1、模块化多电平换流器中电压应用的建模、仿真与分析

合集下载

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型
随着电力系统的发展和电力需求的增加,高电压直流(HVDC)传输系统被广泛应用,以解决传统交流输电系统存在的一些问题。

在HVDC系统中,多电平电压源换流器(MMC)是一种非常有效的换流器拓扑结构,能够实现高效能量转换和电压调节。

为了实现对MMC的控制和优化,需要建立一个准确的数学模型来描述其动态特性。

MMC的数学模型通常基于电路等效原理和电压源等模型。

以下是一个简化的MMC数学模型。

首先,MMC的主要组成部分是直流电压源和一组电容和电感组成的分别与直流电压源并联和串联的二极管和开关单元。

根据电路等效原理,可以将MMC模型化简为一个等效的电路网络。

其次,MMC的数学模型需要考虑到其动态特性,包括电压和电流的响应速度、能量损耗和功率因素等。

这需要考虑到电容和电感元件的动态特性以及开关单元的工作方式。

通过适当的参数选择和数学建模,可以准确地描述MMC的动态响应。

最后,MMC的数学模型还需要考虑到控制策略和控制算法。

MMC的控制策略包括电压控制、电流控制和功率控制等,其中电压控制是MMC的关键功能之一。

通过设计合适的控制算法,可以实现MMC的
稳定工作和有效能量转换。

总之,模块化多电平电压源换流器的数学模型是描述其动态特性和控制策略的基础。

通过准确的数学模型,可以实现对MMC系统的控制和优化,提高电力系统的稳定性和效率。

MMC电磁仿真建模

MMC电磁仿真建模

基于MMC电磁仿真建模1.模块化多电平换流器建模研究模块化多电平换流器(modular multilevel converter, MMC)是一种新型电压源型换流器(voltage source converter ,VSC)拓扑结构。

基于子模块级联结构的MMC具有很多的优点,如保持较大桥臂等效开关频率的同时降低开关频率和开关损耗,不涉及直接串联开关元件动作一致性问题,输出的交流波形具有较高的质量。

因此,MMC在高电压大容量输送电能和电力驱动应用方面有很大的前景。

MMC详细模型只能通过小步长来捕捉高频开关的精确变化,且每有开关动作时须更新系统的导纳矩阵。

随着电力系统规模的不断扩大,MMC的大量应用及其子模块数目的增长,详细模型原有的仿真算法给电磁暂态仿真造成了极大的仿真负担。

下面将提出两种MMC建模方法。

2.一种基于多频段动态相量法的MMC换流器建模方法研究多频段动态相量法首先对信号进行频率分解,然后按频段重组,再针对重组的信号分频段移频,最后利用多核CPU进行大步长并行仿真。

2.1MMC拓扑结构MMC 主电路拓扑及其子模块结构如图1所示。

其主电路包括三个相单元,每相由上、下桥臂组成。

每个桥臂均由1个电抗器和N个子模块串联组成。

图1 MMC结构示意图:(a)MMC主电路图,(b)MMC子模块结构图2.2MMC开关模型子模块的开关函数:(1)其中,=1表示第K个子模块耦合到桥臂,参与桥臂运行;=0表示第K个子模块被旁路,不参与桥臂运行。

图2是MMC开关函数模型。

图2 MMC开关函数模型2.3 多频段动态相量耦合模型多频段动态向量模型:(2)2.4多频段动态相量解耦模型为了利用并行技术加快仿真,需对上式做简化处理,处理结果如下:(3)经过近似处理,各频段间解耦,各频段仿真可并行。

3.MMC换流器的戴维南等效模型MMC换流器的戴维南等效模型的目标是从图1所示的MMC出发,建立包含N个子模块的一个MMC桥臂的戴维南等效模型,如下图所示。

新型模块化多电平换流器的设计与应用

新型模块化多电平换流器的设计与应用

第50卷第1期电力系统保护与控制Vol.50 No.1 2022年1月1日Power System Protection and Control Jan. 1, 2022 DOI: 10.19783/ki.pspc.201639新型模块化多电平换流器的设计与应用于 飞,王子豪,刘喜梅(青岛科技大学自动化与电子工程学院,山东 青岛 266061)摘要:随着电力系统电压等级的不断升高,模块化多电平换流器(Modular Multilevel Converter, MMC)桥臂中串联的子模块数量增多,硬件成本升高,制约了其在直流输电系统中的发展。

针对这些问题,通过分析多电平换流器和现有的阶调式模块化多电平变换器(Gradationally Controlled Modular Multilevel Converter, GC-MMC)的工作原理,提出了一种新型的换流器。

为了解决新型逆变器的电容电压平衡问题,提出了一种适用于新型逆变器的新型稳压算法。

最后在Matlab/Simulink环境下搭建了双端标幺值控制的柔性直流输电系统,将新型逆变器应用于系统中进行了验证。

仿真结果表明,新型换流器输出电平数量比普通MMC多,输出交流侧和直流侧的波形质量达到直流输电要求。

通过对新型逆变器和普通MMC分别进行成本计算,结果表明新型逆变器的建设成本大大少于普通MMC。

关键词:模块化多电平换流器;阶调式多电平逆变器;阶调式模块化多电平变换器;电容电压平衡算法A gradationally controlled modular multilevel converter and its applicationYU Fei, W ANG Zihao, LIU Ximei(College of Automation & Electric Engineering, Qingdao University of Science & Technology, Qingdao 266061, China)Abstract: With the increasing voltage level of power systems, the number of serial sub-modules in the bridge arm of a modular multilevel converter (MMC) increases, and the hardware costs increase. This restricts its development in the direct current transmission system. In order to solve these problems, a new type of converter is proposed by analyzing the working principle of a multi-level converter and the existing gradationally controlled modular multilevel converter (GC-MMC). In order to solve the problem of capacitor voltage balance of the new inverter, a new voltage regulation algorithm suitable for the new inverter is proposed. Finally, in the Matlab/Simulink environment, a flexible HVDC transmission system based on the new inverter's double-terminal SCM unit value control is built and verified. The simulation results show that the output level of the new converter is more than that of the common MMC, and the quality of the waveform of the output AC and DC side can meet the requirements of DC transmission. Through the cost calculation of the new inverter and the common MMC respectively, the results show that the construction cost of the new inverter is much less than the common MMC.This work is supported by the National Natural Science Foundation of China (No. 61803219).Key words: MMC; gradationally controlled multi-level inverter; GC-MMC; capacitor voltage balancing controlled algorithm0 引言随着电力系统的不断发展,电力系统的规模也在不断扩大,直流输电[1-3]已经成为我国电力输电的重要组成部分。

模块化多电平换流器改进简化模型及分析

模块化多电平换流器改进简化模型及分析

文章编号:1004-289X(2020)06-0032-05模块化多电平换流器改进简化模型及分析张?一1,陈和洋2,罗赫平1(1.福州大学电气工程与自动化学院,福建 福州 350108;2 国网龙岩供电公司,福建 龙岩 364000)摘 要:模块化多电平换流器(MMC)在电平数较多情况下采用等效模型进行电磁暂态仿真对解决仿真效率低问题具重要意义。

实际子模块中存在均压电阻,现有建模方法往往对其进行忽略,本文对含均压电阻的受控源桥臂等效模型建模进行改进简化,进一步提高MMC受控源等效模型仿真的精度和效率。

方法通过对MMC子模块开关器件以开关状态形式进行简化,基于递推Dommel等值计算方法,降低子模块电容电压更新计算复杂度进而提高仿真效率。

并在PSCAD软件进行仿真分析两种常见详细等值模型,为MMC模型选取提供选择依据。

关键词:模块化多电平换流器;受控源等效模型;电磁暂态仿真中图分类号:TM72 文献标识码:BImprovedSimplifiedModelandAnalysisofModularMultilevelConverterZHANGXuan yi1,CHENHe yang2,LUOHe ping1(1.CollegeofElectricalEngineeringandAutomation,FuzhouUniversity,Fuzhou350108,China;2.StateGridLongyanPowerSupplyCompany,Longyan350007,China)Abstract:Modularmulti levelconverter(MMC)adoptaequivalentmodelforelectromagnetictransientsimulationwhentherearemanylevels,whichisofgreatsignificancetosolvetheproblemoflowsimulationefficiency.Thevolt age sharingresistanceexistsintheactualsubmodule,whichisoftenneglectedbytheexistingmodelingmethods.Thispaperimprovesandsimplifiesthemodelingoftheequivalentmodelofthecontrolledsourcebridgearmwithvoltage sharingresistor,andfurtherimprovestheMMCcontrolledsourceequivalentmodelSimulationaccuracyandefficiency.ThemethodsimplifiestheswitchingstateoftheMMCsub moduleswitchingdevice,basedontherecur siveDommelequivalentcalculationmethod,reducesthecalculationcomplexityofthesub modulecapacitorvoltageupdateandimprovesthesimulationefficiency.InPSCADsoftware,twocommondetailedequivalencemodelsaresimulatedandanalyzedtoprovideabasisforselectionofMMCmodels.Keywords:modularmultilevelconverter;controlledsourceequivalentmodel;electromagnetictransientsimulation1 引言直流输电技术凭借着其适合远距离大容量传输的特点得到了广泛的推广和发展,是解决能源资源优化配置的有效方法之一。

模块化多电平换流器的均压优化控制仿真研究

模块化多电平换流器的均压优化控制仿真研究

模块化多电平换流器的均压优化控制仿真研究摘要本文主要对模块化多电平换流器(modular multilevel converter, MMC) 中的均压优化控制进行的研究,整个模块化多电平换流器仿真需要将输入的三相交流电转化为直流电,并且各个子模块电压差值需要尽量的小,从而保证整个系统能够稳定运行,对载波移相脉宽调制策略进行推导与改进,使得模块化多电平换流器能够在更短的时间内稳定,且子模块电容电压在合理的控制中保持均衡。

仿真实验结果证明了所提方法的正确性和可行性。

关键词模块化多电平换流器;子模块均压;载波移相脉宽调制Simulation Study on Optimal Voltage Equalization Control ofModular Multi-level ConverterZ5号宋体oufucheng Daipanyang(Aba Teachers University,Si chuan Wenchuan,China )Abstract This paper mainly studies the voltage optimizationcontrol in Modular Multilevel Converter. The whole modular multi-level converter simulation needs to convert the input three-phase AC into DC, and the voltage difference between each sub-module needs to be assmall as possible. Thus, the whole system can run stably, and the strategy of carrier phase-shifted PWM is deduced and improved, so that the modular multi-level converter can be stable in a shorter time, andthe capacitance voltage of the sub-modules can be balanced in a reasonable control.The simulation experiment results prove the correctness and feasibility of the proposed method.keywords MMC; sub-module voltage equalizer; carrier phase shift PWM引言随着西电东送工程的实施,电能的损耗也随着高压长距离输电不断增大,从而使得直流输电在电力传输中脱颖而出。

模块化多电平换流器的建模与控制

模块化多电平换流器的建模与控制

c o mp o n e n t , DC c o mp o n e n t a n d t h e s e c o n d c o mp o n e n t o f a r n l c u r r e n t . T h e n e w c o n t r o l s t r a t e g y b a s e d o n MMC a r m c u r r e n t wa s p r e s e n t e d , r e li a z i n g e x t e r n a l p o we r c o n t r o l a n d i n t e na r l c i r c u l a t i o n c o n t r o l o f MMC. T h e s i mu l a t i o n r e s u l t s c o n f i r m t h e v li a d i t y a n d f e a s i b i l i t y o f t h e c o n t r o l s t r a t e y. g

2 3 0 0 0 9 ;
2 3 0 0 0 9 )
要: 分析 了模块化多 电平换流器 ( M MC) 的拓扑结构及 原理 。基 于 MMC的桥
臂 电流 , 建 立了新型的电磁暂态模型 , 其 中包 括桥臂 电流 中基 波分量 、 直流 分量和二 次 分量的线性化方程 。在此模型基 础上 , 针对 MMC桥臂 电流 中各分 量提 出相应 控制 策 王新 颖 ( 1 9 8 8 一) ,

分布式 电源 ・
低压 电器 ( 2 0 1 3 No . 7 )
Байду номын сангаас
模 块 化 多 电 平 换 流 器 的 建 模 与 控 制

模块化多电平换流器的拓扑机制与仿真实现

模块化多电平换流器的拓扑机制与仿真实现
可行 性和有 效性 。
关键 词: 模块化 多 电平 换流器;预充 电;平衡控制;功率解耦 中图分类号 :T 4 M6 文献标识码 :A 文章编号:1 0— 1 52 1) 10 2 — 4 0 7 3 7 (0 2O — 0 3 0
To l g e ha i m nd Si ul to a i a i n 0 po o y M c n s a m a i n Re lz to f M o l rM ulie l nv r e du a tl ve Co e t r
子 模块 平衡 控制 策略 。并对 其拓 扑 结构进 行 了数学 建模 ,根据 M C在 同步 旋转 幽 坐标 系 中 的电流控 M 制模 型 , 用 电流前 馈解耦控 制 , 决 了有功 电流和无 功 电流互 为耦合 问题 , 采 解 并完成 了其功率解 耦分析 , 设 计 出了相应 的功率解 耦控制器 与直 流 电压控 制器 。通过 P C D E T A软件仿 真验证 了该控制 方案 的 SA /MD
wa d o t u mo ul r p e ha ge ta e y a u mo ul r b l n e c n r ls r t g . s ma e t he s b- d a r c r sr t g nd s b— d a a a c o t o t a e y And m a h mod l s m a o t t e i wa de f r is ng t p o c lsr t r . c d n o t e c r n o t o o e f M M C i he s c o o s r t tng dq c or n t yse o ol gi a tuc u e Ac or i g t h ur e tc n r lm d lo n t yn hr n u o a i o di a e s t m,t s p p r hi a e a op e u r n e d f r a d d c u ln o r lt o v h t l c up i g p o e b t e c i e c r e ta d r a tv u r n , d t d c r e tf e o w r e o p i g c nto o s l e t e mu ua o ln r bl m e we n a tv u r n n e c i e c re t i i h ng ispo rde o pl fn s i t we c u i na y i nd d sg n h e e a tp ng a l s s a e i ni g t e r l v n owe e o p i g c n r l r a o t g o t o l r r d c u ln o tol nd DC v la e c n r le .PS e CAD/ EM TDA o t r i s f wa e s mul to e i e he f a i lt nd v ld t ft e c n r l n. a i n v r f st e sbii a a i iy o o tol a i y h p Ke r : o u a u tl ve o v re ; e h r e ba a e c n r l p we e o p i g y wo ds m d l rm lie l n e t r pr c a g ; l nc o t o ; o rd c u ln c

基于新型模块化多电平变换器的五电平PWM整流器

基于新型模块化多电平变换器的五电平PWM整流器

基于新型模块化多电平变换器的五电平PWM整流器一、本文概述随着电力电子技术的不断发展,多电平变换器已成为现代电力系统中重要的研究方向之一。

模块化多电平变换器(Modular Multilevel Converter, MMC)因其高电压、大容量的特性,在高压直流输电(HVDC)、风力发电和电机驱动等领域具有广泛的应用前景。

本文旨在研究一种基于新型模块化多电平变换器的五电平PWM(脉冲宽度调制)整流器,通过对其拓扑结构、工作原理和控制策略的分析,为现代电力电子系统的优化设计与稳定运行提供理论支持和技术指导。

本文首先介绍了模块化多电平变换器的基本原理和五电平PWM整流器的拓扑结构,阐述了其在现代电力电子系统中的重要性和优势。

接着,详细分析了五电平PWM整流器的工作原理,包括其调制策略、开关状态切换以及功率因数校正等方面。

在此基础上,本文提出了一种适用于五电平PWM整流器的控制策略,旨在实现高效、稳定的能量转换和电网接入。

本文还对五电平PWM整流器的性能进行了仿真和实验研究,验证了其在实际应用中的可行性和有效性。

通过对比传统整流器与五电平PWM整流器的性能,本文进一步证明了新型模块化多电平变换器在提升电力电子系统性能、降低谐波污染和提高能源利用效率等方面的优势。

本文的研究对于推动模块化多电平变换器和五电平PWM整流器在现代电力电子系统中的应用具有重要意义。

通过对其拓扑结构、工作原理和控制策略的研究,有望为电力电子技术的发展提供新的思路和方向,为现代电力系统的智能化、绿色化和高效化提供有力支持。

二、模块化多电平变换器原理及特性分析随着电力电子技术的不断发展,模块化多电平变换器(Modular Multilevel Converter, MMC)已成为高压大功率应用中的关键设备。

MMC以其独特的结构设计和灵活的扩展性,在电力系统中得到了广泛应用。

本文所研究的五电平PWM整流器,正是基于MMC的一种实现方式。

基于Rt-Lab的模块化多电平换流器实时仿真

基于Rt-Lab的模块化多电平换流器实时仿真

基于Rt-Lab的模块化多电平换流器实时仿真于飞;张群;刘喜梅【摘要】基于模块化多电平换流器(MMC)的柔性直流输电方式,由于其开关器件的数量是传统两电平或三电平换流器的几百倍,故传统的仿真软件需要花费更长的时间才能得到结果.系统仿真时间的显著增加使得系统仿真的时效性和实用性大大降低.为此引入实时仿真平台RT-Lab,减少系统仿真在柔性直流输电系统开发周期中所占比例.并通过同一种控制算法在RT-Lab和Matlab下的仿真进行了验证,结果表明RT-Lab能够显著地减少系统仿真时间,并保证运行结果的有效性和精确性.%Flexible DC transmission system based on modular multi-level convertor due to its inherent advantages reciving more and more attention . But the number of switching devices is hundreds of times of the traditional two-level or three-level convertor , so the tradional simulation software will take more time to get result. Because of the time of system simulation significantly increased, so the timeliness and practicality of system simulation is greatly reduced. Using the real-time simulation platform RT-LAB to reduce the proportion of system simulation in flexible DC transmission system development cycle. And verified through the same control algorithm simulation in RT-LAB and Matlab, the results show that RT-LAB can significantly reduce the simulation time, and ensure effectiveness and accuracy of the result.【期刊名称】《青岛科技大学学报(自然科学版)》【年(卷),期】2012(033)005【总页数】5页(P541-545)【关键词】MMC;RT-Lab;直接控制;实时【作者】于飞;张群;刘喜梅【作者单位】青岛科技大学自动化与电子工程学院,山东青岛266042;许继集团有限公司直流输电系统公司,河南许昌461000;青岛科技大学自动化与电子工程学院,山东青岛266042【正文语种】中文【中图分类】TP393;TP391.7与传统两三电平拓扑结构相比,多电平换流器技术能够有效的改善输出波形并能够降低开关损耗。

模块化多电平换流器的技术研究综述_刘恒门

模块化多电平换流器的技术研究综述_刘恒门

基 于分 层控 制 思 路 的子 模 块 电容均 压 策 略在 调 制信 号 的基 础 上 分 别 二 加相 间电压平 衡控 制信号 、 桥 臂电压 平衡 控制 信 号 以及 独 立 电 压平 衡 控 制信号 , 以保证各子 模块 电容 电压在 三相之间 , 各相 上 、 下桥臂 之间以及 各桥臂 内部子 模块 电容平 均分配 。
基本结构图
因此 , 与
' 等 电位 ,

`
2 013 年

三相 上 、 下桥臂的 电感
可 以当做并联处理 。并且由 、 式所示规律输 出 电压 , 。 和 。 可知 ,
电压的调 节依靠直 流总 线 电压或移相 角 , 动态 调节 困难 且 开关次数 的 多少受 电容 电压平衡控 制影响 , 损 耗 不一 定 明显减少 。
吕皿 甘
【 ` 朋
因此系统故障穿越能力得到提高 。 基于上述优点 , 有关 主 要 工作是 对 的研 究日渐增 多 , 本文的 的工作 机理 加 以分析 , 并对 目前 的
模块 化 多电平 主拓扑结 构如 图 个桥臂构成一个相单元 。
所 示 , 每 个桥臂
由 个 子模块 和一 个电抗 器串联 而成 , 每一 相 的上 下两 这种子模块级联拓扑的子模块有全桥和半桥两种结构
式可 知 ,
要 控制 则在 假设 容 电压 为 一
的直流侧和交流侧是可以独立控制的 , 只
分别按 照 每相 有 的输 出端可 以得 到期望的
个子模 块 , 则每 个子模 块 的 电
, 为保持 直流 电压稳 定 , 由式
同相上 、 下桥臂应该对称互补投入 , 因此各相上下 桥臂 在任 何时 刻投入 的子 模块总 数为 如果某 一 时刻 相 上桥 臂投 入子模 块为 子模块 为 。 , 则有 丐

模块化多电平变换器

模块化多电平变换器

模块化多电平变换器(MMC)的脉冲宽度调制的实验和控制摘要:模块化多电平变换器(MMC)是新一代不需要变压器而实现高、中压电力转换的多级转换器中的一种。

MMC的每相是基于多个双向斩波单元的串级连接。

因此需要对每个浮动的直流电容器进行电压平衡控制。

然而,目前还没有文章涉及到通过理论和实验验证来实现电压平衡控制的明确讨论。

本文涉及两种类型的脉冲宽度调制模块化多电平转换器(PWMMMCs)来解决他们的电路配置和电压平衡控制。

平均控制和平衡控制的结合使脉冲宽度调制模块化多电平转换器(PWMMMCs)在没有任何外部电路的情况下实现电压平衡。

脉冲宽度调制模块化多电平转换器(PWMMMCs)的可行性,以及电压平衡控制的有效性,通过仿真和实验已经被证实。

关键词:电压电力转换,多级转换器,电压平衡控制一、介绍:大功率的转换器的应用需要线性频率变压器来达到加强电压或电流的额定值的目的(见参考文献【1】——【4】)。

2004年投入使用的80MW的静态同步补偿器的转换侧由18个中点箝位(NPC)式转换器组成(文献【4】),每个系列的交流双方串联相应的变压器。

线性变压器的使用不仅使转换器笨重,而且也导致当单线接地故障发生时出现直流磁通偏差(文献【5】)。

最近,许多关于电力系统和电力电子的多级转换的科学家和工程师,参与到多电平变换器为了实现无需变压器而实现中压电力转】换(文献【6】-【8】)。

两种典型的方法有:(1)多级多电平转换(DCMC) (文献【6】, 【7】);(2)飞跨电容型多电平变换器(FCMC)(文献【8】)。

三电平多级多电平转换器(DCMC)或者NPC转换器已经被投入实际使用,如果在DCMC中电平的数量超过三个,容易导致串联的直流电容内在电压的不平衡,因此两个直流电容需要一个外部电路(例如buck—boost斩波电路)(文献【11】),此外,一个箝位二极管耐压值的增长是非常有意义的,而且这种增长需要每相串联多个模块,这就造成一些困难。

模块化多电平换流器直流输电稳态仿真分析

模块化多电平换流器直流输电稳态仿真分析

s h me wh c o l fe tv l ns r a h s d e a e s me c p ct n e i h wn c e i h c u d e f c i ey e u e e c ub mo ul tt a a a ia c s s o .A a re h c r ir
S e d t t a e o u a u t e e la eS u c n e t r t a y S a eb s d M d l rM l lv l i Vo t g o r eCo v r e
Ja gZ eg i L u n k i W n n y n Tn o g H uroe in h n xn i a g a a gHo g a egS n o afi G
p s s itn m od a i n sr t g i us d o t e s tm o M M C— ha e h fi g ulto tae y s e f r h yse f HV DC . Fi ly nal ba e o sd n PSCA D/ EM TD C, h ta e e b vea eve i e t e sr tgisa o r rf d. i K e wor : m o u a u tlve la s u c c n e e ; H VD C; c ri r ph s s fi g; y ds d l r m lie l vo tge o r e o v r r t a re a e hitn c p c t rvo tgeb lnc a a io la a a e
( yLa o ao yo o rS se P oe t na dDy a cS c r yM o i r ga dCo t l n e Ke b r tr f we y tm r tci n n mi e u i nt i n n r d r P o t on ou M iit f d c t n No t iaE e ti o rUnv ri , o ig He e 7 0 nsr o u ai , rhChn lcrcP we iest Ba dn , b i 3) y E o y 0 1 0

模块化多电平换流器原理及应用

模块化多电平换流器原理及应用

模块化多电平换流器原理及应用模块化多电平换流器是一种电力电子设备,用于实现多电平电压波形的转换和控制。

它由多个子模块构成,每个子模块负责产生一个电平的电压波形,通过合理的组合和控制,可以实现所需的多电平输出。

本文将介绍模块化多电平换流器的原理和应用。

1. 原理:模块化多电平换流器的原理基于电力电子技术和PWM调制技术。

它采用多个子模块,每个子模块包含一个逆变桥和一个滤波电路。

逆变桥将输入直流电压转换为交流电压,滤波电路对输出波形进行滤波,以得到所需的电平。

通过合理的控制和组合,可以实现多种电平的输出。

2. 应用:模块化多电平换流器在电力系统中有广泛的应用。

以下是一些常见的应用领域:(1)高压直流输电系统:在高压直流输电系统中,模块化多电平换流器可以实现高效的电压转换和控制,提高输电效率和稳定性。

(2)电动车充电桩:模块化多电平换流器可以用于电动车充电桩中,实现对电动车的快速充电和电压的精确控制。

(3)可再生能源发电系统:在可再生能源发电系统中,模块化多电平换流器可以将不同类型的可再生能源(如太阳能、风能等)转换为交流电并注入电网。

(4)工业电力系统:在工业电力系统中,模块化多电平换流器可以实现对电力负载的精确控制和优化,提高电力系统的稳定性和效率。

3. 优势:模块化多电平换流器相比传统的换流器具有以下优势:(1)高效性:模块化多电平换流器可以实现高效的电压转换和控制,减少能量损耗和系统热量。

(2)灵活性:模块化多电平换流器由多个子模块构成,可以根据实际需求灵活组合和控制,适应不同的电压和功率要求。

(3)可靠性:模块化多电平换流器由多个子模块组成,故障发生时只需替换故障模块,不会影响整个系统的运行。

(4)可扩展性:模块化多电平换流器可以根据需求进行扩展,增加或减少子模块,以适应不同的应用场景。

4. 发展趋势:随着电力电子技术和控制技术的不断发展,模块化多电平换流器在未来有着广阔的发展前景。

以下是一些发展趋势:(1)提高功率密度:随着半导体器件的不断进步,模块化多电平换流器的功率密度将会越来越高,实现更小体积和更高效率的换流器。

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器1柔直输电的基本原理柔性直流输电系统作为直流输电的一种新技术,也同样由换流站和直流输电线路构成。

柔性直流输电功率可双向流动,两个换流站中的任一个既可以作整流站也可以作逆变站运行,其中处在送电端的工作在整流方式,处在受电端的工作在逆变方式。

为简明起见,以典型的三相两电平六脉动型换流器的柔性直流输电换流站为例,介绍柔性直流输电的基本原理。

系统结构如图2-1所示。

由图虚线划分可知,两端柔性直流输电系统可以看作为两个独立的静止无功发生器(STATCOM)通过直流线路联结的合成系统;对于交流系统而言,交流系统向柔性直流换流站提供连接节点,即换流站与交流系统是并联的。

由以上柔性直流输电系统拓扑结构特点分析可知,柔性直流输电系统具有STATCOM进行动态无功功率交换的功能,除此之外,由于两个电压源换流器(VSC)的直流侧互联,它们之间又具备了有功功率交换的能力,可以在互联系统间进行有功潮流的传输。

图2-1两端VSC-HVDC结构示意图(1-两端交流系统;2-联结变;3-交流滤波器;4-相电抗/阀电抗器;5-换流阀;6-直流电容;7-直流电缆/架空线路。

背靠背式两端VSC-HVDC不包含7)柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器/阀电抗器、联结变压器、交流滤波器、控制保护以及辅助系统(水冷系统、站用电系统)等。

电压源型换流器包括换流电路和直流电容器,实现交流电和直流电转换的换流电路由一个或多个换流桥并联(或串联)组成,目前在柔性直流工程中还未出现多个换流桥组成的组合式换流器,但组合式换流器可以达到降低开关频率,减少损耗的目的,在某些情况下也可能被采用。

电压源型换流桥可以采用多种拓扑结构,工程中常用的有三相两电平桥式结构,二极管钳位式三电平桥式结构、模块化多电平结构,还有工程中未曾应用,但研究者比较关注的二极管钳位多电平结构和飞跨电容多电平结构。

换流器中的每个桥有三个相单元,一个相单元有上下两个桥臂,每个桥臂或由一重阀(两电平)构成,或由两重阀(三电平)构成,或由多重阀(多电平)构成。

模块化多电平换流器原理pdf -回复

模块化多电平换流器原理pdf -回复

模块化多电平换流器原理pdf -回复
模块化多电平换流器是一种电力电子装置,用于将直流电转换为交流电。

它由多个模块组成,每个模块都包含一个电容和一个开关器件。

这些模块可以按照需要组合在一起,以产生所需的输出电压和频率。

模块化多电平换流器的原理是利用多个电容和开关器件来产生多个电平的输出电压。

这些电平可以组合在一起,以产生所需的输出电压和频率。

每个模块都包含一个电容和一个开关器件,当开关器件关闭时,电容会充电,当开关器件打开时,电容会放电。

通过控制开关器件的开关时间和频率,可以产生所需的输出电压和频率。

模块化多电平换流器的优点是可以产生高质量的输出电压和频率,同时具有高效率和可靠性。

它可以应用于各种电力电子应用,如电动汽车、太阳能发电系统和工业控制系统等。

在创作方面,可以通过研究模块化多电平换流器的原理和应用,设计和制造自己的模块化多电平换流器。

这需要具备一定的电力电子知识和技能,以及相关的电路设计和制造工具。

同时,还需要进行实验和测试,以验证设计的正确性和可靠性。

这样可以为电力电子领域的发展做出贡献,并为实际应用提供更好的解决方案。

模块化多电平 原理

模块化多电平 原理

模块化多电平原理模块化多电平(Multi-level Modular Converter, MMC)是一种新型的直流-交流转换器,其特点是具有高电压和高功率的转换能力,能够满足不同电力需求的要求。

MMC采用模块化设计,能够对电压和功率进行灵活配置,具有高效、高可靠性和高灵活性等优点。

下面将详细介绍MMC的原理。

MMC的原理是在每个电平的电流流向相反的两个半桥电路之间插入一个电容,同时在各半桥之间增加能控晶闸管(IGBT)器件,实现多电平的输出。

MMCs的主要特点有以下几个方面:1. 多电平输出:MMC将一个交流输电系统的电压等级从传统的两级(220V和500kV)增加到五级以上,能够提供高至几千千伏的电压等级,从而能够满足不同规模的输电需求。

2. 模块化设计:MMC采用模块化设计,每个电容和每个IGBT模块都是相互独立的,可以根据实际需要的功率水平进行自由组合。

这种设计方式使得MMC 具有高度的可配置性和可扩展性,便于安装和维护。

3. 电压平衡:由于每个电容都与一个IGBT串联连接,可以通过控制IGBT的开关实现对电容的充放电,从而使得各电容的电压保持平衡。

这种电压平衡设计能够降低电容的电压应力,提高系统的可靠性和寿命。

4. 网络逆变:MMC电路通过将每个半桥电路的输出以不同的频率进行切换,实现对输入直流电压的逆变。

逆变电路采用PWM调制技术,能够输出高质量的正弦波电压和电流,达到有效控制电压和电流的目的。

5. 滤波和调节:MMC通过电容和电感的组合来实现对电压、电流的滤波和调节。

通过在MMC的输出端增加滤波电路,可以减少谐波和电磁干扰,提高能量传输的质量和稳定性。

6. 高功率密度:MMC设计紧凑,体积小,功率密度高。

通过模块化设计和高效的控制策略,能够实现对高功率的快速响应和高效转换,提高系统的能量利用率。

MMC的工作原理主要包括以下几个关键步骤:1. 输入直流电压检测:MMC的输入电压通常为直流电压,首先需要对输入电压进行检测和采样。

mmc的标幺值

mmc的标幺值

mmc的标幺值
标幺值是相对于某个基准值的比值,主要用于表示和计算电力系统元件的参数,如发电机、变压器、线路等的参数。

在电力系统中,标幺值通常用于简化计算和分析过程,因为它们消除了单位的影响,使得不同单位间的计算变得简单。

在MMC(模块化多电平换流器)中,标幺值的应用尤为重要。

MMC是一种新型的直流输电技术,其核心组成部分是多个子模块的串联和并联。

为了准确地描述和计算MMC的工作状态和性能,需要使用标幺值来表示各个参数。

在MMC中,标幺值的计算通常基于以下几个方面:
1、基准电压:通常选择MMC的直流电压作为基准电压,因为直流电压在MMC 运行过程中基本保持不变。

这样,通过将其他电压值与这个基准电压进行比较,可以得到各个电压的标幺值。

2、基准电流:选择MMC的额定电流作为基准电流。

通过将各个电流值与这个基准电流进行比较,可以得到各个电流的标幺值。

3、基准阻抗:选择MMC的额定阻抗作为基准阻抗。

通过将各个阻抗值与这个基准阻抗进行比较,可以得到各个阻抗的标幺值。

在计算MMC的标幺值时,需要注意以下几点:
1、标幺值的计算应该基于实际运行参数,而不是设计参数或额定参数。

这是因为实际运行参数更能反映MMC的实际工作状态和性能。

2、标幺值的计算应该考虑所有相关的参数,包括直流电压、交流电流、阻抗等。

这些参数的变化都会影响MMC的性能和稳定性。

3、标幺值的计算应该遵循相关的电力系统和控制系统的标准或规范。

这样可以确保计算结果的准确性和可靠性,为后续的分析和设计提供可靠的依据。

模块化多电平中高压电网模拟器及其控制

模块化多电平中高压电网模拟器及其控制

模块化多电平中高压电网模拟器及其控制韩蓉;徐千鸣;丁红旗;罗安【摘要】电网模拟器可以产生各类电网工况来测试电气设备.提出一种模块化多电平结构的高性能电网模拟器,采用多模块级联结构,可以有效提高输出电压等级和质量,且可以根据输出电压等级切换模块数,使输出测试电压能快速响应系统输出的变化.为得到高质量、快速、精确的输出电压,提出一种基于状态反馈的改进型6k±1次重复控制策略,可以兼顾系统稳态输出性能与动态响应速度.仿真和实验结果均表明,设计的电网仿真器系统可以对中高压等级的电网电压暂变、频率波动、波形畸变等工况进行测试.【期刊名称】《电工技术学报》【年(卷),期】2018(033)0z1【总页数】11页(P165-175)【关键词】电网模拟器;模块化多电平;重复控制;状态反馈控制【作者】韩蓉;徐千鸣;丁红旗;罗安【作者单位】国家电能变换控制工程技术研究中心(湖南大学) 长沙 410082;国家电能变换控制工程技术研究中心(湖南大学) 长沙 410082;国家电能变换控制工程技术研究中心(湖南大学) 长沙 410082;国家电能变换控制工程技术研究中心(湖南大学) 长沙 410082【正文语种】中文【中图分类】TM464传统化石能源日益枯竭,新能源如光伏发电、风力发电的快速、大规模发展,引起了众多学者的关注。

柔性交流输电技术的大范围应用以及新能源的大规模接入,电力系统将包含越来越多的分布式新能源电源,大多数分布式发电系统与电网之间的接口是通过电力电子并网换流器实现的[1]。

而大量电力电子换流装置的接入,给电网稳定性带来次同步振荡、低频振荡、宽频域谐振等[1-6]新问题,以及在远程输电系统中,随着输电距离的增加,会带来送端电压波动的加剧。

因此,为了提高系统稳定性,有必要研究电力电子装置的阻抗特性、电压适应性、抗扰动性等性能,需要对新能源发电系统中并网变换器在实际投入使用之前进行异常电压适应性测试,包括电压幅值暂变、频率波动以及电压畸变等。

基于PSCAD的模块化多电平换流器仿真研究

基于PSCAD的模块化多电平换流器仿真研究

基于PSCAD的模块化多电平换流器仿真研究谭邵卿;卢思翰【摘要】作为新一代直流输电技术,基于电压源换流器(VSC)的柔性直流输电(VSC-HVDC)发展前景广阔,特别是模块多电平换流器(MMC),将日趋成熟并广泛应用到输电领域.主要研究模块化多电平换流器系统的主电路参数设计、控制方法和仿真建模方法.在EMTDC/PSCAD平台上,搭建两端模块化多电平换流器直流输电(MMC-HVDC)的详细仿真模型,通过对模型在额定状态和功率波动状态下的运行结果进行分析,验证了仿真模型的有效性.【期刊名称】《山东电力技术》【年(卷),期】2016(043)011【总页数】5页(P35-38,57)【关键词】柔性直流输电;模块化多电平换流器;换流器建模【作者】谭邵卿;卢思翰【作者单位】山东大学电气工程学院,济南250001;东北大学信息科学与工程学院,沈阳 110819【正文语种】中文【中图分类】TM46随着VSC-HVDC技术的不断发展,如何提高VSC-HVDC系统的容量和电压等级成为研究重点之一,MMC作为换流器的一种新型拓扑,在提高系统容量和电压等级问题上有其独特优势[1],引起了国内外学者的重视,使MMC研究取得了一定的成果。

硬件优化和数学建模方面,文献[2]推导出了换流器同一相单元上、下桥臂的电感非公共端的电位相等,为MMC换流器的分析提供依据;文献[3]对换流器的电容设计进行了优化。

调制方式与控制方面,文献[4]讨论了最近电平逼近调制(NLM)应用于MMC的可行性;文献[5]在MMC传统双环控制的基础上,通过设置动态电流限幅环节,并采用混合调制策略,改善了换流器交流的侧的波形,并提高了系统的动态性能。

针对MMC-HVDC的仿真技术展开研究,研究MMC换流器的基本原理、控制方法,根据系统的运行计算并设计出系统的主电路参数,基本单元的控制器的设计,在EMTDC/PSCAD平台上搭建了MMC-HVDC的仿真模型,并在不同工况下验证仿真系统的有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Modelling,Simulation and Analysis of a Modular Multilevel Converter for Medium V oltageApplicationsSteffen Rohner and Steffen Bernet Dresden University of Technology D-01069Dresden,Germany Email:steffen.rohner@tu-dresden.de Email:steffen.bernet@tu-dresden.de Marc Hiller and Rainer Sommer Siemens AG,I DT LDD-90443Nuremberg,Germany Email:marc.hiller@ Email:rainer.sommer@Abstract—The Modular Multilevel Converter(M2C)is an emerging multilevel converter for HVDC and FACTS as well as for future AC-fed traction vehicles or medium voltage drives (MVD).A suitable converter model of the Modular Multilevel Converter(M2C)is presented.A7.2kV,7.5MV A converter is taken as an example to analyze characteristic waveforms of the converter.The cause of the circulating currents-a phenomenon unique to this topology-is investigated.Furthermore,particular attention is paid to the current distribution in the converter cells for characteristic load phase angles.I.I NTRODUCTIONMedium voltage(MV)power electronics is a technology of continuously growing importance for a wide range of applications.Cycloconverters,grid or load commutated con-verters applying conventional thyristors are used especially in applications with very high power demands,which can not be met with state of the art self commutated converters at comparable prices.Today the clear majority of medium voltage converter and drive manufacturers offer PWM voltage source converters in a power range of S C=300kVA–30MVA[1],[2].In special applications for energy systems converter ratings up to several 100MVA have been realized on the basis of PWM-VSCs.Re-garding the circuit configuration PWM-VSCs can be classified in Two-Level V oltage Source Converters(2L VSC)and Multi-Level-V oltage Source Converters(ML-VSC).The well-known Two-Level V oltage Source Converter(2L VSC)features a simple structure,a high reliability and power density.The main disadvantages are the difficult converter voltage increase (requiring power semiconductors with increased blocking volt-age or a series connection of devices)and the high switching losses.Thus,the topology is mainly used for low and medium switching frequency traction converters for which reliability and compactness are the most important criteria[3].On the other hand,there are the multilevel converter topolo-gies which generate multiple voltage levels in the quantized line-to-line voltages.The three most popular topologies are the Three-Level Neutral Point Clamped V oltage Source Converter (3L NPC VSC)[4],the Cascaded H-Bridge V oltage Source Converter(CHB VSC)[5]and the Flying Capacitor V oltage Source Converter(FC VSC)[6].The3L NPC VSC is the most widely used multilevel con-verter topology for MVDs.With the use of active switches such as IGCTs and IGBTs,a line-to-line voltage range of 2.3kV–4.16kV withfive voltage levels is achieved without series connection of power semiconductors.Typical applica-tions for this topology are industrial converters for oil and gas, metals,mining,water,and marine[7].The CHB VSC consists of a series connection of identical power cells.Each cell can generate three voltage levels.Thus, the number of voltage levels in the line-to-line voltage depends on the number of power cells used.Applications of this topology are retrofitting,power generation,water/wastewater, oil and gas,and pulp/paper[8].The FC VSC also consists of a series connection of identical commutation cells-the number of voltage levels in the line-to-line voltage depends on the number of commutation cells. One particular challenge is balancing the capacitor voltages, which is accomplished by the choice of the converter switching states.Applications for this topology are traction converters for electrical locomotives,drive test benches,and high speed compressor drives[9].This paper considers the emerging multilevel converter topology:the Modular Multilevel Converter(M2C)[10].The structure of this converter combines elements of both the CHB VSC and the FC VSC:the series connection of identical power cells resembles a CHB VSC and the fact that the capac-itor voltages are determined by the phase currents resembles a FC VSC.This topology is applicable in thefield of HVDC and FACTS[11],[12]as well as for future AC-fed traction vehicles or medium voltage drives(MVD)[13]–[15].Up to the present,there is one commercial application in industry:the new self-commutated voltage source converter with IGBTs HVDC PLUS[16].The modular cell design of this topology features several advantages,such as cost reduction resulting from mass production,distributed locations of energy storage elements,simple protection schemes,simple voltage scaling,and simple realization of redundancy.Furtheramenities are high front end flexibility (e.g.12p,18p,24p diode or active),grid connection via standard transformers (or transformerless),and the possibility of common d.c.bus configurations.Space-vector modulation [17],[18]and pulse width modulation [19]schemes for the M2C have been investigated and first experimental results for two different prototype converters show the practicability of this topology [20]–[22].In order to investigate the competitive ability of the M2C,semiconductor losses and efficiencies of the M2C and the 2L VSC have been calculated and compared [23].In this paper,an appropriate converter model is derived.Simulation results of a 7.2kV ,7.5MV A M2C using the PWM scheme from [19]are presented,showing typical voltage and current waveforms of this converter.A special phenomenon unique to this topology is the so-called circulating currents,which circulate within the converter circuit.Their mathemat-ical definition is given in [24].The cause of their appearance during the converters operation are highlighted for the first time.The converter analysis describes effects of varying phase currents and line-to-line voltages.Furthermore the current distribution of the semiconductors in the converter cells (also referred to as submodules)is shown for four characteristic load phase angles.II.M ODELLING AND P ARAMETER S ELECTIONA simulation model of an M2C circuit configuration con-taining a d.c.connection,the M2C converter,and a three-gwFig.1.Simulation model of the M2Cphase a.c.connection is depicted in Fig.1.The d.c.side (between points A and B)is modelled by two d.c.voltage sources V d /2,two inductors L d /2,and two resistors R d /2.The three-phase a.c.side (at terminals U,V ,W)is model by a series connection of resistor R g ,inductor L g ,and a.c.voltage source v gu (t )(phase U).This equivalent network can either represent a three-phase a.c.grid or an electrical machine.The M2C is marked with a red dashed rectangle.It consists of six arms,each of which contains a series connection of n identical submodules and an inductor L .Each submodule (SM)contains a half-bridge of two active switches and inverse diodes (in this case IGBT modules)and a capacitor C SM .In the simulation model,the submodule switches are considered ideal.The principle voltage generation with the submodules works as follows.Each submodule can be toggled between two different states:the on-state when the upper IGBT is switched on and the lower one is switched off,and the off-state when the lower IGBT is switched on and the upper one is switched off.With these states,the cell terminal voltage v SM (t )(from terminal x to y)can be toggled between v SM (t )=v C (t )(on-state)and v SM (t )=0(off-state).The number of voltage levels in the line-to-line voltages u uv (t ),u vw (t ),u wu (t )depends on the number of submodules per arm n and the modulation scheme.The resistor R represents ohmic losses which occur in real electrical connections and semiconductors.For preparing simulations,values for the electrical elements such as resistors,inductors,and capacitors as well as variable simulation settings are taken from Table I.The number of submodules per arm is n =12,thus,the converter contains 72submodules and 144IGBT modules including inverse diodes.The simulation parameter V LL,rms,1defines the maxi-mum rms-value of the fundamental line-to-line voltages u uv (t ),u vw (t ),u wu (t ),and the parameter I ph,rms,1the rms-value of the fundamental phase currents i u (t ),i v (t ),i w (t ).With param-eter ω,the angular frequency of both the fundamental line-to-line voltage and the fundamental phase current is defined.The load phase angle φis the phase displacement of the phase current fundamental and the phase voltage fundamental in the corresponding converter phase (e.g.phase current i u (t )and phase voltage v u (t )in phase U).It is defined such that phase currents and phase voltages are in-phase at φ=0,inductive at φ=π/2,inversely phased at φ=π,and capacitive at φ=–π/2.With modulation index m ,the amplitude of the line-to-line voltages is controlled.Due to a third harmonic injection (in order to increase the fundamental of the line-to-line voltages at the border of the linear modulation range),the maximum amplitude of the fundamental line-to-line volt-age √2V LL,rms,1is achieved with the maximum modulation in-dex of m =2/√3.The PWM period T PWM is a parameter for the modulation scheme.The smaller the PWM period T PWM ,the better the approximation of the line-to-line voltages and the higher the resulting switching frequency of the IGBTs.Furthermore,the voltages for the applied voltage sources are required for the simulation process.Due to the third harmonicinjection,the d.c.voltage source V d is set toV d =√2V LL,rms,1≈10182V .(1)In order to adjust the a.c.voltage sources at the three-phase a.c.side,the generated phase voltages must be taken into account.With the PWM scheme described in [19],the fundamental of the phase voltage v u (t )isv u (t )=mV LL,rms,1√2sin ωt −16π.(2)The phase voltages cause the phase currents.The fundamentals of the phase currents define the parameter I ph,rms,1and φwithi u (t )=√2I ph,rms,1sin ωt −16π−φ(3)i v (t )=√2I ph,rms,1sin ωt −56π−φ.(4)With these definitions,the a.c.voltage source v gu (t )can be calculated with (2)and (3)byv gu (t )=−R g i u (t )−L gd i u (t )d t+v u (t )(5)=abs (δ)·sin (ωt +arg (δ))(6)withδ=mV LL,rms,1√2exp−j 16π−√2I ph,rms,1(R g +jωL g )exp −j φ+16π(7)where abs (δ)and arg (δ)are the magnitude and the phase angle of the complex value δ,respectively.With these con-siderations,the other a.c.voltage sources are calculated with respect to the phase displacement of the phase currents withv gv (t )=abs (δ)·sin ωt −23π+arg (δ)(8)v gw (t )=abs (δ)·sin ωt +23π+arg (δ).(9)TABLE IS IMULATION S PECIFICATIONSDescriptionSymbol Value D.C.resistor R d 1mΩD.C.inductor L d 1mH Arm resistor R 60mΩArm inductorL 100µH Submodule capacitor C SM 6mF Machine resistor R g 300mΩMachine inductorL g 11.5mH Number of submodules per arm n 12Maximum line-to-line voltage V LL,rms,17.2kV Phase currentI ph,rms,1300A ,600A Angular frequency ω2π50s –1Load phase angle φπ6and 0,π2,π,–π2Modulation indexm 1/√3,2/√3Reciprocal PWM period1/T PWM5400s –1Finally,initial values (at t =0)must be assigned for the simulation.The approach for calculating the initial value for the d.c.inductor is to assume power balance of the d.c.side and the three-phase a.c.side.Thus,the initial value for the inductor L d is set toi d (0)=3mV LL,rms,1I ph,rms,1cos (φ)2V d.(10)The initial currents for the d.c.inductors L are calculated with (3),(4),(10),and at t =0byi z1(t )=13i d (t )+12i u (t )(11)i z2(t )=13i d (t )−12i u (t )(12)i z3(t )=1i d (t )+1i v (t )(13)i z4(t )=13i d (t )−12i v (t )(14)i z5(t )=13i d (t )−12(i u (t )+i v (t ))(15)i z6(t )=13i d (t )+12(i u (t )+i v (t )).(16)The initial currents for the inductors L g at the three-phase a.c.side are assigned with (3)and (4)as well.Due to the modulation scheme,where at every point of time n of the 2n submodules of one phase (an upper and a lower arm)are in the on-state,the initial voltages for the capacitors are set with (1)tov C (0)=V dn.(17)III.S IMULATION OF M ODULAR M ULTILEVEL C ONVERTERSimulations were done with MATLAB/Simulink and the toolbox Plecs with the PWM scheme introduced in [19],which will be described briefly here.The PWM scheme uses reference arm voltages v z k ,ref (t )for the six arm voltages v z k (t ).The switching states of the converter at every point in time are calculated such that the moving average of the corresponding arm voltages follows the reference arm voltages.Simulation results in steady-state are depicted in the fol-lowing figures:Fig.2shows simulated voltage and current waveforms for a phase current I LL,rms,1=600A and the maximum modulation index m =2/√3.A load phase angle of φ=π/6is typical for an electrical machine.In Fig.2(a),the three line-to-line voltages v uv (t ),v vw (t ),v wu (t )are depicted.They are congruent and symmetrically phase-shifted.With n =12submodules per arm,the number of voltage level is 2n +1=25for this PWM scheme.Due to the relatively high number of voltage levels in comparison e.g.to the 3L NPC VSC,the quality of the generated line-to-line voltages is very high.The line-to-line voltages result from the six arm voltages v z k (t )with k =1,2,...,6,which are the sum of all submodule voltages of one arm.Two of these,v z1(t )and v z2(t ),are depicted in Fig.2(b).They are congruent,but phase-shifted by a half fundamental period π/ω=10ms .With n =12,the number of voltage levels in the arm voltages is n +1=13.The other four arm voltages,which are not shown,V o l t a g e (V o l t a g e (C u r r e n t (k A )Phase CurrentsTime (ms)C u r r e n t (k A )Arm Currents Time (ms)C u r r e n t (k A ) D.C. Link CurrentTime (ms)Fig.2.Simulated voltage and current waveforms for V LL,rms,1=7.2kV ,I LL,rms,1=600A ,φ=π6,and m =2√3are congruent to the plotted ones.They are phase-shifted symmetrically to each other (e.g.v z3(t )and v z5(t )by one-third and two-thirds of a fundamental period to v z1(t ),respectively).The arm voltages show the influence of the the capacitor voltage ripples,which are depicted in Fig.2(c).This diagram shows all 72capacitor voltages of the converter,where the twelve capacitor voltages of one converter arm are labeled with v Cak (t ).Due to the implemented balancing algorithm (described in [11],[17],[18]),the capacitor voltages of one converter arm remain within a small voltage band.These waveforms reveal the symmetrical operation of the converter,because the voltage waveforms v Ca k (t )are congruent and symmetrically phase-shifted.In Fig.2(d),phase currents i u (t ),i v (t ),i w (t )are presented.They are symmetrical and fulfill the requirements regarding the parameters I ph,rms,1,ω,and φfrom Table I.The waveforms of the arm currents i z1(t )and i z2(t )in Fig.2(e)are particularly interesting.In this symmetrical operating point,the waveforms are all congruent and phase-shifted in the same way as the arm voltages v z k (t )or thecapacitor voltages v Ca k (t ).The expected waveforms of the arm currents should only include two components described by (11)-(16):one component from the current of the d.c.side (13i d (t ),depicted in Fig.2(f))and another component of the currents from the three-phase a.c.side (±12i u (t ),±12i v (t )or ±12i w (t ),depicted in Fig.2(d)).But Fig.2(e)shows that there is a third component:the so-called circulating current.This additional current component is referred to as circulating because it circulates within the converter circuit and has no effect on the d.c.side or on the three-phase a.c.side.In order to investigate the reasons for these circulating currents,the waveforms and spectra of the resistor and the inductor arm voltages of arm 1are depicted in Fig.3.In Fig.3(a),the sum voltage v R1(t )+v L1(t )of the arm resistor R and the arm inductor L of arm 1are shown.With a maximum value of the sum voltage ofmax (abs {v R1(t )+v L1(t )})<100V(18)the voltage drops across the arm resistor and the arm inductorTime (ms)Resistor and Inductor Arm VoltageV o l t a g e (V )Time (ms)Resistor Arm VoltageV o l t a g e (V )Time (ms)Inductor Arm VoltageV o l t a g e (V )Frequency (Hz)V o l t a g e (V )Spectrum of Resistor and Inductor Arm VoltageFrequency (Hz)V o l t a g e (V )Spectrum of Resistor Arm VoltageFrequency (Hz)V o l t a g e (V )Spectrum of Inductor Arm VoltageFig.3.Waveforms and spectra of resistor and inductor arm voltage of arm 1for V LL,rms,1=7.2kV ,I LL,rms,1=600A ,φ=π6,and m =2√3V o l t a g e (V o l t a g e (C u r r e n t (k A )Phase CurrentsTime (ms)C u r r e n t (k A )Arm Currents Time (ms)C u r r e n t (k A ) D.C. Link CurrentTime (ms)Fig.4.Simulated voltage and current waveforms for V LL,rms,1=7.2kV ,I LL,rms,1=300A ,φ=π6,and m =2√3are very low in comparison to the maximum arm voltage v z1(t )(voltage drops across the submodules)max (abs {v R1(t )+v L1(t )})max (abs {v z1(t )})<1%.(19)The waveform of Fig.3(a)has both low and high fre-quency components,which is confirmed by the spectrum in Fig.3(d).There are low-frequency components up to 500Hz and higher-frequency components at harmonics of the PWM frequency 1/T PWM =5400Hz .The distribution of the sum voltage v R1(t )+v L1(t )over arm resistor R and arm inductor L are shown in Figs.3(b)and (c).The arm resistor solely takes the low-frequency components (Fig.3(e))and the arm inductor takes both the low-frequency components and the higher-frequency sidebands (Fig.3(f)).The waveform of the arm resistor v R1(t )is inherently proportional to that of the arm current i z1(t )(Fig.2(e)).The voltage v L1(t )across the arm inductor L is finally the reason for the dynamic properties ofthe arm current i z1(t )d i z1(t )d t =v L1(t )L(20)and thus,the origin of the circulating currents.It is interesting to note,that circulating currents can even be generated with the use of constant d.c.voltages sources instead of the capacitors in the submodules.Thus,the circulating currents strongly de-pend on the converter modulation and control scheme as well as the operating point and not necessarily of the fluctuating capacitor voltages.Simulated voltage and current waveforms for a lower phase current of I ph,rms,1=300A are given in Fig.4,while other parameters remain the same.The line-to-line voltages v uv (t ),v vw (t ),v wu (t )in Fig.4(a)and the arm voltages v z1(t ),v z2(t )in Fig.4(b)do not show large differences to those of Figs.2(a)and (b).Phase currents i u (t ),i v (t ),i w (t )in Fig.4(d)fulfill the demand of the lower rms-value.Thus,arm currents i z1(t ),i z2(t )in Fig.4(e)are also lower in comparison to those of Fig.2(e).Resultingly,voltage ripples ∆v C of the capacitor voltages v Ca k (t ),depicted in Fig.4(c),decrease from aboutV o l t a g e (k V )Line-to-Line VoltagesArm VoltagesV o l t a g e (V )Capacitor VoltagesC u r r e n t (k A )Phase CurrentsTime (ms)C u r r e n t (k A )Arm CurrentsTime (ms)C u r r e n t (k A ) D.C. Link CurrentTime (ms)Fig.5.Simulated voltage and current waveforms for V LL,rms,1=7.2kV ,I LL,rms,1=300A ,φ=π6,and m =1√3Lower Diode Current (φ = 0)Lower IGBT Current (φ = 0)Upper Diode Current (φ = 0)Upper IGBT Current (φ = 0)C u r r e n t (A )C u r r e n t (A )Time (ms)Time (ms)Time (ms)Time (ms)Fig.6.IGBT and diode current waveforms for V LL,rms,1=7.2kV ,I LL,rms,1=600A ,m =2√3,φ=0(upper row)and φ=π(lower row)54V (Fig.2(c))to 27V .The average of the d.c.link cur-rent i d (t )is half that of Fig.2(f),because the converters real output power decreases in the same way.Hence,the stored energy of the converter in the main energy storage elements –the submodule capacitors C SM –remain balanced within a fundamental period 2π/ω.The effect of halving the modulation index to m =1/√3is shown in Fig.5.Due to the proportional relation of the modulation index m and the fundamental of the line-to-line voltages v uv (t ),v vw (t ),v wu (t )in Fig.5(a),the fundamental rms-value of the line-to-line voltages is about 3.6kV .With this reduced line-to-line voltage,the number of voltage levels is reduced from 25to 13as well.The line-to-line voltages result initially from arm voltages v z k (t ).Two of these,v z1(t )and v z2(t ),are depicted in Fig.5(b).The number of voltage levels of the arm voltages v z k (t )is reduced from 13to 7,but the average value V d /2≈5091V remains the same.The phase currents i u (t ),i v (t ),i w (t )fulfill the specification of I ph,rms,1=300A .Due to the reduced converters real outputpower,the average of d.c.link current i d (t )in Fig.5(f)is only half of that of Fig.4(f)or one-fourth of that of Fig.2(f).Arm currents i z1(t ),i z2(t )in Fig.5(e)are only little changed in the average value and the circulating currents to those of Fig.4(e).In Fig.5(c),voltage ripples ∆v C of the capacitor voltages v Ca k (t )increase from about 27V (Fig.4(c))to 109V ,due to the decrease of the modulation index m from 2/√3to 1/√3.A mathematical method for the calculation of the current distribution of the submodules semiconductors will now be derived.With respect to the current definitions in Fig.1,only two current waveforms are required for the calculation for one submodule:the submodule current i SM (t )and the capacitor current i C (t ).The four current components upper IGBT and diode currents i TU (t )and i DU (t )as well as the lower IGBT and diode currents i TL (t )and i DL (t )are calculated withi TU (t )=abs {i C (t )}−i C (t )2(21)Upper IGBT Current (φ = π/2)C u r r e n t (A )Upper Diode Current (φ = π/2)Lower IGBT Current (φ = π/2)Lower Diode Current (φ = π/2)C u r r e n t (A )Time (ms)Time (ms)Time (ms)Time (ms)Fig.7.IGBT and diode current waveforms for V LL,rms,1=7.2kV ,I LL,rms,1=600A ,m =2√3,φ=π2(upper row)and φ=–π2(lower row)i DU(t)=abs{i C(t)}+i C(t)2(22)i TL(t)=abs{i C(t)−i SM(t)}−{i C(t)−i SM(t)}2(23)i DL(t)=abs{i C(t)−i SM(t)}+{i C(t)−i SM(t)}2(24)where abs{x(t)}is the magnitude at each point in time of the function x(t).Submodule current i SM(t)equates to the corresponding arm current i z k(t)i SM(t)=i z k(t)(25) which must be measured for the modulation algorithm any-way.Capacitor current i C(t)can be calculated with capacitorvoltage v C(t)asi C(t)=C SM d v C(t)d t(26)which must be measured for the modulation algorithm as well.With the use of(25)and(26)with(21)–(24),current distributions in the semiconductors can be calculated without additional effort,in order to approximate e.g.semiconductor losses or junction temperatures online.The current distribution of the upper and lower semicon-ductors inside the submodules is depicted in Figs.6and7for four different load phase anglesφ.Due to the symmetrical modulation scheme and the symmetrical operation of the con-verter,the current distribution of all submodules is similar,but not exactly congruent and they are phase-shifted in the other arms.The current distribution of submodule3in arm1is taken as an example.In Fig.6,the current distribution forφ=0 (upper row)andφ=π(lower row)is given,where the three-phase a.c.side operates as a motor and a generator,mutations between the upper IGBT and the lower diode(i TU3(t)↔i DL3(t))as well as commutations between the upper diode and the lower IGBT(i DU3(t)↔i TL3(t))are clearly recognizable.Afirst interesting fact is that the current distribution of the four component parts is rather unequal.For a load phase angle ofφ=0,the upper IGBT current i TU3(t) (Fig.6(a)),the upper diode current i DU3(t)(Fig.6(b)),and the lower diode current i DL3(t)(Fig.6(d))have small average val-ues(I TU3,A V=15A,I DU3,A V=15A,I DL3,A V=5A)and small rms-values(I TU3,eff=34A,I DU3,eff=64A,I DL3,eff=22A). Compared to these values,the lower IGBT current i TL3(t) (Fig.6(c))has a higher average value(I TL3,A V=250A)and a higher rms-value(I TL3,eff=419A).Although the semi-conductor losses depend on the conduction and switching losses,which depend again on the corresponding capacitor voltage v C(t),the simulation results show,that the lower IGBT component is the most stressed component for this load phase angle.The second interesting point is that with the change of the load phase angleφfrom0toπ,the current wave-forms change within one IGBT module(iφ=0TU3(t)≈iφ=πDU3(t),iφ=0 DU3(t)≈iφ=πTU3(t),iφ=0TL3(t)≈iφ=πDL3(t),iφ=0DL3(t)≈iφ=πTL3(t)).Thus,the considerations for the semiconductor losses for a load phase angle ofφ=πcan be done in an analogous way. In this case,the most stressed semiconductor is the lower diode (Fig.6(h)).For load phase anglesφofπ/2and–π/2,the three-phase a.c.side operates inductively and capacitively,respectively. Simulated current distributations are depicted in Fig.7,where the upper row represents the results forφ=π/2and the lower rowφ=–π/2.The currents in the four semiconductor components are more homogenized,as for load phase angles ofφ=0andφ=π,but still are not uniformly distributed. For both load phase anglesφ,the lower semiconductor com-ponents(Figs.7(c),(d),(g),(h))are more stressed than the upper semiconductor components(Figs.7(a),(b),(e),(f)), because their average and rms-values are increased by a factor of two.The same symmetries of the current wave-forms arise from the change of the load phase angleφfromπ/2to–π/2,as decribed for the load phase an-gles0andπ:iφ=π/2TU3(t)≈iφ=–π/2DU3(t),iφ=π/2DU3(t)≈iφ=–π/2TU3(t),iφ=π/2TL3(t)≈iφ=–π/2DL3(t),iφ=π/2DL3(t)≈iφ=–π/2TL3(t).In summary, for all investigated load phase anglesφ,the current stress of the lower semiconductor is higher than that of the upper one.IV.C ONCLUSIONSThis paper derives a suitable converter model of the Modular Multilevel Converter(M2C).Utilizing a given PWM scheme and the derived converter model simulated voltage and current waveforms were generated and presented.These waveforms show the behaviour of the converter for varied line-to-line voltages and phase currents.A special characteristic of the M2C is the generation of so-called circulating currents,which circulate solely within the converter phases.These currents result from the generated voltages across the arm inductors. Furthermore,these voltages are influenced by the modulation scheme and by the switching states of the converter.The current distribution within a half bridge of a submodule was investigated for four characteristic load phase angles.For this,mathematical equations were derived which are based on quantities,which are otherwise already available,as they are required for the modulation.The simulated current distribution revealed that,for the four different load phase angles,the lower IGBT module of a submodule clearly carries the highest current and with it,experiences the largest conduction and switching losses.R EFERENCES[1]J.Rodr´ıguez,S.Bernet,B.Wu,J.Pontt,and S.Kouro,“MultilevelVoltage-Source-Converter Topologies for Industrial Medium-Voltage Drives,”IEEE Trans.Ind.Electron.,vol.54,no.6,pp.2930–2945,Dec.2007.[2] B.Wu,J.Pontt,J.Rodr´ıguez,S.Bernet,and S.Kouro,“Current-SourceConverter and Cycloconverter Topologies for Industrial Medium-Voltage Drives,”IEEE Trans.Ind.Electron.,vol.55,no.7,pp.2786–2797,July 2008.[3]H.Eckel,M.Bakran,E.Krafft,and A.Nagel,“A new Family ofModular IGBT Converters for Traction Applications,”in Proc.Power Electronics and Applications Conference(EPE),Dresden,Germany, Sept.2005,p.10.[4] A.Nabae,I.Takahashi,and H.Akagi,“A New Neutral-Point-ClampedPWM Inverter,”IEEE Trans.Ind.Applicat.,vol.IA-17,pp.518–523, Sept.1981.[5]J.Rodr´ıguez,J.Pontt,P.Correa,P.Cort´e s,and C.Silva,“A NewModulation Method to Reduce Common-Mode V oltages in Multilevel Inverters,”IEEE Trans.Ind.Electron.,vol.51,pp.834–839,Aug.2004.。

相关文档
最新文档