Week 5. The Mean Value Theorem
chapter 6 the mean value theorem for derivatives介值定理与罗尔定理
Fourth, take the negative reciprocal of 48, which is 48
Finally, the equation becomes:
y 17
3/21/2014
1
1 x 2 48
dy 12 3 2 21 521 4 14 9 | x 1 2 dx 4 2 12 3
Now, we have a slope and a point, so the equation is :
3/21/2014
7 9 y x 1 2 2
y 30 x 45
3/21/2014
Example 2 : Find the equation of the tangent line to the curve y x 3 x 2 at the point 3,36 . The derivative looks like this:
Mean Value Theorem for Derivatives If f (x) is a differentiable function over [a,b], then at some point between a and b:
f b f a ba
f c
dy 10 x dx
Now, if you plug in x 3, you'll get the slope of the curve at that point. By the way, the notation for plugging in a point is . Learn to recognize it!
求一元函数极限的若干种方法
求一元函数极限(含数列)的若干种方法内容摘要:极限是数学分析中一个非常重要的概念,它是研究分析方法的重要理论基础。
我们知道,许多重要的概念如连续、导数、定积分、无穷级数的和以及广义积分等都是用极限来定义的。
因此掌握好求极限的方法就显得非常重要。
其中二元函数的极限是在一元函数的基础上发展起来的,二者既有联系也有区别。
本文通过部分例题的解析,以详细介绍一元函数极限的求法为主。
归纳了常用的十种求极限方法, 即: 运用极限的定义证明;利用等价无穷小量代换和初等变形来求极限;用两个重要的极限来求函数的极限;利用变量替换求极限;利用迫敛性定理来求极限;利用洛比达法则求函数的极限;利用泰勒公式求极限;利用微分中值定理和积分中值定理求极限;利用积分定义求极限;求极限其他常用方法。
并列举了大量的实例加以说明。
关键词:迫敛性定理中值定理洛必达法则A number of ways to seek a function limit (including the number of columns)Abstract:The limit is a very important concept in mathematical analysis, it is an important theoretical basis for research and analytical methods. We know that many important concepts such as continuity, derivative, definite integral, infinite series and generalized integral to define the limit. Therefore it is very important to master well limit.The limits of the function of two variables is on the basis of the function of one variables, the two have connection and have distinction. This article through the part of example analysis, to introduce the limit of the function of one variables. Summarizes the ten ways: Using the definition of the limits of proof; equivalent Infinitesimal Substitution and the primary deformation; two important limits to seek the limits of functions; variable substitution; the squeeze theorem; L'Hospital Rule; the Taylor formula; the mean value theorem and the integral mean value theorem to the limit; using the integral definition; other commonly used methods.And cited a number of examples to illustrate.Key words:The squeeze theorem Mean Value Theorem L'Hospital Rule目录1 综述 (1)1.1引言 (1)1.2极限的定义 (1)1.3极限问题的类型和方法概述 (1)2 常见的极限求解方法 (2)2.1运用极限的定义证明(估计法) (2)2.2利用等价无穷小量代换和初等变形来求极限 (3)2.3用两个重要的极限来求函数的极限 (6)2.4利用变量替换求极限 (7)2.5利用迫敛性来求极限 (8)2.6利用洛比达法则求函数的极限 (8)2.7利用泰勒公式求极限 (13)2.8利用微分中值定理和积分中值定理求极限 (14)2.9利用积分定义求极限 (14)2.10求极限其他常用方法 (17)3结论 (17)参考文献 (18)求一元函数极限(含数列)的若干种方法1综述1.1 引言极限的思想方法作为人类发现数学问题并解决数学问题的一种重要手段,随着科学技术的不断发展,社会生产力的不断提高,在数学的发展史上将发挥越来越重要的作用。
Intermediate Value Theorem
Intermediate Value Theorem (IVT)
f is continuous on [a,b] N is a number between f(a) and f(b)
i.e f(a) ≤ N ≤ f(b) or f(b) ≤ N ≤ f(a)
then there exists at least one c in [a,b] s.t. f(c) = N
By the IVT, interval [1.125, 1.25] contains root Length of the interval: 1.25 – 1.125 = 0.125 = 2 / 16 = =
the length of the original interval / 24 24 appears since we divided 4 times Both 1.25 and 1.125 are within 0.125 from the root! Since f(1.125) ≈ -.07, choose c ≈ 1.125 Computer gives c ≈ 1.13299617282...
then there exists at least one c in [a,b] s.t. f(c) = N
y
y = f(x)
f(b)
N
f(a)
x
a c1 c2
c3 b
The Location Principle I
f is continuous on [a,b] f(a) and f(b) have opposite signs
Guided Practice
Method of bisections
Use the IVT to find an interval [a,b] that contains a root Find the midpoint of an interval that contains root:
斯托克、沃森着《计量经济学》第五章
Chapter 5. Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals5.1 Testing Hypotheses about One of the Regression Coefficients(对单一系数的假设检验)Suppose a skeptic suggests that reducing the number of students in a class has no effect on learning or, specifically, test scores. The skeptic thus asserts the hypothesis,1H0: β1 = 0We wish to test this hypothesis using data – reach a tentative conclusion whether it is correct or incorrect.Null hypothesis and two-sided alternative:H0: β1 = 0 vs. H1: β1≠ 0or, more generally,2H0: β1 = β1,0 vs. H1: β1≠β1,0where β1,0 is the hypothesized value under the null(β1,0是一个具体的数).Null hypothesis and one-sided alternative:H0: β1 = β1,0 vs. H1: β1 < β1,0In economics, it is almost always possible to come up with stories in which an effect could “go either way,” so it is34standard to focus on two-sided alternatives.Recall hypothesis testing for population mean using Y :t=Y μ−then reject the null hypothesis if |t | >1.96.where the SE of the estimator is the square root of an estimator of the variance of the estimator.Applied to a hypothesis about β1:t = estimator - hypothesized value standard error of the estimator56sot = 11,01ˆˆ()SE βββ−where β1 is the value of β1,0 hypothesized under the null (for example, if the null value is zero, then β1,0 = 0.What is SE (1ˆβ)? SE (1ˆβ) = the square root of an estimator of the variance7of the sampling distribution of 1ˆβRecall the expression for the variance of 1ˆβ (large n ):var(1ˆβ) = 22var[()]()i X i X X u n μσ− = 24v Xn σσwhere v i = (X i –X )u i . Estimator of the variance of 1ˆβ:812ˆˆβσ = 2221estimator of (estimator of )v Xn σσ× = 2212211ˆ()121()ni i i n i i X X u n n X X n ==−−×⎡⎤−⎢⎥⎣⎦∑∑.OK, this is a bit nasty, but:• There is no reason to memorize this• It is computed automatically by regression software• SE (1ˆβis reported by regression software9• It is less complicated than it seems. The numerator estimates the var(v ), the denominator estimates var(X )2.Return to calculation of the t -statsitic:t = 11,01ˆˆ()SE βββ− =11,0ˆββ−• Reject at 5% significance level if |t| > 1.96•p-value is p = P(|t| > |t act|) = probability in tails of normal outside |t act|•Both the previous statements are based on large-n approximation; typically n = 50 is large enough for the approximation to be excellent.1011 Example: Test Scores and STR , California dataEstimated regression line: n TestScore = 698.9 – 2.28×STRRegression software reports the standard errors:SE (0ˆβ) = 10.4 SE (1ˆβ) = 0.52t -statistic testing “β1,0 = 0” = 11,01ˆˆ()SE βββ− = 2.2800.52−− = –4.38•The 1% 2-sided significance level is 2.58, so we reject the null at the 1% significance level.•Alternatively, we can compute the p-value. You can do this easily in Stata:. di normal(-4.38)*2. 00001187注:在Stata中,normal表示标准正态分布的cdf。
AP_calculus参考书
Score
AP Score 5 4 3 2 1 Qualification Extremely well qualified Well qualified Qualified Possibly qualified No recommendation
Topic Outline for Calculus BC
1
by taking sufficiently close values of the domain.) • Understanding continuity in terms of limits. • Geometric understanding of graphs of continuous functions (Intermediate Value Theorem and Extreme Value Theorem). * Parametric, polar, and vector functions. The analysis of planar curves includes those given in parametric form, polar form, and vector form. II. Derivatives Concept of the derivative • Derivative presented graphically, numerically, and analytically. • Derivative interpreted as an instantaneous rate of change. • Derivative defined as the limit of the difference quotient. • Relationship between differentiability and continuity. Derivative at a point • Slope of a curve at a point. Examples are emphasized, including points at which there are vertical tangents and points at which there are no tangents. • Tangent line to a curve at a point and local linear approximation. • Instantaneous rate of change as the limit of average rate of change. • Approximate rate of change from graphs and tables of values. Derivative as a function • Corresponding characteristics of graphs of ƒ and ƒ∙. • Relationship between the increasing and decreasing behavior of ƒ and the sign of ƒ’. • The Mean Value Theorem and its geometric interpretation. • Equations involving derivatives. Verbal descriptions are translated into equations involving derivatives and vice versa. Second derivatives • Corresponding characteristics of the graphs of ƒ, ƒ’, and ƒ’’∙. • Relationship between the concavity of ƒ and the sign of ƒ’∙. • Points of inflection as places where concavity changes. Applications of derivatives • Analysis of curves, including the notions of monotonicity and concavity. + Analysis of planar curves given in parametric form, polar form, and vector form, including velocity and acceleration. • Optimization, both absolute (global) and relative (local) extrema. • Modeling rates of change, including related rates problems. • Use of implicit differentiation to find the derivative of an inverse function. • Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration. • Geometric interpretation of differential equations via slope fields and the relationship between slope fields and solution curves for differential equations. + Numerical solution of differential equations using Euler’s method. + L’Hospital’s Rule, including its use in determining limits and convergence of improper integrals and series. Computation of derivatives • Knowledge of derivatives of basic functions, including power, exponential, logarithmic,
《微积分英文版》课件
Limits and continuity
Definition: A limit is the value that a function approaches as the input approaches a certain point Continuity means that the function doesn't have any breaks or jumps at any point
Course structure
03
The course is divided into several modules, each focusing on a specific topic in calculus Learners can complete the course at their own pace and in any order of the modules
Properties: One side limits, absolute continuity, uniform continuity, etc
Differentiation
Definition: The derivative of a function at a point is the slope of the tangent line to the graph of the function at that point It can be used to find the rate of change of a function
Integral definition: The integral of a function is a measure of the area under its curve It is calculated by finding the limit of the sum of areas of rectangles under the curve as the width of the rectangles approaches zero
微积分英文课件PPT (7)
Definition:
A critical number of a function f is a number c in the domain of f such that either f (c) 0 or f (c) does not exist.
Example Find the absolute maximum and minimum values of the function
f (x) x3 3x2 1
1 x4
2
Solution: Since f is continuous on the given closed
interval, we can use the Closed Interval Method:
f (x) 0
For example:
f (x) x3 at x 0
2)There may be an extreme value even when f (c) does not exist.
For example: f (x) x at x 0
Fermat’s Theorem does suggest that we should at least start looking for extreme values of f at the
1) f is continuous on the closed interval [a,b]. 2) f is differentiable on the open interval (a,b). 3) f (a) = f (b) Then there is a number c in (a,b) such that
高等数学英文版课件PPT 03 The mean value theorem and curve sketching.ppt
THE TEST FOR CONCAVITY Suppose f is twice differentiable on an interval I. (a) If f "(x) > 0 for all x in I, then the graph of f is concave
x
Example 3 Find the local and absolute extreme values of the function f(x)= x3(x -2)2, -1 3. Sketch its graph.
f(6/5)=1.20592 is a local maximum; f(2)=0 is a local minimum; absolute maximum value is f(3)=27; absolute minimum value is f(-1)=-9. The sketched in Figure 6.
(b) If f ' changes from negative to positive at c then f has a local minimum at c.
(c) If f ' does not change sign at c (that is f ' is positive on both sides of c or negative on both sides), then f has no local extremum at c.
It is similar to prove (b).
f (x2 ) f (x1) 0 or f (x1) f (x2 ).
Example 1 Find where the function f (x) = 3x4 - 4x3 - 12x2 +5 is increasing and where it is decreasing.
中值定理 英文句子
中值定理英文句子1. The Mean Value Theorem states that for a function f(x) continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists at least one point c in (a, b) such that the instantaneous rate of change of f(x) at c is equal to the average rate of change of f(x) over the interval [a, b].2. The Mean Value Theorem is a fundamental result in calculus that establishes a connection between the average rate of change of a function and its instantaneous rate of change at a particular point.3. According to the Mean Value Theorem, if a car travels a distance of 100 miles in 2 hours, then there must have been a moment during the journey when the car was traveling at an average speed of 50 miles per hour.4. The Mean Value Theorem is oftenused to prove other important results in calculus, such as the First and Second Derivative Tests for determining the relative extrema of a function.5. The Mean Value Theorem can also be applied to interpret physical quantities, such as average velocity and average acceleration, in terms of instantaneous rates of change.6. The Mean Value Theorem has applications in various fields, including physics, economics, and engineering, where it is used to analyze rates of change and optimize functions.7. The Mean Value Theorem is a powerful tool in mathematical analysis, providing insights into the behavior of functions and allowing for the estimation of values and properties based on average rates of change.8. The Mean Value Theorem is closely related to the concept ofdifferentiability, as it requires the function to be differentiable on the open interval in order to establish the existence of a point satisfying the theorem's conditions.9. The Mean Value Theorem can be generalized to higher dimensions using the multivariable extension known as the Mean Value Theorem for Partial Derivatives.10. Understanding and applying the Mean Value Theorem is essential for mastering calculus and its applications in various scientific and mathematical disciplines.。
第三章 微分中值定理与导数的应用
第三章 微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and the Application of Derivatives3.1 微分中值定理 (The Mean Value Theorem)一、罗尔定理 (Rolle's Theorem) 费马引理 (Fermat Lemma)设函数()f x 在点0x 的某邻域0()U x 内有定义 , 并且在0x 处可导 , 如果对任意的0()x U x ∈, 有0()()f x f x ≤( 或0()()f x f x ≥), 那么0()0f x '=。
Let ()f x be defined on the open interval 00(,)x x δδ-+for some δ. If ()f x is differentiable at 0x , and for any x in 00(,)x x δδ-+ , (or 0()()f x f x ≥)then 0()0f x '=.驻点、奇异点和临界点(1) 如果函数在c 点的导数()0f c '=, 则称c 点为驻点;(2) 如果c 是区间(,)I a b =的内点 , 且函数在c 点的导数()f c '不存在 , 则称c 点为奇异点 ;(3) 函数的定义域内的驻点、奇异点和端点统称为函数的临界点。
Stationary Point, Singular Point, and Critical Point(1) If c is a point at which ()0f c '=, we call c a stationary point; (2) If c is an interior point of (,)I a b = where ()f c ' fails to exist, we call c a singular point;(3) Any point of the three types ,including stationary point, singular point and end point, in the domain of a function is called a critical point of ()f x .罗尔定理 (Rolle's Theorem)如果函数()f x 满足 :(1) 在闭区间[,]a b 上连续 ; (2) 在开区间(,)a b 内可导 ;(3) 在区间端点处的函数值相等 , 即()()f a f b =,那么在(,)a b 内至少有一点ξ()a b ξ<<, 使得()0f ξ'=。
导数与微分4Taylor 展开
第二军医大学 基础部数理教研室
The Mean Value Theorem
The L’Hospital’s Rule
若(1) lim f ( x ) lim g ( x ) 0 ( ) ;
x a x a
(2)f ( x ) 和 g ( x ) 在 a 点附近都存在, 且g ( x ) 0 ; f ( x ) lim A (3) x a g ( x ) f (x) f ( x ) 则 lim lim A x a g( x ) x a g ( x )
拉格朗日公式的其他表达方式:
f ( x ) f ( x0 ) f ( )( x x0 )
f ( x) f ( x0 ) f ( x0 ( x x0 ))( x x0 )
第二军医大学
基础部数理教研室
The Mean Value Theorem
Corollary
The Mean Value Theorem
两个结果之二:
f ( x) f ( x0 ) o(1) ( x x0 )
误差项
f ( x ) f ( x 0 ) f ( )( x x 0 )
(在x0与x之间)
第二军医大学 基础部数理教研室
The Mean Value Theorem
f ( x)
k 0
n
f
(k )
( x0 ) k n ( x x0 ) o(( x x0 ) )( x x0 ) k!
误差项
f ( x)
k 0
n
( n 1) f ( k ) ( x0 ) f ( ) k n 1 ( x x0 ) ( x x0 ) k! ( n 1) !
Mean Value Theorem for Derivatives 中值定理
at 9.8 vt 9.8t C
s t 9.8 t2 t C
2
1 9.80 C
st 4.9t2 t C
The initial position is zero at time zero.
1C
0 4.902 0 C
vt 9.8t 1
You will hear much more about antiderivatives in the future. This section is just an introduction.
Example 7b: Find the velocity and position equations for a downward acceleration of 9.8 m/sec2 and an initial velocity of 1 m/sec downward.
Since velocity is the derivative of position,
position must be the antiderivative of velocity.
Example 7b: Find the velocity and position equations for a downward acceleration of 9.8 m/sec2 and an initial velocity of 1 m/sec downward.
0C
st 4.9t2 t
p
y
Slope of tangent:
f c
A
0
ac
y f x
Tangent parallel to chord.
31微分中值定理78534
则f ( x2 ) f ( x1 ) f ( )( x2 x1 ) ( x1 x2 )
f ( ) 0, f ( x2 ) f ( x1 ) 0 即f ( x2 ) f ( x1 ) 由于x1, x2的任意性,所以 f ( x)在I上是常数.
X F(x)
C
Y
f (x)
M
B
N
D
弦AB.
o F(a) F(1) F(x)
F (2 )F (b)
x
证 作辅助函数
( x) f ( x) f (a) f (b) f (a) [F ( x) F (a)]. F(b) F(a)
( x) 满足罗尔定理的条件,
则在(a, b)内至少存在一点, 使得 () 0.
2019/5/13
2
二 微分中值定理
(The Mean Value Theorem)
微分中值定理的核心是拉格朗日(Lagrange) 中值定理,费马定理是它的预备定理,罗尔定理 是它的特例,柯西定理是它的推广。
1 预备定理——费马(Fermat)定理
若函数 f ( x)在 (a, b)内一点x0取得最值, 且f ( x)在点x0可微,则 f ( x0 ) 0.
即 f '() 0
C
y f (x)
几何解释:
o a 1
2 b x
在曲线弧AB上至少有一点C , 在该点处的切线是水平的.
2019/5/13
6
证 f ( x) 在 [a,b] 连续, 必有最大值 M 和最小值 m.
(1) 若 M m. 则 f ( x) M . 由此得 f ( x) 0. (a, b), 都有 f () 0. (2) 若 M m. f (a) f (b),
中值定理的逆定理最终版
2.1微分中值定理
定理2.1.1[1](拉格朗日中值定理)
设函数在区间 上连续且在开区间 内可导,则在该区间内至少存在c 使等式 成立.
定理2.1.2[1](柯西中值定理)
设两函数f ,g 在闭区间 上连续,在开区间 内可导,且 在 内每一点均不为零,则在 内至少存在一点c,使 .
事实上若对任意 ,有
,
则有 ,
于是有 这与 单调且在d点附近不为常数相矛盾.
由积分中值定理 ,使 ⑷
作辅助函数 ,
由⑵式与⑷式有:
又因为 在 上连续,
故由连续函数介值定理知
,使 ,即 ,
取 ,得⑴式,显然 ;
如果 ,则存在 ,
使当 时,有
显然 ,使
由积分中值定理 ,使
作辅助函数 ,因为
又 在 上连续,
区间 上, 为非负的单调递减函数(或非正的单调递增函数), 为不变号的可积函数,则对任意 ,存在 ,使得
证明对任意 取 ,
令
对 在 上运用连续函数的介值定理即得(具体证法与定理类似).
4.二重积分中值定理及其逆定理
4.1二重积分中值定理
定理4.1.1[10](二重积分中值定理)
函数 在闭区间 上连续,函数 在 上若不变号且可积,则存在一点 ,使得
证明设 在 内非负 ,对任意 ,
取 ,
令
则 在 上连续,且
故有连续函数的介值定理知,存在 ,使 ,即
推论3.2.4
设在区间 上, 为非正的单调递减函数,而 为不变号的可积函数,则对任意 ,存在 ,使得
.
定理3.2.5[8](积分第二中值定理的逆定理之二)
设在区间 上, 为非负的单调递减函数, 为不变号的可积函数,则对任意 ,存在 ,使得
介值定理英语
介值定理英语Title: The Intermediate Value Theorem: A Fundamental Concept in Real AnalysisThe Intermediate Value Theorem (IVT) is a fundamental concept in real analysis, a branch of mathematics that deals with the properties of real numbers and the functions that operate on them. This theorem, which was first established by the German mathematician Bernard Bolzano in the 19th century, has far-reaching implications in various fields of mathematics, including calculus, topology, and numerical analysis.At its core, the Intermediate Value Theorem states thatif a continuous function takes on two different values, it must also take on all intermediate values between those two values. In other words, if a function changes sign over an interval, it must pass through the value zero at some pointwithin that interval. This seemingly simple yet powerful result has numerous applications and is essential in proving the existence of solutions to many mathematical problems.To understand the theorem more formally, let's consider a continuous function f(x) defined on a closed interval [a, b]. If f(a) and f(b) have opposite signs, then the IVT guarantees that there exists at least one point c in the interval (a, b) such that f(c) = 0. In other words, the function must "cross the x-axis" at some point within the interval.The formal statement of the Intermediate Value Theorem can be expressed as follows:Theorem (Intermediate Value Theorem): Let f(x) be a continuous function on a closed interval [a, b]. If f(a) and f(b) have opposite signs, then there exists at least one point c in the open interval (a, b) such that f(c) = 0.The proof of the Intermediate Value Theorem relies on the fundamental properties of real numbers, particularly thecompleteness of the real number system. The proof typically involves the use of the Bisection Method, which is anumerical technique used to find the root of a functionwithin a given interval.One of the key aspects of the Intermediate Value Theoremis its ability to guarantee the existence of solutions to equations, rather than providing a specific method forfinding them. For example, if a continuous function f(x) satisfies the condition f(a) < 0 and f(b) > 0 (or vice versa), the IVT ensures that there exists at least one value c in the interval (a, b) such that f(c) = 0. This result is crucial in many areas of mathematics, as it allows us to establish the existence of solutions to various problems withoutnecessarily being able to find them explicitly.The applications of the Intermediate Value Theorem are widespread and span numerous areas of mathematics and its applications. In calculus, the IVT is used to establish theexistence of critical points of functions, which areessential in optimization problems. It is also used to prove the Intermediate Value Property of continuous functions, which states that a continuous function defined on a closed interval attains all intermediate values between its minimum and maximum values.In topology, the Intermediate Value Theorem is closely related to the concept of connectedness, as it guaranteesthat the image of a connected set under a continuous function is also connected. This property has important implicationsin the study of topological spaces and the classification of different types of spaces.Furthermore, the Intermediate Value Theorem has significant applications in numerical analysis, where it is used to establish the existence of solutions to nonlinear equations. The Bisection Method, mentioned earlier, is awidely used technique that relies on the IVT to find the roots of continuous functions.In addition to its theoretical importance, the Intermediate Value Theorem also has practical applications in various fields, such as economics, physics, and engineering. For example, in economics, the IVT can be used to prove the existence of market equilibrium prices, where supply and demand intersect. In physics, it is used to analyze the behavior of continuous physical systems, such as the motion of a particle or the flow of a fluid.In conclusion, the Intermediate Value Theorem is a fundamental result in real analysis that has far-reaching implications and applications in various areas of mathematics and its applications. Its ability to guarantee the existence of solutions to problems, without necessarily providing a specific method for finding them, makes it an invaluable tool in the study and analysis of continuous functions and theirproperties. The deep insights and connections it provides make the Intermediate Value Theorem a cornerstone of modern mathematical thought and analysis.。
mean value theorem
mean value theorem平均值定理(MeanValueTheorem),又称函数局部有界定理,是微积分中重要的定理之一。
它指出,在满足一定条件的情况下,一个函数在某一区间上的局部有界,可以提供一定的计算结果。
该定理最先由18世纪英国数学家兼物理学家乔治瓦特(George William Waller)在1797年提出,根据其不同的演绎,该定理也称为瓦特定理(Waller Theorem)。
它的准确的定义是:如果f()为在闭区间[a,b]上连续的函数,则存在一个x,使得满足:f(x) = (f(b)-f(a))/(b-a)这个x称为该函数在[a,b]上的“平均值”。
平均值定理最早由18世纪英国数学家兼物理学家乔治瓦特(George William Waller)提出,它有许多不同的形式,其中一个最常见的是:在某个闭区间上的任一函数的切线有一定的斜率值,并且与该函数的变化有关。
【平均值定理的证明】平均值定理的证明有多种方法,以下给出的是做法一:设[a,b]上的任意函数f(x)为连续函数,f(x)存在,f(x)可导,则存在一个量x∈(a,b),使得:f(x)= lim (f(b)-f(a))/(b-a)可以用数学归纳法根据上述公式,证明平均值定理成立。
证:首先,假设f(x)在[a,b]上是单调增函数,即f(x)>0;令u=f(b)-f(a)那么u=[f(b)-f(a)]*(b-a)>0令u=[f(b)-f(a)]*(b-a)+f(x)*(b-a),根据式子,有:f(x)=f(b)+(f(a)-f(b))*(b-a)/(b-a)=f(b)-(f(b)-f(a))*(b-a)/(b -a)当f(x)在[a,b]上单调减时,f(x)<0,那么u=[f(b)-f(a)]*(b-a)<0令u=[f(b)-f(a)]*(b-a)+f(x)*(b-a)有:f(x)=f(b)+(f(a)-f(b))*(b-a)/(b-a)=f(b)-(f(b)-f(a))*(b-a)/(b -a)显然,无论f(x)在[a,b]上单调递增还是单调递减,f(x)都与u 有关,从而等式的左右两边都小于0,即平均值定理成立。
高等数学(微积分学)专业术语名词、概念、定理等英汉对照.
目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limit (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and theApplicati on of Derivatives (3)第四章不定积分Chapter 4 Indefinite Intergrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Ana lytic Geomertry and Vector Algebra (4)第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variablesand Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Sur face Integrals……………………6 第十一章无穷级数Chapter 11 Infinite Series……………………………………………………6 第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达 Part 2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and L imit (19)1.1 映射与函数(Mapping and Function ) (19)1.2 数列的极限(Limit of the Sequence of Number) (20)1.3 函数的极限(Limit of Function) (21)1.4 无穷小与无穷大(Infinitesimal and Inifinity) (23)1.5 极限运算法则(Operation Rule of L imit) (24)1.6 极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7 无穷小的比较(The Comparison of infinitesimal) (26)1.8 函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9 连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10 闭区间上联系汗水的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives of Implicit Functions and Functions Determined by Parametric Equation and Correlative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hopital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4 Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Produc t and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals………………………………121 10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) ………121 10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) ……………………………………………………123 10.3 格林公式及其应用(Green's Formula and Its Applications) ………………124 10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) ……………126 10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) ………………………………………………………128 10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) …… 130 10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) ………………………………………………………133 11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) ……137 11.3 幂级数(powe r Series). ……………………………………………………143 11.4 函数展开成幂级数(Represent the Function as Power Series) ……………148 11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The Unanimous Convergence of the Ser ies of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series).............................................152 11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation……………………………………………155 12.1 微分方程的基本概念(The Concept of DifferentialEqu ation) ……155 12.2 可分离变量的微分方程(Separable Differential Equation) ………156 12.3 齐次方程(Homogeneous Equation) ………………………………156 12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5 全微分方程(Total Differential Equation) …………………………158 12.6 可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7 高阶线性微分方程(Linear Differential Equation of Higher Order) …159 12.8 常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9 常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) …………………………………………164 12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus Vocabulary映射 mappingX到Y的映射 mapping of X ontoY 满射 surjection 单射 injection一一映射 one-to-one mapping 双射 bijection 算子 operator变化 transformation 函数 function逆映射 inverse mapping复合映射 composite mapping 自变量 independent variable 因变量 dependent variable 定义域 domain函数值 value of function 函数关系 function relation 值域 range自然定义域 natural domain 单值函数 single valued function 多值函数 multiple valued function 单值分支 one-valued branch 函数图形 graph of a function 绝对值函数 absolute value 符号函数 sigh function 整数部分 integral part 阶梯曲线 step curve 第一章函数与极限Chapter1 Function and Limit 集合 set元素 element 子集 subset 空集 empty set 并集 union交集 intersection 差集 difference of set 基本集 basic set补集 complement set 直积 direct product笛卡儿积 Cartesian product 开区间 open interval 闭区间 closed interval 半开区间half open interval 有限区间 finite interval区间的长度 length of an interval 无限区间 infinite interval 领域 neighborhood领域的中心 centre of a neighborhood 领域的半径 radius of a neighborhood 左领域left neighborhood 右领域 right neighborhood当且仅当 if and only if(iff) 分段函数 piecewise function 上界 upper bound 下界lower bound 有界 boundedness 无界 unbounded函数的单调性 monotonicity of a function 单调增加的 increasing 单调减少的decreasing单调函数 monotone function函数的奇偶性 parity(odevity) of a function对称 symmetry 偶函数 even function 奇函数 odd function函数的周期性 periodicity of a function 周期 period反函数 inverse function 直接函数 direct function 复合函数 composite function 中间变量 intermediate variable 函数的运算 operation of function基本初等函数 basic elementary function 初等函数 elementary function 幂函数 power function指数函数 exponential function 对数函数 logarithmic function 三角函数 trigonometric function反三角函数 inverse trigonometric function 常数函数 constant function 双曲函数hyperbolic function 双曲正弦 hyperbolic sine 双曲余弦 hyperbolic cosine 双曲正切hyperbolic tangent反双曲正弦 inverse hyperbolic sine 反双曲余弦 inverse hyperbolic cosine 反双曲正切 inverse hyperbolic tangent 极限 limit数列 sequence of number 收敛 convergence 收敛于 a converge to a 发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of aconvergent sequence子列 subsequence函数的极限 limits of functions函数f(x)当x趋于x0时的极限 limit of functions f(x) as x approaches x0 左极限 left limit 右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote 无穷小 infinitesimal 无穷大 infinity铅直渐近线 vertical asymptote 夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order 低阶无穷小 infinitesimal of lower order 同阶无穷小 infinitesimal of the same order 等阶无穷小 equivalent infinitesimal 函数的连续性 continuity of a function 增量 increment函数f(x)在x0连续 the function f(x) is continuous at x0左连续 left continuous 右连续 right continuous区间上的连续函数 continuous function 函数f(x)在该区间上连续 function f(x) is continuous on an interval 不连续点 discontinuity point第一类间断点 discontinuity point of the first kind第二类间断点 discontinuity point of the second kind初等函数的连续性 continuity of the elementary functions定义区间 defined interval最大值 global maximum value (absolute maximum)最小值 global minimum value (absolute minimum)零点定理 the zero point theorem介值定理 intermediate value theorem 第二章导数与微分Chapter2 Derivative and Differential 速度 velocity匀速运动 uniform motion 平均速度 average velocity瞬时速度 instantaneous velocity 圆的切线 tangent line of a circle 切线 tangent line切线的斜率 slope of the tangent line 位置函数 position function 导数 derivative 可导derivable函数的变化率问题 problem of the change rate of a function导函数 derived function 左导数 left-hand derivative 右导数 right-hand derivative 单侧导数 one-sided derivativesf(x)在闭区间【a,b】上可导 f(x)isderivable on the closed interval [a,b] 切线方程 tangent equation 角速度 angular velocity 成本函数 cost function 边际成本 marginal cost 链式法则 chain rule隐函数 implicit function 显函数 explicit function 二阶函数 second derivative 三阶导数 third derivative 高阶导数 nth derivative莱布尼茨公式 Leibniz formula 对数求导法 log- derivative 参数方程 parametric equation 相关变化率 correlative change rata 微分 differential 可微的 differentiable 函数的微分 differential of function自变量的微分 differential of independent variable微商 differential quotient间接测量误差 indirect measurement error 绝对误差 absolute error相对误差 relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem 费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点 stationary point 稳定点 stable point 临界点 critical point辅助函数 auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式 indeterminate form of type 0/0不定式 indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式 Taylor formula 余项 remainder term拉格朗日余项 Lagrange remainder term 麦克劳林公式Maclaurin’s formula 佩亚诺公式 Peano remainder term 凹凸性 concavity凹向上的 concave upward, cancave up 凹向下的,向上凸的concave downward’ concave down拐点 inflection point函数的极值 extremum of function 极大值 local(relative) maximum 最大值global(absolute) mximum 极小值 local(relative) minimum 最小值 global(absolute) minimum 目标函数 objective function 曲率 curvature弧微分 arc differential平均曲率 average curvature 曲率园 circle of curvature 曲率中心 center of curvature 曲率半径 radius of curvature渐屈线 evolute 渐伸线 involute根的隔离 isolation of root 隔离区间 isolation interval 切线法 tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数 primitive function(antiderivative) 积分号 sign of integration 被积函数integrand积分变量 integral variable 积分曲线 integral curve 积分表 table of integrals换元积分法 integration by substitution 分部积分法 integration by parts分部积分公式 formula of integration by parts有理函数 rational function 真分式 proper fraction 假分式 improper fraction第五章定积分Chapter5 Definite Integrals 曲边梯形 trapezoid with 曲边 curve edge窄矩形 narrow rectangle曲边梯形的面积 area of trapezoid with curved edge积分下限 lower limit of integral 积分上限 upper limit of integral 积分区间 integral interval 分割 partition积分和 integral sum 可积 integrable矩形法 rectangle method积分中值定理 mean value theorem of integrals函数在区间上的平均值 average value of a function on an integvals牛顿-莱布尼茨公式 Newton-Leibniz formula微积分基本公式 fundamental formula of calculus换元公式 formula for integration by substitution递推公式 recurrence formula 反常积分 improper integral反常积分发散 the improper integral is divergent反常积分收敛 the improper integral is convergent无穷限的反常积分 improper integral on an infinite interval无界函数的反常积分 improper integral of unbounded functions绝对收敛 absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法 the element method 面积元素 element of area平面图形的面积 area of a luane figure 直角坐标又称“笛卡儿坐标 (Cartesian coordinates)”极坐标 polar coordinates 抛物线 parabola 椭圆 ellipse旋转体的面积 volume of a solid of rotation旋转椭球体 ellipsoid of revolution, ellipsoid of rotation曲线的弧长 arc length of acurve 可求长的 rectifiable 光滑 smooth 功 work水压力 water pressure 引力 gravitation 变力 variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量 vector自由向量 free vector 单位向量 unit vector 零向量 zero vector 相等 equal 平行parallel向量的线性运算 linear poeration of vector 三角法则 triangle rule平行四边形法则 parallelogram rule 交换律 commutative law 结合律 associative law 负向量 negative vector 差 difference分配律 distributive law空间直角坐标系 space rectangular coordinates坐标面 coordinate plane 卦限 octant向量的模 modulus of vector向量a与b的夹角 angle between vector a and b方向余弦 direction cosine 方向角 direction angle向量在轴上的投影 projection of a vector onto an axis数量积,外积,叉积 scalar product,dot product,inner product曲面方程 equation for a surface 球面 sphere旋转曲面 surface of revolution 母线 generating line 轴 axis圆锥面 cone 顶点 vertex旋转单叶双曲面 revolution hyperboloids of one sheet旋转双叶双曲面 revolution hyperboloids of two sheets柱面 cylindrical surface ,cylinder 圆柱面 cylindrical surface 准线 directrix抛物柱面 parabolic cylinder 二次曲面 quadric surface 椭圆锥面 dlliptic cone 椭球面ellipsoid单叶双曲面 hyperboloid of one sheet 双叶双曲面 hyperboloid of two sheets 旋转椭球面 ellipsoid of revolution 椭圆抛物面 elliptic paraboloid旋转抛物面 paraboloid of revolution 双曲抛物面 hyperbolic paraboloid 马鞍面 saddle surface椭圆柱面 elliptic cylinder 双曲柱面 hyperbolic cylinder 抛物柱面 parabolic cylinder 空间曲线 space curve空间曲线的一般方程 general form equations of a space curve空间曲线的参数方程 parametric equations of a space curve 螺转线 spiral 螺矩 pitch 投影柱面 projecting cylinder 投影 projection平面的点法式方程 pointnorm form eqyation of a plane法向量 normal vector平面的一般方程 general form equation of a plane两平面的夹角 angle between two planes 点到平面的距离 distance from a point to a plane空间直线的一般方程 general equation of a line in space方向向量 direction vector直线的点向式方程 pointdirection form equations of a line方向数 direction number直线的参数方程 parametric equations of a line两直线的夹角 angle between two lines 垂直 perpendicular直线与平面的夹角 angle between a line and a planes平面束 pencil of planes平面束的方程 equation of a pencil of planes行列式 determinant系数行列式 coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数 function of one variable 多元函数 function of several variables 内点 interior point 外点 exterior point 边界点 frontier point,boundary point 聚点 point of accumulation 开集 openset 闭集 closed set 连通集 connected set 开区域 open region 闭区域 closed region有界集 bounded set 无界集 unbounded setn维空间 n-dimentional space 二重极限 double limit 多元函数的连续性 continuity of function of seveal 连续函数 continuous function 不连续点 discontinuity point 一致连续 uniformly continuous 偏导数 partial derivative 对自变量x的偏导数 partial derivative with respect to independent variable x 高阶偏导数 partial derivative of higher order 二阶偏导数 second order partial derivative 混合偏导数 hybrid partial derivative 全微分 total differential 偏增量 oartial increment 偏微分 partial differential 全增量 total increment 可微分 differentiable 必要条件 necessary condition充分条件 sufficient condition 叠加原理 superpostition principle 全导数 total derivative中间变量 intermediate variable 隐函数存在定理 theorem of the existence of implicit function 曲线的切向量 tangent vector of a curve 法平面 normal plane 向量方程vector equation 向量值函数 vector-valued function 切平面 tangent plane 法线 normal line 方向导数 directional derivative梯度 gradient数量场 scalar field 梯度场 gradient field 向量场 vector field 势场 potential field 引力场 gravitational field 引力势 gravitational potential 曲面在一点的切平面 tangent plane to asurface at a point 曲线在一点的法线 normal line to asurface at a point 无条件极值 unconditional extreme values 条件极值 conditional extreme values 拉格朗日乘数法 Lagrange multiplier method 拉格朗日乘子 Lagrange multiplier 经验公式 empirical formula 最小二乘法 method of least squares 均方误差mean square error 第九章重积分 Chapter9 Multiple Integrals 二重积分 double integral 可加性 additivity累次积分 iterated integral 体积元素 volume element 三重积分 triple integral 直角坐标系中的体积元素 volumeelement in rectangular coordinate system 柱面坐标 cylindrical coordinates 柱面坐标系中的体积元素 volumeelement in cylindrical coordinate system 球面坐标 spherical coordinates 球面坐标系中的体积元素 volumeelement in spherical coordinate system 反常二重积分 improper double integral 曲面的面积 area of a surface 质心 centre of mass 静矩 static moment 密度 density 形心centroid 转动惯量 moment of inertia 参变量 parametric variable 第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分 line integrals with respect to arc hength第一类曲线积分 line integrals of the first type对坐标的曲线积分 line integrals with respect to x,y,and z第二类曲线积分 line integrals of the second type有向曲线弧 directed arc单连通区域 simple connected region 复连通区域 complex connected region 格林公式Green formula第一类曲面积分 surface integrals of the first type对面的曲面积分 surface integrals with respect to area有向曲面 directed surface对坐标的曲面积分 surface integrals with respect to coordinate elements第二类曲面积分 surface integrals of the second type有向曲面元 element of directed surface 高斯公式 gauss formula拉普拉斯算子 Laplace operator 格林第一公式Green’s first formula 通量 flux散度 divergence斯托克斯公式 Stokes formula 环流量 circulation 旋度 rotation,curl第十一章无穷级数Chapter11 Infinite Series 一般项 general term 部分和 partial sum 余项 remainder term 等比级数 geometric series 几何级数 geometric series 公比 common ratio调和级数 harmonic series柯西收敛准则 Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D’Alembert test 柯西判别法 Cauchy test交错级数 alternating series 绝对收敛 absolutely convergent 条件收敛 conditionally convergent 柯西乘积 Cauchy product 函数项级数 series of functions 发散点 point of divergence 收敛点 point of convergence 收敛域 convergence domain 和函数 sum function 幂级数 power series幂级数的系数 coeffcients of power series 阿贝尔定理 Abel Theorem收敛半径 radius of convergence 收敛区间 interval of convergence 泰勒级数 Taylor series麦克劳林级数 Maclaurin series 二项展开式 binomial expansion 近似计算approximate calculation舍入误差 round-off error,rounding error 欧拉公式Euler’s formula魏尔斯特拉丝判别法 Weierstrass test 三角级数 trigonometric series 振幅 amplitude 角频率 angular frequency 初相 initial phase 矩形波 square wave谐波分析 harmonic analysis 直流分量 direct component 基波 fundamental wave 二次谐波 second harmonic三角函数系 trigonometric function system 傅立叶系数 Fourier coefficient 傅立叶级数 Forrier series 周期延拓 periodic prolongation 正弦级数 sine series 余弦级数cosine series 奇延拓 odd prolongation 偶延拓 even prolongation傅立叶级数的复数形式 complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程 solve a dirrerential equation 常微分方程 ordinary differential equation偏微分方程 partial differential equation,PDE微分方程的阶 order of a differential equation微分方程的解 solution of a differential equation微分方程的通解 general solution of a differential equation初始条件 initial condition微分方程的特解 particular solution of a differential equation初值问题 initial value problem微分方程的积分曲线 integral curve of a differential equation可分离变量的微分方程 variable separable differential equation隐式解 implicit solution隐式通解 inplicit general solution 衰变系数 decay coefficient 衰变 decay齐次方程 homogeneous equation一阶线性方程 linear differential equation of first order非齐次 non-homogeneous齐次线性方程 homogeneous linear equation非齐次线性方程 non-homogeneous linear equation常数变易法 method of variation of constant暂态电流 transient stata current 稳态电流 steady state current 伯努利方程 Bernoulli equation全微分方程 total differential equation 积分因子 integrating factor高阶微分方程 differential equation of higher order悬链线 catenary高阶线性微分方程 linera differentialequation of higher order自由振动的微分方程 differential equation of free vibration强迫振动的微分方程 differential equation of forced oscillation串联电路的振荡方程 oscillation equation of series circuit二阶线性微分方程 second order linera differential equation线性相关 linearly dependence 线性无关 linearly independce二阶常系数齐次线性微分方程 second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程 characteristic equation无阻尼自由振动的微分方程 differential equation of free vibration with zero damping 固有频率 natural frequency简谐振动 simple harmonic oscillation,simple harmonic vibration微分算子 differential operator待定系数法 method of undetermined coefficient共振现象 resonance phenomenon 欧拉方程 Euler equation幂级数解法 power series solution 数值解法 numerial solution 勒让德方程 Legendre equation微分方程组 system of differential equations常系数线性微分方程组 system of linera differential equations with constant coefficient第二部分定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X, Y是两个非空集合 , 如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应 ,则称f为从X到 Y的映射 , 记作f:X→Y。
拉格朗日中值定理几种特殊证法
届学士学位毕业论文关于拉格朗日中值定理的几种特殊证法学号:姓名:班级:指导教师:专业:系别:完成时刻:年月学生诚信许诺书本人郑重声明:所呈交的论文《关于拉格朗日中值定理的几种特殊证法》是我个人在导师王建珍指导下进行的研究工作及取得的研究功效。
尽我所知,除文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表或撰写的研究功效,也不包括为取得长治学院或其他教育机构的学位或证书所利用过的材料。
所有合作者对本研究所做的任何奉献均已在论文中作了明确的说明并表示了谢意。
签名:日期:论文利用授权说明本人完全了解长治学院有关保留、利用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校能够发布论文的全数或部份内容,能够采用影印、缩印或其他复制手腕保留论文。
签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究功效,已经审阅过论文的全数内容,并能够保证题目、关键词、摘要部份中英文内容的一致性和准确性。
指导教师签名:时刻:摘要拉格朗日中值定理在高等代数和数学分析的一些理论推导中起着重要作用,本论文为了更准确的理解拉格朗日中值定理,介绍了其几种特殊的证明方式.第一本文从分析和几何的角度构造辅助函数对拉格朗日中值定理进行了证明,其中在分析法构造辅助函数中应用了推理法、原函数法、行列式法及弦倾角法,在几何法构造辅助函数中应用了作差构造法、面积构造法和旋转坐标轴法;第二,应用了区间套定理证明法和巴拿赫不动点定理证明法对拉格朗日中值定理进行了证明;最后,本文为能将拉格朗日中值定理表述更为深刻,还将其应用到求极限,证明函数性态等具体问题中.关键词:拉格朗日中值定理;区间套定理;巴拿赫不动点定理Several Special Proofs on the Lagrange’s Mean Value Theorem 08404141 ZHAO Xia-yan Mathematics and Applied MathematicsTutor WANG Jian-zhenAbstractLagrange’s mean value theorem plays an important role in some theory educations in Higher algebra and Mathematical analysis, this thesis introduces several particular methods proving methods in order to comprehend Lagrange’s mean value theorem precisely. First of all, applying analysis and geometry with constructing auxiliary function to prove Lagrange’s mean value theorem, in the aspect of analysis, the methods of constructing auxiliary function include the reasoning method, original function method, the determinant method and chord angle method, In the aspect of geometric, the methods of constructing auxiliary functions include the poor construction method, area structure method and the rotating coordinate transformation method; secondly, also use the theorem of nested interval proving method and the Banach fixed point theorem to prove it; finally, this article applies Lagrange’s mean value theorem to the specific question in the limit, proving the function of state and other issues.Key Words: Lagrange’s mean value theorem; The theorem of nested interval; The Banach fixed point theorem目录摘要 (II)拉格朗日中值定理在高等代数和数学分析的一些理论推导中起着重要作用,本论文为了更准确的理解拉格朗日中值定理,介绍了其几种特殊的证明方式.第一本文从分析和几何的角度构造辅助函数对拉格朗日中值定理进行了证明,其中在分析法构造辅助函数中应用了推理法、原函数法、行列式法及弦倾角法,在几何法构造辅助函数中应用了作差构造法、面积构造法和旋转坐标轴法;第二,应用了区间套定理证明法和巴拿赫不动点定理证明法对拉格朗日中值定理进行了证明;最后,本文为能将拉格朗日中值定理表述更为深刻,还将其应用到求极限,证明函数性态等具体问题中 (II)1.引言 (1)定理(罗尔中值定理)]1[若函数f知足如下条件: (1)定理 (拉格朗日中值定理)]2[若函数f知足如下条件: (1)2.利用分析法构造辅助函数 (1)证明方式(推理法) (2)证明方式(原函数法) (2)证明方式 (行列式法) (3)证明方式 (弦倾角法) (3)3. 利用几何法构造辅助函数 (4)证明方式 (作差法) (4)证明方式(面积法) (5)证明方式(旋转坐标轴法) (5)5. 利用巴拿赫不动点定理证明 (7)求极限 (8)证明不等式 (9)证明等式 (9)证明函数性态 (10)估值问题 (10)证明级数收敛 (11)参考文献 (12)致谢 (13)关于拉格朗日中值定理的几种特殊证法08404141 赵夏燕 数学与应用数学指导教师 王建珍1.引言微分中值定理作为微分学中的重要定理,是微分学应用的理论基础,是微分学的核心理论.微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,它们是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具,其中拉格朗日中值定理是核心,从这些定理的条件和结论能够看出罗尔定理是其特殊情形,柯西定理和泰勒定理是其推行.第一回顾下拉格朗日中值定理和它的预备定理—罗尔中值定理.定理 (罗尔中值定理)]1[ 若函数f 知足如下条件:(ⅰ)f 在闭区间],[b a 上持续;(ⅱ)f 在开区间),(b a 内可导;(ⅲ))()(b f a f =;则在),(b a 内至少存在一点ξ,使得0)(='ξf .定理 (拉格朗日中值定理)]2[ 若函数f 知足如下条件:(ⅰ)f 在闭区间],[b a 上持续;(ⅱ)f 在开区间),(b a 内可导;则在),(b a 内至少存在一点ξ,使得=')(ξf ab a f b f --)()(. 讲义上给出了拉格朗日中值定理的大体证法,在此基础上,下面给出了拉格朗日中值定理的几种特殊证明方式.2.利用分析法构造辅助函数拉格朗日中值定理中的两个条件与罗尔中值定理中的前两个条件相同,二者的区别仅仅在于区间端点处的函数值是不是相等,基于这种关系,自然想到构造一个辅助函数,使它知足罗尔中值定理的条件,从而是不是由罗尔中值定理的结论导出拉格朗日中值定理的结论呢?事实上解决问题的关键是构造的那个辅助函数)(x F 要在],[b a 的端点有相同的函数值,即)()(b F a F =,以下将对如何利用分析法构造辅助函数进行深切的分析.证明方式(推理法)由拉格朗日中值定理结论=')(ξf a b a f b f --)()( ,可知其右端是一个常数,故可设ab a f b f --)()(k =,则有)()()(a b k a f b f -=-,即ka a f kb b f -=-)()(仔细观察其特点,不难发觉一个能使)()(b F a F =的新函数:kx x f x F -=)()(,故)(x F 就是证明中所要利用的辅助函数.证明进程如下:令kx x f x F -=)()(,其中=k ab a f b f --)()(,由题设可知,)(x F 在],[b a 上持续,在),(b a 内可导,且)()(b F a F =,即)(x F 知足罗尔中值定理,故在),(b a 内至少存在一点ξ,使得)(ξF ')(ξf '=0=-k ,即=')(ξf ab a f b f --)()( 证毕. 证明方式(原函数法)这种方式是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数.由拉格朗日中值定理的变形))(()()(a b f a f b f -'=-ξ得)(ξf '0)]()([)(=---a f b f a b , 令ξx =得 )(x f '0)]()([)(=---a f b f a b ,两边积分可得 0)]()([))((=+---c x a f b f a b x f ,取0=c 得 0)]()([))((=---x a f b f a b x f ,若令 ()=x F x a f b f a b x f )]()([))((---,容易验证)()(b F a F =)()(b af a bf -=,知()x F 知足罗尔中值定理的条件,所以()x F 就是所求的辅助函数,证明进程如下:令()x F =x a f b f a b x f )]()([))((---,x ∈],[b a ,因为函数在闭区间],[b a 内持续,在开区间),(b a 内可导,且)()(b F a F =,所以至少存在一点ξ∈),(b a ,使得)(ξF '0=,又=')(ξF )(ξf ')]()([)(a f b f a b ---,所以即)(ξf '=a b a f b f --)()(,证毕.证明方式 (行列式法)由于想取得)()(b F a F =,故可按照行列式的性质]3[,设()x F =1)(1)(1)(x f xb f b a f a ,所以能够取得辅助函数而且知足0)()(==b F a F .证明如下:设()x F =1)(1)(1)(x f x b f ba f a x ∈],[b a ,则由行列式的性质可得0)()(==b F a F ,所以()x F 知足罗尔中值定理,因此至少存在一点ξ∈),(b a ,使得)(ξF '0=,又)(x F '=0)(11)(1)(x f b f ba f a '0)(11)(0)()(x f b f b b f a f b a '--=+-=)()(b f a f ))((a b x f -', 所以0))(()()()(=-'+-='a b f b f a f F ξξ,即)(ξf '=ab a f b f --)()(. 证明方式 (弦倾角法) 目的是为了取得()=a F ()b F ,设连接持续曲线L :))(,{(x f x |}b x a ≤≤, 两头点A 和B 的弦为AB (图1),其倾倾斜角为θ,则 -2π<<θ2π, =θtan =θθcos sin a b a f b f --)()(, 也即有 ()θθθθcos cos )(sin cos a a f b b f -=-,所以令θθsin cos )()(x x f x F -=,如此所取得的辅助函数)(x F 就可以知足要求,证明如下:图 1 设θθsin cos )()(x x f x F -=,其中曲线L :))(,{(x f x |}b x a ≤≤,如上图所示,且-2πθ<2π<,则可得()x F 知足罗尔中值定理的条件,故至少存在一点ξ∈),(b a ,使得0)(='ξF ,又=')(ξF )(ξf 'θθsin cos -,所以=')(ξf ab a f b f --)()(,证毕. 3. 利用几何法构造辅助函数利用数形结合的思想方式解决数学问题有着超级直观的效果,对于微分中值定理的证明,利用几何图形的特性观察分析,一样能够作出适合的辅助函数,下面用不同的方式来加以说明.证明方式 (作差法)因为曲线L 与其弦AB 别离在a x =和b x =两点的高度对应相同(如图1),所以不妨考虑过曲线方程和弦方程的差来构造辅助函数,于是令)(x F =)(x f [-ab a f b f --)()()()(a f a x +-], 或 )(x F =)(x f [-a b a f b f --)()()()(b f b x +-], 则可得)()(b F a F =,因此所构函数)(x F 知足罗尔中值定理.证明方式如下:设)(x F -=)(x f [ab a f b f --)()()]()(a f a x +-,)(x F 在闭区间],[b a 上持续, )(x F 在开区间),(b a 内可导,且)()(b F a F =,所以)(x F 知足罗尔中值定理,则在),(b a 内至少存在一点ξ,使)(ξF '0=,即0)()()()(=---'='ab a f b f f F ξξ, 整理可得 =')(ξf a b a f b f --)()(.证明方式 (面积法)如图1所示,曲线L 上任意一点))(,(x f x P 与弦AB 组成ABP ∆的面积)(x S 恰好在区间],[b a 上知足罗尔中值定理的三个条件,ABP ∆的面积=)(x S 211)(1)(1)(x f x b f b a f a , 而当点P 与点A 或B 重合时,即a x =或b x =时,0)(=x S ,因此加以化解可引入辅助函数=)(x F 1)(1)(1)(x f x b f b a f a ,],[b a x ∈,现在0)()(==b F a F .证明方式如下: 令=)(x F 1)(1)(1)(x f xb f b a f a ,],[b a x ∈,则由行列式性质容易验证0)()(==b F a F ,所以)(x F 知足罗尔中值定理的三个条件,所以在),(b a 内至少存在一点ξ,使得0)(='ξF ,又)(x F '=0)(11)(1)(x f b f ba f a'=0)(11)(0)()(x f b f b b f a f b a '--))(()()(a b x f b f a f -'+-=, 所以 0))(()()()(=-'+-='a b f b f a f F ξξ,即=')(ξf ab a f b f --)()(. 证明方式 (旋转坐标轴法) 如下图2所示,按弦AB 的倾斜角旋转坐标系,可使新坐标系的X 轴与原坐标系中的弦AB 平行,则原曲线的方程在旋转变换下必然知足罗尔中值定理的条件,通过罗尔中值定理则可得出结论.证明如下:图 2按照新旧坐标之间的关系⎩⎨⎧+-=+=θθθθcos sin sin cos y x Y y x X , 可令θθcos )(sin )(x f x x Y +-=,则能够验证.证明进程如下:令θθcos )(sin )(x f x x Y +-=,因为函数)(x f 在闭区间],[b a 上持续,在开区间),(b a 上可导,所以函数)(x Y 在闭区间],[b a 上持续,在开区间),(b a 上可导,又由θtan =a b a f b f --)()(,即θθcos sin =ab a f b f --)()(,可得θθθθcos )(sin cos )(sin b f b a f a +-=+-,即)(a Y =)(b Y ,从而由罗尔中值定理可得,在),(b a 内至少存在一点ξ,使得0)(='ξY ,即0cos )(sin )(='+-='θξθξf Y ,故)(ξf '=ab a f b f --)()(. 4. 利用闭区间套定理证明引理1(区间套定理)]4[若是闭区间系列]},{[n n b a 知足下列条件],[],[11n n n n b a b a ⊂++,0)(lim =-∞→n n n a b , 则存在唯一实数],[n n b a ∈ξ ),2,1( =n ,且有 n n n n b a ∞→∞→==lim lim ξ. 引理2]5[ 若是)(x f 在],[b a 上持续,那么必定存在),(,b a d c ∈,使得2a b c d -=-,ab a f b fcd c f d f --=--)()()()(.利用引理1和引理2,即可证明拉格朗日中值定理,反复利用引理2则可得区间序列]},{[n n b a ,知足⊃⊃⊃],[],[],[2211b a b a b a ,=-n n a b )(21a b n- , ab a f b f a b a b f n n n n --=--)()()(, 由区间套定理得必有),(],[b a b a n n ⊂∈ξ ),2,1( =n ,使得 ξ==∞→∞→n n n n b a lim lim , 因为)(x f 在ξ处可导,所以由导数的概念得 )()()(lim )()(limξξξξξf a f a f b f b f n n n n n n '=--=--∞→∞→, 从而当∞→n 时,有)()()()()(ξοξξξ-+-⋅'=-n n n b b f f b f , )()()()()(ξοξξξ-+-⋅'=-n n n a a f f a f ,nn n n n n n n n n a b a a b b f a b a b f -----+'=--)()()()(ξοξοξ, 又因为 0))((lim )(lim =--⋅--=--∞→∞→nn n n n n n n n n a b b b b a b b ξξξοξο, 0))((lim )(lim =--⋅--=--∞→∞→n n n n n n n n n n a b a a a a b a ξξξοξο, 所以 )()()(limξf a b a f b f n n n n n '=--∞→, 从而有 )()()(ξf ab a f b f '=--. 5. 利用巴拿赫不动点定理证明引理3 (巴拿赫不动点定理)]6[在完备的气宇空间中的紧缩映射必存在唯一的不动点.显然,任意闭区间在通常的欧几里得气宇下是完备的,由此可证在],[b a 上凸或凹的函数)(x f 的拉格朗日中值定理.对任意小的0>ε,在闭区间],[εε-+b a 上构造自映射+'-=)(x f x Ax ab a f b f --)()( . 能够证明A 是一个紧缩映射]7[,事实上,对于],[,21εε-+∈b a x x ,不妨设21x x <,则有)]()([)(121212x f x f x x Ax Ax '-'--=-,假设)(x f 在区间],[b a 上是凹的,那么)(x f '在区间],[εε-+b a 内单调增加,所以-')(2x f 0)(1>'x f ,从而必然存在一个数λ∈)1,0(,使得<-<)(012x x λ)()(12x f x f '-', 因此)1(1212λ--≤-x x Ax Ax ,所以A 是闭区间],[εε-+b a 上的紧缩映射,由引理3得,存在唯一的一点),(b a ∈ξ,使得ξξ=A ,于是)()()(ξf ab a f b f '=--, 故定理得证.6.拉格朗日中值定理的应用拉格朗日中值定理作为中值定理的核心,有着普遍的应用,在很多题型中都起到了化繁为简的作用.求极限由拉格朗日中值定理指出,若是f 在],[b a 持续,在),(b a 可导,则有b a a b f a f b f <<-'=-ξξ))(()()(,因此对),(b a x ∈∀,有x a a x f a f x f <<-'=-ξξ))(()()(, (1)公式(1)表明,求某些差式的极限,可转化为求积式型的极限,以化简极限的计算或解决某些运算,用别的方式求不出极限式子.固然也要具体情形具体分析,并非是所有差式型的极限都能适合于运用中值定理,应以简便为原则选用.问题 求 )(lim 12+∞→-n n n x x n )0(>x . 解 令t x t f =)(,则对任何自然数n ,)(t f 在]1,11[nn +上知足拉格朗日中 值定理的条件,而且x x t f t ln )(='是t 上的严格单调函数,因此在]1,11[n n +上由拉格朗日中值定理,得 x x n n n n n f n n f n f n x x n n n ln )1()111)(()]11()1([)(22212ξξ+=+-'=+-=-+, 11+n <<ξn1,当+∞→n 时,0→ξ, 故原极限=x x x n n n n ln ln )1(lim 2=+∞→ξ. 证明不等式证明不等式的方式有很多,但对于某些不等式,用初等解法不必然能解得出来,例如描述函数的增量与自变量增量关系的不等式或中间一项能够表示成函数增量形式等的题型.这时若是考虑用拉格朗日中值定理,会比变较容易简单.问题 证明y x y x -≤-sin sin .证明 设x x f sin )(=,显然)(x f 在],[y x 上知足拉格朗日中值定理条件,所以存在),(y x ∈ξ,使得))(()()(y x f y f x f -'=-ξ,即ξcos )(sin sin y x y x -=-, 又因为1cos ≤ξ,因此有y x y x -≤-sin sin .证明等式用拉格朗日中值定理证明等式也是其应用中很重要的一项.证明的目标在于凑出形式类似于拉格朗日中值定理的式子.问题 证明当1≤x 时,有2arccos arcsin π=+x x .证明 设()x x x f arccos arcsin +=,[]1,1-∈x ,显然]1,1[)(-∈C x f ,而且)(x f 在)1,1(-上可微,01111)arccos (arcsin )(22=---='+='x x x x x f ,由拉格朗日中值定理的推论可得常数=)(x f ,[]1,1-∈x ,又因为)1,1(0-∈,且 ()20arccos 0arcsin 0π=+=f ,故2arccos arcsin π=+x x ,[]1,1-∈x .证明函数性态因为拉格朗日中值定理沟通了函数与其导数的联系,很多时候咱们能够借助它的导数,研究导数的性质从而了解函数在整个概念域区间上的整体熟悉.例如研究函数在区间上的符号、单调性、一致持续性、凸性等,都可能用到拉格朗日中值定理的结论.通过对函数局部性质的研究把握整体性质,是数学研究中的一种重要方式.问题 设),()(+∞∈a C x f ,)(x f '在),(+∞a 存在,而且0)(=a f ,当ax >时,0)(>'x f ,求证当a x >时,0)(>x f .证明 a x >∀1,由已知得)(x f 在],[1x a 上知足拉格朗日中值定理,],[1x a ∈∃ξ,使()a x f a f x f -'=-11)()()(ξ,因为0)(>'ξf ,01>-a x ,所以0))(()(11>-'=a x f x f ξ,所以a x >∀1,有0)(1>'x f ,即),(+∞∈∀a x ,有 0)(>x f .估值问题证明估值问题,一般情形下选用泰勒公式证明比较简便.专门是二阶及二阶以上的导函数估值时.但对于某些积分的估值,能够采用拉格朗日中值定理来证明.问题 设)(x f ''在],[b a 上持续,且0)()(==b f a f ,试证明⎰''ab dx x f )()(max 4x f a b bx a ≤≤-≥. 证明若0)(≡x f ,不等式显然成立.若)(x f 不恒等于0,存在),(b a c ∈,使 )()(max c f x f bx a =≤≤,在],[c a 及],[b c 上别离用拉格朗中值定理,得=')(1ξf a c c f -)(,=')(2ξf bc c f -)(, 从而⎰''ab dx x f )())((1))(()()()()(121212a c c b a b c f f f dx x f dx x f ---='-'=''≥''≥⎰⎰ξξξξξξ 再由4)())((2a b c b a c -≤--,即可得证. 证明级数收敛问题 若一正项级数)0(1>∑∞=n n n a a 发散,n n a a a s +++= 21,证明级数∑∞=+11n n n s a δ (0>δ) 收敛. 证明 作辅助函数δx x f 1)(=,则δδ+-='1)(xx f ,当2≥n 时,在],[1n n s s -上用拉格朗日中值定理,可得 )()()(11n n n n n f s s s f s f ξ'=---- (n n n s s <<-ξ1), 于是)11(1111δδδδδξn n nn n n s s a s a -=<-++, 由)11(112δδδn n n s s --∞=∑收敛]8[,可得所证. 7. 结语本文初步探讨了拉格朗日中值定理定理的几种特殊证法,其中给出了分析法构造辅助函数、几何法构造辅助函数、区间套定理法和巴拿赫不动点定理法.几何法是利用图形的特征进行分析,从而构造出需要的辅助函数,与分析法有异曲同工之妙;区间套定理法和巴拿赫不动点定理法,它们不需要构造辅助函数,也能够证明,虽说是一种专门好的证法,可是比较抽象难懂.最后对拉格朗日中值定理在求极限、证明不等式、证明等式、证明函数性态、估值问题、证明级数敛散性六方面的应用做了简单的介绍,从而使咱们加深对拉格朗日中值定理的熟悉.参考文献[1] 华东师范大学数学系.数学分析(上册)[M].第三版.北京:高等教育出版社,2001.[2] 同济大学应用数学系主编.高等数学(上册)[M].第五版.北京:高等教育出版社,2002.[3] 北京大学数学系几何与代数教研室前代数小组编.高等代数[M].第三版.北京:高等教育出版社,.[4] 许在库.用区间套定理证明Rolle定理Lagrange定理[J].安徽大学学报,(2):18-21.[5] 张恭庆,林源渠.泛函分析讲义:上册[M].北京:北京大学出版社,.[6] 周建伟.微分几何[M].北京:高等教育出版社,.[7] 程其襄等编.实变函数与泛函分析基础[M].第三版.北京:高等教育出版社,.[8] 华东师范大学数学系.数学分析(下册)[M].第三版.北京:高等教育出版社,2001.[9] 陈文灯,黄先开.数学题型集粹与练习题集[M].世界图书出版公司,.[10] 钱昌本.高等数学解题进程的分析和研究[M].科学出版社,2000.[11] 周焕芹.浅谈中值定理在解题中的应用[J].高等数学研究,1999,2(3).致谢在这收获的季节里,当我捧着这大学里最后的一次作业,回顾想来,百感交集,一次次的欢笑与泪水,一次次的摔倒与爬起,要感激的人实在太多太多。
毕业论文拉格朗日中值定理分析
毕业论文题 目 拉格朗日中值定理 指导教师 王子华学生姓名 卢波 学 号 201200702049 专 业 信息与计算科学 教学单位 德州学院数学科学学院二O 一六年五月二十日德州学院毕业论文课题说明书德州学院毕业论文开题报告书德州学院毕业论文中期检查表院(系):数学科学学院专业:信息与计算科学 2016年 4备注:目录摘要 (1)关键字 (1)Abstract (1)KeyWord (1)0前言 (1)1对拉格朗日中值定理的理解 (1)1.1承上启下的定理 (1)1.2定理中的条件 (1)1.3定理中的 (2)1.4定理的意义 (2)2 拉格朗日中值定理的证明 (2)3 拉格朗日中值定理的应用 (3)3.1求极限 (3)3.2证明不等式 (5)3.3证明恒等式 (8)3.4证明等式 (9)3.5研究函数在区间上的性质 (10)3.6估值问题 (11)3.7判定级数的收敛性 (12)3.8证明方程根的存在性 (13)3.9误用拉格朗日中值定理 (14)结束语 (15)参考文献 (16)致谢 (16)拉格朗日中值定理的应用学生姓名:卢波学号:201200702049院系:数学科学学院专业:信息与还算科学指导老师:王子华职称:教授摘要:拉格朗日中值定理是微分学的基础定理之一,它是沟通函数及其导数之间关系的桥梁,课本中关于拉格朗日中值定理的应用并没有专门的讲解,而很多研究者也只是研究了它在某个方面的应用,并没有系统的总结。
本文首先进一步分析了定理的实质,以便使读者深入理解拉格朗日中值定理;然后从课本中证明拉格朗日中值定理的思想(构造辅助函数法)出发,提出了一个较简单的辅助函数,从而使拉格朗日中值定理的证明简单化;以此为理论依据并在别人研究的基础上,最后重点总结了拉格朗日中值定理在各个方面的应用。
这对于正确的理解掌握拉格朗日中值定理,以及以后进一步学习数学具有重要的作用和深远的意义。
关键词:拉格朗日中值定理;应用;极限;不等式;收敛;根的存在性The Application of Lagrange's mean value theoremAbstract:The Lagrange's mean value theorem is one of basic theorems of differential calculus and it also is communication function and its derivative bridge. There is no special ex plaination about the applications of Lagrange's mean value theorem and many resea rchers also just studied it in some applications and no systematic summary. In order t o make the reader understand Lagrange's mean value theorem, this paper first analy zed the essence of the theorem and then from textbook proof Lagrange's mean valu e theorem thoughts (structure method of auxiliary function), puts forwards a simpler auxiliary function. Thus make the proof of Lagrange's mean value theorem simplify. According to this theorem and the basis of others study, finally summarized all the as pects application of Lagrange's mean value theorem. It is quite important for underst anding and mastering Lagrange's mean value theorem and also have a significant an d profound significance for further study of mathematics.Keywords:Lagrange's mean value theorem; Application; Limit; Inequality; Convergence; Roots0前言函数与其导数是两个不同的的函数,而导数只是反映函数在一点的局部特征,如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就是这种作用.微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In this lecture, we introduce Rolle’s Theorem and the Mean Value Theorem. We then look at the relation between the sign of the derivative and the monotonicity of a function. 1. Rolle’s Theorem Rolle’s Theorem is a simple but important theorem about real functions. Theorem 9.1 (Rolle’s Theorem). Suppose that the function f is continuous on [a, b] and differentiable on (a, b), and that f (a) = f (b). Then there is a point c ∈ (a, b) such that f ′ ( c) = 0 . Proof. Since f is continuous on [a, b], by the Maximum-Minimum Theorem, f is bounded and attains its bounds. We write M for the maximum and m for the minimum. Since m ≤ f (a) = f (b) ≤ M by definition, then it must be true that f (a) = f (b) < M , or m < f (a) = f (b), or m = f (a) = f (b) = M . Consider first the possibility that M > f (a). In this case, there is a point c ∈ (a, b) such that f (c) = M , and this is a local maximum. Now f is differentiable in (a, b), so f ′ (c) = 0, by Theorem 8.11. Consider next the possibility that m < f (a). In this case, a similar argument shows that there is a point c ∈ (a, b) such that f (c) = m, and f ′ (c) = 0. The last possibility is that m = M . In this case, the function f is constant, and the derivative of a constant function is 0, so f ′ (c) = 0 for all c ∈ (a, b). Thus in each case, there is a point c with the required property. 2 Corollary 9.2. If f : (a, b) → R is differentiable, then there is a zero of f ′ between any two different zeros of f . Proof. If x1 and x2 are two distinct zeros of f , and x1 < x2 , then f (x1 ) = f (x2 ), so, by Rolle’s Theorem, there exists c in the interval (x1 , x2 ) such that f ′ (c) = 0, that is, c is a root of f ′ lying between x1 and x2 . 2 Corollary 9.3. If f : (a, b) → R is differentiable and has n distinct zeros, then f ′ has at least n − 1 distinct zeros. Equivalently, if f ′ has m distinct zeros, then f has at most m + 1 distinct zeros.
2. The Mean Value Theorem The Mean Value Theorem is an important consequence and generalization of Rolle’s Theorem. Theorem 9.5 (Mean Value Theorem). Suppose that the real function f is continuous on [a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that f ′ ( c) = f (b) − f (a) . b−a f (b) − f (a) . b−a
Proof. Let L be the linear function such that L(a) = f (a) and L(b) = f (b). Then L′ (x) = Define ϕ : [a, b] → R by
ϕ(x) = f (x) − L(x).
Now ϕ is continuous on [a, b] and differentiable on (a, b), and ϕ(a) = ϕ(b) = 0 by definition. By Rolle’s Theorem, there exists c ∈ (a, b) such that ϕ′ (c) = 0. Hence 0 = f ′ (c) − L′ (c) = f ′ (c) − which implies the desired conclusion. f (b) − f (a) , b−a 2
p′ has exactly one real root, which must be negative. It follows that p has at most 2 real roots. Since p(−1) = −1 and limx→+∞ p(x) = limx→−∞ p(x) = +∞, p has at least two real △ roots. Thus p has exactly 2 real roots.
49
50
9. THE MEAN VALUE THEOREM
In particular, if f is a nonzero real polynomial of degree n, then f has at most n zeros. Exercise 9.4. Define the real polynomial p by p(x) = x4 − x2 + 2x + 1. How many real roots does p have? First of all, p′ (x) = 4x3 − 2x + 2 and p′′ (x) = 12x2 − 2. So p′′ (x) = 0 when Answer. √ x = ±1/ 6. Thus p′ is a cubic with two turning points. Since √ √ 4 −2 ) 6 + 2 ≈ 1.456 p′ (1/ 6) = ( 36 6 and √ √ 4 −2 ) 6 + 2 ≈ 2.544, p′ (−1/ 6) = −( 36 6
3. APPLICATIONS OF THE MEAN VALUE THEOREM
51
3. Applications of the Mean Value Theorem While the Mean Value Theorem guarantees the existence of a point c ∈ (a, b) such that f (b) − f (a) = f ′ ( c) , b−a it does not tell us anything about how to find c. For specific functions, we may compute c, but in general we cannot. Nevertheless, the Mean Value Theorem is useful. Exercise 9.6. Suppose that a, b ∈ [−π/4, π/4] and a = b. Show that |tan b − tan a| < 2 |b − a| . Answer. Suppose that a < b. The function x → tan x is continuous and differentiable on (−π/2, π/2), and hence continuous on [a, b] and differentiable on (a, b), because [a, b] and (a, b) are subsets of (−π/2, π/2). Hence by the Mean Value Theorem, there exists c ∈ (a, b) such that tan b − tan a = sec2 c, b−a and this implies that |tan b − tan a| = (sec2 c) |b − a| . Now c ∈ (a, b) ⊆ (−π/4, π/4), so cos2 c > 1/2 and sec2 c < 2; we deduce that The same argument holds if b < a, except that [a, b] and (a, b) must be replaced by [b, a] and (b, a). △ Exercise 9.7. Show that Answer. Define f (x) = ex − 1 − x. We need to show that f (x) ≥ 0 for all x ∈ R. Note that f ′ (x) = ex − 1, so f ′ (x) > 0 when x > 0 and f ′ (x) < 0 when x < 0. If x > 0, then we consider f in the interval [0, x]. By the Mean Value Theorem, there exists c ∈ (0, x) such that f (x) − f (0) = f ′ ( c) > 0 . x−0 It follows that f (x) > 0. If x < 0, then we consider f in the interval [x, 0]. By the Mean Value Theorem, there exists c ∈ (x, 0) such that f (x) − f (0) = f ′ ( c) < 0 . x−0 It follows that f (x) > 0. △ Thus f (x) ≥ 0 for all x; equality holds only when x = 0. The Mean Value Theorem is very useful for proving results of this type. 1 + x ≤ ex ∀x ∈ R. |tan b − tan a| < 2 |b − a| .