Hydrolysis of native poly(hydroxybutyrate) granules (PHB)

合集下载

卤代对羟基苯甲酸酯 英语

卤代对羟基苯甲酸酯 英语

卤代对羟基苯甲酸酯英语Halogenated Hydroxybenzoic Acid Esters.Halogenated hydroxybenzoic acid esters, commonly known as halogenated parabens, are a class of chemical compounds that are widely used as preservatives in cosmetics, personal care products, and food items. These esters are derived from hydroxybenzoic acid, which is naturally found in plants, and are halogenated, typically with chlorine or bromine, to enhance their antimicrobial properties.Applications and Uses.Halogenated hydroxybenzoic acid esters are primarily used as preservatives due to their ability to inhibit the growth of bacteria, fungi, and mold. They are commonly found in products such as lotions, creams, shampoos, conditioners, makeup, and other personal care items. Additionally, they are also used in food processing to preserve the freshness and shelf life of various foodproducts.Properties and Characteristics.The halogenation of hydroxybenzoic acid esters confers upon them several unique properties. Chlorine and bromine are highly reactive halogens that can easily replace the hydrogen atoms on the hydroxybenzoic acid esters, creating stable and water-soluble compounds. These halogenated esters are typically colorless or slightly yellow liquids with low volatility.The antimicrobial activity of halogenated hydroxybenzoic acid esters is attributed to their ability to disrupt the cellular membranes of microorganisms. The halogen atoms interact with the lipid bilayer of the cell membrane, causing it to become more permeable, which leads to the leakage of cellular contents and ultimately cell death.Types of Halogenated Hydroxybenzoic Acid Esters.There are several types of halogenated hydroxybenzoic acid esters, each with its own unique properties and applications. Some common examples include:1. Chloroparabens: Chlorinated derivatives of hydroxybenzoic acid esters are known as chloroparabens. These compounds are widely used as preservatives in cosmetics and personal care products due to their broad-spectrum antimicrobial activity. Common chloroparabens include methylparaben, ethylparaben, propylparaben, and butylparaben.2. Bromoparabens: Brominated derivatives of hydroxybenzoic acid esters are known as bromoparabens. These compounds are less common than chloroparabens but are also used as preservatives in some products due to their antimicrobial properties. Bromoparabens such as bromomethylparaben and bromopropylparaben are used in specific applications where additional antimicrobial activity is desired.Safety and Regulations.The use of halogenated hydroxybenzoic acid esters in cosmetics and personal care products is generally considered safe. However, there has been some concern regarding their potential impact on human health and the environment. Some studies have suggested that parabens may act as endocrine disruptors, interfering with the normal function of hormones in the body. However, these findings are still controversial, and more research is needed to confirm their potential health effects.In response to these concerns, some countries and regions have implemented regulations limiting the use of parabens in cosmetics and personal care products. Additionally, some consumers may choose to avoid products containing parabens due to their personal preferences or concerns about their potential health effects.Conclusion.Halogenated hydroxybenzoic acid esters, particularly chloroparabens, are widely used as preservatives incosmetics, personal care products, and food items due to their antimicrobial properties. While they are generally considered safe for use in these applications, there are concerns regarding their potential impact on human health and the environment. Ongoing research and regulatory efforts aim to ensure the safety of these compounds while also addressing consumer preferences and concerns.。

疏水缔合水溶性聚合物溶液性能研究进展

疏水缔合水溶性聚合物溶液性能研究进展

文章编号:100421656(2002)0420377206疏水缔合水溶性聚合物溶液性能研究进展崔 平,马俊涛3,黄荣华(四川大学高分子研究所,四川成都 610065)摘要:本文针对疏水缔合水溶性聚合物的稀溶液和半浓溶液两种情况,综述了最近十多年来溶液性能的研究进展。

文中讨论了表征分子量和疏水相互作用的特性粘数与Huggins 常数。

分别介绍了聚合物浓度、分子量、疏水基类型、含量、长短及序列分布、离子基团的种类和位置、剪切速率、温度以及化学相互作用对溶液性能的影响。

关键词:水溶性疏水缔合聚合物;溶液性能;稀溶液;半浓溶液;疏水相互作用中图分类号:O63114 文献标识码:A ΞΞΞ 疏水缔合水溶性聚合物(Hydrophobically As 2sociating Water 2Soluble Polymers )是最近十多年来用于水流体流变性能控制的一种新材料。

在水溶性聚合物(通常是聚丙烯酰胺)分子中引入少量的疏水基团就能得到水溶性疏水缔合聚合物。

疏水缔合作用是指有机分子溶于水后,水分子要保持其原有的结构而排斥有机分子的倾向,而有机分子倾向于相互聚集以减少与水的接触[1]。

在水溶液中,聚合物分子链上的疏水基团之间由于疏水作用而发生簇集,使大分子链产生分子内和分子间缔合,增大了流体力学体积而具有良好的增粘性。

在盐溶液中,由于溶液极性增加,使疏水缔合作用增强,表现出明显的抗盐性能。

这种聚合物分子量不高,故当受到剪切作用时,其分子链不易剪断,表现出优良的抗剪切性能[2,3]。

影响缔合聚合物溶液性能的结构因素有:平均分子量、疏水基类型、含量及在分子链上的序列分布、离子基团的种类及位置等;外界因素有聚合物浓度、外加试剂(如无机盐、表面活性剂、其它同类物质等)、p H 、温度和剪切作用等。

疏水缔合水溶性聚合物独特的溶液性能在三次采油聚合物驱油中具有重要的意义。

已工业化应用的聚合物驱油剂是高分子量部分水解聚丙烯酰胺(HPAM ),由于其在特定条件下(如高矿化度、高剪切速率等)增粘作用明显降低,所以仅能用于中低温、低矿化度油田[4]。

聚乙烯醇和海藻酸钠联合固定化汉逊德巴利酵母产3—羟基丙酸的研究

聚乙烯醇和海藻酸钠联合固定化汉逊德巴利酵母产3—羟基丙酸的研究

聚乙烯醇和海藻酸钠联合固定化汉逊德巴利酵母产3—羟基丙酸的研究作者:董玉玮刁咸斌王陶张传丽高明侠来源:《湖北农业科学》2017年第04期摘要:采用微胶囊固定化技术,利用聚乙烯醇、海藻酸钠和氯化钙制备汉逊德巴利酵母微胶囊,探讨了聚乙烯醇、海藻酸钠、氯化钙的浓度对汉逊德巴利酵母微胶囊的制备工艺及其产3-羟基丙酸量的影响。

结果表明,随着聚乙烯醇、海藻酸钠和氯化钙浓度的分别增加,3-羟基丙酸含量先增加后减少。

聚乙烯醇最佳浓度为10.0%,此时3-羟基丙酸含量为(20.01±0.66)g/L;海藻酸钠为最佳浓度为1.0%,此时3-羟基丙酸含量为(18.71±0.54) g/L;氯化钙最佳浓度为2.1%,此时3-羟基丙酸含量为(18.37±0.45) g/L。

聚乙烯醇和海藻酸钠联合固定汉逊德巴利酵母制备微胶囊最佳工艺为10.0%聚乙烯醇,1.0%海藻酸钠和2.1%氯化钙,在此条件下3-羟基丙酸含量为(21.53±1.12) g/L。

关键词:固定化;汉逊德巴利酵母;3-羟基丙酸中图分类号:TQ926 文献标识码:A 文章编号:0439-8114(2017)04-0722-053-羟基丙酸(3-hp)是一种三碳无手性化合物,是大部分光学物质的前体[1],能够发生氧化还原反应得到1,3-丙二醇、丙二酸、丙烯酸等化合物[2],这些化合物对于制备粘胶剂、纤维、塑料、树脂、个人护理用品、水处理药剂等必不可少;3-hp也可以聚合生成聚3-hp,具有强度高、易拉伸、生物降解性好等优点,在环境保护、化学防护等方面具有广泛的应用前景,被誉为21世纪新兴平台化合物[3]。

然而3-hp每年产量都不足,存在巨大的市场缺口,加之其重大的应用价值和潜在的开发价值,吸引国内外研究机构争先展开深入的研究。

微生物生产3-hp可以避免化学合成法带来的诸多不良因素,具有生产时间短、材料容易得到、对环境无害、成本低等优势。

亲水胶体的性质及应用

亲水胶体的性质及应用

2021/3/20
20
❖ 化学结构及成分与瓜儿胶一样,是以甘露糖 为主链的半乳甘露聚糖,但连接的半乳糖支 链相对比瓜儿胶少,一些片段带有较多的半 乳糖支链,而另些片段则没有支链;其平均 半乳糖与甘露糖之比为1:4
2021/3/20
21
❖ 洋槐豆胶是中性多糖,1%溶液出在5.4~6.5 之间,粘度在1500 ~4000cp。
用于膨化食品,在挤压加工时赋予润滑作用,并且能增 加产量和延长货架期;
用于面制品以控制面团的吸水效果。改进面团特性及品 质,延长老化时间(一般用量为面粉的0.5%)等。
2021/3/20
25
三)刺云豆胶
❖ 秘鲁的灌木Caesalpinia spinosa ❖ 刺云豆胶与琼脂、卡拉胶及黄原胶等有良好
❖即以现有的允许用做食品添加剂的食用胶为基础 原料,通过研究各种单体胶的性质特性,胶与胶 之间及胶与电解质之间的反应行为,确定单体胶 种类及各自比例,采用复合配制的方法从而产生 无数种复合胶。有些天然胶之间能相互反应,产 生各单体胶本身并不具有的特性,达到一种协同 效应。
2021/3/20
10
卡拉胶
洋槐豆胶/卡拉胶/CMC的复合是良好的冰淇淋稳 定剂,用量为0.1%~0.2%。
2021/3/20
24
在奶制品及冷冻奶制品甜食中充当持水剂,增进口感以 及防止冰晶形成;用于干酪生产可加快奶酪的絮凝作用, 增加产量并增进涂布效果(用量为0.2%~0.6%);
用于肉制品、西式香肠等加工中改善持水性能以及改进 肉食的组织结构和冷冻/融化稳定性;
12
二、植物籽胶
❖ 植物的籽实体是传统的亲水胶体来源之一 。 ❖ 植物籽胶主要来源于豆科(leguminosae) 植物,

聚乙烯醇缩甲醛的制备中英文翻译

聚乙烯醇缩甲醛的制备中英文翻译

聚乙烯醇缩甲醛是利用聚乙烯醇缩与甲醛在盐酸催化的作用下而制得的,其反应如下CH 2O+H+C +H 2O HC H 2C HC H 2C H C H 2O HO HC +H 2OH +C H 2C HC H 2C H C H 2O O HC H 2+~~~~~~~~~~~~+H 2OC H 2C HC H 2C H C H 2O O HC H 2+~~~~~~C H 2C HC H 2C H C H 2OO~~~~~~C H 2+H+由于几率效应,聚乙烯醇中邻近羟基成环后,中间往往会夹着一些无法成环的孤立的羟基,因此缩醛化反应不能完全。

为了定量表示缩醛化的程度,定义已缩合的羟基量占原始羟基量的百分数为缩醛度。

聚乙烯醇是水溶性的高聚物,如果用甲醛将它进行部分缩甲醛化,随着缩醛度的增加,水溶性愈差。

作为维尼纶纤维的聚乙烯醇缩甲醛的缩醛度一般控制在35%左右。

它不溶于水,是性能优良的合成纤维。

本实验是合成水溶性聚乙烯醇缩甲醛胶水。

反应过程中须控制较低的缩醛度,使产物保持水溶性。

如反应过于猛烈,则会造成局部高缩醛度,导致不溶性物质存在于水中,影响胶水质量。

因此在反应过程中,特别要注意严格控制催化剂用量、反应温度、反应时间及反应物比例等因素。

聚乙烯醇缩甲醛随缩醛化程度的不同,性质和用途各有所不同。

它能溶于甲酸、乙酸、二氧六环、氯化烃(二氯乙烷、氯仿、二氯甲烷)、乙醇-苯混合物(30:70)、乙醇-甲苯混合物(40:60)以及60%的含水乙醇等。

本实验中,由于缩醛化反应的程度较低,胶水中尚含有未反应的甲醛,产物往往有甲醛的刺激性气味。

缩醛基团在碱性环境下较稳定,故要调整胶水的pH 值。

Polyvinylformal is the use of polyvinyl with formaldehyde obtained under the action of hydrochloric acid catalyzed reaction is as followsCH 2O+H+C +H 2O HC H 2C HC H 2C H C H 2O HO HC +H 2OH+C H 2C HC H 2C H C H 2O O HC H 2+~~~~~~~~~~~~+H 2OC H 2C HC H 2C H C H 2O O HC H 2+~~~~~~C H 2C HC H 2C H C H 2OO~~~~~~C H 2+H+Since the probability of effect, polyvinyl alcohol after the neighboring hydroxyl group to form a ring, the intermediate will often sandwiched between some of the isolated hydroxyl groups can not form a ring, the acetalization reaction is not completely. In order to quantify the degree of acetalization, the definitions have been condensed hydroxy accounts for a percentage of the original amount of hydroxyl groups for the acetalization degree.Polyvinyl alcohol is a water-soluble polymer, if it with formaldehyde partial formals, as the acetalization degree of the increase in the water-soluble worse. Vinylon fiber polyvinyl acetal of formaldehyde general control of about 35%. It does not dissolve in water, is the excellent performance of the synthetic fibers.This experiment is a synthetic water-soluble polyvinyl formaldehyde glue. A lower acetalization degree is required to control the course of the reaction, the product remains water soluble. If the reaction is too violent, and will result in the local high acetal degrees, lead to insoluble substances present in the water, affecting the glue quality. Therefore, during the reaction, in particular, to pay attention to strictly control the amount of catalyst, reaction temperature, reaction time, reactant ratios and other factors.Polyvinylformal with different degree of acetalization, the nature and purpose of each different. It was dissolved in formic acid, acetic acid, dioxane, chlorinated hydrocarbons (dichloroethane, chloroform, dichloromethane), ethanol - benzene (30:70) mixture of ethanol - toluene mixture (40:60), and 60 % aqueous ethanol and the like. This experiment, due to the lower degree of acetalization reaction, glue still contains unreacted formaldehyde, and the product tend to have a pungent odor of formaldehyde. The acetal group is more stable in an alkaline environment is necessary to readjust the pH value of the glue.。

2-羟基苯甲酸(又名水杨酸) 标准

2-羟基苯甲酸(又名水杨酸) 标准

2-羟基苯甲酸(又名水杨酸) 标准水杨酸(2-羟基苯甲酸)的标准水杨酸,又名2-羟基苯甲酸,是一种常见的有机化合物,具有许多医学和化妆品应用。

它是一种白色结晶固体,在自然界中也可以从柳树的树皮中提取。

水杨酸的化学结构简单,但它具有许多重要的医学和美容功效。

在本文中,我们将从多个角度对水杨酸的标准进行全面评估,并探讨其广泛的应用和未来发展。

1. 水杨酸的化学性质1.1 水杨酸的分子式和结构水杨酸的分子式为C7H6O3,结构式为HO-C6H4-COOH。

它是一种芳香酸,含有羟基(-OH)和羧基(-COOH),这使得水杨酸具有酸性和亲水性。

1.2 水杨酸的物理性质水杨酸是白色结晶固体,在常温下易溶于乙醇、乙醚和丙酮等有机溶剂,稍溶于水。

它具有特殊的香气,常被用作食品和化妆品的添加剂。

2. 水杨酸的医学应用2.1 水杨酸的抗炎作用水杨酸是一种经典的非甾体类抗炎药,可用于缓解轻至中度的疼痛和发热,如头痛、关节炎等。

它通过抑制前列腺素的合成和释放发挥抗炎作用。

2.2 水杨酸的角质调理作用水杨酸可以渗透皮肤表层,软化角质层,促进角质细胞的脱落,从而改善和预防毛孔阻塞、粉刺和闭口粉刺等皮肤问题,是许多护肤品的常见成分。

3. 水杨酸的化妆品应用3.1 水杨酸的抗氧化作用水杨酸具有抗氧化性,可以清除自由基,延缓皮肤老化,减少皱纹和色素沉着。

3.2 水杨酸的渗透性水杨酸可以渗透皮肤表层,清除毛孔内的污垢和油脂,解决粉刺和闭口粉刺等皮肤问题。

4. 水杨酸的标准化生产和质量控制4.1 水杨酸的合成工艺水杨酸主要通过天然柳树皮提取或人工合成。

合成水杨酸的主要原料是酚类化合物,通过羧酸化反应制备。

4.2 水杨酸的质量控制水杨酸作为医药和化妆品原料,其纯度、溶解度、酸度和微生物含量等指标都需要符合国家标准和行业标准,以确保其安全性和稳定性。

5. 展望水杨酸作为一种重要的有机化合物,具有广泛的应用前景。

随着现代医学和美容技术的不断发展,水杨酸在抗炎、角质调理、抗氧化等领域的应用将会更加深入和广泛。

醇醛酸的亲疏水-概述说明以及解释

醇醛酸的亲疏水-概述说明以及解释

醇醛酸的亲疏水-概述说明以及解释1.引言1.1 概述醇醛酸是一类具有特殊性质的化合物,其分子结构中同时含有醇和醛基团。

在化学领域中,醇醛酸因其独特的结构和性质而备受关注。

醇醛酸具有很强的亲水性和疏水性,这种双重性质使其在许多领域有着广泛的应用价值。

本文旨在探讨醇醛酸的亲疏水性质,分析其在化学反应、材料科学以及生物医药领域的应用前景。

通过深入研究醇醛酸的特性,我们可以更好地理解其在不同环境下的行为,并为其进一步应用提供有力支持。

1.2 文章结构文章结构部分应该包括对整篇文章结构的概述,主要是介绍每个章节的内容和顺序,以及各部分之间的逻辑关系和联系。

在这篇关于醇醛酸亲疏水性的文章中,我们将首先介绍醇醛酸的定义和特性,然后分析其亲水性和疏水性,最后对这两种性质进行总结和展望其在未来的应用前景。

整篇文章将按照这个逻辑顺序展开,以帮助读者对醇醛酸在亲疏水性方面的特点有一个全面的了解。

1.3 目的本文旨在探讨醇醛酸的亲疏水性质,通过对其定义、特性、亲水性和疏水性的分析,深入了解醇醛酸分子在不同环境下的行为和性质。

同时,通过对醇醛酸的亲疏水性的研究,探讨其在生物化学、医药领域以及材料科学中的应用前景,为相关领域的研究和应用提供参考和启示。

通过本文的阐述,希望读者能对醇醛酸的亲疏水性有更深入的了解,为相关领域的研究和应用提供理论支持和指导。

2.正文2.1 醇醛酸的定义和特性醇醛酸是一类化合物,通常由含有羟基和醛基的分子组成。

它们是具有特定结构的有机化合物,其中醇基和醛基通过一个碳-氧键相连。

醇醛酸通常具有类似酮和酯的结构,但其特殊的羟基和醛基含量使其在化学性质上有所不同。

醇醛酸的特性包括:1. 亲水性:由于醇基和羟基的存在,醇醛酸通常具有较强的亲水性。

这些官能团能够与水分子形成氢键,并与水相溶解或形成混合物。

这使得醇醛酸在许多生物体系中具有重要的功能,例如在细胞膜的组成和稳定中起着关键作用。

2. 疏水性:尽管醇醛酸具有一定的亲水性,但它们也可以表现出一定程度的疏水性。

羟基化多壁碳纳米管英文_概述说明以及解释

羟基化多壁碳纳米管英文_概述说明以及解释

羟基化多壁碳纳米管英文概述说明以及解释1. 引言1.1 概述羟基化多壁碳纳米管(OH-MWCNTs)是一种具有广泛应用和研究价值的纳米材料。

它们是一种碳纳米管的衍生物,经过表面分子修饰后形成的新型材料。

通过在多壁碳纳米管表面引入羟基官能团,可以赋予其独特的化学特性和改变其原有性质,使得它们在各个领域中展现出了广泛应用的潜力。

1.2 文章结构本文将对羟基化多壁碳纳米管的定义、制备方法、物理和化学特性进行深入阐述。

同时,还将探讨其在环境污染治理、高性能电子器件以及医药领域中的应用研究进展。

此外,我们还将评估羟基化多壁碳纳米管对环境和健康的影响,并探讨其安全性与风险管理策略。

最后,我们将总结主要内容,并对羟基化多壁碳纳米管未来发展提出展望。

1.3 目的本文旨在详细介绍羟基化多壁碳纳米管的定义、制备方法、特性以及在不同领域中的应用研究进展,以增加人们对这一材料的认识和了解。

同时,通过评估其对环境和健康的影响,并提出相关安全性探讨和风险管理策略,旨在促进该材料的可持续发展和安全应用。

最后,本文希望能够为羟基化多壁碳纳米管未来的研究方向提供一定的指导和参考。

2. 羟基化多壁碳纳米管解释和特性:2.1 羟基化多壁碳纳米管的定义和历史背景:羟基化多壁碳纳米管(Hydroxylated Multi-Walled Carbon Nanotubes,简称HMWCNTs)是一种具有羟基官能团修饰的多壁碳纳米管。

碳纳米管是由碳原子以一定方式排列形成的细长管状结构,在直径尺寸级别上只有几十纳米,但长度可以达到数微米甚至更长。

HMWCNTs通过在纳米管表面引入羟基官能团,使其表面具有亲水性并扩展了其应用领域。

羟基化多壁碳纳米管的历史背景可以追溯到20世纪90年代中期,当时科学家们开始探索如何改变碳纳米管的表面性质以提高其可控制性和实际应用。

通过引入羟基官能团,科学家们成功地改变了碳纳米管的亲水性,并发现了其在环境、电子器件和医药领域等方面的广泛应用潜力。

羟基甲硅烷基酸

羟基甲硅烷基酸

羟基甲硅烷基酸
羟基甲硅烷基酸(HMSA)是一种有机化合物,其分子式为(CH2)m(Si(CH3)3)nOH,其中m和n均为整数。

这种化合物的结构特点是具有一个羟基(OH)官能团,以及一个或多个甲基(CH3)和硅(Si)原子组成的甲硅烷基团。

羟基甲硅烷基酸在某些领域有一定的应用价值。

例如,它可用于合成具有特殊性质的聚合物或高分子材料,也可用作耐高温涂层的组分或合成高级硅烷憎水剂等。

不过,请注意,羟基甲硅烷基酸并不属于食品添加剂或营养物质,因此不能用于食品或饮料中。

此外,这种化合物可能存在一定毒性,需要避免长期接触或误食。

3-羟基-2-羟甲基-2-甲基丙酸

3-羟基-2-羟甲基-2-甲基丙酸

3-羟基-2-羟甲基-2-甲基丙酸
3-羟基-2-羟甲基-2-甲基丙酸是一种有机化合物,化学式为
C5H10O5。

它是一种无色至白色结晶性粉末,可以在水中溶解。

这种化
合物在食品、药品、化妆品等领域中被广泛应用,具有保湿、抗氧化、消炎等作用。

3-羟基-2-羟甲基-2-甲基丙酸是一种α-羟基酸,它与其他α-羟
基酸(例如乳酸、甘氨酸等)一样,是由生物合成产生的代谢产物。

它可以通过酵母菌、细菌等微生物代谢产生,也可以通过植物进行生
物合成。

在食品中,3-羟基-2-羟甲基-2-甲基丙酸广泛用于调味品、果汁、乳制品等领域中,起到增加味道、延长保质期、防腐等作用。

在药品中,它具有保湿、抗氧化、增强皮肤屏障等多种作用,可以作为化妆
品和护肤品的添加剂。

此外,它还常用于制备树脂、涂料、纤维素等
化学产品中。

从健康角度来看,3-羟基-2-羟甲基-2-甲基丙酸是一种安全无害
的添加剂。

它广泛用于世界各地的食品和药品中,没有被证明对人体
健康产生不良影响。

对于过敏体质的人群,可能会引起过敏反应,但发生概率极低。

总之,3-羟基-2-羟甲基-2-甲基丙酸是一种重要的有机化合物,在食品、药品、化妆品等领域中被广泛应用,具有多种作用。

它的安全性得到了广泛认可,对人体健康没有不良影响。

羟基乙酸冷却结晶过程研究

羟基乙酸冷却结晶过程研究
羟基乙酸冷却结晶过程研究
羟基乙酸属于α -羟基羧酸酸性家族中的最简单和最小的有机分 子,是一种重要的化工中间体。目前广泛应用于有机合成、化学 清洗、高分子聚合材料、医学工程等多个领域,特别是在高分子 聚合材料和医学工程领域。
随着以羟基乙酸为原料聚合而成的生物降解材料聚乙醇酸的发 展和应用,原料产品的纯度、粒度形态及含水量对后续聚合过程 都会产生一定的影响。而目前对羟基乙酸粗品提纯方法的研究 主要为溶剂萃取法,并不适用于新工艺乙醇酸甲酯水解法得到的 羟基乙酸粗品。
另外还对溶质在纯溶剂中混合过程的热力学性质进行了估算。 另外,利用晶体成核的随机性对羟基乙酸的成核诱导期数据进行 了测定,引入成核概率方程对数据进行拟合,计算得到了的羟基 乙酸在乙醇、丙酮、乙酸乙酯和乙腈中的成核参数,并确定了羟 基乙酸在这四种溶剂中的成核难易程度。
Hale Waihona Puke 最后,在上述研究的基础上,通过对羟基乙酸冷却结晶工艺中多 个参数的系统研究,着重考虑对羟基乙酸溶液的成核控制,最终 得到了工艺的最优操作参数表。新工艺得到的产品纯度高,晶体 形态规则,平均粒径大,含水量低,容易干燥,且工艺的单程收率 可到72.9%,较大程度地解决了国内产品存在的问题。
此外,我国羟基乙酸产品普遍存在含水量高、稳定性差、晶习不 规则、粒度小、容易聚结、难以干燥和保存等问题,限制了羟基 乙酸产品的后续应用。因此,本文对羟基乙酸的纯化方法冷却结 晶法进行了系统的研究,旨在为生产性能优异的羟基乙酸晶体产 品提供相关依据。
首先,本文通过单晶培养获得了羟基乙酸的单晶并对其结构进行 解析,利用BFDH和AE模型对羟基乙酸的晶习进行了预测,为产品 晶体形态的调控提供了一定的指导。其次,采用动态法分别测定 了羟基乙酸在六种常用有机溶剂和两组混合溶剂中的溶解度,运 用相关的经验和理论模型对数据进行拟合关联。

关于羟基环己酮制备的一篇外文文献的中文翻译

关于羟基环己酮制备的一篇外文文献的中文翻译

在NaBrO3/NaHSO3 试剂作用下邻二醇选择性氧化制备α-羟基酮的研究:PH值依赖性,化学计量,基质及选择性的由来马提亚保罗马歇尔加拿大圭尔夫,圭尔夫大学化学系2004年12月收到,2005年3月14日校正,2005年3月15日收录,2005年4月8号可在网络得到。

摘要:NaBrO3/NaHSO3试剂是使邻二醇选择性氧化制备α-羟基酮的少数氧化剂中的一种,该反应浅度氧化的产物为等量的二酮,深度氧化的产物为双羧酸。

这种试剂参与下的氧化反应具有很强的ph值依赖性。

并且顺式邻二醇反应生成产物α-羟基酮的速度比反式邻二醇要快。

在轴向位置的羟基官能团比在赤道位置的更容易氧化。

NaBrO3/NaHSO3试剂应用于邻二醇选择性氧化仅限于简单的系统,并且不能够使更复杂的单糖类化合物氧化,这有可能是由于在酸的催化下发生了脱氢反应。

尽管生成α-羟基酮产物的反应简单,选择性也很好,但是实际的氧化反应的机理是相当复杂的,伴随着过量的溴发生的反应种类,涉及到至少六个不同的反应平衡.这篇论文对一种可能的氧化反应机理进行了讨论。

爱思唯尔股份有限公司版权所有。

1.简介α-羟基酮是一种天然产物的官能团个体,它在化学中被广泛的研究(1-3)。

通过烯烃氧化(4,5),酮醇缩合(双酯类6,烯醇醚类7,硅烯醇醚类8,9和环氧化合物10)和α-酮类的氧化11,12及α-二酮的还原13(图1)都可以合成α-羟基酮。

然而,这种通过邻二醇选择性氧化的合成路线在文献中出现的很少。

(14-17)次级的邻二醇的官能度在糖类中是一个关键结构特性。

二级羟基选择性氧化生成羰基官能团打开了呋喃也被称为含氧糖类的合成途径。

就我们所知,这种氧化的方法只有两个已被文献报道:一个是酶催化过程,这个过程涉及到一种罕见的真菌酶(18,19)和烷基锡糖派生物。

(20,21)另一个是邻二醇选择性氧化生成等量的α-羟基酮,这个方法的难点在于防止其过度氧化生成邻二酮和防止其在C-C键断裂后生成二羧酸(示意图1)。

甲氧基三聚乙二醇-羟基-丙烯酸酯

甲氧基三聚乙二醇-羟基-丙烯酸酯

甲氧基三聚乙二醇-羟基-丙烯酸酯
甲氧基三聚乙二醇-羟基-丙烯酸酯是一种具有高水溶性和生物相容性的聚合物。

它是
由具有羟基的甲氧基的三聚乙二醇与丙烯酸酯聚合而成的。

这种聚合物具有一些独特的物
理和化学特性,使其在化学、生物医药和其他领域具有广泛的应用。

甲氧基三聚乙二醇-羟基-丙烯酸酯具有优异的可溶性,即使在高浓度下也可以很好地
溶解于水中。

这种高度水溶性使其在制备奈米颗粒、控制药物释放的载体和细胞培养的基
质中具有很高的适用性。

此外,它的高溶解度还使其在生物医药领域中,如制备高效的药
物输送系统、细胞培养和治疗疾病中也具有广泛的应用。

除了水溶性之外,它还具有独特的生物相容性和生物降解性。

它不会危害生命体内的
组织和器官,这使其成为一种理想的材料用于制备人造器官、修复软组织和骨组织。

此外,它还可作为药物载体,将药物通过化学方法或物理方法与其结合,并且可以控制药物的释
放速率。

这使其在制备高效、低毒的药物输送系统方面具有很大的潜力。

甲氧基三聚乙二醇-羟基-丙烯酸酯还可以用于细胞培养和组织工程。

由于它的高水溶
性和生物相容性,可以将其作为生物材料将细胞培养在其表面。

此外,它还可以用作细胞
培养的基质,可以促进细胞的增殖和扩张。

这使其在生物工程中使细胞的生长和分化具有
良好的效果。

水溶性荧光探针磺酸基季铵盐羧基聚乙二醇修饰BODIPY化合物

水溶性荧光探针磺酸基季铵盐羧基聚乙二醇修饰BODIPY化合物

水溶性荧光探针磺酸基季铵盐羧基聚乙二醇修饰BODIPY化合物水溶性荧光探针磺酸基/季铵盐/羧基/聚乙二醇修饰BODIPY化合物BODIPY类染料作为一种常见的近红外荧光染料,具有摩尔消光系数高、荧光量子产率高、光稳定性好、结构易于修饰、不易受环境溶液pH影响等优点,已逐渐成为近几年研究的热点。

目前,氟化硼二吡咯(BODIPY)染料作为探针应用广泛,但是由于其水溶性差,限制了在生物体内的应用。

改善荧光探针的水溶性主要有两种方式,一是把亲水基团引入荧光团的母核中,二是把疏水荧光团连到亲水聚合物上。

这两种策略应用于改善BODIPY的水溶性,促进了新型水溶性荧光探针的发展。

在BODIPY骨架结构中引入磺酸基、季铵盐、羧基,可形成离子型水溶性探针。

通过卤化反应把氯磺酸连到BODIPY,再碱性水解,得到具有良好水溶性的BODIPY化合物。

将季铵正离子引入BODIPY母核的meso位,制备出水溶性“开-关”探针化合物。

将羧基阴离子引入BODIPY 的meso位,合成水溶性较高的近红外检测Ca2探针化合物。

把BODIPY接枝到亲水性聚合物上,得到中性水溶性探针。

通过Cli ck反应,把BODIPY与聚乙二醇亲水链相连,可用于检测谷胱甘肽的水溶性探针化合物。

BODIPY染料与两亲性物质自组装形成纳米粒子。

使用带有靶向基团的真菌疏水蛋白HFBI包载具有大T共辄芳香体系的近红外BODIPY染料,得到水溶性探针化合物。

修饰BO DIPY水溶性的方法层出不穷,使其在生物检测、医学成像等领域得到长远发展。

相关bodipy资料:双边苯乙烯修饰BODIPY荧光染料亲水性多甘醇单甲醚修饰BODIPY探针纳米级近红外BODIPY-Mn(III/IV)聚合物探针检测SNAP标记混合蛋白局部微粘度敏感型探针BG(鸟嘌呤)-BDPHg2+探针BDP-丙二硫醇生物荧光探针HFBI(疏水蛋白)修饰BDPSiO2负载BODIPY/E SCP-Fe-NMOF纳米颗粒纳米颗粒聚乳酸-聚乙二醇-叶酸(PLA-PEG-FA聚合物包裹BODIPY水溶性荧光纳米微胶囊探针聚乙二醇-聚乳酸(mPEG-PDLLA)包裹近红外BODIPY荧光染料近红外pH敏感型纳米颗粒探针氧化石墨烯(GO)修饰BODIPY 二氧化硅纳米颗粒负载萘酰亚胺(NP)-BODIPY探针半乳糖修饰氮杂BDP荧光探针水溶性K+荧光探针BDP-TAC(三氮杂环配体) -NHS-DextranpH敏感型两性离子探针离子型磺基三甲铵乙内酯(PDMA)修饰BDPDSPE-PEG2000-MAL-RGD偶联BDP近红外三聚茚基共轭双BODIPY类荧光染料小分子探针BDP-4Br(溴)两亲性的聚多肽P(OEGMA)21-P(Asp)16包裹疏水性BDP-4Br探针胶束瑞禧小编cb2022.4.13。

羟自由基清除率检测试剂盒(Fenton微板法)

羟自由基清除率检测试剂盒(Fenton微板法)

羟自由基清除率检测试剂盒(Fenton 微板法)简介:在生命活动的代谢过程中不断产生各种自由基,其中羟自由基·OH 是体内最活跃的活性氧,可介导许多生理变化。

羟自由基作用于体内蛋白质、核酸、脂类等生物分子,造成细胞结构和功能受损,进而导致体内代谢紊乱引起疾病,如引发不饱和脂肪酸发生脂质过氧化反应,并损伤膜结构和功能。

羟自由基清除能力是样品抗氧化能力的重要指标之一,在抗氧化类保健品和药品研究中得到广泛应用。

Leagene 羟自由基清除率检测试剂盒(Fenton 微板法)又称羟自由基清除能力检测试剂盒或羟自由基检测试剂盒,其检测原理H 2O 2/Fe 2+ 通过Fenton 反应产生羟自由基,将Fe 2+氧化为Fe 3+,产生的亚磺酸与偶氮染料反应生成偶氮岚,以酶标仪测定吸光度,在一定范围内颜色深浅与产生的羟自由基成正比,求得标准曲线,通过分析捕获产生的羟自由基可计算出自由基清除率或清除能力。

该试剂盒主要用于测定植物组织、血清、血浆等样本中的羟自由基清除率或羟自由基清除能力。

该试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。

组成:自备材料:1、 蒸馏水2、 实验材料:植物组织(芹菜、绿豆、玉米等叶片)、血液、组织样本等3、 研钵或匀浆器4、 离心管或试管5、 离心机6、 96孔板7、 酶标仪编号 名称TO1131 100T Storage试剂(A): OH Lysis buffer 500ml RT 试剂(B): OH Assay buffer 50ml RT 避光 试剂(C): H 2O 2基液 1ml RT 试剂(D): OH 显色液 100ml4℃ 避光 使用说明书1份操作步骤(仅供参考):1、准备样品:①植物样品:取正常或逆境下的新鲜植物组织,清洗干净,擦干,切碎,迅速称取,样品:OH Lysis buffer的比例,加入OH Lysis buffer后匀浆或研磨,室温静置,离心,上清液即为羟自由基粗提液,4℃保存备用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

International Journal of Biological Macromolecules25(1999)129–134Hydrolysis of native poly(hydroxybutyrate)granules(PHB),crystalline PHB,and artificial amorphous PHB granules by intracellular andextracellular depolymerasesJoseph M.Merrick*,Robert Steger,Darlene DombroskiDepartment of Microbiology,School of Medicine and Biomedical Sciences,State Uni6ersity of New York at Buffalo,Buffalo,NY14214,USAReceived9September1998;accepted2October1998AbstractNative poly(hydroxybutyrate)(PHB)granules,purified PHB and artificial amorphous PHB granules were examined as putative substrates for hydrolysis by the intracellular depolymerase system of Rhodospirillum rubrum and the extracellular depolymerase of Pseudomonas lemoignei.The R.rubrum depolymerizing system requires pretreatment of granules with a heat stable‘activator’fraction;the activator can be replaced by mild trypsin treatment.Artificial granules were prepared with a cationic detergent, cetyltrimethylammonium bromide(CTAB)and an anionic detergent,(sodium cholate).Cholate and CTAB PHB granules were hydrolyzed by both enzyme systems;however,some differences were noted.Cholate granules were hydrolyzed in the absence of the R.rubrum activator fraction.Activator was required for the hydrolysis of CTAB granules but could be replaced by heparin in the extracellular depolymerase system but not in the intracellular depolymerase system.A Triton X-114extract of native PHB granules inhibited the hydrolysis of trypsin-activated granules by the intracellular depolymerase.The inhibition was reversed by the activator fraction.Detergent extracts of granules activated with the R.rubrum activator were unable to inhibit the hydrolysis of trypsin-activated granules.These data suggest that the activator acts to modify an inhibitor present on native granules.©1999 Elsevier Science B.V.All rights reserved.Keywords:Depolymerase;Granules;Poly(hydroxybutyrate)1.IntroductionThe overall mechanism of the enzymatic depolymer-ization of endogenous PHB has not as yet been defined. The only system examined in some detail is an artificial one in which soluble enzymes from Rhodospirillum ru-brum have been used to degrade native PHB granules isolated from Bacillus megaterium KM[1].R.rubrum extracts prepared from cells that had depleted their own polymer stores readily attacked B.megaterium KM native PHB granules but not purified polymer.Native PHB granules were extremely labile and lost their ca-pacity to be depolymerized by the degradative system unless suitable precautions were taken.For example,they were rendered unsuitable as a substrate by a variety of chemical and physical treatments such as their close packing by centrifugation,freezing and thawing,exposure to heat,weak acids,certain deter-gents and extensive digestion by trypsin[1].All at-tempts to reactivate denatured granules were unsuccessful.Recently,new insights into this perplexing phenomenon have been provided[2].High resolution 13C NMR spectroscopy has demonstrated that PHB in native granules is in a mobile amorphous state and not in a crystalline state,as had been suggested by earlier studies[3].It was proposed that‘inactivation’of native granules was associated with crystallization of the poly-mer[2],a state in which the polymer was not suscepti-ble to degradation by the intracellular PHB depolymerizing system.Horowitz and Sanders[4]have*Corresponding author.0141-8130/99/$-see front matter©1999Elsevier Science B.V.All rights reserved. PII:S0141-8130(99)00026-4J.M.Merrick et al./International Journal of Biological Macromolecules25(1999)129–134 130developed procedures by which pure crystalline PHB can be reconstituted into artificial amorphous granules that are in many ways indistinguishable from native PHB granules.In the present study we examined the ability of these artificial granules to serve as a substrate for the R.rubrum depolymerizing system.The R.rubrum PHB depolymerizing system consisted of a heat-stable protein activator fraction and a heat-labile depolymerase fraction[1].Since the activator could be replaced by mild tryptic treatment of native PHB granules,it might be anticipated that the acti-vator fraction acted as a protease;however,proteolytic activity has so far not been detected.To reconcile the differences in activation between trypsin and activator,we postulated that there was an inhibitor protein on the surface of the granule that prevented the depolymerase from accessing its substrate[5].The inhibitor was presumably destroyed by trypsin proteol-ysis or modified by the activator in some as yet un-defined manner.Further studies on the role of the activator and the putative inhibitor are presented in this study.2.Experimental2.1.Bacterial strains and culture conditionsB.megaterium KM was grown as described by Mer-rick and Doudoroff[1].R.rubrum was grown in Difco Trypticase Soy Broth containing sodium acetate(10 mM).The cultures(1000ml of medium in Fernbach cultureflasks)were incubated on a New Brunswick gyrotary shaker at30°C for48h.Escherichia coli DH5a/pAeT41obtained from JoAnne Stubbe(Massa-chusetts Institute of Technology)was grown as described by Sim et al.[6]in LB medium supple-mented with glucose(20g/l)and ampicillin(50mg/l). Plasmid pAeT412contains the PHB biosynthetic operon from Alcaligenes eutrophus.Pseudomonas lemoignei was grown as described by Stinson and Mer-rick[7].2.2.Isolation of PHBNative PHB granules from B.megaterium or from E. coli were isolated as described by Merrick and Doudo-roff[1].Purified PHB was either prepared from B. megaterium PHB granules as described by Delafield et al.[8]or by repeated extraction of B.megaterium granules with1%sodium dodecyl sulfate and removal of the detergent by washing the polymer repeatedly with acetone.Artificial amorphous granules were pre-pared from B.megaterium purified polymer as de-scribed by Horowitz and Sanders[4].2.3.Preparation of intracellular and extracellular depolymerase systemsThe preparation of activator and depolymerase frac-tions from R.rubrum extracts was carried out as de-scribed[1].The ammonium sulfate-precipitated depolymerase was purified by passage through a Phar-macia HiTrap Q column and concentrated with an Amicon Centriprep-10concentrator.The extracellular depolymerase was isolated from the culture medium of Pseudomonas lemoignei essentially as described by Sim et al.[6]with minor modifications.The proteins in the culture medium were precipitated with ammonium sul-fate(75%saturation),centrifuged at25000×g for20 min,resuspended in10mM Tris–HCl,pH7.0,contain-ing1mM CaCl2and5%(v/v)glycerol and dialyzed against the same buffer.Partial purification was achieved by passage through a Hitrap Q column.2.4.Isolation of an inhibitor fraction from PHB granulesThe solubilization of the inhibitor fraction from PHB granules was performed by the detergent extraction procedure described by Wieczorek et al.[9]with minor modifications.PHB granules were suspended in20mM Tris–HCl buffer,pH8.0,containing phenylmethylsul-fonylfluoride(l.0mM),and an equal volume of Triton X-114(3.0%,w/v)was added.The suspension was shaken for60min at4°C and the extracted components were separated from the granules by centrifugation 9000×g for20min on a cushion of glycerol.The supernatantfluid was removed and centrifuged at 33000×g for10min.The clear supernatantfluid was incubated at37°C for5min and the Triton X-114 micelles collected by centrifugation(3000×g,10min). The upper phase was further treated with Bio-Rad SM-2beads to remove traces of the detergent and finally passed through a heparin–agarose column to remove any contaminating lysozyme that may still be present.The unbound fraction which contained the inhibitor was concentrated with an Amicon Centriprep-10concentrator.2.5.Extraction of acti6ator-treated PHB granules with Triton X-114Native PHB granules(20mg)were incubated with or without R.rubrum activator(200m g)for30min at 30°C in afinal volume of3.0ml of20mM Tris–HCl buffer,pH8.0.Following incubation,the granules were centrifuged on a layer of glycerol at9000×g for20 min.The supernatantfluids from activated and non activated granules were removed and the granules were resuspended in20.0ml of the same buffer and recen-trifuged.The washing of the granules was repeated oneJ.M.Merrick et al./International Journal of Biological Macromolecules25(1999)129–134131 Table1Hydrolysis of native PHB granules and purified PHB aNative PHB granules(%hydrolysis after30min)Purified PHB(%hydrolysis after30min) Additions during preincubationDepolymerase I Depolymerase I Depolymerase EDepolymerase E56.8 4.9None 6.051.89.96.334.125.6Activator6.954.5Trypsin43.991.2––Heparin 5.7–a The conditions of incubation and assay were described in Section2.Activator,depolymeraseI,depolymerase E and trypsin were added at22.5, 6.4,0.4and15m g of protein per5ml,respectively;heparin was added at0.8mg per5ml.more time.Finally,activated and native granules were extracted with Triton-X-114as described above,and the extracts were examined for their ability to inhibit hydrolysis(Expt3in Table3).Activated and non-acti-vated granules were also tested as substrates for the intracellular depolymerase.Activator activated granules were hydrolyzed without further addition of activator while the non-activated granules required pretreatment with activator(data not shown).2.6.Assay proceduresReaction mixtures for the depolymerization of native PHB granules or purified PHB contained1.0mg of native PHB granules or purified polymer,125m mol of Tris–HCl,pH8.0,and5m mol of MgCl2in a total volume of 5.0ml.The degree of hydrolysis of the polymer at30°C was determined by the percent de-crease in absorbance of the PHB suspension in a Klett colorimeter(redfilter,no.66).The granules were prein-cubated with activator or with trypsin for15min, followed by the addition of the intracellular depoly-merase(depolymerase I)or the extracellular depoly-merase(depolymerase E).The assay for hydrolysis of the artificial granules was similar except that MgCl2was omitted unless indicated otherwise.Inhibition of PHB hydrolysis by the granule extract containing the inhibitor fraction was performed by preincubation of native PHB granules(1.0mg)with trypsin(15m g)for15min.The assay mixture contained 125m mol of Tris–HCl,pH8.0,and5m mol of MgCl2in a total volume of 1.0ml.At the end of15min, ovomucoid(25m g)was added,followed by the in-hibitor fraction and the incubation continued for an additional10min.In experiments with activator,the inhibitor was incubated for10min with the PHB suspension followed by the addition of activator for an additional5min.The mixture was then diluted to5.0 ml and depolymerase added.3.Results3.1.Hydrolysis of nati6e PHB granules and purified PHBThe hydrolysis of native PHB granules and purified PHB by the intracellular depolymerase of R.rubrum and the extracellular depolymerase of P.lemoignei (depolymerase I and depolymerase E,respectively)is shown in Table 1.Depolymerase E hydrolyzed both native granules and purified PHB in the absence of trypsin or activator pretreatment.In fact,activator-in-hibited hydrolysis of either native or purified PHB, while trypsin pretreatment increased the rate of hydrol-ysis of native PHB granules suggesting that bound protein components interfere with PHB hydrolysis by depolymerase E.As previously reported[1],hydrolysis of native PHB granules by depolymerase I required pre-treatment with activator or trypsin.We also prepared native PHB granules from recombinant E.coli and found that these granules as well,required pretreatment with either activator or trypsin prior to hydrolysis by the R.rubrum depolymerase(data not shown).3.2.Hydrolysis of artificial PHB granulesArtificial amorphous granules,prepared with either cetyltrimethylammonium bromide(CTAB)or sodium cholate,were examined as putative substrates for the intracellular and extracellular depolymerases.The re-sults are shown in Table2.The hydrolysis of cholate PHB granules did not require activator pretreatment with either the depolymerase I or depolymerase E system. In fact,some inhibition was noted in the presence of activator and may be due to nonspecific binding of protein components which mask the substrate sites for the depolymerase.These data suggest that PHB in an appropriate environment(e.g.as negatively charged granules)can interact directly with either of the posi-J.M.Merrick et al./International Journal of Biological Macromolecules25(1999)129–134132Table2Hydrolysis of CTAB and cholate PHB granules aCTAB PHB granules(%hydrolysis after20min)Cholate PHB granules(%hydrolysis after20min) AdditionsDepolymerase I Depolymerase E Depolymerase I Depolymerase E39.08.96.151.1None29.648.429.345.9Activator27.59.9Activator+MgCl2Heparin 4.671.1Heparin+MgCl2 4.458.0a The conditions of incubation and assay were the same as those described in Table1except that MgCl2was added at5m mol as indicated.tively charged depolymerases.It was somewhat surpris-ing tofind that the positively charged CTAB granules required pretreatment with the activator fraction since we had assumed that the activator was interacting with a protein inhibitor present on native granules but absent from the artificial granules.Based on our study with cholate granules we examined whether activator may be acting to depress or neutralize the positive charge on CTAB granules.We found that the addition of heparin, a highly negatively charged molecule,could,in fact, replace the activator fraction in the case of the depolymerase E system but not in the depolymerase I system.Similarly,heparin could not replace the activator in the depolymerization of native granules by depolymerase I(Table1).Thus,in the depolymerase E system,activator likely neutralizes the positive charge on the granules and permits attack by depolymerase E.The explanation,however,for the depolymerase I system appears to be more complex and will require further study.3.3.Inhibition of hydrolysis by granule extract andre6ersal of inhibition by acti6atorIn an earlier study[5],we had demonstrated that mild alkaline-extracted,native PHB granules were directly susceptible to hydrolysis by depolymerase I without pre-treatment by activator or trypsin.In addition,the alkaline extract contained a component that prevented direct hydrolysis and that the addition of activator or trypsin reversed the inhibition.The extracted granules were highly unstable,usually losing their capacity to act as a substrate within24–48h,and no further studies on this system were carried out.We recently decided to reinvestigate the role of the activator and the putative inhibitor.For this purpose we adapted the procedure described by Wieczorek et al.[9]for the extraction of proteins from PHB granules of Alcaligenes eutrophus.To assay for the putative inhibitor,we utilized trypsin-acti-vated granules.After activation,further trypsin action was prevented by the addition of ovomucoid.As seen in Table3,Expt1,Triton X-114extraction solubilized a component(presumably a protein)that was capable of inhibiting hydrolysis and the inhibition could be reversed by the addition of the activator.To determine if the inhibition was specific for the solubilized granule protein extract,we added various other proteins to the hydroly-sis system.Table3,Expt2,demonstrates that of the proteins tested none were able to inhibit the hydrolysis of PHB,suggesting that the inhibition was specific. 3.4.Does acti6ator treatment of nati6e PHB granules modify the inhibitor?The activation of native granules by activator has been poorly understood since it had not been possible to demonstrate any proteolytic activity with this fraction. Presumably it modifies the putative inhibitor,but no information concerning its mechanism is available.To determine if the inhibitor on the granules is modified by activator treatment,we pretreated granules with the activator fraction and then extracted the activated gran-ules with Triton X-114.Native granules that were treated in a similar way but without the activator were also extracted.The results are shown in Expt3in Table 3.Extracts prepared from native granules but not from granules pretreated with activator were able to inhibit hydrolysis,suggesting that the inhibitor component had indeed been altered by pretreatment of the granules with the activator.However,on examination of the solubi-lized protein components by SDS–PAGE,no differ-ences were observed in the protein components from either the activated or non-activated granules.Perhaps the inhibitor(presumably a protein)was at concentra-tions below the detection sensitivity of our elec-trophoretic system.Furthermore,there was no evidence that a protein component from the activator fraction had been absorbed on granules.We also could not detect any loss in activity of the activator fraction following its incubation with the granules and subsequent recovery.4.DiscussionA comparative study of the hydrolysis of native PHB granules and purified polymer by the intracellular andJ.M.Merrick et al./International Journal of Biological Macromolecules25(1999)129–134133 Table3Inhibition of PHB hydrolysis by granule extract a%Inhibition after20 Additions after trypsin activationExptmin b140.7 Granule extract(0.85m g)71.6Granule extract(1.7m g)Granule extract(3.4m g)81.40.0Granule extract(1.7m g)+activator(10.0m g)Granule extract(2.2m g)64.72Tropomyosin(57m g),bovine IgG(40m g),protein A(40m g),fetuin(40m g)and albumin(40m g)0.075.6Granule extract from native granules(4m g)c30.0Granule extract from activated granules(4m g)ca The conditions of incubation and assay are described in Section2.Intracellular depolymerase was added at6.4m g in Expt1,at4.0m g in Expt 2and at3.2m g in Expt3.b The percent hydrolysis of PHB after20min in the presence of ovomucoid alone was38.1in Expt1,34.4in Expt2and29.3in Expt3.c The preparation of activated granules and native granules used in this experiment is described in Section2.extracellular depolymerases showed some interesting differences between the two enzyme systems.The intra-cellular depolymerase cannot hydrolyze purified PHB, while the extracellular depolymerase hydrolyzes either PHB granules or purified polymer.The activator which activates native granules as a substrate for the intracel-lular depolymerase inhibits the hydrolysis of either PHB granules or purified polymer by the extracellular enzyme system.These results strongly suggest that bound protein components may inhibit hydrolysis of purified PHB.This conclusion is also supported by the observation that hydrolysis of native granules by the extracellular depolymerase is markedly enhanced by prior tryptic treatment.The role of the activator in the activation of native granules remains elusive.We had proposed earlier that activator may modify an inhibitor (which is destroyed by trypsin)on native granules. Evidence for this proposed model was obtained by the solubilization of an inhibitor from native granules by detergent extraction.The inhibitor effectively blocked hydrolysis of trypsin-activated granules and the inhibi-tion could be reversed by the addition of the activator. Furthermore,Triton X-114extracts prepared from acti-vated granules were unable to inhibit hydrolysis,sug-gesting that some type of modification of the inhibitor component on native granules had occurred.In our earlier studies on the biochemistry of PHB,we were perplexed by the lability of native granules to act as a substrate for the intracellular depolymerase system. Native granules were irreversibly inactivated by a vari-ety of treatments and required special techniques to isolate granules that were suitable as a substrate for the intracellular depolymerase system.Active substrate preparations were achieved by centrifugation on a cush-ion of glycerol.Although several hypotheses were pro-posed to explain this intriguing but experimentally troubling phenomenon,it was not until1989[2],34 years after we initially published these observations that it was shown that native PHB granules are amorphous, and that inactivation resulted in crystallization of the polymer.Further,the important paper by Horowitz and Sanders[4]demonstrated that it was possible to produce artificial amorphous granules from the crys-talline polymer in which a surfactant has been substi-tuted for the in vivo membrane coating.In this communication we examined whether artificially pre-pared amorphous PHB could serve as a substrate for the intracellular and extracellular depolymerizing sys-tems.Cholate granules were hydrolyzed by both the intracellular and extracellular depolymerases without the requirement of activator.These results were of considerable interest and supported our original hy-pothesis that activator modified an inhibitor associated with native granules,but which was presumably absent on artificial granules.However,similar studies with the CTAB granules did not lead to such an obvious conclu-sion.Both the intracellular and extracellular depoly-merases required activator pretreatment for hydrolysis. Since these granules were positively charged we added heparin,a negatively charged polymer,to determine if the role of the activator might simply be an electrostatic one,that is to neutralize the positive charge.This appeared to be the case with regard to hydrolysis by the extracellular depolymerase.However,in the case of the intracellular depolymerase,heparin cannot replace the activator either with artificial granules or native gran-ules as the substrate.If activator does plays a role in neutralizing a positive charge,it must do so in such a way that permits the intracellular depolymerase to ac-cess its substrate,a condition which presumably does not occur with heparin.Our work has left many questions unanswered.We presume the inhibitor on the granule is a protein be-cause activation of granules can be achieved by mild tryptic treatment.The solubilization of the inhibitor will now permit its purification and identification,aJ.M.Merrick et al./International Journal of Biological Macromolecules25(1999)129–134 134necessary prerequisite to define the mechanism of acti-vation by the activator.The role of the activator re-mains one of the most intriguing aspects of the intracellular breakdown of PHB.How does it interact with the inhibitor so that the inhibitory function is lost? Does it play a role in the regulation of PHB break-down?Is its action enzymatic or is it a physical one such as was required in the CTAB artificial granule system?It is clear that an understanding of the mecha-nism of action of the activator will be essential for an understanding of endogenous PHB metabolism.We can look forward to answers to these questions in the very near future References[1]Merrick JM,Doudoroff M.J Bacteriol1964;88:60.[2]Barnard GN,Sanders JKM.J Biol Chem1989;264:3286.[3]Ellar D,Lundgren DG,Okamura K,Marchessault RH.J MolBiol1968;35:489.[4]Horowitz DM,Sanders JKM.J Am Chem Soc1994;116:2695.[5]Griebel RJ,Merrick JM.J Bacteriol1971;108:782.[6]Sim SJ,Snell KD,Hogan SA,Stubbe J,Rha C,Sinskey AJ.NatBiotechnol1997;15:63.[7]Stinson MW,Merrick JM.J Bacteriol1974;119:152.[8]Delafield FP,Doudoroff M,Palleroni NJ,Lusty CJ,ContopoulosR.J Bacteriol1965;90:1455.[9]Wieczorek R,Pries A,Steinbuchel A,Mayer F.J Bacteriol1995;177:2425..。

相关文档
最新文档