例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.EDC BAy【分析】(1)抛物线解析式:21322y x x =--; 一次函数解析式:1122y x =+. (2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了, 对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y , 按铅垂法思路,可得:12233121321312ABCSx y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -. (1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点. (1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点. (1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当PBC∆的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD x⊥轴于点D,在直线MD上是否存在点N,使点N到直线MC 的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.5.如图,抛物线过点(0,1)A和C,顶点为D,直线AC与抛物线的对称轴BD的交点为(3B,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为433,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当PAB∆面积最大时,求点P的坐标及PAB∆面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.6.在平面直角坐标系xOy中,等腰直角ABC∆的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=,抛物线经过A,B,C三点,如图1所示.4(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l交抛物线于M,N两点,如图2所示.①求CMN∆面积的最小值.②已知3(1,)Q-是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,2求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.。

中考数学全面突破(含详细答案)题型6 二次函数综合题

中考数学全面突破(含详细答案)题型6 二次函数综合题

题型6 二次函数综合题题型解读1.考查类型:①二次函数与线段和差问题;②二次函数与图形面积问题;③二次函数与特殊三角形判定问题;④二次函数与特殊四边形判定问题;⑤二次函数与三角形相似、全等问题;2.考查内容:①中考查多与找点关于直线的对称点,再根据两点之间线段最短确定所求点有关;②中考查多与割补法求面积有关;③中考查多与特殊三角形的性质有关,直角三角形通常用到勾股定理计算,直角三角形与等腰三角形在判定时均应考虑分类讨论,以免漏解;④中考查多与特殊四边形的判定及性质有关,同样做题时要考虑各种情况,命题时常与分类讨论思想结合;⑤中考查多与三角形相似或全等的判定及性质有关;3.备考指导:在做此类题型时,要观察题中已知条件,并结合题设,作出适当的辅助线,联系相应的判定或性质求解.类型一二次函数与线段和差问题1.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC 上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O,A,E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B.(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M(4,m)是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F ,E 的坐标.温馨提示:在直角坐标系中,若点P ,Q 的坐标分别为P(x 1,y 1),Q(x 2,y 2),当PQ 平行x 轴时,线段PQ 的长度可由公式PQ =|x 1-x 2|求出;当PQ 平行y 轴时,线段PQ 的长度可由公式PQ =|y 1-y 2|求出.3.如图,在平面直角坐标系xOy 中,抛物线y =x 2+14与y 轴相交于点A ,点B 与点O 关于点A 对称.(1)填空,点B 的坐标是________;(2)过点B 的直线y =kx +b(其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB =PC.求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由;(3)在(2)的条件下,若点C 关于直线BP 的对称点C ′恰好落在该抛物线的对称轴上,求此时点P 的坐标.4.已知二次函数y =x 2-(2k +1)x +k 2+k(k >0). (1)当k =12时,求这个二次函数的顶点坐标;(2)求证:关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0(k >0)有两个不相等的实根;(3)如图,该二次函数图象与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于C 点,P 是y 轴负半轴上一点,且OP =1,直线AP 交BC 于点Q. 求证:1OA 2+1AB 2=1AQ2.类型二 二次函数与图形面积问题5.如图,二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0). (1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.6.已知抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,与y 轴交于点C ,直线y =kx 与抛物线交于A ,B 两点.(1)写出点C 的坐标并求出此抛物线的解析式;(2)当原点O 为线段AB 的中点时,求k 的值及A ,B 两点的坐标;(3)是否存在实数k 使得△ABC 的面积为3102?若存在,求出k 的值;若不存在,请说明理由.7.如图①,在平面直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A(-3,0),B(1,0),与y 轴交于点C.(1)直接写出抛物线的函数解析式;(2)以OC 为半径的⊙O 与y 轴的正半轴交于点E.若弦CD 过AB 的中点M ,试求出DC 的长;(3)将抛物线向上平移32个单位长度(如图②),若动点P(x ,y)在平移后的抛物线上,且点P 在第三象限,请求出△PDE 的面积关于x 的函数关系式,并写出△PDE 面积的最大值.8.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为22的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.9.如图,已知抛物线y=ax2+bx+c经过点A(-3,0),B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S.求S与t之间的函数表达式,并写出自变量t的取值范围.类型三二次函数与特殊三角形判定问题10.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.11.如图,抛物线y =ax 2+bx -3(a≠0)的顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且BO =OC =3AO ,直线y =-13x +1与y 轴交于点D.(1)求抛物线的解析式; (2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P ,使△PBC 是等腰三角形?若存在,请直接写出符合条件的P 点坐标;若不存在,请说明理由.12.如图,抛物线L :y =ax 2+bx +c 与x 轴交于A ,B(3,0)两点(A 在B 的左侧),与y 轴交于点C(0,3),已知对称轴x =1. (1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.图①图②13.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接..写出所有点P的坐标;若不存在,请说明理由.14.如图,抛物线y =-12x 2+32x +2与x 轴交于点A ,点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q. (1)求点A ,点B ,点C 的坐标; (2)求直线BD 的解析式;(3)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形; (4)在点P 的运动过程中,是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.类型四 二次函数与特殊四边形判定问题15.如图,抛物线y =-x 2+bx +c 经过A(-1,0),B(3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD. (1)求经过A ,B ,C 三点的抛物线的函数表达式; (2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.备用图16.如图,抛物线与x轴交于点A(-5,0)和点B(3,0),与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N,交x轴于点E和F.(1)求抛物线解析式.(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=1010,求点Q的坐标.(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.17.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.18.如图,抛物线经过A(-1,0),B(5,0),C(0,-52)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A 、C 、M 、N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系xOy 中,抛物线y =a(x +1)2-3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C(0,-83),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P 、Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A 、B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3∶7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否成为菱形?若能,求出点N 的坐标;若不能,请说明理由.类型五二次函数与三角形相似、全等问题20.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1) 求抛物线的解析式及点C的坐标;(2) 求证:△ABC是直角三角形;(3) 若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似,若存在,请求出点N的坐标;若不存在,请说明理由.21.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx -8与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE≌△FCE,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m),直线PB 与直线l 交于点Q.试探究:当m 为何值时,△OPQ 是等腰三角形.类型一 二次函数与线段和差问题1. 解:(1)∵四边形ABCD 是矩形,B(10,8), ∴A(10,0),∵E(6,8),O(0,0),抛物线y =ax 2+bx +c 经过点A(10,0)、E(6,8)和O(0,0), ∴⎩⎪⎨⎪⎧102a +10b +c =062a +6b +c =8c =0,解得⎪⎨⎪⎧a =-13b =103,∴抛物线的解析式y =-13x 2+103x.(2)由题意可知:AD =ED ,BE =|10-6|=4,AB =8,设AD 为x ,则ED =x ,BD =AB -AD =8-x , 在Rt △BDE 中, ED 2=EB 2+BD 2, 即x 2=42+(8-x)2, 解得x =5,即AD =5.(3)由(2)可知,D 点的坐标是(10,5),∴△PAD 的周长l =PA +PD +AD =PA +PD +5,∵抛物线的对称轴是线段OA 的垂直平分线,点P 是抛物线对称轴上的一动点, ∴PO =PA ,因此,l =PA +PD +5=PO +PD +5, ∴当PO +PD 最小时l 最小,∴当点P 移动到直线OD 与抛物线对称轴的交点处时PO +PD 最小, 设直线OD 的解析式为y =kx ,将D 点的坐标(10,5)代入得: 5=10 k ,求得k =12,∴直线OD 的解析式为y =12x ,当x =5时,y =52,∴P 点的坐标是(5,52).2. 解:(1)∵直线y =5x +5与x 轴交于点A ,与y 轴交于点C , ∴A(-1,0),C(0,5).∵抛物线y =ax 2+4x +c 过点A(-1,0),C(0,5),则⎩⎪⎨⎪⎧c =5a -4+c =0, 解得c =5,a =-1,∴二次函数的表达式为y =-x 2+4x +5.第2题解图①(2)如解图①,∵抛物线y =-x 2+4x +5与x 轴交于A ,B 两点, ∴解-x 2+4x +5=0的两根为x 1=-1,x 2=5. ∵点B 在x 轴正半轴, ∴B(5,0).设过B(5,0), C(0,5)的直线BC 解析式为y =kx +b ,则⎩⎪⎨⎪⎧5k +b =0b =5, 解得k =-1,b =5,∴直线BC 表达式为y =-x +5. ∵DN ⊥x 轴,∴DN ∥y 轴.∵点N 在BC 上,点D 在抛物线上,设N(x ,y 1),D(x ,y 2), ∴N(x ,-x +5),D(x ,-x 2+4x +5). ∴DN =-x 2+4x +5-(-x +5)=-x 2+5x =-(x -52)2+254.当x =52时,DN 有最大值254;(3)如解图②,作点H 关于y 轴的对称点H′,点M 关于x 轴的对称点M′,连接H′M′,分别交x 轴,y轴于点F 、E ,则四边形HEFM 的最小周长为HM +HE +EF +FM =HM +H′M′.∵y =-x 2+4x +5=-(x -2)2+9, ∴H(2,9),第2题解图②∴H ′(-2,9), 当x =4时,y =5, ∴M(4,5), ∴M ′(4,-5).设直线H′M′的解析式为y =k′x +b′,则⎩⎪⎨⎪⎧-2k′+b′=94k ′+b′=-5, 解得⎩⎨⎧k′=-73b′=133,∴直线H′M′的解析式为 y =-73x +133.当y =0时,x =137,13当x =0时,y =133, ∴E(0,133).3. 解:(1)由y =x 2+14得:A(0,14)∵B 、O 关于A 对称, ∴B(0,12)(2)如解图①,∵直线BC 过点B(0,12),第3题解图①∴直线BC 解析式为 y =kx +12.∴C(-12k ,0),又∵P 是直线l 上一点, ∴可设P(-12k,a).过点P 作PN ⊥y 轴,垂足为N ,连接PB ,则在Rt △PNB 中,由勾股定理得: PB 2=PN 2+NB 2, ∵PB =PC =a , ∴a 2=(-12k )2+(a -12)2,解得a =14k 2+14,∴P 点坐标为(-12k ,14k 2+14),当x =-12k 时,y =14k 2+14,第3题解图②(3)如解图②,由C′在y 轴上,可知∠CBP =∠C′BP , ∵PB =PC ,∴∠CBP =∠PCB , ∵PC ∥C ′B ,∴∠PCB =∠ABC ,∴∠C ′BP =∠CBP =∠ABC =60°, ∴△PBC 为等边三角形, ∵OB =12,∴BC =1,OC =32, ∴PC =1, ∴P(32,1). 4. (1)解:当k =12时,y =x 2-2x +34,∵⎩⎪⎨⎪⎧-b2a =--22×1=14ac -b 24a =4×1×34-(-2)24×1=-14, ∴顶点坐标为(1,-14),(2)证明:∵b 2-4ac =[-(2k +1)]2-4(k 2+k) =4k 2+4k +1-4k 2-4k =1, ∵1>0,∴原方程一定有两个不相等的实根.(3)证明:由题意得,A(k ,0),B(k +1,0),C(0,k 2+k), 设PA 的解析式为:y =mx +n ,代入P(0,-1),A(k ,0), 解得m =1k ,n =-1,于是y =1kx -1,设BC 的解析式为:y =sx +t ,代入B(k +1,0),C(0,k 2+k),解得s =-k ,t =k 2+k ,于是y =-kx +k 2+k ,联立⎩⎪⎨⎪⎧y =1k x -1y =-kx +k 2+k ,解得Q 点坐标为(k +k 2k 2+1,kk 2+1),运用勾股定理得AQ 2=(k +k 2k 2+1-k)2+(k k 2+1)2=k 2k 2+1,∵OA 2=k 2,AB 2=(k +1-k)2=1 ∴1OA 2+1AB 2=k 2+1k 2=1AQ 2, ∴1OA 2+1AB 2=1AQ 2. 类型二 二次函数与图形面积问题∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0,解得⎩⎪⎨⎪⎧a =-12b =3. (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,设点C(x ,-12x 2+3x),则S △OAD =12OD·AD =12×2×4=4,S △ACD =12AD·CE =12×4×(x -2)=2x -4,S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6). ∵S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.第5题解图①6. 解:(1)令x =0,得y =ax 2+bx -3=-3, ∴C(0,-3),把(-1,0)和(3,0)代入y =ax 2+bx -3中,得⎩⎪⎨⎪⎧a -b -3=09a +3b -3=0,解得⎩⎪⎨⎪⎧a =1b =-2, ∴抛物线的解析式为y =x 2-2x -3.(2)联立方程组⎩⎪⎨⎪⎧y =x 2-2x -3y =kx ,解得⎩⎪⎨⎪⎧x 1=k +2+k 2+4k +162y 1=k 2+2k +k k 2+4k +162,⎩⎪⎨⎪⎧x 2=k +2-k 2+4k +162y 2=k 2+2k -k k 2+4k +162,∵O 是AB 的中点,∴x 1+x 2=0,即k +2+k 2+4k +162+k +2-k 2+4k +162=0,解得k =-2,∴⎩⎨⎧x 1=3y 1=-23 , ⎩⎨⎧x 2=-3y 2=23,(3)不存在实数k 使得△ABC 的面积为3102.理由如下:假设存在实数k 使得△ABC 的面积为3102,联立方程组⎩⎪⎨⎪⎧y =x 2-2x -3y =kx ,解得⎩⎪⎨⎪⎧x 1=k +2+k 2+4k +162y 1=k 2+2k +k k 2+4k +162,⎩⎪⎨⎪⎧x 2=k +2-k 2+4k +162y 2=k 2+2k -k k 2+4k +162, 则A(k +2-k 2+4k +162,k 2+2k -k k 2+4k +162),B(k +2+k 2+4k +162,k 2+2k +k k 2+4k +162),∴S △ABC =12OC(x B -x A )=3102,∴3×k 2+4k +16=310,∴k 2+4k +16=10,即k 2+4k +6=0,∵b 2-4ac =16-24<0, ∴此方程无解,故不存在实数k 使得△ABC 的面积为3102.7. 解:(1)y =23x 2+43x -2.【解法提示】∵抛物线y =ax 2+bx -2与x 轴交于点A(-3,0),B(1,0),∴⎩⎪⎨⎪⎧9a -3b -2=0a +b -2=0,解得⎩⎨⎧a =23b =43,∴抛物线的函数解析式为y =23x 2+43x -2,(2)由抛物线解析式知:C(0,-2),∴E(0,2),∵AB =4,M 为AB 中点, ∴OM =1,∴MC =OC 2+OM 2=5,∵∠EDC =∠MOC, ∠DCE =∠OCM , ∴△CMO ∽△CED, ∴CD CO =CE CM , ∴CD 2=45,∴CD =855.(3)y =23x 2+43x -2=23(x +1)2-83,∵抛物线向上平移32个单位长度,∴平移后抛物线解析式为y =23(x +1)2-83+32,即y =23(x +1)2-76,第7题解图如解图,过点D 作DH ⊥y 轴,过点P 作PG ⊥y 轴,连接PD ,PE ,设点P 的横坐标为x. ∵△CMO ∽△CDH, ∴CM CD =OM HD =CO CH , 即5855=1DH =2CH , ∴DH =85,CH =165,∴OH =CH -CO =165-2=65,∴EH =OE -OH =2-65=45,∴S △PDE =S 梯形DPGH +S △DHE -S △PEG=12(85-x)[65-23(x +1)2+76] +12×85×45-12(-x)[2-23(x +1)2+76] =-45[23(x +1)2-76]+25x +85=-815x 2-23x +2=-815(x +58)2+5324∵点P 位于平移后的抛物线上且位于第三象限,则有⎩⎪⎨⎪⎧23(x +1)2-76<0x <0,解得x 的取值范围为-1-72<x <0. 即:S =-815(x +58)2+5324(-1-72<x <0),∴当x =-58时,△PDE 的面积最大为5324.8. 解:(1)由题意知,A(3,3)在二次函数y =x 2+bx 图象上,将x =3,y =3代入得9+3b =3, 解得b =-2,∴二次函数表达式为y =x 2-2x.第8题解图①(2)如解图①所示,过点P 作PB ⊥QQ 1于点B ,∵PQ =22,且在直线y =x 上, ∴PB =QB =2 ,设P(a ,a),则Q(a +2,a +2),则P 1(a ,a 2-2a),Q 1(a +2,(a +2)2-2(a +2)),即Q 1(a +2,a 2+2a),所以四边形PQQ 1P 1的面积为: S =2×(a -a 2+2a )+(a +2-a 2-2a )2=-2a 2+2a +2 =-2(a -12)2+52,当Q 运动到点A 时,OP =OQ -PQ =2,a =1.∴a 的取值范围为0<a <1.∴当a =12时,四边形PQQ 1P 1的面积最大,最大值为52.(3)存在,点E 的坐标为E 1(43,43),E 2(143,143),如解图②所示,连接OM ,∵点M 为抛物线顶点, ∴M(1,-1),又∵OA 所在直线为y =x , ∴OM ⊥OA ,即∠AOM =90°,在△AOF 和△AOM 中,以OA 为底,当面积相等时,则两三角形OA 边上的高相等,又∵OM ⊥OA ,且OM =2,∴可作两条与OA 互相平行且距离为2的直线,如解图②所示,在直线HD 、MC 上的点F 均满足S △AOF =S △AOM ,∴只需满足E 点的对称点F 在这两条直线上即可,如解图②,过点A 作AC ⊥MC 于点C ,易求四边形OACM 为矩形,AM 为该矩形的一条对角线,取AM 中点O′,过O′作AM 垂线,交OA 于点E 1,交MC 于点F 1,OA =32,∴AM =OA 2+OM 2=25,∴AO ′=5,则△AO′E 1∽△AOM , ∴AO′AO =AE 1AM =AO -OE 1AM , ∴532=32-OE 125,第8题解图②解得OE 1=423,∵点E 1在y =x 上, ∴E 1(43,43),同理可得HF 2=GE 2=423,又∵OG =2OA =62, ∴OE 2=62-423=1423,∴ E 2(143,143).综上所述,符合条件的E 点的坐标为:E 1(43,43)、E 2(143,143).9. 解:(1)把A(-3,0),B(9,0),C(0,4)代入y =ax 2+bx +c 得 ⎩⎪⎨⎪⎧9a -3b +c =081a +9b +c =0c =4, 解得⎩⎪⎨⎪⎧a =-427b =89c =4,∴二次函数的表达式为y =-427x 2+89x +4,由题意得-427x 2+89x +4=4,解得x 1=0,x 2=6,∴点D 的坐标为(6,4).(2)∵-b2a =-89-827=3,4ac -b 24a =-6427-6481-1627=163,∴顶点F 的坐标为(3,163),如解图①易知FO 1=OC =4,A 1O 1=AO =3,FH =163-4=43.第9题解图①∵GH ∥AE ,∴GH ∥A 1O 1, ∴GH A 1O 1=FHFO 1, 即GH 3=434, ∴GH =1,∴S 四边形A 1O 1HG =S △FA 1O 1-S △FGH =12×3×4-12×1×43=163.(3)如解图②,当0<t ≤3时,OO 2=t ,△OO 2G ∽△OED , ∴GO 2DE =OO 2OE , ∴GO 24=t6, ∴GO 2=23t ,∴S =12×t ×23t =13t 2(0<t ≤3);第9题解图②第9题解图③如解图③,当3<t ≤6时,设A 2C 2与OD 交于点M ,作MG ⊥CD ,延长GM 交x 轴于点H ,则GH ⊥x轴.易知△C 2MD ∽△A 2MO ,△DMG ∽△OMH ,△ODE ∽△ONO 2,C 2D =6-t ,OA 2=t -3,O 2O =t ,GH =4,O 2E =6-t ,∴GM MH =DM OM =C 2D OA 2,NO 2DE =OO 2OE , ∴4-MH MH =6-t t -3,NO 24=t6, ∴MH =4(t -3)3,NO 2=23t ,∴S 四边形A 2O 2NM =S △ODE -S △OA 2M -S 梯形NO 2ED =12-12(t -3)×4(t -3)3-(2t3+4)(6-t )2=12-23t 2+4t -6-2t +t 23-12+2t=-13t 2+4t -6(3<t ≤6).综上所述,S 与t 之间的函数表达式为S =⎩⎨⎧13t 2(0<t ≤3)-13t 2+4t -6(3<t ≤6).类型三 二次函数与特殊三角形判定问题10. 解:(1)依题意,得⎩⎪⎨⎪⎧-b2a=-1a +b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,第10题解图∴抛物线解析式为y =-x 2-2x +3. ∵对称轴为x =-1,抛物线经过 A(1,0),∴B(-3,0).把B(-3,0),C(0,3)分别代入y =mx +n 得,⎩⎪⎨⎪⎧-3m +n =0n =3,解得⎩⎪⎨⎪⎧m =1n =3,∴直线BC 的解析式为y =x +3.(2)如解图,设直线BC 与对称轴x =-1的交点为M ,连接AM , ∵MA =MB ,∴MA +MC =MB +MC =BC.∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点. 把x =-1代入直线y =x +3,得y =2. ∴点M(-1,2).(3)设P(-1,t),结合B(-3,0),C(0,3),得BC 2=18, PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10. ①若B 为直角顶点,则BC 2+PB 2=PC 2, 即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2, 即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18.解得t 1=3+172,t 2=3-172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).11. (1)解:当x =0时,y =ax 2+bx -3=-3, ∴C(0,-3),即OC =3, ∵OB =OC =3OA , ∴OB =3,OA =1, ∴A(-1,0),B(3,0),将点A(-1,0),点B(3,0)代入y =ax 2+bx -3得⎩⎪⎨⎪⎧a -b -3=09a +3b -3=0, 解得⎩⎪⎨⎪⎧a =1b =-2,∴抛物线的解析式为y =x 2-2x -3.(2)证明:由y =x 2-2x -3=(x -1)2-4可得E(1,-4), 当x =0时,由直线y =-13x +1得y =1,∴D(0,1),即OD =1, ∴BD =OD 2+OB 2=10, ∴CE =2,BE =25,BC =32, ∴在△ODB 和△CEB 中, 有DB EB =DO EC =BO BC =22, ∴△DBO ∽△EBC.(3)解:存在点P ,使得△PBC 是等腰三角形,点P 的坐标分别为:P 1(1,-1),P 2(1,-3+17),P 3(1,-3-17),P 4(1,14),P 5(1,-14).【解法提示】如解图,过点P 作PG ⊥y 轴于G ,设抛物线对称轴与x 轴的交点为M ,设P(1,a), 则PG =1,GC =a +3,PM =a ,∴PC 2=1+(a +3)2,PB 2=4+a 2,CB 2=3(2)2=18, 当P 是等腰三角形顶点时,PC 2=PB 2, 即1+(a +3)2=4+a 2, 解得a =-1, ∴P 1(1,-1);当C 是等腰三角形顶点时,PC 2=CB 2, 即1+(a +3)2=18,第11题解图解得a 1=-3+17,a 2=-3-17 ∴P 2(1,-3+17), P 3(1,-3-17);当B 是等腰三角形顶点时,PB 2=CB 2, 即4+a 2=18,解得a 1=14,a 2=-14, ∴P 4(1,14),P 5(1,-14).∴存在点P ,使得△PBC 是等腰三角形,点P 的坐标分别为:P 1(1,-1),P 2(1,-3+17),P 3(1,-3-17),P 4(1,14),P 5(1,-14).12. 解:(1)解法一:把C(0,3)代入y =ax 2+bx +c ,得c =3, 把B(3,0)代入y =ax 2+bx +3, 得9a +3b +3=0,又∵-b2a =1,∴a =-1,b =2,∴抛物线L 的解析式是y =-x 2+2x +3.解法二:设所求抛物线L 的解析式为:y =m(x -1)2+n ,把B(3,0),C(0,3)分别代入得⎩⎪⎨⎪⎧4m +n =0m +n =3,解得⎩⎪⎨⎪⎧m =-1n =4,∴抛物线L 的解析式是y =-(x -1)2+4,即y =-x 2+2x +3.(2)第12题解图①解法一:由y =-(x -1)2+4得抛物线的顶点D(1,4),如解图①,过点D 作y 轴的平行线分别交CB ,OB 于点E 、F , 则EF OC =BFBO,∴EF =2, ∴4-2≤h ≤4,即2≤h ≤4.(3)能,设P(x ,-x 2+2x +3),如解图②,过点P 分别作x 轴、直线l 的垂线,第12题解图②垂足分别是点M ,N , ∵∠PMB =∠PNQ =90°, ∵∠QPB =90°,∠BPM =∠QPN ,PB =PQ , ∴△PMB ≌△PNQ(AAS ),∴PM =PN.①当点P 在x 轴上方时,-x 2+2x +3=x +3, 即x 2-x =0,解得x 1=0,x 2=1, ∴P 1(0,3),P 2(1,4);②当点P 在x 轴下方时,-x 2+2x +3=-(x +3),即x 2-3x -6=0,解得x =3±(-3)2-4×1×(-6)2=3±332,∴P 3(3-332,-9-332),P 4(3+332,-9+332),∴满足条件的点P 有四个点,分别是P 1(0,3),P 2(1,4),P 3(3-332,-9-332),P 4(3+332,-9+332).13. 解:(1)把B(3,0),C(0,3)分别代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3, ∴抛物线的解析式为y =x 2-4x +3.(2)设直线BC 的解析式为y =mx +n(m ≠0), 将点B(3,0),C(0,3)分别代入得,⎩⎪⎨⎪⎧3m +n =0n =3,解得⎩⎪⎨⎪⎧m =-1n =3, ∴直线BC 的解析式为y =-x +3, 设M(a ,a 2-4a +3),则N(a ,-a +3), MN =-a +3-(a 2-4a +3) =-a +3-a 2+4a -3 =-a 2+3a =-(a -32)2+94.对于y =x 2-4x +3,令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3,∴A(1,0),B(3,0),∵M 是抛物线在x 轴下方的动点, ∴1<a <3, 又∵1<32<3,∴当a =32时,MN 的最大值为94.(3)存在,点P 的坐标分别为:P 1(2,32+172),P 2(2,32-172),P 3(2,142)、P 4(2,-142)、P 5(2,12).【解法提示】当线段MN 最长时,N(32,32),设此时直线MN 与x 轴交于点D ,又点B(3,0), 则BN 2=DN 2+DB 2=(32)2+(3-32)2=92.(i )当BN 为腰长时,又分两种情形: ①当点N 为等腰三角形顶角的顶点时,以点N 为圆心,BN 的长为半径画圆,与抛物线的对称轴有两个交点P 1,P 2,如解图. 由抛物线y =x 2-4x +3知,其对称轴为直线x =2, ∴P 1E 2+NE 2=P 1N 2=BN 2,即(2-32)2+NE 2=92,解得NE =172.∴此时P 1(2,32+172),P 2(2,32-172);第13题解图②当点B 为等腰三角形顶角的顶点时,以点B 为圆心,BN 的长为半径画圆,与抛物线的对称轴也有两个交点P 3、P 4, 同理可得P 3(2,142),P 4(2,-142); (ii )当BN 为底边时,作线段BN 的中垂线与对称轴交于一点P 5,如解图. 由点N(32,32),B(3,0),得线段BN 的中点F(94,34),设过点F ,且与BC 垂直的直线P 5F 的解析式为y =x +q , 则94+q =34,解得q =-32, ∴直线P 5F 的解析式为y =x -32,当x =2时,y =2-32=12,∴点P 5(2,12).综上所述,存在满足题意的点P 共有五个,即P 1(2,32+172),P 2(2,32-172),P 3(2,142),P 4(2,-142),P 5(2,12). 14. 解:(1)当y =0时,-12x 2+32x +2=0,解得x 1=4,x 2=-1,则A(-1,0),B(4,0),当x =0时,y =2,则C(0,2).(2)依题意知点D 坐标为 (0,-2),设直线BD 的解析式为y =kx +b ,将D(0,-2)和B (4,0)分别代入,得⎩⎪⎨⎪⎧b =-24k +b =0 ,解得k =12,b =-2,∴直线BD 的解析式为y =12x -2.(3)易知CD ∥QM ,若CD =QM ,则四边形CQMD 为平行四边形. ∵P(m ,0),∴y Q =-12m 2+32m +2,y M =12m -2,则QM =(-12m 2+32m +2)-(12m -2),∵CD =4,∴(-12m 2+32m +2)-(12m -2)=4,解得m =2或m =0(舍去),故当m =2时,四边形CQMD 为平行四边形. (4)存在,设点Q 的坐标为(m ,-12m 2+32m +2),则BQ 2=(4-m)2+(-12m 2+32m +2)2,DQ 2=m 2+[(-12m 2+32m +2)+2]2, BD 2=42+22=20.①当以点B 为直角三角形的直角顶点时,则有DQ 2=BQ 2+BD 2, ∴m 2+[(-12m 2+32m +2)+2]2=(4-m)2+(-12m 2+32m +2)2+20,解得m 1=3, m 2=4.∴点Q 的坐标为(3,2),(4,0)(舍去);②当以点D 为直角三角形的直角顶点时,则有BQ 2=DQ 2+BD 2. ∴(4-m)2+(-12m 2+32m +2)2=m 2+[(-12m 2+32m +2)+2]2+20,解得m 3=-1, m 4=8.∴点Q 的坐标为(-1,0),(8,-18),综上所述,所求点Q 的坐标为(3,2),(-1,0),(8,-18). 类型四 二次函数与特殊四边形判定问题15. 解:(1)∵抛物线y =-x 2+bx +c 经过A(-1,0),B(3,0)两点,第15题解图①∴⎩⎪⎨⎪⎧-1-b +c =0-9+3b +c =0,解得⎩⎪⎨⎪⎧b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =-x 2+2x +3. (2)如解图①,连接PC ,PE.对称轴x =-b 2a =-22×(-1)=1,当x =1时,y =-1+2+3=4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n ,将B(3,0)、D(1,4)分别代入表达式,⎩⎪⎨⎪⎧3m +n =0m +n =4,解得⎩⎪⎨⎪⎧m =-2n =6,则直线BD 的解析式为y =-2x+6,设P 的坐标为(x 0,-2x 0+6),∴由勾股定理可得PC 2=x 20+[3-(-2x 0+6)]2,PE 2=(x 0-1)2+(-2x 0+6)2, ∵PC =PE ,∴x 20+(3+2x 0-6)2=(x 0-1)2+(-2x 0+6)2, 解得x 0=2,y 0=-2×2+6=2, ∴P 的坐标为(2,2).(也可证△DCB ,△DEB 为直角三角形,则P 为斜边BD 的中点,或先求CE 的垂直平分线的函数关系式,则点P 是CE 的垂直平分线与BD 的交点)(3)依题意设M 的坐标为(a ,0),则G 坐标为(a ,-a 2+2a +3).第15题解图②如解图②,以F 、M 、N 、G 为顶点的四边形是正方形时,必有FM =MG , ∴|2-a|=|-a 2+2a +3|, ① 2-a =-(-a 2+2a +3), 解得a =1±212,② 2-a =-a 2+2a +3, 解得a =3±132,∴M 点的坐标为(1-212,0),(1+212,0),(3-132,0),(3+132,0).16. 解:(1)根据题意得,A(-5,0),B(3,0)在x 轴上, 设抛物线的解析式为y =a(x +5)(x -3). ∵抛物线过点(0,5), ∴a =-13.∴抛物线的解析式为y =-13(x +5)(x -3)=-13x 2-23x +5.(2)如解图,过点F 作FD ⊥AC 于点D ,∵OA =5,OC =5, ∴∠CAO =45°.设AF 的长为m ,则DF =22m ,ME =AE =m +1. ∴sin ∠AMF =DFMF, ∴MF =DFsin ∠AMF=10×22m 10=5m. 在Rt △MEF 中,FM 2=ME 2+EF 2,∴(5m)2=(m +1)2+12,第16题解图解得m 1=1,m 2=-12(不符合题意,舍去).∴AF =1,∴点Q 的横坐标为-4. 又∵点Q 在抛物线 y =-13x 2-23x +5上,∴Q(-4,73).(3)设直线AC 的解析式为y =kx +n(k ≠0),由题意得⎩⎪⎨⎪⎧-5k +n =0n =5,解得⎩⎪⎨⎪⎧k =1n =5,∴直线AC 的解析式为y =x +5.由题知,点Q ,N ,F 及点P ,M ,E 的横坐标分别相同. 设F(t ,0),E(t +1,0),点M ,N 均在直线y =x +5上, ∴N(t ,t +5),M(t +1,t +6),∵点P ,Q 在抛物线y =-13x 2-23x +5上,∴Q(t ,-13t 2-23t +5),P(t +1,-13t 2-43t +4),在矩形平移过程中,以P 、Q 、N 、M 为顶点的平行四边形有两种情况:①点Q 、P 在直线AC 的同侧时,QN =PM. ∴(-13t 2-23t +5)-(t +5)=(-13t 2-43t +4)-(t +6),解得t =-3. ∴M(-2,3).②点Q ,P 在直线AC 的异侧时,QN =MP. ∴(-13t 2-23t +5)-(t +5)=(t +6)-(-13t 2-43t +4),解得t 1=-3+6,t 2=-3-6,∴M(-2+6,3+6)或(-2-6,3-6).∴符合条件的点M 是(-2,3),(-2+6,3+6)或(-2-6,3-6). 17. 解:(1)∵平行四边形ABOC 绕点O 顺时针旋转90°,得到平行四边形A′B′OC′,且点A 的坐标是(0,4),∴点A′的坐标为(4,0),设抛物线的解析式为y =ax 2+bx +c ,将点A(0,4), C(-1,0),A ′(4,0)代入得,⎩⎪⎨⎪⎧a -b +c =0c =416a +4b +c =0, 解得⎩⎪⎨⎪⎧a =-1b =3c =4,∴此抛物线的解析式为y =-x 2+3x +4.第17题解图①(2)如解图①,连接AA′,设直线AA′的解析式为y =kx +b ,将A(0,4),A ′(4,0)代入得⎩⎪⎨⎪⎧b =44k +b =0,解得⎩⎪⎨⎪⎧k =-1b =4,∴直线AA′的解析式为y =-x +4,过M 作ME ⊥x 轴,交直线AA′于点E ,则E(x ,-x +4), 设点M 的坐标为:(x ,-x 2+3x +4),则S △AMA ′=S △AME +S △A ′ME =12ME·OA′=12×4×[-x 2+3x +4-(-x +4)]=-2x 2+8x =-2(x -2)2+8,∴当x =2时,△AMA ′的面积最大,最大值S △AMA ′=8,∴M 的坐标为(2,6).(3)设点P 的坐标为(x ,-x 2+3x +4),当P ,N ,B ,Q 构成平行四边形时, ∵平行四边形ABOC 中,点A 、C 的坐标分别是(0,4)、(-1,0), ∴点B 的坐标为(1,4),∵点Q 坐标为(1,0),P 为抛物线上一动点,N 为x 轴上的一动点,如解图②,第17题解图②①当BQ 为边时,PN ∥BQ ,PN =BQ , ∵BQ =4,∴-x 2+3x +4=±4,当-x 2+3x +4=4时,解得 x 1=0,x 2=3,∴P 1(0,4),P 2(3,4)当-x 2+3x +4=-4时,解得 x 3=3+412,x 4=3-412,∴P 3(3+412,-4),P 4(3-412,-4);②当PQ 为对角线时,BP ∥QN 即BP ∥x 轴,BP =QN ,此时P 与P 1,P 2重合. 当这个平行四边形为矩形时,即P 1(0,4),P 2(3,4)时,N 1(0,0),N 2(3,0). 综上可得:点P 的坐标为:P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4).当这个平行四边形为矩形时,点N 的坐标为(0,0)或(3,0).18. 解:(1)设抛物线的解析式为y =ax 2+bx +c(a ≠0),将点A(-1,0),B(5,0),C(0,-52)代入得,⎩⎪⎨⎪⎧a -b +c =025a +5b +c =0c =-52,解得⎩⎪⎨⎪⎧a =12b =-2c =-52, ∴抛物线的解析式为y =12x 2-2x -52.(2)由题意知,点A 关于抛物线对称轴的对称点为点B ,连接BC 交抛物线的对称轴于点P ,如解图,则P 点即为所求.设直线BC 的解析式为y =kx +b 1(k ≠0),由题意得⎩⎪⎨⎪⎧5k +b 1=0b 1=-52,解得⎩⎨⎧k =12b1=-52,第18题解图∴直线BC 的解析式为 y =12x -52. ∵抛物线y =12x 2-2x -52的对称轴是x =2,∴当x =2时,y =12x -52=12×2-52=-32,∴点P 的坐标是(2,-32).(3)存在.(i )当存在的点N 在x 轴的下方时,如解图所示, ∵四边形ACNM 是平行四边形, ∴CN ∥x 轴,∴点C 与点N 关于对称轴x =2对称, ∵C 点的坐标为(0,-52),∴点N 的坐标为(4,-52);(ii )当存在的点N′在x 轴上方时,如解图所示,作N′H ⊥x 轴于点H , ∵四边形ACM′N′是平行四边形,∴AC =M′N′,∠N ′M ′H =∠CAO ,∠AOC =∠M′HN′, ∴Rt △CAO ≌Rt △N ′M ′H(AAS ), ∴N ′H =OC.∵点C 的坐标为(0,-52),∴N ′H =52,即N′点的纵坐标为52,∴12x 2-2x -52=52, 解得x 1=2+14,x 2=2-14.∴点N′的坐标为(2-14,52)或(2+14,52).综上所述,满足题目条件的点N 共有三个,分别为 (4,-52),(2+14,52),(2-14,52).19. 解:(1)把点C(0,-83)代入y =a(x +1)2-3,得-83=a -3,解得a =13,∴y =13(x +1)2-3,当y =0时,有13(x +1)2-3=0,∴x 1=2,x 2=-4,第19题解图①∴A(-4,0),B(2,0). (2)如解图①,连接CH , ∵A(-4,0),B(2,0), C(0,-83),D(-1,-3), H(-1,0),∴S 四边形ABCD =S △AHD +S △HCD +S △BHC =12×3×3+12×3×1+12×3×83=10,根据条件分析,直线l 只能与边AD 或边BC 相交,有以下两种情况: (i )如解图①,当直线l 与边AD 相交于点M 1时,则S △AHM 1=310×10=3,∴12×3×(-yM 1)=3, ∴yM 1=-2,∵A(-4,0),D(-1,-3),∴直线AD 的解析式为y =-x -4, ∴M 1(-2,-2),过点H(-1,0)和M 1(-2,-2)的直线l 的解析式为y =2x +2;第19题解图②(ii )如解图②,当直线l 与边BC 相交与点M 2时,同理可得点M 2(12,-2),过点H(-1,0)和M 2(12,-2)的直线l 的解析式为y =-43x -43.综上所述:直线l 的函数表达式为y =2x +2或y =-43x -43.(3)以DP 为对角线的四边形DMPN 能成为菱形.设P(x 1,y 1)、Q(x 2,y 2)且过点H(-1,0)的直线PQ 的解析式为y =kx +b , ∴-k +b =0, ∴b =k , ∴y =kx +k. 由⎩⎪⎨⎪⎧y =kx +k y =13x 2+23x -83, 得13x 2+(23-k)x -k -83=0, ∴x 1+x 2=-2+3k ,y 1+y 2=kx 1+k +kx 2+k =3k 2, ∵点M 是线段PQ 的中点,∴由中点坐标公式得点M(32k -1,32k 2).第19题解图③假设存在这样的N 点如解图③,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k -3, 由⎩⎪⎨⎪⎧y =kx +k -3y =13x 2+23x -83, 解得x 1=-1(舍去),x 2=3k -1, ∴N(3k -1,3k 2-3), ∵四边形DMPN 是菱形, ∴DN =DM , ∴DN 2=DM 2,即 (3k)2+(3k 2)2 =(3k 2)2+(32k 2+3)2,整理得:3k 4-k 2-4=0,即(k 2+1)(3k 2-4)=0, ∵k 2+1>0, ∴3k 2-4=0, 解得k =±233,∵k <0, ∴k =-233,∴N(-23-1,1),∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(-23-1,1). 类型五 二次函数与三角形相似、全等问题20. (1)【思路分析】已知抛物线的顶点坐标,利用顶点式代入抛物线上的点O ,求出抛物线解析式,再与直线解析式联立得方程组,即可求得点C 的坐标.解:由题可知,抛物线的顶点为A(1,1),设抛物线的解析式为y =a(x -1)2+1(a ≠0), ∵抛物线经过原点O(0,0),∴将O(0,0)代入,得0=a(0-1)2+1, 解得a =-1,∴抛物线解析式为y =-(x -1)2+1=-x 2+2x. ∵直线y =x -2与抛物线交于B 、C 两点,联立得⎩⎪⎨⎪⎧y =x -2y =-x 2+2x , 解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3).(2)【思路分析】要证明△ABC 是直角三角形,分别计算三角形各边的长度,利用勾股定理的逆定理即可判断.证明:由(1)知,A(1,1),B(2,0),C(-1,-3),第20题解图①如解图①,由两点距离公式,则AF =2,CF =4,CD =3,BD =3,BE =1,AE =1, 在Rt △ABE 中,AB =AE 2+BE 2=2, 在Rt △BCD 中,BC =BD 2+CD 2=32, 在Rt △ACF 中,AC =AF 2+CF 2=25, 在△ABC 中,AB 2+BC 2=(2)2+(32)2=20, AC 2=(25)2=20,第20题解图②∴AB 2+BC 2=AC 2,∴△ABC 为直角三角形.(3)【思路分析】要求是否存在以O ,M ,N 为顶点的三角形与△ABC 相似,由题知,N 点在x 轴上,M 点在抛物线上,可设出N 点坐标,得到由未知数x 表示的M 点坐标,由(2)知△ABC 的边长,利用三角形相似,列出比例关系式求得N 点坐标.由于N 点的位置不定,需进行分类讨论.解:存在.设N(x ,0),则M(x ,-x 2+2x), 由(2)知,AB =2,BC =32, 分两种情况讨论:①若点N 在点B 右侧,即x >2,x 与-x 2+2x 异号,如解图③,△ONM 与△ABC 相似,则M 1N 1ON 1=AB BC 或M 2N 2ON 2=BC AB, 即x 2-2x x =232 或x 2-2x x =322,解两方程可得x 的值为x 1=73,x 2=5,x 3=0(舍去).∴N 的坐标为(73,0)或(5,0);第20题解图③第20题解图④②若点N 在点B 左侧,即x <2,x 与-x 2+2x 同号,如解图④,△ONM 与△ABC 相似,则M 3N 3ON 3=AB BC 或 M 4N 4ON 4=BC AB, 即-x 2+2x x =232 或 x 2-2x -x =322,解两方程可得x 的值为x 1=53,x 2=-1,x 3=0(舍去),∴N 的坐标为(53,0)或(-1,0).综上所述,存在满足条件的点N 的坐标为(73,0)或(5,0)或(53,0)或(-1,0).21. 解:(1)∵抛物线y =ax 2+bx -8经过点A(-2,0),D(6,-8),将A 、D 两点的坐标代入,得⎩⎪⎨⎪⎧4a -2b -8=036a +6b -8=-8,解得⎩⎪⎨⎪⎧a =12b =-3,∴抛物线的函数表达式为y =12x 2-3x -8.∵y =12x 2-3x -8=12(x -3)2-252, ∴抛物线的对称轴为直线x =3,又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0),∴点B 的坐标为(8,0),设直线l 的函数表达式为y =kx ,∵点D(6,-8)在直线l 上,代入得6k =-8,解得k =-43, ∴直线l 的函数表达式为y =-43x. ∵点E 为直线l 和抛物线对称轴的交点,∴点E 的横坐标为3,纵坐标为-43×3=-4, 即点E 的坐标为(3,-4).(2)抛物线上存在点F ,使△FOE ≌△FCE.点F 的坐标为(3-17,-4),(3+17,-4).【解法提示】假设存在,由全等的性质得FO =FC ,∴点F 的纵坐标y F =12y c , 令抛物线的解析式y =12x 2-3x -8中x =0,则y =-8, ∴C(0,-8),即y C =-8,∴y F =-4,将y F =-4代入抛物线解析式得12x 2-3x -8=-4, 解得x 1=3+17,x 2=3-17,∴F 坐标为(3+17,-4),(3-17,-4),∴抛物线上存在点F 使得△FOE ≌△FCE.(3)需分两种情况进行讨论:①当OP =OQ 时,△OPQ 是等腰三角形,第21题解图①∵点E 的坐标为(3,-4),∴OE =32+(-4)2=5,如解图①,过点E 作直线ME ∥PB ,交y 轴于点M ,交x 轴于点H , 则OM OP =OE OQ, ∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5,将点E(3,-4)代入得3k 1-5=-4,解得k 1=13, ∴直线ME 的函数表达式为y =13x -5, 令y =0,得13x -5=0, 解得x =15,∴点H 的坐标为(15,0).又OP OM =OB OH , ∴-m 5=815, ∴m =-83;第21题解图②②当QO =QP 时,△OPQ 是等腰三角形,延长CE ,交x 轴于点N ,如解图②,当x =0时,y =12x 2-3x -8=-8, ∴点C 的坐标为(0,-8),∴CE =32+(8-4)2=5,又∵OE =32+42=5,∴OE =CE ,∴∠1=∠2,∵QO =QP ,∴∠1=∠3,∴∠2=∠3,∴CE ∥PB ,。

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。

2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =−++++交x 轴于点()10A −,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.【答案】(1)234y x x =−++;(2)PM 的最大值为(3)点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【分析】(1)将点()10A −,代入()22131y x n x n =−++++,求得1n =,即可得解;(2)求得点B 和C 的坐标,推出45OAB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,得到PEM △是等腰直角三角形,2PM PE =,设()234P m m m −++,,求得PM 关于m 的二次函数,利用二次函数的性质求解即可;(3)作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,求得BC =ACO GCB ∠=∠,利用正切函数的定义求得BG ,证明HBG 是等腰直角三角形,求得()31G −,,再求得直线CG 的解析式,据此求解即可.【详解】(1)解:∵抛物线()22131y x n x n =−++++交x 轴于点()10A −,, ∴()121310n n −−+++=,解得1n =,∴抛物线的函数解析式为234y x x =−++; (2)解:当0x =时,4y =;当0y =时,2340x x −++=,解得4x =或=1x −;∴()40B ,,()04C ,,∴4OA OB ==,∴45OCB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,∴9045PEM BEF OBC ∠=∠=︒−∠=︒,∴PEM △是等腰直角三角形,∴PM =,设直线BC 的解析式为4y kx =+,把()40B ,代入得044k =+,解得1k =−,∴直线BC 的解析式为4y x =−+,设()234P m m m −++,,则()4E m m −+,,∴))223442PM PE m m m m ==−+++−=−+∵0>,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,∵()10A −,,()40B ,,()04C ,,∴1OA =,4OB OC ==,BC =∵45ACQ ∠=︒,45OCB ∠=︒,∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠,即OA BG OC BC =,∴14=∴BG ,∵45OBC ∠=︒,∴45HBG ∠=︒,∴HBG 是等腰直角三角形,∴1BH GH ==,∴413OH =−=,∴()31G −,,同理直线CG 的解析式为543y x =−+, 联立得235434x x x =−+++−,解得0x =或143x =; 当143x =时,514344339y =−⨯+=−, ∴点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)()20A ,,(B ;(2)①EDA ∠的大小不变,理由见解析;②线段BF 的长度存在最大值为12【分析】(1)0y =得20+=,解方程即可求得A 的坐标,把2y =+化为顶点式即可求得点B 的坐标;(2)①在AB 上取点M ,使得BM BE =,连接EM ,证明AED △是等边三角形即可得出结论;②证BDF OAD ∽,利用相似三角形的性质得BD BF OA OD =即22x BF x −=,解得()211122BF x =−−+进而利用二次函数的性质即可得解.【详解】(1)解:∵)221y x =+=−+∴顶点为(B ,令0y =,20+=,解得0x =或2x =,∴()20A ,;(2)解:①EDA ∠的大小不变,理由如下:在AB 上取点M ,使得BM BE =,连接EM ,∵)21y x =−∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,∴AB AC BC ==,60C ∠=︒,∵()20A ,,(B ,()00O ,,1ON =,∴2OA =,OB =2,AB =2=,∴OA OB AB ==,∴OAB 是等边三角形,2OA OB AC BC ====,∴60∠=∠=∠=︒OAB OBA AOB ,∵60MBE ∠=︒,BM BE =,∴BME 是等边三角形,∴60BME ABE ∠∠=︒=,ME BE BM ==,∴180120AME BME ∠∠=︒−=︒,BD EM ∥,∵120DBE ABO ABC ∠∠∠=+=︒,∴DBE AME ∠∠=,∵BD EM ∥,∴18012060FEM BED AEF MEA FEM ∠∠∠∠∠+=︒−︒=︒==+,∴BED MEA ∠∠=,∴BED MEA ≌,∴DE EA =,又60AED ∠=︒,∴AED △是等边三角形,∴60ADE ∠=︒,即ADE ∠的大小不变;②设OD x =,则2BD x =−,∵OAB 是等边三角形,60ADE ∠=︒,∴60DOA FBD ADE ∠∠∠===︒,∵BDA BDF ADE DOA OAD ∠∠∠∠∠=+=+,∴BDF OAD ∠∠=,∴BDF OAD ∽,∴BD BF OA OD =即22x BF x −=, ∴()211122BF x =−−+,∴当1x =时,BF 有最大值为12.【点睛】本题主要考查了二次函数的图像及性质,全等三角形的判定及性质,相似三角形的判定及性质以及等边三角形的判定及性质,题目综合性较强,熟练掌握各知识点是解题的关键.1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)−.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−(2)当32m =时,PD取得最大值为.此时315,24P ⎛⎫− ⎪⎝⎭ (3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c −+=⎧⎨=−⎩,解得:23b c =−⎧⎨=−⎩.则抛物线的解析式为:223y x x =−−;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x −−=,解得=1x −或3,∴(3,0)B设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=−⎩,解得:113k b =⎧⎨=−⎩∴3y x =−设点()2,23P m m m −−(03m <<),则3G m m −(,), ∴()()223233PG m m m m m =−−−−=−, ∵OB OC =,∴45OBC OCB ∠=∠=︒,∴45BGH ∠=︒∴45PGD BGH ∠=∠=︒,∴PD =.)22332228PD m m m ⎫=−+=−−+⎪⎝⎭ ∴当32m =时,PD取得最大值为8.此时315,24P ⎛⎫− ⎪⎝⎭. (3)在EB 上存在点M ,使CMN 为直角三角形.抛物线顶点(1,4)E −,设直线BE 的解析式为:22y k x b =+,则2222430k b k b +=−⎧⎨+=⎩,解得:2226k b =⎧⎨=−⎩,∴26y x =−.设26M n n −(,)13n ≤<(),①∵90CNM ONC ∠=︒−∠,∴90CNM ∠<︒,不可能为直角;②当90CMN ∠=︒时,则90CMN MNB ∠=∠=︒ ∴//MC x 轴,则263n −=−,∴32n =,∴3,32M ⎛⎫− ⎪⎝⎭. ③当90MCN ∠=︒时,过点M 作MF y ⊥轴于点F .∵90MCF NCO ∠+∠=︒,90CNO NCO ∠+∠=︒,∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽, ∴CF MF NO CO =, ∴()3263n nn −−−=,∴2690n n +−=,解得:123,3n n ==−.∵13n ≤<,∴23n =−不合题意,应舍去,∴3n =∴()12M综上所述,CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12.【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.【答案】(1)211344y x x =+−;(2)PD 的最大值为45,此时点52,2P ⎛⎫−− ⎪⎝⎭; (3)Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭,()0,2F ,勾股定理分别表示出2EF ,2QE ,2QF 进而分类讨论即可求解. 【详解】(1)解:将点()3,0B ,()0,3C −,代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=−⎩,解得:143b c ⎧=⎪⎨⎪=−⎩,∴抛物线解析式为:211344y x x =+−; (2)∵211344y x x =+−与x 轴交于点A ,B ,当0y =时,2113044x x +−=,解得:124,3x x =−=, ∴()4,0A −, ∵()0,3C −, 设直线AC 的解析式为3y kx =−,∴430k −−=, 解得:34k =−,∴直线AC 的解析式为334y x =−−,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭, ∴223111334444PQ t t t t t ⎛⎫=−−−+−=−− ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ⎛⎫==−−=−−=−++ ⎪⎝⎭, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=⨯−+⨯−−=−, ∴52,2P ⎛⎫−− ⎪⎝⎭; (3)∵抛物线211344y x x =+−211494216x ⎛⎫=+− ⎪⎝⎭, 将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =, 点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭, ∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯−= ⎪⎝⎭, ∴()0,2F , ∴22251173224EF ⎛⎫=++= ⎪⎝⎭, ∵Q 为平移后的抛物线的对称轴上任意一点,则Q 点的横坐标为92, 设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+− ⎪⎝⎭, 当QF EF =时,()229117224m ⎛⎫+−= ⎪⎝⎭, 解得:1m =−或5m =,当QE QF =时,()222295932222m m ⎛⎫⎛⎫⎛⎫−++=+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得:74m =, 综上所述,Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.3.(2024·山西阳泉·一模)综合与探究 如图,二次函数213442y x x =−−的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A −,,()80B ,,()04C −,,直线BC 的表达式为1y x 42=−;(2)线段MN长的最大值为(3)点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得MN ,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x −−=,解得12x =−,28x =,令0x =,则4y =−,∴()20A −,,()80B ,,()04C −,,设直线BC 的表达式为4y kx =−,代入()80B ,得084k =−,解得12k =, ∴直线BC 的表达式为1y x 42=−; (2)解:∵()20A −,,()80B ,,()04C −,,∴2OA =,8OB =,4OC =, 设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,2211314422424PM m m m m m ⎛⎫=−−−−=−+ ⎪⎝⎭,∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠, ∴41tan tan 82OC PNM OBC OB ∠=∠===,∴2PN PM =,MN ,∴)221244MN m m m ⎫=−+=−+⎪⎭∵0<,∴当4m =时,线段MN 长的最大值为 (3)解:∵()20A −,,()80B ,,()04C −,, ∴对称轴为直线2832x −+==, ∴()30D ,,∴()325AD =−−=,5CD ==,AC == ∴5AD DC ==,作DG AC ⊥于点G ,∴12AG CG AC ===∴DG == ∴tan 2DG DCA CG ∠==, ∵tan 2OB BCO OC ∠==,∴DCA BCH ∠=∠,以H ,C ,B 为顶点的三角形与ACD 相似,则分BC BH =和BH CH =两种情况讨论,①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =−+, 联立得241234412x x x −−−+=,解得14x =−,28x =(舍去),()14462y =−⨯−+=,∴点Q 的坐标为()46−,;①当BH CH =时,设()0H t ,,则2264BH t =+,()2224816CH t t t =+=++,∴2264816t t t +=++,解得6t =,∴()06H ,,同理求得直线BH 的表达式为364y x =−+, 联立得261434432x x x −−−+=,解得15x =−,28x =(舍去),()3395644y =−⨯−+=,∴点Q 的坐标为3954⎛⎫− ⎪⎝⎭,; 综上,点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二 将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =−++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为 ,MA MC ''+的最小值为 .【答案】(1)()0,2M −,2722y x x =−++ (2)()2,5P(3)1181,1216⎛⎫− ⎪⎝⎭,【分析】(1)根据点M 在y 轴负半轴且2OM =可得点M 的坐标为()0,2M −,利用待定系数法可得抛物线的解析式为2722y x x =−++;(2)过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,用待定系数法求得直线AC 的解析式为122y x =−+,设点P 的横坐标为()04p p <<,则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭,故24(04)PE p p p =−+<<,先求得8ACM S =△,从而得到212882PAC S PE OC p p =⋅=−+=△,解出p 的值,从而得出点P 的坐标;(3)设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 右平移m 个单位长度得到点M ',由平移的性质可知,,MA M A MC M C ''''==,MA MC ''+的值最小就是M A M C ''+最小值,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,利用两点间的距离公式求这个长度,用待定系数法求出直线AC ''的解析式,从而确定M '的坐标,继而确定平移距离,将原抛物线的解析式化为顶点式,从而得到其顶点,继而确定新抛物线的顶点.【详解】(1)解:∵点M 在y 轴负半轴且2OM =,∴()0,2M −将()0,2A ,()4,0C 代入2y x bx c =−++,得:21640c b c =⎧⎨−++=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为2722y x x =−++(2)解:过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,设直线AC 的解析式为()0y kx m k =+≠,将()0,2A ,()4,0C 代入y kx m =+,得:240m k m =⎧⎨+=⎩,解得122k m ⎧=−⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =−+ 设点P 的横坐标为()04p p << 则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭, ∴2271224(04)22PE p p p p p p ⎛⎫=−++−−+=−+<< ⎪⎝⎭∵8ACM S =△,∴212882PAC S PE OC p p =⋅=−+=△,解得122p p ==, ∴()2,5P ;(3)1181,1216⎛⎫− ⎪⎝⎭,补充求解过程如下:设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 向右平移m 个单位长度得到点M ',作出图形如下:由平移的性质可知,,MA M A MC M C ''''==,∴MA MC ''+的值最小就是M A M C ''+最小值, 显然点M '在直线=2y −上运用,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,∵点C 关于直线=2y −C '',()4,0C ∴()4,4C ''−,∴()()min min MA MC M A M C AC ''''''+=+== 设直线AC ''的解析式是:11y k x b =+将点()0,2A ,()4,4C ''−代入得:111244b k b =⎧⎨+=−⎩,解得:11322k b ⎧=−⎪⎨⎪=⎩直线AC ''的解析式是:322y x =−+令3222y x =−+=−,解得:83x =, ∴8,23M ⎛⎫'− ⎪⎝⎭,∴平移的距离是83m = 又∵22778122416y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∴平移前的抛物线的坐标是781416,⎛⎫ ⎪⎝⎭∴新抛物线的顶点坐标为7881,4316⎛⎫− ⎪⎝⎭即1181,1216⎛⎫− ⎪⎝⎭ 故答案是:1181,1216⎛⎫− ⎪⎝⎭,【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点()4,4B −,点()0,4C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值.【答案】(1)抛物线的表达式为23y x x =−+ (2)平行四边形,见解析(3)【分析】(1)利用待定系数法将B 点坐标代入抛物线2y x bx =−+中,即可求解.(2)作辅助线,根据题意,求出PD 的长,PD OC =,PD OC ∥,利用一组对边平行且相等的四边形是平行四边形即可得证.(3)作出图,证明()SAS CBP MOQ ≌,CP BQ +的最小值为MB ,根据勾股定理求出MB 即可解答. 【详解】(1)解: 抛物线2y x bx =−+过点(4,4)B −,1644b ∴−+=−,3b ∴=,23y x x ∴=−+.即抛物线的表达式为23y x x =−+. (2)解:四边形OCPD 是平行四边形,理由如下:如图1,作PD OA ⊥交x 轴于点H ,连接PC 、OD ,点P 在y x =−上,OH PH ∴=,45POH ∠=︒,连接BC ,4OC BC ==,OB ∴= 2BP =OP OB BP ∴=−=2OH PH ∴===,当2D x =时,4322D DH y ==−+⨯=,224PD DH PH ∴=+=+=, (0,4)C −,4OC ∴=,PD OC ∴=,OC x ⊥Q 轴,PD x ⊥轴,PD OC ∴∥,∴四边形OCPD 是平行四边形.(3)如图2,由题意得,BP OQ =,连接BC ,在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,4OC BC ==,BC OC ⊥,45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ =,CBP MOQ ∠=∠,BC OM ,(SAS)CBP MOQ ∴△≌△,CP MQ ∴=,CP BQ MQ BQ MB ∴+=+≥(当M ,Q ,B 三点共线时最短),CP BQ ∴+的最小值为MB ,454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,MB ∴即CP BQ +的最小值为答:CP BQ +的最小值为【点睛】本题主要考查待定系数法,二次函数图象与性质,平等四边形的判定,全等三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答醒的关键.1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB −的最大值.【答案】(1)24.y x x =- (2)()2,8B (3)()2,12,P - PA PB −的最大值为【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可; (2)设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx = 解得:1,k = 可得直线OA 为:,y x = 则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯−列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a +=⎧⎪∴⎨−=⎪⎩ 解得:1,4a b =⎧⎨=−⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =55,k \= 解得:1,k =∴ 直线OA 为:,y x =()2,2,Q ∴ ()12OAB BOQ ABQ A O SS S BQ x x ∴=+=⨯⨯− 12515,2y =−⨯=解得:8y =或4,y =−∵0,y > 则8,y =()2,8.B ∴(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,()()5,5,2,8,A BAB ∴=设AB 为:,y k x b ''=+ 代入A 、B 两点坐标,55,28k b k b '''+=⎧∴⎨+=⎩' ,解得:1,10k b =−⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =−+⎧∴⎨=−⎩ 解得:52,,512x x y y ==−⎧⎧⎨⎨==⎩⎩()2,12.P ∴−【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB −最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.【答案】(1)245y x x =−++,对称轴为直线2x =,顶点D 的坐标为()29,;(2)QAC △(3)直线MN 恒过定点,定点坐标为()28,.【分析】(1)求得点B 的坐标为()50,,点C 的坐标为()05,,利用待定系数法求解,再配成顶点式,即可得解;(2)先求得直线BC 的解析式,再求直线BC 与对称轴交点Q ,将AQ CQ +转化为BC ,在Rt AOC 中求AC ,在Rt BOC 中求BC 即可求解;(3)如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,证明MDH DNG ∽△△,求得()250mn m n −++=,再利用待定系数法求得直线MN 的解析式为()45y m n x mn =−−+++,据此求解即可. 【详解】(1)解:∵5OB OC ==,∴点B 的坐标为()50,,点C 的坐标为()05,,∴25505b c c −++=⎧⎨=⎩,解得4b =,∴抛物线的解析式为245y x x =−++, ∵()224529y x x x =−++=−−+,∴对称轴为直线2x =,顶点D 的坐标为()29,; (2)解:∵点A 与点()50B ,关于直线2x =对称,∴直线BC 与对称轴的交点为Q ,则Q 为QA QC +最小时位置,设直线BC 的解析式为5y kx =+,代入点()50B ,得055k =+,解得1k =−,∴直线BC 的解析式为5y x =−+,当2x =,253y =−+=,∴()23Q ,,∵点()10A −,,∵ACAQ CQ CB +===∴QAC △(3)解:如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,垂足分别为H ,G ,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,∵顶点D 的坐标为()29,, ∴()()222945442MH m m m m m =−−++=−+=−,2DH m =−,()()222945442GN n n n n n =−−++=−+=−,2DG n =−,由题意得90H G MDN ∠=∠=∠=︒,∴90MDH NDG DNG ∠=︒−∠=∠, ∴MDH DNG ∽△△, ∴MH HD DG NG =,即()()222222m mn n −−=−−,∴()()221m n −−=−, ∴()250mn m n −++=,∵点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,设直线MN 的解析式为11y k x b =+,∴2112114545mk b m m nk b n n ⎧+=−++⎨+=−++⎩①②,−①②得()()()2214m n k m n m n −=−−+−, ∵m n ≠,∴14k m n =−−+,将14k m n =−−+代入①得()21445m m n b m m −−++=−++,求得15b mn =+;∴直线MN 的解析式为()45y m n x mn =−−+++, ∵()250mn m n −++=,即()25m n mn +=+, ∴()()428y m n x =−−+−+, ∴当20x −=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,, ∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2Ly ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.【答案】(1)3y x =−+,223y x x =−++;(2)点P 的横坐标为时,PD AD +有最大值; (3)2154y x x =−−+.【分析】(1)利用待定系数法解答即可求解;(2)设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+,先证明ACD 为等腰直角三角形,得到)AD t =−,进而得到2PD AD t ⎛+=−+ ⎝⎭,根据二次函数的性质即可求解;(3)设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得23()4x x m −+=−−+,整理得,22(21)10x m x m −++−=,设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,由B 为MN 的中点可得210m +=,求出m 即可求解;本题考查了二次函数与一次函数的交点问题,待定系数法求函数解析式,二次函数的性质,二次函数图象的平移,掌握二次函数的图象和性质是解题的关键.【详解】(1)解:抛物线2L y ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =,930312a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪−=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩,∴抛物线L 的解析式为223y x x =−++;设直线AB 的解析式为3(0)y kx k =+≠,把(3,0)A 代入得,330k +=,解得1k =−,∴直线AB 的解析式为3y x =−+;(2)解:设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+, 3AC t ∴=−,23PD t t =−+,(3,0)A ,(0,3)B −,3OA OB ∴==,AOB ∴为等腰直角三角形,45OAB ∴∠=︒,PC x ⊥轴, ACD ∴为等腰直角三角形,)AD t ∴==−,∴223PD AD t t t ⎛+=−++=− ⎝⎭,∴当t =时,PD AD +有最大值,即点P的横坐标为32时,PD AD +有最大值;(3)解:由(1)可知,直线AB 的解析式为3y x =−+,抛物线L 为:2223(1)4y x x x =−++=−−+,∴设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得,()234y x y x m =−+⎧⎪⎨=−−+⎪⎩,23()4x x m ∴−+=−−+,整理得,22(21)10x m x m −++−=, 设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,1221x x m ∴+=+,∵B 为MN 的中点,∴120x x +=,∴210m +=, 解得12m =−,∴抛物线L '的解析式22115424y x x x ⎛⎫=−++=−−+ ⎪⎝⎭.题型三 胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A −、点B 两点,与y 轴交于点()0,2C,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N,求AN 的最大值.【答案】(1)22y x =−+(2)496【分析】(1)用待定系数法求解即可;(2)过点M 作MF y ∥轴,交AC 于点E ,先求出一次函数AC 的解析式,用解直角三角形的方法求出30OAC ∠=︒,表示出MN =,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,分别表示出EF ME AE MN ,,,,最后得到249=26AN m ⎛−+ ⎝⎭,求出最后结果即可.【详解】(1)解:点()A −,对称轴为x =(2a c ∴−−+=,2c =,2b a −=解得:1a =−,b = ∴抛物线的表达式为:22y x =−+;(2)如图,过点M 作MF y ∥轴,交AC 于点E ,设AC 的解析式为y kx b =+,02b b ⎧−+=⎪∴⎨=⎪⎩,2k b ⎧=⎪⎨⎪=⎩,∴AC的解析式为2y =+,2AO =2CO =,tan CO OAC AO ∴∠==,30OAC ∴∠=︒,90AFE MNE ∠=︒=∠,AEF MEN ∠=∠, 30M OAC ∴∠=∠=︒,2AE EF ∴=,12EN ME =,sin MN ME ACO ∴=⋅∠=,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,2EF ∴=+,2222ME m m ∴=−+−=−−,24AE EF ∴==+,21122EN ME m ==−,23MN m==−,AN ∴,AE EN=+2213422m m =+−−−224m =−+24926m ⎛=−++ ⎝⎭,20−<,∴当m =时,AN 的最大值为496.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值. 【答案】(1)214433y x x =−−+(2)①()2,2E −−;②【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【详解】(1)解:①抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C , ∴366404240a b a b −+=⎧⎨++=⎩,解得:1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴214433y x x =−−+;(2)解:214433y x x =−−+4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B −,713Q ⎛⎫ ⎪⎝⎭,∴117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩,∴直线BQ 的解析式为123=+y x ,N Q 为BQ 与y 轴交点, ()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方, 点M 在x 轴上,点E 在平面内,BME AOM ≌,4BM OA ∴==, ()6,0B −, ()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=︒,故()2,2E −−, 若M 为()10,0−,2OM ME ==,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx =++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩,AM ∴的解析式为24y x =+,AM 与BQ 相交于点P ,∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩, 所以点P 的坐标为68,55⎛⎫− ⎪⎝⎭,设直线BE 的解析式为y mx n =+,将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩, 所以直线BE 的解析式为132y x =−−,BE 与AM 相交于点H ,∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为148,55⎛⎫−− ⎪⎝⎭,BP ∴==BH ==1BP ∴当H 旋转到x 轴上时,此时1OH 最短,∴16OH BO BH =−=116BP ∴==⎭∴11BP的最小值为1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =−++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标; (3)将该抛物线沿射线CA方向平移1y ,请直接写出新抛物线1y 的表达式______.【答案】(1)1b =,4c =(2)PE 取得最大值为254,此时335,28P ⎛⎫ ⎪⎝⎭.(3)()2115322y x =−−+【分析】本题考查了二次函数的综合,待定系数法求函数解析式: (1)利用待定系数法即可求解;(2)延长PE 交x 轴于H ,根据题意求得直线AC 的解析式为4y x =−+,OC OA =,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p ,证得PHF是等腰直角三角形,从而求得232524PE PE PH p ⎛⎫=+=−−+⎪⎝⎭,即可求解; (3)先求得CA =,根据1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到,进而可求解;掌握待定系数法求函数解析式及利用数学结合是解题的关键.【详解】(1)解:抛物线212y x bx c =−++交于()4,0A 和()0,4C ,8404b c c −++=⎧∴⎨=⎩,解得:14b c =⎧⎨=⎩. (2)延长PE 交x 轴于H()4,0A ,()0,4C ,∴直线AC 的解析式为4y x =−+,OC OA =, PE y ∥Q 轴,PE x ∴⊥轴, 90AOC ∴∠=︒,45OAC ∴∠=︒,PFAC ,45OFP ∴∠=︒,2PH PF ∴=,PE PE PH ∴+=+,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p , ()221144222PE p p p p p ∴=−++−−+=−+,2142PH p p =−++,222211325243422224PE PF PE PH p p p p p p p ⎛⎫∴+=+=−+−++=−++=−−+⎪⎝⎭,PE ∴+的最大值为254,此时点P 的坐标为325,24⎛⎫ ⎪⎝⎭.(3)()4,0A ,()0,4C ,CA ∴=将抛物线y 沿射线CA 方向平移1y ,∴1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到, ()2115322y x ∴=−−+,故答案为:()2115322y x =−−+.2.(2024·海南海口·一模)如图,抛物线2y ax bx c =++过点()1,0A −,()3,0B ,()0,3C .(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点, ①当P 为抛物线的顶点时,求证:PBC 直角三角形; ②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E.当PE 的值最大时,求点P 的坐标.【答案】(1)223y x x =−++(2)①PBC 是直角三角形;②315,24P ⎛⎫ ⎪⎝⎭;③57,24P ⎛⎫ ⎪⎝⎭【分析】(1)把A 、B 、C 三点坐标代入2y ax bx c =++求解即可; (2)①作PH y ⊥轴于点H ,易证PCH △和BOC 是等腰直角三角形,即可求出90PCB ∠=︒; ②先求出直线BC 的解析式,过点P 作PD x ⊥轴于点D ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,23922PBC S x x ∆=−+,然后根据二次函数的性质求解即可; ③过点P 作PN x ⊥轴于点N ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,判断BEN是等腰直角三角形得出BE =,即可求出25PE x x =−+,然后根据二次函数的性质求解即可. 【详解】(1)解:将点()1,0A −,()3,0B ,()0,3C 代入解析式得:09303a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得:123a b c =−⎧⎪=⎨⎪=⎩,∵抛物线的解析式为223y x x =−++;(2)解:①配方得()222314y x x x =−++−−+∴点P 的坐标为()1,4,作PH y ⊥轴于点H ,则1PH CH ==,∴45HCP ∠=︒又∵在Rt BOC 中,3OB OC ==, ∴45OCB ∠=︒, ∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =−⎧⎨=⎩, ∴直线BC 的解析式为3y x =−+, ∵()3,0B ,∴3OB =, 设点()2,23P x x x −++(03x <<),过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x=−++−−+=−+,∴()22211393327332222228PBCSPE OB x x x x x ⎛⎫=⨯⨯=⨯−+⨯=−+=−−+ ⎪⎝⎭,当32x =时,PBC 的最大面积为278,2915233344x x −++=−++=,∴315,24P ⎛⎫⎪⎝⎭③设点()2,23P x x x −++(03x <<),过点P 作PN x ⊥轴于点N ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x =−++−−+=−+, ∵()0,3C ,()3,0B ,∴3OC OB ==,3BN x =−,∴45OBC OCB ∠=∠=︒,∴45NEB OBC ∠=∠=︒,∴BE ==,∴()CE BC BE =−==,∴22525524PE x x x ⎛⎫=−+=−−+ ⎪⎝⎭, ∴当52x =时,PE 有最大值,此时57,24P ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,面积问题,线段问题,掌握二次函数的性质是解题的关键.3.(2023·山东济南·一模)抛物线()21122y x a x a =−+−+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标; (3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值. 【答案】(1)2a =,2b =−,4c = (2)53,2P ⎛⎫ ⎪⎝⎭(3)【分析】(1)利用待定系数法求解即可;(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得BC l 的解析式,设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+,利用相似三角形的判定与性质可得答案; (3)在y 轴上取一点F ,使得94OF =,连接BF ,由相似三角形的判定与性质可得34FE CE ''=,可得34E B E C BE E F '''+'+=,即可解答.【详解】(1)解:将()4,0B 代入()21122y x a x a =−+−+,得()84120a a −+−+=,2a ∴=,∴抛物线的解析式为2142y x x =−++,令0x =,则4y =,4c ∴=,令0y =,则21042x x =−++,14x ∴=,22x =−,()2,0A ∴−,即2b =−; ∴2a =,2b =−,4c =(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设BC l :y kx b =+,将()0,4,()4,0代入得440b k b =⎧⎨+=⎩解得:4b =,1k =−,BC l ∴:4y x =−+, 设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+, ()221144222P D PD y y m m m m m =−=−++−−+=−+,PD HA ∥,AMH PMD ∴∽,PM PD MA HA ∴=,将2x =−代入4y x =−+,6HA ∴=,112142PMB AMBPM h S PM S AM AM h ⋅===⋅, 164PD PD HA ∴==,32PD ∴=, 231222m m ∴=−+,11(m ∴=舍),23m =,53,2P ⎛⎫∴ ⎪⎝⎭;(3)在y 轴上取一点F ,使得94OF =,连接BF ,根据旋转得性质得出:3OE OE '==,∵9494OF OC ⋅=⨯=, 2OE OFOC '∴=⋅,∴OE OC OF OE '=',COE FOE ''∠=∠,∴FOE E OC ''∽,。

2023年中考数学高频考点突破——二次函数与面积综合

2023年中考数学高频考点突破——二次函数与面积综合

2023年中考数学高频考点突破——二次函数与面积综合1.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点.(1)求m的值及C点坐标;(2)P为抛物线上一点,它关于直线BC的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,多边形PBQC的面积最大,请说明理由.2.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为M(2,9)且过点C (8,0).(1)求该二次函数的表达式;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①若F的横坐标为3,求S的值;②是否存在点F,使点E也落在该二次函数图象上.若存在,求出F的坐标;若不存在,说明理由.3.如图,抛物线y=x2+bx经过原点O,与x轴相交于点A(1,0),(1)求该抛物线的解析式;(2)在抛物线上方构造一个平行四边形OABC,使点B在y轴上,点C在抛物线上,连接AC.①求直线AC的解析式.②在抛物线的第一象限部分取点D,连接OD,交AC于点E,若△ADE的面积是△AOE面积的2倍,这样的点D是否存在?若存在,求出点D的坐标,若不存在,请说明理由.4.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B 两点(点A在点B左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求直线AB的解析式;(2)求抛物线的解析式;当x取何值时,函数y有最值,为多少?(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M MAB的面积与△ABC的面积相等,若存在,请求出M点的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,在平面坐标系内,是否存在一点P,使得以B、C、D、P四点为顶点的四边形为平行四边形?若存在,求出P点坐标;若不存在,请说明理由.7.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,D为抛物线上一个动点.(1)求这条抛物线的函数表达式;(2)已知E是直线BC上的一动点,若以A、C、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)在抛物线y=ax2+bx+c上,当m≤x≤n时,y的取值范围是,求m﹣n 的取值范围.8.如图,已知抛物线y=﹣x2+2x+3与直线y=x+1相交于A,C两点,与y轴交于点N,其顶点为D.(1)求A和C的坐标.(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E的坐标,若不能,请说明理由.9.如图,抛物线y=ax2+bx+3经过A(1,0)、B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;不存在,请说明理由.(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q 的坐标.10.如图,抛物线经过A(﹣2,0),C(0,﹣3)两点,且对称轴为直线.(1)求抛物线的函数解析式;(2)若直线y=kx﹣5与抛物线交于点M,N,交x轴于点B,交y轴于点P,连接CN,且.①求△CMN的面积;②在平面内是否存在点一是E,使E,C,N,M四点能构成平行四边形,如果存在,请直接写出点E的坐标.11.如图,在平面直角坐标系中,二次函数y=﹣+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请求出此时点E的横坐标.(3)在(2)的条件下,点F从点A到点C运动过程中,直线EF交y轴于点T,直接写出点T运动的路径长.12.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点(1)直接写出抛物线和一次函数的解析式及关于x的不等式ax2<kx+b的解集;(2)当点P在直线AB上方时,求出△PAB面积最大时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,直接写出P的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,已知直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),与抛物线y=x2+bx+c交于点B和点C(4,n).(1)求抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p 与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,求A1点的横坐标.14.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0)、B(4,0)、C(0,﹣4)三点,点P BC下方抛物线上的一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,四边形PBOC面积最大?求出此时点P坐标和四边形PBOC的最大面积.15.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,点A在点B的左边,与y 轴交于点C,点A的坐标为(﹣2,0),AO:CO:BO=1:2:4.(1)如图1,求抛物线的解析式;(2)如图1,点D在直线BC下方的抛物线上运动(不含端点B、C),连接DC、DB,当四边形ABDC面积最大时,求出面积最大值和点D的坐标;(3)如图2,将(1)中的抛物线向右平移,当它恰好经过原点时,设原抛物线与平移后的抛物线交于点E,连接BE.点M为原抛物线对称轴上一点,N为平面内一点,以B、E、M、N为顶点的四边形是菱形时,直接写出点N的坐标.16.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3与x轴交于A、B两点(A点在B 点的左侧),直线y=x+m与抛物线交于A、C两点.(1)求点C的坐标;(2)点P为直线AC下方抛物线上一点,过点P作y轴平行线交AC于E点,当EP最长时求此时点P的坐标;(3)抛物线顶点为M,在平面内是否存在点N,使以A、B、M、N为顶点的四边形为平行四边形?若存在请求出N点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点(点A 在点B左侧),交y轴于C点,顶点为D点.其中A(﹣1,0),OC=OB=3OA.(1)求该抛物线的表达式;(2)在抛物线上A点左侧的部分上存在点P,使得∠BAD=∠PBA,直接写出点P的坐标;(3)在x轴是否存在点E,y轴是否存在点F,使得以A、D、E、F四点为顶点的四边形是平行四边形?若存在,求出点E的坐标,若不存在,请说明理由.18.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣,0),B(3,0)(点A在点B左侧),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点E为直线BC上方抛物线上的任意一点,连接BE,CE,求四边形BOCE面积的最大值及此时点E的坐标;(3)如图2,点D为抛物线的顶点,将抛物线向右平移一定的距离,点D的对应点为点D′,在平面直角坐标系中,是否存在另一个点H,使以点B,C,D',H为顶点的四边形是菱形,若存在,请直接写出点H的坐标;若不存在,请说明理由.19.如图1,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,对称轴直线x=2,已知经过B、C两点直线解析式为y=﹣x+5.(1)求此抛物线的解析式;(2)如图1,点E为直线BC上方抛物线上的一点,过点E作EF⊥x轴于F,交BC于点M,作EG⊥BC于G.求△EGM周长的最大值,以及此时点E的坐标;(3)如图2,连接BD,将抛物线向右平移,使得新抛物线过原点,点P为直线BD上一点,在新抛物线上是否存在点Q,使得以点A、C、P、Q为顶点的四边形为平行四边形?若存在,请直接写出点Q的横坐标,若不存在,请说明理由.20.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣,0)、B(3,0)两点,与y 轴交于点C(0,3).(1)求该抛物线的函数表达式;(2)E是直线BC EF⊥BC于点F,求当EF的长度最大时点E 的坐标以及EF长度的最大值;(3)将抛物线沿射线CA方向平移2个单位的距离得到新抛物线,点N是平面内一点,点M为新抛物线上一点,若以B、C、M、N为顶点的四边形是以BC为边的矩形,求点M的坐标.参考答案与试题解析1.【解答】解:(1)由题意可得:,解得:,∴抛物线的解析式为:y=x2+2x;(2)设直线AB的解析式为:y=kx+m,则,解得:,∴直线AB的解析式为:y=x+4,设点D的坐标为(m,m+4),∵OD将△AOB分成面积相等的两部分,=S△AOB,∴S△AOD∴×4•(m+4)=××4×6,解得:m=﹣1,∴点D的坐标为(﹣1,3);(3)存在点P,使得以A、O、B、P为顶点的四边形是平行四边形;设点P的坐标为(m,n),而A(﹣4,0)、B(2,6)、O(0,0),①当四边形AOBP是平行四边形时,AB的中点即是OP的中点,如图:∴,解得,∴P(﹣2,6);②当四边形AOPB是平行四边形时,AP的中点即是OB的中点,如图:∴,解得,∴点P的坐标为(6,6);③当四边形APOB是平行四边形时,AO的中点即是PB的中点,如图:∴,解得,∴点P的坐标为(﹣6,﹣6);综上所述,点P的坐标为(﹣2,6)或(6,6)或(﹣6,﹣6).2.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣4,得,∴,∴y=x2﹣3x﹣4;(2)当x=0时,y=﹣4,∴点C(0,﹣4),∵点D与点C关于直线l对称,且对称轴为直线x=,∴D(3,﹣4),∵A(﹣1,0),∴设直线AD:y=kx+d,则,解得,∴直线AD的函数关系式为:y=﹣x﹣1,设P(m,m2﹣3m﹣4),作PH∥y轴交直线AD于H,∴H(m,﹣m﹣1),∴PH=﹣m﹣1﹣(m2﹣3m﹣4)=﹣m2+2m+3,=PH×4=2(﹣m2+2m+3)=﹣2m2+4m+6,∴S△APD最大为8;当m==1时,S△APD(3)∵点M在直线l上,点N在x轴上,D(3,﹣4),A(﹣1,0),∴设N(n,0),①若以A,D,M,N为顶点的四边形是平行四边形ADMN,∵x A+x M=x D+x N,∴﹣1+=3+n,解得n=﹣,∴N(﹣,0);②若以A,D,M,N为顶点的四边形是平行四边形ADNM,∵x A+x N=x D+x M,∴﹣1+n=3+,解得n=,∴N(,0);③若以A,D,M,N为顶点的四边形是平行四边形AMDN,∵x A+x D=x M+x N,∴﹣1+3=+n,解得n=,∴N(,0).综上,N的坐标为(﹣,0)或(,0)或(,0).3.【解答】解:(1)∵抛物线顶点坐标为D(1,4),二次项系数a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设点D、E的坐标分别为(x1,y1)、(x2,y2),则x1=,将抛物线与直线l解析式联立得:﹣x+3=﹣x2+bx+c,整理得:x2﹣(b+1)x+3﹣c=0,∴x1+x2=b+1,x1x2=3﹣c,∴x2=+1,∴(+1)=3﹣c,∴y1﹣y2=﹣x1+3﹣(﹣x2+3)=x2﹣x1=+1﹣=1,设直线l与x轴的交点为G,则G(3,0),=S△ADG﹣S△AEG=AG(y1﹣y2)=AG,∴S△ADE=,∵S△ADE∴AG=,∴AG=,∴A(﹣,0),将A(﹣,0)代入y=﹣x2+bx+c,得:﹣﹣b+c=0,联立方程组,得,解得:b1=,b2=﹣(舍去),∴b=,∴D(,);(3)如图2,设P(0,m),∵P,Q为y轴上的两个关于原点对称的动点,∴Q(0,﹣m),∴PQ=2m,由(1)知:y=﹣x2+2x+3,令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴B(3,0),设直线BP的解析式为y=kx+d,则:,解得:,∴直线BP的解析式为y=x+m,联立方程组,得:,解得:(舍去),,∴M(﹣1,+),同理可得:N(﹣﹣1,﹣),∴MN==m,∴==.4.【解答】解:(1)抛物线y=x2﹣2x﹣3,当x=0时,y=﹣3,∴C(0,﹣3),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为M(1,﹣4).(2)如图1,由(1)得,抛物线的对称轴为直线x=1,设直线x=1交BC于点D,点P为直线x=1上任意一点,连接AD、PB,∵AC为定值,∴当PA+PC的值最小时,△ACP的周长最小,∵点B与点A关于直线x=1对称,∴PA=PB,∴PA+PC=PB+PC,∵PB+PC≥BC,∴当点P与点D重合时,PA+PC=PB+PC=BC,此时PB+PC的值最小,PA+PC的值也最小,抛物线y=x2﹣2x﹣3,当y=0时,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),设直线BC的解析式为y=kx﹣3,则3k﹣3=0,解得k=1,∴直线BC的解析式为y=x﹣3,当x=1时,y=﹣2,∴P(1,﹣2).(3)如图2,过点N作NF⊥x轴于点F,交BC于点E,设点N的坐标为(x,x2﹣2x﹣3),则E(x,x﹣3),∴EN=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x,=S△CEN+S△BEN=EN•OF+EN•BF=OB•EN,∵S△BCN=×3(﹣x2+3x)=﹣(x﹣)2+,∴S△BCN=,此时N(,﹣),∴当x=时,S△BCN最大∴△BCN面积的最大值为,N(,﹣).5.【解答】解:(1))∵抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,∴,解得,∴抛物线解析式为:y=x2﹣x+5;(2)当x=0时,y=x2﹣x+5=5;∴C(0,5),设直线AC:y=kx+5,将A(5,0)代入直线AC,得0=5k+5,∴k=﹣1,∴直线AC:y=﹣x+5,∵E为线段AC上一点且横坐标为1,∴E(1,4),∵⊙P是△OAE外接圆,∴圆心P必在弦OA的垂直平分线上,设P(,t),∵AE=EP,∴(5﹣)2+(﹣t)2=(1﹣)2+(4﹣t)2,解得t=,∴圆心P点的坐标为(,);(3)①如图,过B作BH⊥x轴于H,∵A(5,0),C(0,5),B(6,1),∴OA=OC,AH=BH,∴∠OAE=45°,∠OAF=∠BAH=45°,又∵∠OFE=∠OAE,∠OEF=∠OAF,∴∠OEF=∠OFE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,即△OEF是直角三角形;∴∠EOC=∠FOA,在△EOC与△FOA中,,∴△EOC≌△FOA(SAS),=S△FOA,∴S△EOC=S△EOA+S△FOA∴S四边形OEAF+S△COE=S△EOA=OA•OC=S△COA=,∴四边形OEAF的面积是定值,这个定值为;②∵四边形OEAF的面积是定值,∴当△AEF的面积取得最大值时,△EOF的面积最小,当OE最小时,△EOF的面积最小,∵OE⊥AC时,OE最小,OC=OA,∴CE=AE,即E为AC中点,∴E(,),∴当△OEF的面积取得最小值时,E点坐标为(,).6.【解答】解:(1)把点C(1,0)和点D(3,0)代入y=﹣x2+bx+c中,得:,解得:,∴该抛物线的解析式为y=﹣x2+4x﹣3;(2)由(1)知,抛物线的解析式为y=﹣x2+4x﹣3,令x=0,则y=﹣3,∴点P的坐标为(0,﹣3),该抛物线的对称轴为直线,∴点E坐标为(2,0),∴CE=1,=×CE×OP=×1×3=;∴S△PCD(3)∵点A是抛物线y=﹣x2+4x﹣3的顶点坐标,∴A(2,1),①如图所示,以AC为腰,AC=BC,点B在x轴下方抛物线对称轴上时,∵AC=BC,∴AE=BE=1,∴B(2,﹣1);②如图所示,以AC为腰,AC=AB,点B在x轴上方抛物线对称轴上时,∵AE=1,CE=1,∴,∴AB=,∴B(2,);③如图所示,以AC为腰,AC=AB,点B在x轴下方抛物线对称轴上时,∵AE=1,CE=1,∴,∴AB=,∴B(2,);④如图所示,以AC为底,AB=CB,点B在抛物线对称轴上时,设B(2,y),则AB=CB=1﹣y,BE=y,由勾股定理可得:CB2=CE2+BE2,(1﹣y)2=12+y2,解得y=0,∴B(2,0)综上,点B的坐标为或或(2,0)或(2,﹣1).7.【解答】解:(1)把P(3,0)、Q(1,4)代入y=ax2+c,得,解得,∴抛物线的解析式为:y=﹣x2+.(2)如图1,设直线PQ的解析式为y=kx+b,把P(3,0)、Q(1,4)代入y=kx+b,得,解得,∴直线PQ的解析式为y=﹣2x,设A(m,﹣2m+6)(1≤m≤3),则AB=﹣2m+6,∵抛物线y=﹣x2+与x轴的另一个交点为C,∴C(﹣3,0),∴BC=m+3,=BC•AB=(m+3)(﹣2m+6)=﹣m2+9,∴S△ABC随m的增大而减小,∵当1≤m≤3,S△ABC=﹣12+9=8,∴当m=1时,S△ABC最大∴△ABC面积的最大值为8.(3)能.如图2,∠BAD=90°,AD=AB,设点D在抛物线上,D(n,﹣n2+),对于直线PQ:y=﹣2x+6,当y=﹣n2+时,则﹣2x+6=﹣n2+,∴x=n2+,∴A(n2+,﹣n2+),∴n2+﹣n=﹣n2+,解得n1=﹣,n2=3(不符合题意,舍去),∴D(﹣,);如图3,∠ABD=90°,AB=DB,设A(m,﹣2m+6)(1≤m≤3),则B(m,0),D(3m﹣6,0),当点D在抛物线上时,则﹣(3m﹣6)2+=0,解得m1=1,m2=3(不符合题意,舍去),D(﹣3,0);如图4,∠ADB=90°,AD=BD,作DE⊥AB于点E,则DE=AE=BE=AB,设A(m,﹣2m+6)(1≤m≤3),则E(m,﹣m+3),D(2m﹣3,﹣m+3),若点D在抛物线上,则﹣(2m﹣3)2+=﹣m+3,解得m1=(不符合题意,舍去),m2=3(不符合题意,舍去),综上所述,点D的坐标为(﹣,)或(﹣3,0).8.【解答】解:(1)∵抛物线y=﹣x2+m的顶点C在y轴正半轴上,∴C(0,m),且m>0,∴OC=m,∵OA=OC,∴OA=m,∴A(﹣m,0),∵抛物线y=﹣x2+m与x轴交于,∴0=﹣m2+m,解得m=0(舍)或m=1,∴抛物线的解析式为:y=﹣x2+1.(2)由抛物线解析式可知,A(﹣1,0),B(1,0),①设直线AP的表达式为:y=k(x+1)=kx+k,∵AP∥BQ,∴直线BQ的解析式为:y=k(x﹣1)=kx﹣k,联立,解得,∴P(﹣k+1,﹣k2+2k),同理可得,Q(﹣k﹣1,﹣k2﹣2k),∵四边形APBQ的面积为2,+S△ABP=×2(﹣k2﹣2k)+×2(k2﹣2k)=2,∴S=S△ABQ解得k=﹣,∴直线AP的表达式为:y=﹣x﹣.②由①知P(﹣k+1,﹣k2+2k),Q(﹣k﹣1,﹣k2﹣2k),B(1,0),A(﹣1,0),设直线BP的表达式为:y=m(x﹣1),直线AQ的表达式为:y=n(x+1),∴m(﹣k+1﹣1)=﹣k2+2k,n(﹣k﹣1+1)=﹣k2﹣2k,解得m=k﹣2,n=k+2,∴直线BP的表达式为:y=(k﹣2)(x﹣1),直线AQ的表达式为:y=(k+2)(x+1),∵直线AQ、BP分别交y轴于E、F两点,∴E(0,﹣k+2),F(0,k+2),∴OE=﹣k+2,OF=k+2,∴OE+OF=4.9.【解答】解:(1)将点A(3,0),B(4,1)代入可得:,解得:,∴抛物线的解析式为y=x2﹣x+3;(2)∵抛物线与x轴的交点的纵坐标为0,∴令y=x2﹣x+3=0,解得:x1=3,x2=2,∴点D的坐标为(2,0),如图,取点H(1,0),作HP∥AB交抛物线于点P,∵HD=AD=1,∴此时△PAB的面积是△BDA面积的2倍,∵直线AB解析式为y=x﹣3,∴直线HP为y=x﹣1,联立,解得或,∴点P坐标为(,)或(,);(3)如图,作BG⊥OA于G,∵A(3,0),C(0,3),B(4,1),∴OA=OC=3,AG=BG=1,∴∠OAC=∠BAG=45°,∵∠OAF=∠BAG=45°,∴∠EAF=90°,∴EF是△AEO的外接圆的直径,∴∠EOF=90°,∴∠EFO=∠EAO=45°,∴△EOF是等腰直角三角形,∴当OE最小时,△EOF的面积最小,∵OE⊥AC时,OE最小,OC=OA,∴CE=AE,OE=AC=,=××=.∴E(,),S△EOF∴当△OEF的面积取得最小值时,面积的最小值为,E点坐标为(,).10.【解答】解:(1)∵直线y=与x轴、y轴分别交于A、B两点,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B(0,),∴OB=,∵tan∠BCA===,∴OC=3,∴C(﹣3,0),∵y=ax2+bx+c经过A、B、C三点,∴,解得:,∴y=x2﹣x+;(2)如图,连接OP,过点P作PD⊥x轴于点D,PF⊥y轴于点F,∵点P 为直线BC 上方抛物线上一点,∴设P (t ,t 2﹣t +),则PF =﹣t ,PD =t 2﹣t +,∵S 四边形OBPC =S △POC +S △POB ,OC =3,OB =,∴S 四边形OBPC =•OC •PD +•OB •PF=×3×(t 2﹣t +)+××(﹣t )=t 2﹣t +=(t +)2+,∴当t =﹣时,四边形OBPC 面积的最大,最大值为,∵当t =﹣时,y =t 2﹣t +=(﹣)2﹣×(﹣)+=,∴P (﹣,);(3)∵y =x 2﹣x +=(x +1)2+,∴把抛物线向右平移个单位,再向下平移个单位得:y =(x +1﹣)2+﹣=(x +)2+=x 2﹣x +,∵点M 是新抛物线上一点,点N 是原抛物线对称轴上一点,∴设M(m,m2﹣m+),N(﹣1,n),∵B(0,),C(﹣3,0),以点B,C,M,N为顶点的四边形是平行四边形,∴分三种情况讨论:①BC为对角线,则,∴解得:,∴N(﹣1,),②BN为对角线,则,∴,解得:,∴N(﹣1,﹣2),③BM为对角线,则,∴,解得:,∴N(﹣1,﹣2),综上所述,点N的坐标为:(﹣1,)或(﹣1,﹣2).11.【解答】解:(1)将点A(﹣1,0)和点B(3,0)代入y=ax2+bx+3,得,解得,∴y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴y=﹣x+3,∵函数的对称轴为直线x=1,∴D(1,2),过点P作x轴的垂线,交BC于点Q,设P(t,﹣t2+2t+3),则Q(t,﹣t+3),∴PQ=﹣t2+3t,=×1×(﹣t2+3t)=﹣(t﹣)2+,∴S△PCD的最大值为,∴当t=时,S△PCD此时P(,);(3)y=﹣x2+2x+3=﹣(x﹣1)2+4向右平移1个单位得到新抛物线为y=﹣(x﹣2)2+4,联立,解得x=,∴E(,),∵新抛物线的对称轴为直线x=2,设F(2,m),∴DE2=+=,DF2=1+(m﹣2)2,EF2=+(m﹣)2,∵以D、E、F、G四点为顶点的四边形是菱形时,有三种情况:①当EF、FD为邻边,此时EF=FD,∴1+(m﹣2)2=+(m﹣)2,解得m=,∴F(2,);②当ED、EF为邻边,此时ED=EF,∴=+(m﹣)2,解得m=或m=2,∴F(2,2)或F(2,),设直线ED的解析式为y=kx+b,∴,∴,∴y=x﹣,当x=2时,y=,∴F(2,2);③当DE、DF为邻边,此时DE=DF,∴=1+(m﹣2)2,解得m=2+或m=2﹣,∴F(2,2+)或F(2,2﹣);综上所述:F点坐标为(2,)或(2,2+)或(2,2﹣)或(2,2).12.【解答】解:(1)∵A(﹣2,0),B(6,0),∴AO=2,BO=6,∵CO:AO=2:1,∴CO=4,∴C(0,4),设抛物线的解析式为y=a(x+2)(x﹣6),将C(0,4)代入得:4=﹣12a,解得a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+4;(2)过P作PH⊥BC于H,过P作PQ∥y轴交BC于Q,如图:由A(﹣2,0),B(6,0)可得抛物线的对称轴为直线x==2,设直线BC为y=kx+4,将B(,0)代入得:0=6k+4,∴k=﹣,∴直线BC为y=﹣x+4,在y=﹣x+4中,令x=2得y=,∴D(2,),而C(0,4),∴CD==,=CD•PH=PH,∴S△PCD最大,∴PH最大时,S△PCD∵PQ∥y轴,∴∠PQH=∠BCO,在Rt△BCO中,BC==2,∴sin∠BCO==,∴sin∠PQH=,即=,∴PH=PQ,=PH=×PQ=PQ,∴S△PCD设P(t,﹣t2+t+4),则Q(t,﹣t+4),∴PQ=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+2t=﹣(t﹣3)2+3,∵﹣<0,∴t=3时,PQ最大为3,最大值是3,此时P(3,5);∴S△PCD(3)存在,理由如下:设M(2,m),N(n,﹣n2+n+4),而C(0,4),P(3,5),①当MN、CP为对角线时,MN、CP的中点重合,如图:∴,解得n=1,∴N(1,5);②当MC、NP为对角线时,MC、NP的中点重合,如图:∴,解得n=﹣1,∴N(﹣1,);③当MP、CN为对角线时,MP、CN的中点重合,如图:∴,即得n=5,∴N(5,),综上所述,N的坐标为(1,5)或(﹣1,)或(5,).13.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于B、C两点,∴B(3,0),C(0,3),将B(3,0),C(0,3)代入y=﹣x2+bx+c,可得:,解得:,所以抛物线的解析式为y=﹣x2+2x+3;(2)如图1,过点P向x轴作垂线交直线BC于点G,直线BC的解析式为y=﹣x+3,设P(t,﹣t2+2t+3),则G(t,﹣t+3),∴PG=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,=×PG×OB=﹣(t﹣)2+,∴S△PBC=,当时,S△PBC最大此时,P(,),∴三角形PBC的面积最大值为,此时P(,);(3)存在,M(1,3).如图2,连接PA,交抛物线对称轴于点M,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B两点关于对称轴对称,且A(﹣1,0),∴MP+MB=MP+MA,∴当P、M、A在同一条直线上时,MP+MA最小,即△PBM的周长最小,∴连接PA交对称轴于点M,点M即为满足条件的点,设直线PA的解析式为y=kx+d,∵P(,),A(﹣1,0),∴,解得:,∴直线PA的解析式为y=x+,当x=1时,y=×1+=3,∴M(1,3).14.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点D(2,3),,解得:.∴抛物线的解析式为:y=﹣x2+2x+3;令y=0,则﹣x2+2x+3=0,解得:x=3或x=﹣1.∴A(﹣1,0).设直线AD的解析式为y=kx+n,∴,解得:.∴直线AD的解析式为:y=x+1.(2)存在点E,使得以A、D、E、F为顶点的四边形是平行四边形.①当四边形ADFE为平行四边形时,如下图,令x=0,则y=3,∴F(0,3).∵D(2,3),∴DF=2,且DF∥x轴.∴AE=DF=2.∵A(﹣1,0),∴OA=1,∴OE=OA+AE=2+1=3,∴E(﹣3,0).②当四边形AEDF为平行四边形时,如下图,令x=0,则y=3,∴F(0,3).∵D(2,3),∴DF=2,且DF∥x轴.∴AE=DF=2.∵A(﹣1,0),∴OA=1,∴OE=AE﹣OA=2﹣1=1.∴E(1,0).③当四边形AFED为平行四边形时,F在x轴的下方,过点D作DH⊥AB于点H,过点F作FG⊥AE于点G,如下图,∵D(2,3),∴OH=2,DH=3.∵OA=1,∴AH=OA+OH=3.∵四边形AFED为平行四边形,∴AD=EF,AD∥EF.∴∠DAH=∠FEH.在△ADH和△EFG中,,∴△ADH≌△EFG(AAS).∴FG=DH=3,GE=AH=3.设OE=a,则OG=OG﹣GE=a﹣3,∴F(a﹣3,﹣3).∵点F为抛物线y=﹣x2+2x+3上一点,∴﹣(a﹣3)2+2(a﹣3)+3=﹣3,解得:a=4±.∴E(4+,0)或(4﹣,0).综上,存在点E,使得以A、D、E、F为顶点的四边形是平行四边形,点E的坐标为(﹣3,0)或(1,0)或(4+,0)或(4﹣,0).(3)过点M作MN⊥AB于点N,交AD于点C,过点D作DK⊥AB于点K,如下图,则AK=OA+OK=1+2=3.∵点M为抛物线y=﹣x2+2x+3上一点,∴设M(m,﹣m2+2m+3),则点C(m,m+1),∴MN=﹣m2+2m+3,CN=m+1,∴MC=(﹣m2+2m+3)﹣(m+1)=﹣m2+m+2.=S△AMC+S△DMC,∵S△AMD∴=×MC×(AN+NK)=×(﹣m2+m+2)×3=﹣+m+3=.∵<0,∴当m=时,△AMD的面积最大,最大值为,此时,点M的坐标为(,).∴当△AMD的面积最大时M点的坐标为(,),最大的面积为.15.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(3,0),∴设抛物线的解析式为y=a(﹣1)(x﹣3),把点C(0,6)代入,∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6.(2)∵直线y=2x+b′经过点A(1,0),∴0=2+b′,∴b′=﹣2,∴直线AD的解析式为y=2x﹣2,联立,解得:,∴点D(4,6),∵A(1,0),B(3,0),∴AB=2,∴,设点E(m,2m﹣2),=2S△ABE,∵S△BDE∴,∴,∴m=2,∴点E(2,2),∴直线BE的解析式为y=﹣2x+6,过点F作FG∥y轴交直线BE于点G,∵点F(t,2t2﹣8t+6)(1<t<3),∴G(t,﹣2t+6).∴FG=﹣2t+6﹣(2t2﹣8t+6)=﹣2t2+6t,设点B的横坐标为x B,点E的坐标为x E,当1<t<2时,S△FBE=S△FBG﹣S△FEG=FG•(x B﹣x F)﹣FG•(x E﹣x F)=FG•(x B﹣x E)=(﹣2t2+6t)•(3﹣2)=,有最大值为.∴当时,S△FBE=S△FBG+△FEG=FG•(x B﹣x F)+FG•(x F﹣x E)=FG•当2≤t<3时,S△FBE(x B﹣x E)=(﹣2t2+6t)•(3﹣2)=,有最大值为2,∴当t=2时,S△FBE综上所述,当时,△FBE的最大面积为.(3)由(2)知,A(1,0),D(4,6),设Q(2,m),P(x,2x2﹣8x+6),①以AD为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(3,0);②以AP为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(5,16);③以AQ为对角线时,∵以A,D,P,Q为顶点的四边形为平行四边形,∴,解得:,∴P(﹣1,16);综上所述,当点P的坐标为(5,16)或(﹣1,16)或(3,0)时,以A,D,P,Q 为顶点的四边形为平行四边形.16.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A(﹣3,0)、B(1,0)、C(0,3)代入得:,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)过P作PQ∥y轴交AC于Q,如图:设直线AC为y=kx+b,将A(﹣3,0)、C(0,3)代入得:,解得,∴直线AC为y=x+3,。

专题3二次函数与等腰直角三角形问题-2021新版挑战中考数学压轴题之学霸秘笈大揭秘(原卷版)

专题3二次函数与等腰直角三角形问题-2021新版挑战中考数学压轴题之学霸秘笈大揭秘(原卷版)

2021新版挑战中考数学压轴题之学霸秘笈大揭秘专题3二次函数与等腰直角三角形问题二次函数与等腰直角三角形的相结合的综合问题,是中考数学压轴题中比较常见的一种,涉及到的知识点有:等腰直角三角形的性质、直角三角形的性质、斜边的中线、全等三角形与相似三角形、角平分线、方程与函数模型、函数的基本性质等。

等腰直角三角形与二次函数综合问题常见的有三种类型:两定一动探索直角三角形问题;一定两动探索等腰直角三角形问题;三动探索等腰直角三角形问题;常见的思路中,不管是哪种类型的等腰直角三角形三角形问题,分类讨论的依据都是三个角分别为直角,解决的思路是通过构造K型全等或相似图来列方程解决。

【例1】(2020•甘肃省兰州市中考第28题)如图,二次函数y=14x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=14x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD 的数量关系,并求出点E的坐标;(4)点H是抛物物的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.【例2】(2020•湖北省武汉市中考第24题)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【例3】(2020•湖南省岳阳市中考第24题)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x−2 5)2+6415与x轴交于点A(−65,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【例4】(2020•江苏省盐城市中考第24题)若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=52S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.【题组一】1.(2020•雁塔区校级模拟)如图,抛物线C1:y=−12x2+2x+2的顶点为A,且与y轴于点B,将抛物线C1沿y=a对称后,得到抛物线C2与y轴交于点C.(1)求A、B两点坐标;(2)若抛物线C2上存在点D,使得△BCD为等腰直角三角形,求出此时抛物线C2的表达式.2.(2020•沙坪坝区校级一模)如图1,抛物线y=√24x2+2x﹣6√2交x轴于A、B两点(点A在点B的左侧),交y轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.(1)求△ACD的面积;(2)如图1,点P是线段AD下方的抛物线上的一点,过P作PE∥y轴分别交AC于点E,交AD于点F,过P作PG⊥AD于点G,求EF+√52FG的最大值,以及此时P点的坐标;(3)如图2,在对称轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以BN为直角边的等腰Rt△BMN?若存在,求出点M的横坐标,若不存在,请说明理由.3.(2020•陕西模拟)如图,抛物线C的顶点坐标为(2,8),与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点D(0,6).(1)求抛物线C的函数表达式以及点B的坐标;(2)平移抛物线C,使平移后的抛物线C′的顶点P落在线段BD上,过P作x轴的垂线,交抛物线C 于点Q,再过点Q作QE∥x轴交抛物线C于另一点E,连接PE,若△PQE是等腰直角三角形,请求出所有满足条件的抛物线C′的函数表达式.4.(2019秋•青龙县模拟)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=12S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【题组二】5.(2020•鹿邑县一模)已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C 两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.6.(2020•碑林区校级模拟)抛物线C1:y=−14x2−12x+2交x轴于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求A,B两点的坐标.(2)M为平面内一点,将抛物线C1绕点M旋转180°后得到抛物线C2,C2经过点A且抛物线C2上有一点P,使△BCP是以∠B为直角的等腰直角三角形.是否存在这样的点M?若存在,求出点M的坐标,若不存在,说明理由.7.(2020•灌南县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;(3)当点P在线段OB上运动时,若△CMN是以MN为腰的等腰直角三角形时,求m的值;(4)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.8.(2019•黄冈中考)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D (2,0)四点,动点M以每秒√2个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF 与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.【题组三】9.(2019•西藏中考)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.10.(2018•眉山中考)如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.11.(2018•德阳中考)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=13x2+bx−32的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.12.(2018•资阳中考)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【题组四】13.(2019•陕西模拟)在平面直角坐标系中,二次函数抛物线y=ax2+bx+c过点A(﹣1,0)和C(0,3),对称轴为直线x=1.(1)求二次函数的表达式和顶点M的坐标.(2)将抛物线在坐标平面内平移,使其过原点,若在平移后,第二象限的抛物线上存在点P,使△P AC 为等腰直角三角形,请求出抛物线平移后的表达式,并指出其中一种情况的平移方式.14.(2019•兰州中考)二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=54时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.15.(2020•项城市校级二模)二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.16.(2020•浙江自主招生)x、y是一个函数的两个变量,若当a≤x≤b时,有a≤y≤b(a<b),则称此函数为a≤x≤b上的闭函数.如y=﹣x+3,当x=1时y=2;当x=2时y=1,即当1≤x≤2时,1≤y≤2,所以y=﹣x+3是1≤x≤2上的闭函数.(1)请说明y=30x是1≤x≤30上的闭函数;(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC 为等腰直角三角形,请直接写出它的腰长为.【题组五】17.(2019秋•南召县模拟)在平面直角坐标系中,直线y=12x﹣2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.18.(2020•濉溪县一模)在平面直角坐标系中,直线y=12x﹣2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的解析式;(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.19.(2020•石屏县一模)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;20.(2019•福建中考)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.。

中考数学频考点突破--二次函数

中考数学频考点突破--二次函数

中考数学频考点突破--二次函数一、综合题1.已知:二次函数y=12x2+2x+m的图象与x轴有公共点.(1)求m的取值范围;(2)如图所示,若二次函数y=12x2+2x+m图象的顶点B在x轴上,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若点P关于y轴的对称点为M,求以点M为圆心,BP长为半径的圆是否与直线AB相切?并说明理由.2.已知二次函数图象的顶点坐标为(1,4),且经过点(4,-5).(1)求该二次函数表达式;(2)直接写出y随x的增大而减小时x的取值范围;(3)若二次函数的图象平移后经过原点,请直接写出两种不同的平移方案.3.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC 交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;长.(2)若AB=8,⊙BAC=45°,求:图中阴影部分的面积.4.如图,在Rt⊙ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 √2cm?(2)当t为何值时,⊙PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?5.函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:(1)a和b的值;(2)求抛物线y=ax2的顶点和对称轴;(3)x取何值时,二次函数y=ax2中的y随x的增大而增大;6.已知二次函数y=﹣2x2,y=﹣2(x﹣2)2,y=﹣2(x﹣2)2+2,请回答下列问题:(1)写出抛物线y=﹣2(x﹣2)2的顶点坐标,开口方向和对称轴;(2)分别通过怎样的平移,可以由抛物线y=﹣2x2得到抛物线y=﹣2(x﹣2)2和y=﹣2(x﹣2)2+2?(3)如果要得到抛物线y=﹣2(x﹣2017)2﹣2018,应将y=﹣2x2怎样平移?7.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分⊙PAE,过C作CD⊙PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC=4,AC=5,求⊙O的直径的AE.8.已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=10,EF=3·(1)求AO的长;(2)过点C作CD⊙AO,交AO延长线于点D,求OD的长·9.如图,已知二次函数图象与x轴交于点A(﹣1,0),B(3m,0),交y轴于点C (0,3m)(m>0).(1)当m=2时,求抛物线的表达式及对称轴.(2)过OB中点M作x轴垂线交抛物线于点D过点D作DF⊙x轴.交抛物线于点E,交直线BC于点F,当EFED=54时,求m的值.10.已知AB = BC,⊙ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC 重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<⊙ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊙AE于H,过点A作AF⊙BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.11.如图,已知D是⊙O上一点,AB是直径,⊙BAD的平分线交⊙O于点E,⊙O的切线BC交OE的延长线于点C,连接OD,CD.(1)求证:CD⊙OD.(2)若AB=2,填空:①当CE=▲时,四边形BCDO是正方形.②作⊙AEO关于直线OE对称的⊙FEO,连接BF,BE,当四边形BEOF是菱形时,求CE的长.12.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设⊙PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊙x轴于点E,在y轴上是否存在点M,使得⊙ADM 是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.13.如图,AB为⊙O的直径,点C为⊙O上一点,∠ACB的平分线与⊙O交于点D,与AB交于点E.点F为DC的延长线上一点,满足∠FBC=∠BDC.(1)求证:BF与⊙O相切;(2)若BD=6,BC=2√2,求△ABC的面积.14.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC 的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=10,AD=3√10,则tan∠DAF的值为.答案解析部分1.【答案】(1)解:由题意得:⊙=22﹣4× 12×m≥0,解得m≤2;(2)解:∵y =12x 2+2x +2①,令x =0,则y =2,故点A (0,2),而函数的对称轴为x =﹣2,故顶点为B (﹣2,0), 设直线AB 的表达式为y =kx+b ,则 {0=−2k +b b =2,解得 {k =1b =2 ,∴直线AB :y =x+2,则OA =OB ,故⊙AOB =45°,∵以线段PB 为直径的圆与直线AB 相切于点B ,即PB⊙AB , 而⊙AOB =45°,故直线PB 与x 轴负半轴的夹角为45°, 则设直线PB 的表达式为y =﹣x+t , 将点B 的坐标代入上式并解得t =﹣2, ∴直线PB 的解析式为y =﹣x ﹣2②,联立①②得: −x −2=12x 2+2x +2 ,解得:x 1=﹣2(舍去),x 2=﹣4, ∴P (﹣4,2)(3)解:由点B 、P 的坐标知,BP = √(−4+2)2+22 = 2√2 , 关于y 轴对称的点M (4,2),如图,连接PM ,过点M 作MH⊙AB 于点H ,则AM =4,∵⊙ABO =⊙BAO =45°,则⊙PAB =90°﹣⊙BAO =90°﹣45°=45°=⊙HMA ,则HM =AM•sin⊙HMA =4× √22= 2√2 ,即M到直线AB的距离为2√2,∴BP长为半径的圆与直线AB相切.【知识点】二次函数y=ax^2+bx+c的图象;二次函数y=ax^2+bx+c的性质【解析】【分析】(1)根据二次函数与x轴有公共点,即二次方程有根,根据根的判别式即可得到m的取值范围;(2)根据题意,计算得到直线AB的解析式,将二次函数的解析式与直线PB的解析式,联立即可得到点P的坐标;(3)由勾股定理计算得到BP的长度,根据锐角三角函数即可得到HM的长度,即可得到答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二次函数综合题突破
线段,三角形面积最大值,直角三角形,等腰三角形,平行四边形专题
1.如图,抛物线y=x'+bx+c与直线y=x・l交于A、B两点.点A的横坐标为・3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC丄x轴于C,交直线AB于D・(1)求抛物线的解析式;
(2)当m为何值时,S四边形0BDO2SABPD;
(3)是否存在点P,使APAD是直角三角形?若存在, 理
由.
2.如图,已知抛物线y二-x'+bx+c与直线AB相交于A (-3, 0), B (0, 3)两点.
(1)求这条抛物线的解析式;
(2)设C是抛物线对称轴上的一动点,求使ZCBA二90°的点C的坐标;
(3)探究在抛物线上是否存在点P,使得AAPB的而积等于3?若存在,求出点P的坐标;
若不存在,请说明理由
3.如图,已知抛物线y=x2+bx+c与直线y二x+3交于A、B两点,点A 在y轴上,点B在x 轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM丄x轴交直线AB 于Mo
(1)求抛物线解析式.
(2)当PM=2BC时,求M的坐标.
(3)点P运动过程中,AAPM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.
4.AABC在平面直角坐标系中的位置如图①所示,A点的坐标(-6,0), B点的坐标(4, 0) 点D为BC中点,点E为线段AB上一动点,连接DE经过点A,B,C三点的抛物线的解析式y=ax2+bx+8
(1)求抛物线的解析式
(2)如图①,将ABDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上吋,求G点的坐标;
(3)如图②,当点E在线段AB上运动时,抛物线y=ax%bx+8的对称轴上是否存在点F, 使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
图②图①
5. 如图①,抛物线y 二ax'+bx+c 与x 轴相交于0、A 两点直线y=-x+3与y 轴交于B 点,与该 抛物线交于A, D 两点,己知点D 横坐标为・I.
(1) 求这条抛物线的解析式
(2) 如图⑪ 在线段OA 上有一动点H (不与O 、A 重合),过H 作x 轴的垂线分别交AB 于P 点,交抛物线于Q 点,若x 轴把APOQ 分成两部分的面积之比为1: 2,请求出H 点的 坐标; (3) 如图②,在抛物线上是否存在点C,使AABC 为直角三角形?若存在,求出点C 的坐 标;
若不存在,请说明理由
图①
6. 如图,抛物线y=-x 2+bx+c 与直线y=x+2交于C 、D 两点,其中点C 在y 轴上,点D 的坐 标为(3, 5).点P 是y 轴右侧的抛物线上一动点,过点P 作PE 丄x 轴于点E,交CD 于点 F. (1)求抛物线的解析式;(2)若点P 的横坐标为m (m>0),当m 为何值时,以0、C 、 P 、F 为顶点的四边形是平行四边形?请说明理由.
(3)当点P 运动到抛物线的顶点时,请在直线PE±找到一点Q,使OQ+CQ 最小.并求 出点Q 的坐标
.
备用图
7.如图,在平面直角坐标系中,抛物线y=ax>bx-3与x轴交于A (-1, 0)、B (3, 0)两点, 直线y=x ・2与x轴交于点D,与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P 作PF丄x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=3EF,求m的值;
(3)连接PC,是否存在点P,使APCE为等腰直角三角形?若存在,请直接写出相应的点P的横地标m的值
8.如图,抛物线y=x2+bx-3与x轴交于A、B两点(点A在点B左侧),直线1与抛物线交于A、C亮点,其中C的横坐标为2.
(1)求A、C两点的坐标及直线AC的函数解析式;
(2)P是线段AC ±的一个动点,过点P作y轴的平行线交抛物线于点E,求AACE面积的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
9.如图,在平面直角坐标系中,二次函数y=x'+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3, 0),与y轴交于C (0, -3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把APOC沿CO翻折,得到四边形POP' C,那么是否存在点P,使四边形POP' C为菱形?若存在,请求出此吋点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.
10.如图,抛物线y=ax'+bx与直线1交于点A (1, 5)、B (6, 0),点C是1上方的抛物线上的一动点,过C作CD±x轴于点D,交直线1于点E.连结AC、BC.
(1)求抛物线的解析式;
(2)设点C的横坐标为n, AABC的血积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得APAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P的坐标;若不存在,简要说明理由
11.在平面直角坐标系xoy中,y二ax・2ax-3a(8V0)与x轴交于A,B两点(A在B的左侧),经过A的直线l:y二kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线1的函数表达式(其中k, b用含a的式子表示);
5
(2)点E是直线1上方的抛物线上的一点,若AACE的面积的最大值为-,求a的值
4
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A, D, P, Q为顶点的以边形能否
成为矩形?若能,求出点P的坐标;若不能,请说明理由.
12.已知抛物线y= - x - 2x+a(aH0)与y轴交于点A,顶点为M,直线x -。

分别与x轴,y
2
轴交于点B, C,并且与MA交于点"点(1)若直线BC和抛物线有两个不同交点,求"的取值范围,并用a表示交点M, A的坐标;
(2)将ANAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及APCD的面积;
(3)在抛物线y=-x2-2x+a (a>0)上是否存在点P,使得以P, A, C, N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。

相关文档
最新文档