Microstructure of ZM6 magnesium alloy with different Nd content

合集下载

循环闭式模锻制备Mg_Si合金的组织和力学性能_英文_J_METAYER

循环闭式模锻制备Mg_Si合金的组织和力学性能_英文_J_METAYER

Foundation item: Projects (50674067, 51074106) supported by the National Natural Science Foundation of China; Project (2011BAE22B01-5) supported by the National Key Technologies R&D Program during the 12th Five-Year Plan Period, China; Project (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, China Corresponding author: Qu-dong WANG; Tel: +86-21-54742715; E-mail: wangqudong@ DOI: 10.1016/S1003-6326(14)63029-6
Trans. Nonferrous Met. Soc. China 24(2014) 66−75
Microstructure and mechanical properties of Mg−Si alloys processed by cyclic closed-die forging
J. METAYER1,2, Bing YE1,3, Wei GUO1,3, Qu-dong WANG1,3, Hao ZHOU1,3, F. MOLLET1,2 1. National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Arts et Métiers ParisTech engineering school, Angers, France; 3. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China Received 1 November 2012; accepted 15 March 2013

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

文章编号:1001-9731(2021)01-01022-04镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能*余灏勋,马廷霞(西南石油大学机电工程学院,成都610500)摘要:利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和G R/T i O2粉末,在镁合金表面制备了MA O-G R/T i O2涂层㊂采用S E M和F T-I R分别对G R/T i O2粉末的表面形貌和结构进行了研究,用S E M㊁X R D 和元素线扫描对MA O-G R/T i O2涂层的表面形貌㊁相结构和元素分布进行了研究,用三电极技术对MA O-G R/T i O2涂层的耐腐蚀性能进行了研究㊂结果表明,通过溶胶-凝胶法可将纳米T i O2接枝到G O表面,生成G R/T i O2粉末;MA O-G R/T i O2涂层主要由M g2T i O4相㊁M g3(P O4)2相㊁M g和M g O相组成;以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧;MA O-G R/T i O2涂层的腐蚀电位为-0.723V,腐蚀电流密度为8.96ˑ10-8A/c m2,相比镁合金基体和MA O涂层,腐蚀电位提高了48.3%和36.7%,表明MA O-G R/T i O2涂层可以显著提高镁合金基体的耐蚀性能㊂关键词:镁合金;微弧氧化法;复合涂层;耐腐蚀性能中图分类号: T B332文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.01.0040引言镁合金耐蚀性差严重限制了其在许多领域的应用[1-2]㊂目前为止,研究者广泛研究的耐腐蚀方法是在合金表面形成防腐涂层㊂微弧氧化技术(MA O)是在常规阳极氧化技术基础上发展起来的一种新型的镁合金表面处理技术,该技术可以制造高质量的涂层,具有高硬度值,强附着力,并可以大幅提高镁合金基体的耐腐蚀性[3]㊂因此,MA O已经成为提高镁合金耐蚀性研究最热门的技术之一[4-6]㊂MA O涂层的耐蚀性主要取决于涂层的厚度㊁成分和组织结构[7]㊂根据已有的研究,电解液的组成会影响涂层的微观结构㊁成分和性能,因为这些元素可以在氧化过程中掺杂入涂层中[8-9]㊂几种类型的电解质,如硅酸盐[10]㊁铬酸盐[11]和磷酸盐[12],已被用于制备MA O涂层㊂一般来说,在这些电解质中形成的MA O涂层主要由M g O相和其它一些与电解质有关的化合物组成[如M g O㊁M g3-(P O4)2㊁M g A l2O4或M g F2][13]㊂由于M g O在中性或酸性环境中不稳定,这些涂层不能提供足够的长期腐蚀保护㊂解决该问题最有效的办法是通过改变电解质的组成,在MA O涂层中加入稳定氧化物或其它稳定化合物,如N b2O5㊁Z r O2㊁T i O2㊁M g2Z r5O12㊁C e O2㊁M g F2或Z r F4㊂这些氧化物和化合物可以在氧化处理过程中嵌入到涂层中,以提高涂层的耐蚀性[14]㊂然而,在这些电解液中,有许多化合物不能长期使用(相对不稳定),因为在微弧氧化过程中,试样表面预先形成了小的火花,不能得到均匀的MA O涂层[15]㊂石墨烯(G R)和氧化石墨烯(G O)具有优异的力学和耐腐蚀性能,不仅力学强度高,而且耐磨性优异[16-17]㊂T i O2颗粒具有优异的耐腐蚀性能[18-20]㊂本文以氟钛酸钾(K2T i F6)㊁六偏磷酸钠[(N a P O3)6]㊁氢氧化钠(N a O H)和三乙胺(T E A)组成的合适电解质,制备了含有M g2T i O4和G R/T i O2的MA O-G R/T i O2涂层㊂采用X R D㊁S E M和元素线扫描等手段研究了涂层的相结构㊁表面形貌和元素组成,并采用电化学阻抗法评价了涂层的耐蚀性㊂1实验1.1 G R/T i O2粉末的制备采用加压氧化法合成G O,采用溶胶-凝胶法制备G R/T i O2粉末㊂由于G O的亲水性和静电斥力,在水中形成了稳定的溶胶㊂具体制备方法:取5m L钛酸丁酯,与10m L冰乙酸均匀混合,然后加入30m L无水酒精进行稀释,分散搅拌均匀30m i n后得到溶液A;将G O超声分散在15m L蒸馏水中,超声浴2h,随后加入15m L无水酒精,并用稀硝酸调节p H值至2,得到溶液B㊂将溶液B缓慢加入到溶液A中,并在室温下搅拌3h,并陈化得到凝胶,随后将凝胶转入水热反应釜中,210ħ下恒温反应10h后自然冷却至室温,用去离子水将所得产物洗涤至中性,并烘干,即得到G R/T i O2粉末㊂220102021年第1期(52)卷*基金项目:四川省科技计划资助项目(18F Z J C00734)收到初稿日期:2020-06-03收到修改稿日期:2020-09-23通讯作者:马廷霞,E-m a i l:1499893831@q q.c o m 作者简介:余灏勋(1994 )男,成都人,硕士,主要从事新型复合材料制备研究㊂1.2复合涂层的制备将A Z31合金(M g-3%(质量分数)A l-0.8%(质量分数)Z n)试样切割成10mmˑ10mmˑ5mm,用100~1000#的S i C砂纸打磨㊂然后分别在乙醇和去离子水中超声清洗20m i n,最后在空气中干燥㊂采用功率为2k W的恒流电源,通过MA O法制备涂料㊂分别以镁合金基体和不锈钢板作为工作电极和对电极㊂为了制备含有G R/T i O2的MA O涂层,采用以下磷酸盐电解质进行一次处理:即由15g/L氟钛酸钾(K2T i F6),20g/L六偏磷酸钠[(N a P O3)6], 10g/L氢氧化钠(N a O H),3g/L G R/T i O2粉末和0.3g/L三乙胺(T E A)组成的电解质,使G R/T i O2粉末带负电荷,然后将电解质超声处理1h,随后连接电极,并将电极放入电解质中㊂两个电极之间的距离为2c m,在400V的固定外加电压下进行10m i n的一次微弧氧化反应㊂得到的复合涂层标记为MA O-G R/ T i O2涂层㊂采用相同的MA O工艺(磷酸盐电解质中没有G R/T i O2)制备的M g合金作为对照组,标记为MA O涂层㊂1.3样品的表征采用T T R I I IX射线衍射仪对制备的涂层相组成进行了X射线衍射分析,2θ值在10~85ʎ之间,步长增量为0.01ʎ,扫描速度为4ʎ/m i n;采用N I C O L E T F T-I R5700光谱仪对G O㊁G R/T i O2粉末及复合涂层进行F T-I R光谱测试;采用德国蔡司(型号:S U P R A-55)扫描电子显微镜对G R/T i O2粉末和复合涂层的表面形貌及元素组成进行研究㊂1.4电化学测量采用三电极技术在电化学工作站(C H I660E)上进行动电位极化实验㊂以复合涂层样品为工作电极,铂板为对电极,饱和甘汞电极(S E C)为参比㊂所有测试都在(37ʃ1)ħ的3.5%(质量分数)氯化钠溶液中进行㊂用1c m2的硅胶覆盖所有样品暴露的表面㊂在溶液中稳定1h后进行动电位极化试验,以确保开路电位是静态的㊂电位扫描速度为5m V/s,记录极化曲线㊂E I S的信号幅度为5m V,频率为0.01~ 10000H z㊂采用T a f e l外推和线性极化法,从动电位极化图中获取腐蚀电位(E c o r r)和腐蚀电流密度(i c o r r)㊂本文选择性地展示了极化曲线,所展示的极化曲线数据最接近每组样本的平均值㊂2结果与讨论2.1 G O和G R/T i O2粉末的表征2.1.1 F T-I R分析图1为G O和G R/T i O2粉末的F T-I R光谱图㊂由图1可知,G O曲线中3395c m-1处的宽吸收峰为-O H伸缩振动峰,2358c m-1处的伸缩振动对应C-O 键,1733c m-1处的伸缩振动对应C=O键, 1621c m-1位置的伸缩振动对应C=C键,1222c m-1位置的伸缩振动对应C-O-C键,1057c m-1位置的伸缩振动对应C-O H键;G R/T i O2曲线中,535c m-1处的吸收峰对应T i-O-T i键,而1733,1222和1057c m-1处峰强的减弱,说明G O在反应过程中被还原成了G R ㊂图1 G O和G R/T i O2粉末的F T-I R光谱图F i g1F T-I Rs p e c t r a o fG Oa n dG R/T i O2p o w d e r2.1.2S E M分析图2为G O和G R/T i O2粉末的S E M图㊂从图2 (a)可以看出,G O为片状多层结构,具有许多类似于波动丝绸的褶状㊂从图2(b)可以看出,T i O2颗粒分散在G R的片状表面,大部分G R表面可以被T i O2颗粒包裹住,颗粒大小为纳米级,表明T i O2纳米粒子可以成功地接枝到G R表面㊂图2 G O和G R/T i O2粉末的S E M图F i g2S E Mi m a g e s o fG Oa n dG R/T i O2p o w d e r s2.2 MA O-G R/T i O2涂层的表征2.2.1 X R D和元素线扫描分析图3为MA O-G R/T i O2涂层的X R D图谱㊂由图3可知,涂层X R D图谱中可以明显观察到18.6ʎ和29.5ʎ处的M g2T i O4对应峰;此外,还可以观察到明显的M g3(P O4)2㊁M g和M g O的对应峰,但是并未发现典型的T i O2峰,可能是因为T i O2峰和M g2T i O4峰有一定重叠而被掩盖,也有可能是T i O2含量太少㊂图4为MA O-G R/T i O2涂层截面元素的线扫描分析㊂从图4可以看出,以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧,而基体一侧A l元素只稍微高于涂层一侧,区别并不明显㊂这一元素分布和图3中MA O-G R/ T i O2涂层X R D图谱测试结果正好吻合㊂32010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能图3 MA O -G R /T i O 2涂层的XR D 图谱F i g 3X R D p a t t e r no fMA O -G R /T i O 2co a t i ng 图4 MA O -G R /T i O 2涂层截面元素的线扫描分析F i g 4L i n e s c a n n i n g a n a l ys i s o f s e c t i o n a l e l e m e n t s o f MA O -G R /T i O 2co a t i n g 2.2.2 S E M 分析图5展示了镁合金基体上MA O 和MA O -G R/T i O 2涂层的SE M 形貌㊂从图5可以看出,由于涂层生长不均匀,MA O 生长过程中会捕获熔融氧化物和气泡,MA O 涂层和MA O -G R /T i O 2涂层的表面均存在圆形孔隙通道,这是电解质与M g 合金基体接触的通道㊂由于在相对冷的电解质中,熔融氧化物是从数千度的温度下快速冷却的,所以在MA O 涂层和MA O -G R /T i O 2涂层上表面粗糙,并可以观察到微小裂纹㊂MA O -G R /T i O 2涂层表面并未观察到明显的G R /T i O 2材料,只是相比MA O ,表面更加粗糙㊂图5 MA O 和MA O -G R /T i O 2涂层的S E M 图F i g 5S E Mi m a g e s o fMA Oa n dMA O -G R /T i O 2co a t -i n gs 2.3 腐蚀行为评价图6为镁合金基体㊁M A O 涂层和M A O -G R /T i O 2涂层在N a C l 溶液中的典型动电位极化曲线㊂根据T a f e l 外推和线性极化法提取了电化学参数的平均值,结果如表1所示㊂由图6和表1可知,与镁合金基体相比,M A O 涂层和M A O -G R /T i O 2涂层都提高了腐蚀电位,说明涂层的稳定性和有效性优于镁合金基体㊂M A O -G R /T i O 2涂层的腐蚀电位相比镁合金基体和M A O 涂层,提高了48.3%和36.7%㊂这些结果表明,M A O -G R /T i O 2涂层可以显著提高M g 合金基体的耐蚀性能㊂图6 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层在Na C l 溶液中的动电位极化曲线F i g 6P o t e n t i o d yn a m i c p o l a r i z a t i o nc u r v e s o f m a g n e s i u m a l l o y ma t r i x ,MA O c o a t i n g a n d MA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n表1 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层材料的腐蚀特性分析结果T a b l e1A n a l ys i sr e s u l t so fc o r r o s i o nc h a r a c t e r i s t i c s o f m a g n e s i u m a l l o y m a t r i x ,MA O c o a t i n ga n dMA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n 试样腐蚀电位/V 腐蚀电流密度/A ㊃c m -2镁合金基体-1.3981.59ˑ10-5MA O 涂层-1.1423.12ˑ10-7MA O -G O /T i O 2涂层-0.7238.96ˑ10-83 结 论(1)通过溶胶-凝胶法可将纳米T i O 2接枝到GO 表面,但是接枝过程中,G O 被还原成了G R ,生成了G R /T i O 2粉末材料㊂(2)MA O -G R /T i O 2涂层主要由M g 2T i O 4相㊁M g 3(P O 4)2相㊁M g 和M g O 相组成㊂以界面为分界线,涂层一侧T i ㊁P 和O 元素高于基体一侧,基体一侧M g 元素高于涂层一侧,而基体一侧A l 元素只稍微高于涂层一侧㊂(3)MA O -G R /T i O 2涂层的腐蚀电位为-0.723V ,腐蚀电流密度为8.96ˑ10-8A /c m 2,相比镁合金基体和MA O 涂层,腐蚀电位提高了48.3%和36.7%,表明MA O -G R /T i O 2涂层可以显著提高镁合金基体的耐蚀性能㊂参考文献:[1] G u oK W.Ar e v i e wo fm a g n e s i u m /m a g n e s i u ma l l o ys c o r -420102021年第1期(52)卷r o s i o n [J ].R e c e n tP a t e n t so n C o r r o s i o nS c i e n c e ,2011,1(1):72-90.[2] Y a n g K H ,G e rM D ,H w uW H ,e t a l .S t u d y of v a n a d i u m -b a s e d c h e m i c a l c o n v e r s i o n c o a t i ng on t h e c o r r o s i o n r e s i s t -a n c e o fm a g n e s i u ma l l o y [J ].M a t e r i a l sC h e m i s t r y &P h ys -i c s ,2015,101(2-3):480-485.[3] H u a n g YS ,L i uH W.T E Ma n a l y s i s o nm i c r o -a r c o x i d e c o a t i n go n t h e s u r f a c e o fm a g n e s i u ma l l o y[J ].J o u r n a l o fM a t e r i a l sE n -g i n e e r i n g &Pe rf o r m a n c e ,2011,20(3):463-467.[4] J i a ng BL ,G eYF .M i c r o -a r c o x i d a t i o n (M A O )t o i m pr o v e t h e c o r r o s i o n r e s i s t a n c eo fm a g n e s i u m (M g )a l l o ys [J ].C o r r o s i o n P r e v e n t i o n o fM a g n e s i u m A l l o ys ,2013:163-196.[5] W a n g S ,L i uP .T h e t e c h n o l o g y o f p r e p a r i n gg r e e nc o a t i n gb yc o nd u c t i n g m i c r o -a r co x i d a t i o no n A Z 91D m a gn e s i u m a l l o y [J ].P o l i s hJ o u r n a l o fC h e m i c a lT e c h n o l o g y ,2016,18(4):36-40.[6] L iY ,L uF ,L iH L ,e t a l .C o r r o s i o n m e c h a n i s mo fm i c r o -a r co x i d a t i o nt r e a t e db i o c o m p a t i b l eA Z 31m a gn e s i u m a l -l o y i ns i m u l a t e db o d y f l u i d [J ].P r o gr e s s i n N a t u r a lS c i -e n c e :M a t e r i a l s I n t e r n a t i o n a l ,2014,24(5):516-522.[7] N i eR R ,Z h uF ,S h e nL R ,e t a l .E f f e c t so f f i l mt h i c k n e s so n t h e p h a s e c o m p o s i t i o n a n dm i c r o s t r u c t u r e p r o pe r t i e s of m i c r o -a r c o x i d a t i o n c o a t i ng [J ].J o u r n a l o fB i o m e d i c a lE n -g i n e e r i n g,2010,27(2):354-357.[8] Y a n g W ,X uD P ,G u oQ Q ,e t a l .I n f l u e n c eo f e l e c t r o l yt e c o m p o s i t i o no n m i c r o s t r u c t u r ea n d p r o p e r t i e so f c o a t i n gs f o r m e do n p u r eT i s u b s t r a t eb y mi c r oa r co x i d a t i o n [J ].S u r f a c e&C o a t i n g sT e c h n o l o g y,2018,349:522-528.[9] P a kSN ,Y a oZP ,J uKS ,e t a l .E f f e c t o f o r ga n i c a d d i t i v e s o n s t r u c t u r e a n d c o r r o s i o n r e s i s t a n c e o fMA Oc o a t i n g[J ].V a c u u m ,2018,151:8-14.[10] Z h a n g R F ,X i o n g G Y ,H uC Y.C o m p a r i s o no f c o a t i n gp r o p e r t i e so b t a i n e db y MA Oo nm a g n e s i u ma l l o y s i n s i l -i c a t ea n d p h y t i ca c i de l e c t r o l y t e s [J ].C u r r e n t A p pl i e d P h ys i c s ,2010,10(1):255-259.[11] M aY ,L i uN ,W a n g Y ,e t a l .Ef f e c t o f c h r o m a t ea d d i t i v e o nc o r r o s i o nr e s i s t a n c eo fMA Oc o a t i ng so n m a gn e s i u m a l l o ys [J ].J o u r n a l o f t h eC h i n e s eC e r a m i cS o c i e t y ,2011,39(9):1493-1497.[12] S o l d a t o v a E ,B o l b a s o vE ,K o z e l s k a y aA I ,e t a l .T h e e l a s t i c i t yo f c a l c i u m p h o s p h a t eM A Oc o a t i n g s c o n t a i n i n g di f f e r e n t c o n c e n -t r a t i o n s o f c h i t o s a n [J ].I O PC o n f e r e n c eS e r i e s M a t e r i a l sS c i -e n c e a n dE n g i n e e r i n g,2009,544:63-70.[13] G u oP Y ,W a n g N ,Q i nZS ,e ta l .E f f e c to fe l e c t r o l yt e c o m p o s i t i o no n g r o w t h m e c h a n i s m a n ds t r u c t u r eo fc e -r a m i cc o a t i n g so n p u r eT i b yp l a s m ae l e c t r o l yt i co x i d a -t i o n [J ].T r a n s a c t i o n sof M a t e r i a l s &H e a tT r e a t m e n t ,2013,34(7):181-186.[14] S a n k a r aN a r a y a n a nTSN ,P a r k I S ,L e eM H.S t r a t e gi e s t o i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm i c r o a r c o x i d a t i o n (MA O )c o a t e d m a g n e s i u m a l l o y sf o rd e gr a d a b l ei m -p l a n t s :P r o s p e c t s a n d c h a l l e n g e s [J ].P r o gr e s s i n M a t e r i -a l sS c i e n c e ,2014,60:1-71.[15] W a n g C ,C h e nJ ,H e JH ,e t a l .E f f e c t o f e l e c t r o l yt e c o n -c e n t r a t i o no n t h e t r i b o l o g i c a l pe rf o r m a n c e o fMA Oc o a t -i ng s o na l u m i n u ma l l o y s [J ].F r o n t i e r so fCh e mi c a lS c i -e n c e a n dE n g i n e e r i n g,2020,12:1-7.[16] L i uS ,G uL ,Z h a oHC ,e t a l .C o r r o s i o n r e s i s t a n c e o f g r a ph e n e -r e i n f o r c e dw a t e r b o r n e e p o x y c o a t i n gs [J ].J o u r n a l o fM a t e r i a l s S c i e n c e&T e c h n o l o g y ,2016,32(05):425-431.[17] Z h a n g XR ,MaR N ,D u A ,e t a l .C o r r o s i o n r e s i s t a n c e o f o r g a n i c c o a t i n g b a s e do n p o l y h e d r a l o l i g o m e r i c s i l s e s qu i -o x a n e -f u n c t i o n a l i z e d g r a p h e n eo x i d e [J ].A p pl i e dS u r f a c e S c i e n c e ,2019,484:814-824.[18] D e ya b M A ,K e e r a ST.E f f e c t o f n a n o -T i O 2p a r t i c l e s s i z e o n t h e c o r r o s i o n r e s i s t a n c e o f a l k y d c o a t i n g[J ].M a t e r i a l s C h e m i s t r y &P h ys i c s ,2014,146(3):406-411.[19] A oN ,L i uD X ,W a n g SX ,e t a l .M i c r o s t r u c t u r ea n dt r i -b o l o g i c a lb e h a v i o ro fa T i O 2/h B N c o m p o s i t ec e r a m i c c o a t i n g fo r m e dv i am i c r o -a r co x i d a t i o no fT i -6A l -4Va l -l o y [J ].J o u r n a lo f M a t e r i a l s S c i e n c e &T e c h n o l o g y,2016,32(10):1071-1076.[20] M o m e n z a d e h M ,S a n j a b i S .T h e e f f e c t o fT i O 2n a n o pa r t i -c l e c o d e po s i t i o no n m i c r o s t r u c t u r ea n dc o r r o s i o nr e s i s t -a n c e o fe l e c t r o l e s s N i Pc o a t i n g [J ].M a t e r i a l s &C o r r o -s i o n ,2012,63(7):614-619.P r e pa r a t i o na n d c o r r o s i o n r e s i s t a n c e o fm i c r o -a r c o x i d e c e r a m i c c o a t i n g o nm a g n e s i u ma l l o y su r f a c e Y U H a o x u n ,MA T i n gx i a (S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,S o u t h w e s tP e t r o l e u m U n i v e r s i t y ,C h e n g d u610500,C h i n a )A b s t r a c t :MA O -G R /T i O 2co a t i n g w a s p r e p a r e d o n t h e s u r f a c e o fm a g n e s i u ma l l o y b y a d d i n g p o t a s s i u mf l u o r i d e t i t a n a t e a n dG R /T i O 2po w d e r i n t o t h e e l e c t r o l y t e o fm i c r o -a r c o x i d a t i o n r e a c t i o nb y m i c r o -a r c o x i d a t i o nm e t h o d .T h e s u r f a c em o r p h o l o g y a n d s t r u c t u r eo fG R /T i O 2po w d e rw e r e s t u d i e db y S E M a n dF T -I R.S E M ,X R Da n d e l e m e n t a l l i n e s c a n n i n g w e r eu s e d t o s t u d y t h e s u r f a c em o r p h o l o g y ,ph a s e s t r u c t u r e a n d e l e m e n t d i s t r i b u t i o no f MA O -G R /T i O 2c o a t i n g ,a n d t h e c o r r o s i o n r e s i s t a n c e o fMA O -G R /T i O 2co a t i n g w a s s t u d i e db y t h r e e -e l e c t r o d e t e c h n o l o g y .T h e r e s u l t s s h o w e d t h a tn a n oT i O 2co u l db e g r a f t e do n t o t h es u r f a c eo fG O b y s o l -g e lm e t h o dt o g e n e r a t eG R /T i O 2p o w d e r .MA O -G R /T i O 2c o a t i n g w a s m a i n l y c o m p o s e do f M g 2T i O 4p h a s e ,M g 3(P O 4)2p h a s e ,M g a n d M g O p h a s e .T a k i n g t h e i n t e r f a c ea s t h eb o u n d a r y ,T i ,Pa n d Oe l e m e n t so nt h ec o a t i n g si d e w e r eh i g h e r t h a n t h o s e o n t h e s u b s t r a t e s i d e ,a n dM g e l e m e n t s o n t h e s u b s t r a t e s i d ew e r e h i gh e r t h a n t h o s e o n t h e c o a t i n g s i d e .T h e c o r r o s i o n p o t e n t i a l o fMA O -G R /T i O 2co a t i n g w a s -0.723Va n d t h e c o r r o s i o n c u r r e n t d e n -s i t y w a s 8.96ˑ10-8A /c m 2.C o m p a r e dw i t hm a g n e s i u ma l l o y s u b s t r a t e a n dMA Oc o a t i n g ,t h e c o r r o s i o n p o t e n -t i a l o fMA O -G R /T i O 2c o a t i n g w a s i n c r e a s e db y 48.3%a n d 36.7%,w h i c h i n d i c a t e d t h a tMA O -G R /T i O 2co a t -i n g c o u l d s i g n i f i c a n t l y i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm a g n e s i u ma l l o y su b s t r a t e .K e y w o r d s :m a g n e s i u ma l l o y ;m i c r o -a r c o x i d a t i o n ;c o m p o s i t e c o a t i n g;c o r r o s i o n r e s i s t a n c e 52010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能。

Effect of Sn addition on the microstructure and mechanical properties of Mg–6Zn–1Mn (wt.%) alloy

Effect of Sn addition on the microstructure and mechanical properties of Mg–6Zn–1Mn (wt.%) alloy

Effect of Sn addition on the microstructure and mechanical properties of Mg–6Zn–1Mn (wt.%)alloyFugang Qi a ,⇑,Dingfei Zhang b ,c ,Xiaohua Zhang a ,Xingxing Xu b ,caChina Academy of Engineering Physics,Mianyang 621900,PR ChinabCollege of Materials Science and Engineering,Chongqing University,Chongqing 400045,PR China cNational Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,PR Chinaa r t i c l e i n f o Article history:Received 23June 2013Received in revised form 21September 2013Accepted 24September 2013Available online 11October 2013Keywords:Mg–Zn Mg–Sn PrecipitateMechanical propertiesa b s t r a c tThe microstructure and mechanical properties of Mg–6Zn–1Mn alloys with varying Sn contents (0,1,2,4,6,8and 10wt.%)have been examined using optical microscopy (OM),X-ray diffractometer (XRD),scan-ning electron microscopy(SEM),transmission electron microscopy (TEM),hardness test and uniaxial ten-sile test at room temperature,respectively.The samples were prepared by hot-extrusion after casting.The results showed that the as-cast Sn-containing alloys consisted of a -Mg,Mg 7Zn 3,Mn and Mg 2Sn phases.T6treatments could obviously improve the strengths of the as-extruded samples,and the double aged samples exhibited enhanced age-hardening response at an earlier stage compared to the single aged ones.Among them,the 4wt.%Sn containing sample with double peak aging after solution treatment had the highest strengths and moderate elongation.Microstructure characterization indicated that the high-strengths of the peak aged alloys were mainly determined by a synergistic effect on precipitation strengthening of b 01(MgZn 2)and Mg 2Sn precipitates,and the precipitates after double aging were finer than those after single aging.Ó2013Elsevier B.V.All rights reserved.1.IntroductionMagnesium alloys have wide applications in the aerospace,transportation and mobile electronics industries due to their advantages such as low density,high specific strength and stiff-ness,good damping capacity,excellent machinability and good castability [1–4].However,the application of magnesium alloys is still very limited due to the inadequate strength,poor formabil-ity,and high cost of either expensive alloying elements used or special processing technology involved [5–7].Therefore,it is press-ing to develop some low cost and high strength wrought magne-sium alloys for wider applications.Mg–Zn system alloys,which are the most widely used wrought magnesium alloys,have more pronounced response to age harden-ing compared to other magnesium alloys [8–11].The studies on age-hardening and microstructure in this Mg–Zn alloy have been carried out since 1960s [8,9,11–15],and the precipitation sequence from a supersaturated solid solution (SSSS)during aging were re-ported to be [8,9,15,16]:SSSS ?GP zones ?b 01rods,blocks \{0001}Mg ;(MgZn 2)?b 02discs ||{0001}Mg ;laths \{0001}Mg ;(MgZn 2)?b (MgZn or Mg 2Zn 3).Recently,Mg–6Zn–1Mn (wt.%)(ZM61)alloy (hereafter,all compositions are in weight percentsunless stated otherwise),a new promising high-strength magne-sium alloy,has attracted attention due to good castability,excel-lent formability and significant precipitation hardening response [17–20].In our previous study,we reported that T6treatments,especially double aging,could significantly improve the mechani-cal properties of the as-extruded ZM61alloy [17,18].The high-strengths of peak aged ZM61alloy are associated with the precipitation of the rod-shaped transition b 01phase,and double aging promotes the precipitation of b 01phase.Further,the micro-structure and mechanical properties of Mg–x Zn–1Mn alloy were reported [19,20].Accordingly,the Mg–6Zn–1Mn alloy had the best comprehensive mechanical properties.In addition,Mg–Sn alloys are also known as a precipitation-hardening system,which has a relatively high solubility (14.48wt.%)at about 561°C and low solubility at ambient temper-ature [21,22].However,since the Mg 2Sn precipitates forms with a lath-shaped morphology on the (0001)Mg basal planes of the ma-trix,the precipitation hardening response for the Mg–Sn binary al-loy is low [23].Moreover,the peak hardness of Mg–Sn binary alloy occurs after long-term aging,which is not practical for industrial application [23].Sasaki et al.[24–26]reported that a minor addition of Zn can enhance the age-hardening response of the binary alloy by the homogeneous dispersion of the precipitates.It is of great inter-est to explore the possible cumulative effects on precipitation strengthening of MgZn 2and Mg 2Sn precipitates,so as to develop0925-8388/$-see front matter Ó2013Elsevier B.V.All rights reserved./10.1016/j.jallcom.2013.09.156Corresponding author.Tel.:+868163626782.E-mail address:fugangqi@ (F.Qi).1.XRD patterns of the as-cast Mg–6Zn–1Mn–x Sn(x=0,1,2,4,6,8andalloys(the red arrows in thefigure indicate that the intensifying tendency of Mgphase diffraction peak).(For interpretation of the references to colour in thisfigurelegend,the reader is referred to the web version of this article.)micrographs of the as-cast Mg–6Zn–1Mn–x Sn alloys.(a)x=0,(b)x=1,(c)x=2,(d)x=4,(e)x=6,(f)x=as-cast(a)Mg–6Zn–1Mn and(b)Mg–6Zn–1Mn–4Sn alloys,and(c and d)corresponding EDS results of the as-homogenized Mg–6Zn–1Mn–x Sn alloys.(a)x=0,(b)x=1,(c)x=2,(d)x=4,(e)ZG-0.01vacuum induction melting furnace under an Ar atmosphere.The actual chemical compositions of the experimental alloy ingots were analyzed by XRF-800CCDE X-rayfluorescence spectrometer,and the results are shown in Table1. The ingots were then homogenized at330°C for24h followed by the air cooling.Before the ingots were extruded,both the alloy ingots and extrusion die were heated to350°C for60min.The ingots were extruded at350°C with an extrusion ratio of25and a ram speed of2mm/s.Extrusion was conducted under a controlled constant force by a XJ-500Horizontal Extrusion Machine.After extrusion,the extru-sion bars were cooled in open air.Then the extruded bars were solution-treated at 440°C for2h in air atmosphere followed by water quenching(T4).After solution treatment,the following artificial aging treatments(T6)would be divided into sin-gle aging and double aging,respectively.The single aging was carried out at180°C, and the double aging was carried out by pre-aging at90°C for24h,followed by the secondary aging at180°C.Hardness measurements were performed by a micro-Vickers apparatus under a load of50g.The mechanical properties of the as-extruded,single peak aged(180°C/12h) and double peak aged(90°C/24h+180°C/8h)samples were evaluated by tensile tests at room temperature.Tensile tests were carried out using a SANS CMT-5105 electronic universal testing machine.Samples for tensile tests had a cross-sectional diameter of5mm and a gauge length of60mm.the tensile axis paralleled to extru-sion direction and the tests were performed at a cross-heat speed of3mm/min at room temperature.Mechanical properties were determined from a complete 3.Results and discussion3.1.As-cast and as-homogenized microstructuresThe XRD analysis results of the as-cast Mg–6Zn–1Mn alloys with different Sn contents are shown in Fig.1.It can be seen that the Mg–6Zn–1Mn alloy consists of a-Mg,Mg7Zn3and Mn phases, while the alloys with Sn additions consists of four phases,i.e.,a-Mg,Mg7Zn3,Mn and Mg2Sn.It is also evident that the intensity of the Mg2Sn peaks increase with the increasing Sn content.Fig.2shows the optical microstructures of the as-cast alloys with different Sn contents.As shown in Fig.2,the coarse dendritic structure of the as-cast Mg–6Zn–1Mn alloy is generally refined after the Sn addition.The microstructure of the Sn-free alloy mainly consists of a-Mg and eutectic Mg7Zn3phases at the grain boundaries.The addition of Sn leads to the formation of the eutec-tic Mg2Sn phases at the grain boundaries.Furthermore,withHAADF–STEM micrographs of the as-homogenized(a)Mg–6Zn–1Mn and(b and c)Mg–6Zn–1Mn–4Sn alloys,and(d)F.Qi et al./Journal of Alloys and Compounds585(2014)656–666659bright phases includes Mg,Sn and Mn.The bright phase is likely the Mg2Sn phase because the Mg/Sn(in at.%)ratio is approximately 2:1.Fig.4shows the optical microstructure of the as-homogenized alloys with different Sn contents.Discontinuous secondary phases disperse in the alloys,and the secondary phases are identified by means of SEM and EDS.Fig.5a shows the BSE image of the Sn-free 3.2.As-extruded and solution-treated microstructuresMicrostructural changes after the hot extrusion are shown in Figs.6and7.Owing to the deformation and the occurrence of dynamic recrystallization(DRX)during the hot extrusion process, the undissolved blocky eutectic compounds after homogenization treatment are further broken into small particles,which distrib-as-extruded Mg–6Zn–1Mn–x Sn alloys(the extruded direction is horizontal).(a)x=0,(b)x=1,(c)x= 660 F.Qi et al./Journal of Alloys and Compounds585(2014)656–666solution-treated sample consists of a -Mg matrix and Mn phases.For the alloys with Sn content of less than 4%and more than 0%,almost all the secondary phase particles dissolve into the matrix as same as the Sn-free alloy.However,with further increasing Sn content,a lot of undissolved compounds are remained in the matrix.The XRD pattern of the solution-treated Mg–6Zn–1Mn–4Sn alloy is shown in Fig.9d.It is obvious that the solution-treated sample consists of a -Mg matrix,Mn and Mg 2Sn phases.Fig.10a and b shows the BSE and bright-field TEM micrographs in detail of the solution-treated Mg–6Zn–1Mn–4Sn alloy.From the Fig.10,only one spherical phase can be observed.The sizes of these spherical particles range from 10to 70nm,which are randomly distributed within the a -Mg matrix.In addition,No other phases are seen within the a -Mg matrix after solution treatment.Based on XRD result and EDS analysis,we can conclude that the spherical phase is pure Mn particle.3.3.Age-hardening behaviors and peak-aged microstructures Fig.11shows the age-hardening curves of the solution-treated Mg–6Zn–1Mn–x Sn alloys subjected to single aging at 180°C and double aging at 180°C (pre-aging at 90°C for 24h).During the sin-gle aging at 180°C,the hardness of the Mg–6Zn–1Mn alloy in-creases with aging time and reaches a peak hardness after about 12h.The age-hardening curve of the Mg–6Zn–1Mn–4Sn alloy is very similar to that of the Mg–6Zn–1Mn alloy during the single aging,and the time to reach peak hardness is relatively unaffected by the Sn addition.However,the peak hardness increases from 74Hv to 82Hv by increasing the Sn content from 0%to 4%.A slight increase in the hardness for the Mg–6Zn–1Mn alloy is observed by double aging.The peak hardness increases to 85Hv in 8h after starting the secondary aging.The time to reach the peak hardness,8h,is slightly shorter than that for the single aging,12h.Like sin-gle aging,the age-hardening curves of the quaternary alloys are very similar to those of the ternary alloy during the double aging,and the time to reach peak hardness is relatively unaffected bythe Sn addition.Moreover,the peak hardness values increase grad-ually with increasing Sn content.The base hardness for the alloys containing no more than 4%Sn is about 60Hv,while the base hard-ness of the alloys containing more than 4%Sn increases gradually with increasing Sn addition.As mentioned above,almost all the secondary phases for the alloys containing no more than 4%Sn dis-solve into the matrix after solution treatment,while a lot of undis-solved compounds for the alloys containing more than 4%Sn are still remained in the matrix.This suggests that these undissolved compounds after solution treatment mainly contribute to the in-crease of the base hardness.Fig.9b and c and e and f shows the XRD patterns of the Mg–6Zn–1Mn and Mg–6Zn–1Mn–4Sn alloys in single peak aged and double peak aged conditions.As mentioned previously,for the two alloys almost all the Mg–Zn and/or Mg 2Sn phases dissolve into the Mg matrix after solution treatment,which suggests that the uniform solid-solution structure is produced.After T6treatments,MgZn 2precipitates are formed in the Mg–6Zn–1Mn alloy,while the 4%Sn addition bring about the formation of Mg 2Sn precipitates as well as MgZn 2phases as illustrated by XRD patterns.Generally,the MgZn 2precipitation relates to the peak hardness in the Sn-free alloy;while the Sn-containing alloys show a greater magnitude aging response due to a larger amount of precipitations resulting from the Sn addition.Fig.12shows a bright-field TEM and a high resolution TEM (HR–TEM)images of the Mg–6Zn–1Mn–4Sn alloy aged at 90°C for 24h,taken from the [0001]Mg zone axis.This corresponds to the pre-aged condition of the double aging.From the Fig.12a,it can be observed that a number of fine particles ( 9nm)having dark contrast are evenly dispersed in the matrix.The HR–TEM im-age shows a spherical precipitate having 9nm in size in Fig.12b.Clear lattice contrast cannot be seen inside the particle.According to the previous reports [8,27],we can conclude that these fine par-ticles are G.P.zones.Fig.13shows the TEM images of the Mg–6Zn–1Mn–4Sn alloy in single peak aged (180°C/12h)and double peak aged (180°C/8h)(SE)micrographs of the as-extruded (a)Mg–6Zn–1Mn and (b)Mg–6Zn–1Mn–4Sn alloys (the extruded direction of the points indicated in (a and b).conditions.All images are obtained from Fig.13a and b shows the bright-field TEM jected to peak aging by single aging and In both conditions,the microstructure after ner than those after single peak aging.1Mn–4Sn samples have three kinds of Fig.13.One is rod along the [0001]direction second is lying on the (0001)basal plane.studies [8,15,28,29],we can conclude are rod-like b 01and disc-like b 02phases,between the b 01and matrix is coherent,between the b 02and matrix.Therefore as a more enormous impediment to than the b 02precipitate [27].The third is common morphology.In this work,some tates are flaky-like.Fig.13b shows a HR–TEM Mg 2Sn precipitate observed in the single Fourier transform (FFT)pattern obtained taken from the ½11 20 zone axis.Through can be preliminary found that the micrographs of the solution-treated Mg–6Zn–1Mn–x Sn alloys.(a)x =0,(b)x =1,(c)x =2,(d)x =4,(e)x =6,(f)9.XRD patterns of the (a–c)Mg–6Zn–1Mn and (d–f)Mg–6Zn–1Mn–4Sn alloys different states.(a and d)solution-treated,(b and e)Single peak aged at 180°C 12h,and (c and f)double peak aged at 180°C for 8h.[001]Mg2Sn//½11 20Mgand no clear orientation relationshipobserved.It can be concluded there is a certain angle between this Mg2Sn and base level[0001]Mg,otherwise this Mg2Sn phase is ob-served as a rod through the½11 20Mgview direction.Based on the previous studies[21,26],this Mg2Sn precipitate may be parallel to the prismatic plane of the magnesium matrix. many other irregular-shaped Mg2Sn precipitates, is needed to discuss the orientation relationship tates since the reason for this still remains As previously stated,a number of G.P.pre-aging condition.G.P.zones are believed neous nucleation sites for the transitionhigh temperature aging,leading to thetribution offiner precipitates.In addition,like phase for Mg2Sn phase during theand the times to reach the peak hardnessof double peak aging are much shorter than aging,so Mg2Sn precipitates of the doublefiner than those of the single peak agedpeak hardness of the double peak agedthose of single peak aged ones.Furthermore, precipitate b01and b01precipitates occursble peak aged samples than the singleage-hardening is accelerated.In addition,it can be seen that many dispersed in the matrix,which are founditates but not found in disc-like b02precipitates,solution-treated Mg–6Zn–1Mn–4Sn alloy.(a)BSE micrograph and(b)bright-field TEM micrograph,takendiffraction pattern).Fig.11.Age-hardening curves of the Mg–6Zn–1Mn–x Sn(x=0,2,4,6,8and10)alloys subjected to single aging at180°C and double aging at180°C(pre-aging at90°C for24h and secondary aging at180°C).Fig.12.(a)Bright-field and(b)high resolution TEM micrographs of the Mg–6Zn–1Mn–4Sn alloy aged at90°C for24h,taken from3.4.Mechanical propertiesFig.14shows the mechanical properties of the test alloys in the as-extruded,single peak aged (180°C/12h)and double peak aged (90°C/24h +180°C/8h)conditions.It can be seen that Sn addition has a beneficial effect on the mechanical properties of the Mg–6Zn–1Mn alloy.For the as-extruded alloys,the ultimate tensile strength (UTS)and yield strength (YS)increase gradually with increasing Sn content.The alloy containing 4%Sn has the best strengths,i.e.,an UTS of 331MPa and a YS of 272Mpa,which are superior to the commercial high-strength ZK61with an UTS of 305MPa and a YS of 240MPa [30].However,the excessive Sn addi-tion (>4%)results in the decrease of the elongation.As shown in Fig.14,T6treatments result in large increases in the strengths of all the investigated alloys compared to the as-extruded ones.On one hand,with increasing Sn content,the elongation decreases gradually while the UTS and YS significantly increase,and the maximum of the UTS and YS is obtained for the alloy containing 4%Sn.Further increasing Sn content results in a slight reduction of the UTS and YS in the peak-aged conditions.On the other hand,the strengths of the double peak aged samples are higher than that of the single peak aged ones,while the elonga-tions are slightly lower.The mechanical properties of the double peak aged Mg–6Zn–1Mn–4Sn alloy are an UTS of 390MPa,a YS of 378MPa and an elongation of 4.16%,while those of the single peak aged sample are an UTS of 379MPa,a YS of 358MPa and an elongation of 4.24%.These strengths are comparable to those of some T5-treated or T6treated RE-containing magnesium alloys,including Mg–Gd–Y–Zn–Zr [31],Mg–Gd–Y–Nd–Zr [32]and Mg–Y–Sm–Zr [33].The high-strengths of the Mg–Zn–Mn–Sn wrought alloys are mainly determined by grain refinement strengthening and precip-itation strengthening.It is well-known that strengthening via grain size control is particularly effective in magnesium alloys because of the higher Hall–Petch coefficient [34].The strengths of the as-extruded alloys are strongly influenced by the relatively fine grains with an average size of approximately 2.8l m.As shown in Fig.14,the strengths of the as-extruded samples are improved signifi-cantly by the T6aging treatments.After T4treatment,almost all the Mg–Zn and Mg–Sn compounds in the as-extruded alloys with no more than 4%Sn can dissolve into the matrix,which suggests that a uniform and supersaturated solid-solution structure is produced,as shown in Figs.8and 10.Aging the solution-treated samples is necessary so that the fine b 01,b 02and Mg 2Sn precipitates form within the matrix.The precipitate particles act as obstacles to dislocation movement and thereby strengthening the aged alloy.However,when the content of Sn exceeds 4%,some compounds cannot dissolve into the matrix after solution treatment.At subse-quent aging,these undissolved compounds in the matrix will lead to the decrease of the mechanical properties,while they can con-tribute to the increase of the base hardness,resulting in the in-creased hardness values with increasing Sn content.Moreover,the peak hardness of the double peak aged samples is higher than those of the single peak aged ones and the double aging achieves finer microstructure than the single aging,so the strengths of the double aged samples are higher than that of the single agedones.peak aged Mg–6Zn–1Mn–4Sn alloy.(a)Bright-field TEM image of the single peak aged at 180°C for 12h,pattern),(b)HR–TEM image of a Mg 2Sn phase observed in the single peak aged (inset:FFT pattern obtained aged at 180°C for 8h,taken along the ½11 20 zone axis (inset:½11 20 Mgdiffraction pattern)and (d)HAADF–STEM4.ConclusionThe microstructure evolution and mechanical properties of the Mg–6Zn–1Mn–x Sn (x =0,1,2,4,6,8and 10wt.%)alloys subjected to extrusion,single aging and double aging have been investigated by hardness measurements,tensile tests and microstructureanalysis using SEM,XRD and TEM.The following conclusions are obtained:1.The as-cast Mg–6Zn–1Mn alloy mainly consists of a -Mg,Mg 7Zn 3and Mn phases.Sn addition results in the formation of Mg 2Sn phase and the refinement of the eutectic.2.The addition of Sn can clearly improve the mechanical proper-ties of the as-extruded Mg–6Zn–1Mn alloy due to grain refine-ment strengthening.In more detail,with increasing Sn content,the strengths increase gradually while the elongation decreases gradually.3.T6treatments,especially double aging,can markedly improve the strengths of the as-extruded investigated alloys.Among them,the Mg–6Zn–1Mn–4Sn alloy with double peak aging after solution treatment exhibits the highest tensile strength of 390MPa,the highest yield strength of 378MPa and the moder-ate elongation of4.16%.4.The microstructure characterization suggests that the high-strengths of the peak aged alloys are mainly determined by a synergistic effect on precipitation strengthening of the b 01and Mg 2Sn precipitates,and the precipitates of the double aged samples are finer than those of the single aged ones.AcknowledgementsThis work was sponsored by National Great Theoretic Research Project (2007CB613700),National Science &Technology Support Project (2011BAE22B01-3),International Cooperation Project (2010DFR50010,2008DFR50040),Chongqing Science &Technol-ogy Project (2010CSTC-HDLS)and Chongqing Science &Technol-ogy Commission (CSTC2013JJB50006).References[1]A.A.Luo,Int.Mater.Rev.49(2004)13–30.[2]D.Eliezer,E.Aghion,F.H.Froes,Adv.Perform.Mater.5(1998)201–212.[3]J.Wang,S.Gao,P.Song,X.Huang,Z.Shi,F.Pan,J Alloys Comp.509(2011)8567–8572.[4]W.Unsworth,Light Metal Age 45(1987)10–13.[5]Y.Kawamura,K.Hayashi,A.Inoue,T.Masumoto,Mater.Trans.42(2001)1172–1176.[6]D.F.Zhang,H.J.Hu,F.S.Pan,M.B.Yang,J.P.Zhang,Trans.Nonferr.Met.Soc.20(2010)478–483.[7]X.Cao,M.Jahazi,J.P.Immarigeon,W.Wallace,J.Mater.Process.Technol.171(2006)188–204.[8]J.B.Clark,Acta Metall.13(1965)1281–1289.[9]L.Y.Wei,G.L.Dunlop,H.Westengen,Metall.Mater.Trans.A 26A (1995)1705–1716.[10]D.Y.Maeng,T.S.Kim,J.H.Lee,S.J.Hong,S.K.Seo,B.S.Chun,Scripta Mater.43(2000)385–389.[11]J.Chun,J.Byrne,J.Mater.Sci.4(1969)861–872.[12]G.Mima,Y.Tanaka,Mem Fac.Eng.23(1962)93.[13]G.Mima,Y.Tanaka,Aging 1(1971)10.[14]G.Mima,Y.Tanaka,Trans.JIM 12(1971)323–328.[15]X.Gao,J.F.Nie,Scripta Mater.56(2007)645–648.[16]J.Buha,T.Ohkubo,Metall.Mater.Trans.A 39(2008)2259–2273.[17]Q.W.Dai,D.F.Zhang,W.Yuan,G.L.Shi,H.L.Duan,Cailiao Gongcheng (2008)38–42.[18]D.F.Zhang,G.L.Shi,Q.W.Dai,W.Yuan,H.L.Duan,Trans.Nonferr.Met.Soc.18(2008)s59–s63.[19]D.F.Zhang,G.L.Shi,X.B.Zhao,F.G.Qi,Trans.Nonferr.Met.Soc.21(2011)15–25.[20]D.Zhang,X.Zhao,G.Shi,F.Qi,Rare Met.Mater.Eng.40(2011)418–423.[21]C.L.Mendis,C.J.Bettles,M.A.Gibson,C.R.Hutchinson,Mater.Sci.Eng.A 435–436(2006)163–171.[22]T.Massalski,H.Okamoto,Binary Alloy Phase Diagrams,ASM International,Material Park,OH,1990.[23]J.Van Der Planken,J.Mater.Sci.4(1969)927–929.[24]T.T.Sasaki,J.D.Ju,K.Hono,K.S.Shin,Scripta Mater.61(2009)80–83.[25]T.T.Sasaki,K.Oh-ishi,T.Ohkubo,K.Hono,Scripta Mater.55(2006)251–254.[26]T.T.Sasaki,K.Oh-ishi,T.Ohkubo,K.Hono,Mater.Sci.Eng.A 530(2011)1–8.[27]K.Oh-ishi,K.Hono,K.S.Shin,Mater.Sci.Eng.A 496(2008)425–433.[28]L.Y.Wei,G.L.Dunlop,H.Westengen,Metall.Mater.Trans.A –Phys.Metall.Mater.Sci.26(1995)1947–1955.Fig.14.Mechanical properties of the as-extruded,single peak aged (180°C/12and double peak aged (90°C/24h +180°C/8h)Mg–6Zn–1Mn–x Sn (x =0,1,2,4,6,and 10)alloys.(a)Tensile strength,(b)yield strength,and (c)elongation.Compounds 585(2014)656–666665[29]A.Singh,A.P.Tsai,Scripta Mater.57(2007)941–944.[30]Z.Yang,J.Li,J.Zhang,G.Lorimer,J.Robson,Acta Metall.Sin.(Engl.Lett.)21(2008)313–328.[31]X.B.Liu,R.S.Chen,E.H.Han,J.Alloys Comp.465(2008)232–238.[32]K.Zhang,X.-g.Li,Y.-j.Li,M.-l.Ma,Trans.Nonferr.Met.Soc.18(Suppl.1)(2008)s12–s16.[33]D.Q.Li,Q.D.Wang,W.J.Ding,Mater.Sci.Eng.A–Struct.Mater.Prop.Microstruct.Process.448(2007)165–170.[34]J.Bohlen,P.Dobron,J.Swiostek,D.Letzig,F.Chmelik,P.Lukac,K.U.Kainer,Mater.Sci.Eng.A462(2007)302–306.666 F.Qi et al./Journal of Alloys and Compounds585(2014)656–666。

ZM6镁合金的摩擦性能研究

ZM6镁合金的摩擦性能研究

第45卷第2期2019年6月延边大学学报(自然科学版)J o u r n a l o fY a n b i a nU n i v e r s i t y (N a t u r a l S c i e n c e )V o l .45N o .2J u n e 2019收稿日期:20181206*通信作者:任靖日(1960 ),男,博士,教授,研究方向为摩擦学及表面工程.文章编号:1004-4353(2019)02-0181-04Z M 6镁合金的摩擦性能研究尹相春, 任靖日*(延边大学工学院,吉林延吉133002)摘要:以Z M 6镁合金为试验材料,利用正交试验方法和方差分析方法研究了粗糙度㊁转速和载荷对摩擦系数影响的权重顺序以及其对摩擦性能的影响.结果表明:各因素对摩擦系数影响的权重顺序依次为粗糙度㊁转速㊁载荷;转速为30r /m i n 时,摩擦系数随着载荷的增加而增大,随着粗糙度的增大先减小后增大;转速为45r /m i n 时,摩擦系数随着载荷和粗糙度的增大均先减小后增大;转速为60r /m i n 时,摩擦系数随着载荷的增加而减小,随着粗糙度的增大先增大后减小;载荷为35N 时,摩擦系数随着转速的增大先增大后减小;载荷为50N 时,摩擦系数随着转速的增大而增大;载荷为65N 时,摩擦系数随着转速的增大逐渐减小.关键词:正交试验;摩擦系数;粗糙度中图分类号:T H 142.1 文献标识码:AR e s e a r c ho n f r i c t i o n p r o p e r t i e s o fZ M 6m a g n e s i u ma l l o yY I N X i a n g c h u n , R E NJ i n gr i *(C o l l e g e o f E n g i n e e r i n g ,Y a n b i a nU n i v e r s i t y ,Y a n ji 133002,C h i n a )A b s t r a c t :T a k i n g Z M 6m a g n e s i u ma l l o y a s t h e t e s tm a t e r i a l ,t h ew e i g h t s e q u e n c e o f r o u g h n e s s ,r o t a t i o n s pe e d a n d l o a d o nf r i c t i o n c o e f f i c i e n t a n d i t s i n f l u e n c e o n f r i c t i o n p e r f o r m a n c ew e r e s t u d i e db y o r t h o go n a l t e s tm e t h o d a n dv a r i a n c e a n a l y s i s .T h e r e s u l t ss h o wt h a t t h ew e i g h to r d e ro f e a c hf a c t o ro nf r i c t i o nc o e f f i c i e n t i sr o u g h -n e s s ,r o t a t i o n s p e e da n d l o a d .W h e n t h e r o t a t i n g s pe e d i s 30r /m i n ,t h ef r i c t i o nc o e f f i c i e n t i n c r e a s e sw i t h t h e i n c r e a s e o f l o a d ,a n d d e c r e a s e s f i r s t a n d t h e n i n c r e a s e sw i t h t h e i n c r e a s e o f r o ugh n e s s .W h e n t h e r o t a ti n g s p e e d i s 45r /m i n ,t h e f r i c t i o n c o e f f i c i e n t d e c r e a s e s f i r s t a n d t h e n i n c r e a s e sw i t h t h e i n c r e a s e o f l o a da n dr o u g h n e s s .W h e n t h e r o t a t i n g s pe e d i s 60r /m i n ,t h ef r i c t i o n c o e f f i c i e n t d e c r e a s e sw i t h t h e i n c r e a s e o f l o a d ,a n d i n c r e a s e s f i r s t a n d t h e n d e c r e a s e sw i t h t h e i n c r e a s e o f r o ugh n e s s .W h e n t h e l o a di s 35N ,t h e f r i c t i o n c o e f f i c i e n t i n c r e a s e s f i r s t a n d t h e nd e c r e a s e sw i t h t h e i n c r e a s e o f r o t a t i n g s p e e d .W h e n t h e l o a d i s 50N ,t h e f r i c t i o n c o e f f i c i e n t i n -c r e a s e sw i t h t h e i n c r e a s e o f t h e r o t a t i n g s p e e d .W h e n t h e l o a d i s 65N ,t h e f r i c t i o n c o e f f i c i e n t g r a d u a l l y d e c r e a -s e sw i t h t h e i n c r e a s e o f t h e r o t a t i n g s pe e d .K e yw o r d s :o r t h o g o n a l t e s t ;f r i c t i o n c o e f f i c i e n t ;r o u g h n e s s 镁合金具有密度低㊁比强度高等优点,广泛应用于汽车㊁航空等工业领域[1].用镁合金制作的零部件在实际应用过程中,因与其他部件的摩擦,会使其表面光洁度降低,零件尺寸缩小,甚至还会使其结构失效[2];因此,研究镁合金摩擦性能对镁合金摩擦性能的提高及其应用具有重大的意义.目前,有关镁合金摩擦磨损性能的研究主要是针对A Z 系列镁合金进行的.例如:E l -M o r s y 等通过研究A Z 61镁合金的摩擦磨损性能,将A Z 61镁合金的磨损机制分为轻微磨损和严重磨损两类[3].A n 等研究了M g 97Z n 1Y 2和AZ 91镁合金的摩擦磨损性能,将摩擦磨损的过程分为5种磨损机理:延边大学学报(自然科学版)第45卷氧化㊁擦伤㊁剥层㊁热软化和熔融[4].赵旭等研究了载荷和时间对A Z31镁合金磨损性能的影响,结果表明在不同的载荷下,质量磨损量随时间的增加呈现线性增长,载荷越大磨损失重越严重[5].Z M6镁合金具有蠕变性能高㊁耐高温等优异性能,应用广泛.但是,目前对它的研究主要集中在晶粒的细化等方面,而对其摩擦性能研究得较少.因此,本文以Z M6镁合金止推圈摩擦副为研究对象,以粗糙度㊁转速和载荷为参数,通过正交试验研究不同的参数对摩擦系数的影响.1试验设计1.1试验材料与方法试验材料为铸造稀土镁合金Z M6,其力学性能如表1所示.将加工好的试件用砂纸打磨,试验前后用装有无水乙醇的超声波清洗机进行清洗并用烘干机烘干.按照正交试验设计方法设计试验方案,并在室温条件下采用MMW1-A万能摩擦磨损试验机进行干式滑动摩擦磨损试验.表1Z M6镁合金的力学性能表面硬度/H B抗拉强度/M P a屈服强度/M P a伸长率/%16330290101.2正交试验设计1.2.1制定因素水平表在干摩擦条件下,选取粗糙度㊁转速和载荷作为正交试验的因素(用字母A㊁B㊁C表示).根据实际情况,每个因素取3个水平.因素水平表如表2所示.表2试验因素水平表水平粗糙度R a/目转速v/(r/m i n)载荷F/N122045502603035360060651.2.2试验方案在进行正交试验的过程中,由于每个因素的水平数搭配是均衡的,所以在不影响试验结果的前提下尽量减少试验次数[6].因本试验是三因素三水平且彼此间有交互作用的(AˑB㊁AˑC㊁BˑC),因此选用L27(313)型正交表.试验进行27次,每次的试验结果取平均值,并将其作为一个试验指标.正交试验方案和试验结果如表3所示.表3中K i表示任意一列上水平号为i时对应的试验结果之和[7].2试验结果及分析2.1方差分析为了确定各因素对摩擦系数影响的显著程度,对试验数据进行有交互作用的方差分析.利用F检验法对粗糙度㊁转速和载荷进行显著性检验,方差分析结果如表4所示.表4中S S为因素的离差平方和,d f为自由度数,M S为均方(M S=S S/ d f),F为试验结果的显著性检验值(F= M S/M S e),F a为F分布表中的临界值.显著性水平a取0.95,查表可知F0.95(2,26)=0.051㊁F0.95(4,26)=0.174.从表4中的F值可以看出,各因素对摩擦系数影响的排列次序(F值越大表示影响试验结果越大)为(AˑC)>A>(AˑB)> (BˑC)>B>C,所以各因素影响试验结果的权重顺序依次为粗糙度㊁转速㊁载荷.为了确定最优实验方案,对不同因素(A㊁B㊁C)水平进行搭配,结果如表5所示.从表5可以看出,A与B搭配时最优组合为A1B2,B与C搭配时最优组合为B3C1,A与C搭配时最优组合为A1C1.因为在摩擦磨损过程中摩擦系数应取较小的值,因此本文确定最优方案组合为A1B2C1.2.2载荷对摩擦系数的影响由图1可以看出,转速为30r/m i n时,摩擦系数随着载荷的增加而增加.这是因为增加载荷使得粗糙峰发生形变,摩擦副间的接触面积增大,从而使摩擦系数变大.转速为45r/m i n时,摩擦系数随着载荷的增加出现先减小后增大的现象.摩擦系数先减小的原因是,载荷相对较低时Z M6镁合金摩擦副表面间的粗糙度得到改善,并且磨损表面发生氧化反应生成氧化膜;摩擦系数增加的原因是,随着载荷的增加Z M6镁合金摩擦副表面温度升高,使得表明硬度降低并发生黏着磨损,同时生成的氧化膜被破坏.转速为60r/m i n时,摩擦系数随着载荷的增加而减小.这是因为载荷的增加和速度的提高易使试件发生塑性形变,所以摩擦系数减小.281第2期尹相春,等:Z M6镁合金的摩擦性能研究表3正交试验方案和试验结果实验号1A2B3(AˑB)14(AˑB)25C6(AˑC)17(AˑC)28(BˑC)19空10空11(BˑC)212空13空摩擦系数111111*********.2034 211112222222220.3755 311113333333330.2821 412221112223330.1984 512222223331110.1798 612223*********.3110 713331113332220.2779 813332*********.3254 913333332221110.2247 1021231231231230.3958 1121232312312310.1728 1221233123123120.3127 1322311232313120.2723 1422312313121230.2755 1522313121232310.2626 1623121233122310.2617 1723122311233120.2451 1823123122311230.3127 1931321321321320.2983 2031322132132130.2822 2131323213213210.3082 2232131322133210.3524 2332132133211320.3741 2432133211322130.2190 2533211323212130.2028 2633212131323210.3185 2733213212131320.3533 K12.37822.63102.62602.54602.46302.54252.25362.57912.67762.48272.61762.14202.2841K22.51122.44512.44512.39742.54892.69102.62222.54432.58722.48432.36552.92752.8202K32.70882.52212.52712.65482.58632.36472.72242.47482.33342.63122.61512.52872.4939表4方差分析结果差异源S S d f M S F显著性A0.006120.00310.812**B0.001920.00100.256*AˑB0.005540.00140.365*C0.000920.00040.117*AˑC0.019540.00491.286**BˑC0.005340.00130.349*误差e0.059280.0074误差e*0.0985260.0038表5不同因素水平搭配的结果A1A2A3B1B2B3A1A2A3 B10.28700.29340.2962C10.29920.27440.2475C10.22660.30990.2845 B20.22970.27010.3151C20.27680.27650.2963C20.29360.23110.3249 B30.27600.27310.2915C30.30100.26420.2969C30.27260.29600.2935381延边大学学报(自然科学版)第45卷图1 载荷与摩擦系数的关系2.3 转速对摩擦系数的影响由图2可以看出,载荷为35N 时,摩擦系数随着转速的增大出现先增大后减小的现象.摩擦系数先变大的原因是,随着转速的增大滑动的距离也增大,磨损表面产生较多的镁合金颗粒并发生磨粒磨损和黏着磨损;摩擦系数变小的原因是,随着转速的提高,磨损表面产生的摩擦热增高,促进了氧化膜的生成.载荷为50N 时,摩擦系数随着转速的增大而增大,这是因为摩擦副表面间发生了磨粒磨损和黏着磨损.载荷为65N 时,摩擦系数随着转速的增大逐渐减小,这是因为随着转速的增大摩擦副表面温度升高,使试件发生塑性形变,同时加快了氧化膜的生成.图2 转速与摩擦系数的关系2.4 粗糙度对摩擦系数的影响由图3可以看出,转速为30r /m i n 和45r /m i n时,摩擦系数随着粗糙度的增大出现先减小后增大的现象.摩擦系数先减小的原因是,粗糙度较小时摩擦副之间的接触面积较大,运动产生的摩擦热使摩擦表面生成氧化膜;摩擦系数增大的原因是,粗糙度增大时运动过程中产生的镁合金磨屑颗粒增多,使得磨损增大.转速为60r /m i n 时,摩擦系数随着粗糙度的增大出现先增大后减小的现象.摩擦系数增大的原因是,摩擦初期产生的磨屑颗粒较多;摩擦系数减小的原因是,随着粗糙度的增大摩擦副表面粗糙度得到了改善,并且促进了磨损表面氧化膜的生成.图3 粗糙度与摩擦系数的关系3 结论本文研究表明,影响Z M 6镁合金摩擦系数的因素大小顺序为粗糙度㊁转速㊁载荷,试验最优方案为A 1B 2C 1.转速为30r /m i n 时,摩擦系数随着载荷的增加而增大,随着粗糙度的增大先减小后增大;转速为45r /m i n 时,摩擦系数随着载荷和粗糙度的增大均先减小后增大;转速为60r /m i n时,摩擦系数随着载荷的增加而减小,随着粗糙度的增大先增大后减小;载荷为35N 时,摩擦系数随着转速的增大先增大后减小;载荷为50N 时,摩擦系数随着转速的增大而增大;载荷为65N 时,摩擦系数随着转速的增大逐渐减小.本文在研究中仅考虑了粗糙度㊁转速和载荷3个因素对Z M 6镁合金摩擦性能的影响,而对温度㊁硬度等其他因素未能进行研究,因此在今后的研究中我们将充分考虑各种因素的影响,以完善本文研究方案.参考文献:[1] 徐日瑶,刘宏专.镁基合金的活力及其生产[J ].轻金属,1999(11):47-49.[2] 胡耀波,杨生伟,蒙万秋,等.Z K 61镁合金的磨损性能[J ].功能材料,2016,47(10):10157-10161.[3] E L -MO R S Y A W.D r y s l i d i n g w e a r b e h a v i o r o f h o t d e f o r m e d m a g n e s i u m A Z 61a l l o y a si n f l u e n c e db yt h e s l i d i n g c o n d i t i o n s [J ].M a t e r i a l sS c i e n c e &E n -g i n e e r i n g A ,2008,473(1):330-335.[4] A NJ ,L IR G ,L U Y ,e t a l .D r y s l i d i n g w e a rb e -h a v i o ro f m a g n e s i u m a l l o ys [J ].W e a r ,2008,265(1):97-104.[5] 赵旭,黄维刚,郑天群,等.镁合金A Z 31的磨损性能研究[J ].材料工程,2008(5):1-3.[6] 张向伟,金晓怡,周正珠,等.基于正交试验设计的滑动摩擦性能研究[J ].润滑与密封,2015,40(4):65-68.[7] 李云雁,胡传荣.实验设计与数据处理[M ].北京:化学工业出版社,2008.481。

Alloys and Microstructure(铝合金的微观结构)

Alloys and Microstructure(铝合金的微观结构)

High Strength 5xxx Applications
Alloy 5083
LNG
Alloy 5083
RR Car
From 1996 A/CRP Calendar Australian ferry -- alloy 5383
Alloy 5086
Boats
Alloy 5083/5383/5456
• Strengthening Aluminum
– Solid Solution – Work Hardening – Precipitation Hardening
Metallurgy and Industrial Application of Aluminum Alloys – 2014-2015
Metallurgy and Industrial Application of Aluminum Alloys – 2014-2015
13
1xxx/8xxx Alloys: Foil, Packaging, Wire
Alloy 1350 Wire Alloy 1145 Lidding
Alloy 8111 Foil
Alloy 3003
Cookware
Alloy 3105
Building Products
Alloys 3003, 3105
Trailer Sheet
Metallurgy and Industrial Application of Aluminum Alloys – 2014-2015
Alloy 3003
12
Aluminum Flat-Rolled Products
• Plate – 200 mm (8”) down to 6 mm (0.25”)

挤压温度对固相再生ZM6镁合金组织和性能的影响

挤压温度对固相再生ZM6镁合金组织和性能的影响

挤压温度对固相再生ZM6镁合金组织和性能的影响文丽华;任忠先;王宝芹;唐玉玲;刘颖;王金玲【摘要】利用固相再生方法在挤压比为25∶1的条件下,将ZM6镁合金屑分别在350℃、400℃、450℃和500℃温度下制备成试样,进行微观组织观察和力学性能测试.结果表明:当挤压温度为400℃时,ZM6耐热镁合金没有发生再结晶,合金中金属化合物在挤压过程中被打碎,均匀分布在基体中;当挤压温度为450℃和500℃时,ZM6镁合金发生部分动态再结晶;随着挤压温度的提高,合金的抗拉强度和延伸率提高;在挤压温度为500℃,合金的抗拉强度、屈服强度和延伸率分别为300.2 MPa、142.9 MPa和30%.合金室温拉伸断口主要表现为穿晶韧窝断裂.【期刊名称】《黑龙江工程学院学报(自然科学版)》【年(卷),期】2012(026)001【总页数】4页(P48-51)【关键词】固相再生;ZM6镁合金;热挤出;组织;性能【作者】文丽华;任忠先;王宝芹;唐玉玲;刘颖;王金玲【作者单位】黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050【正文语种】中文【中图分类】TG146.2;TG376.2金属镁及其合金是目前可应用的最轻的结构材料,其比强度高、比弹性模量高、阻尼减震性好、导热性好、静电屏蔽性好、机械加工性好、密度低(1.74g/cm3),被广泛应用于航空、航天、汽车、计算机、通讯、家电和国防业[1-3]。

尽管如此,由于受材料制备、加工技术、抗腐蚀性能以及价格等因素的制约,镁合金的应用远远落后于钢铁和铝合金。

21世纪能源和环保问题日益突出,镁合金作为轻质和可回收的材料备受重视。

T型通道挤压变形ZK60镁合金的组织与力学性能

T型通道挤压变形ZK60镁合金的组织与力学性能

B33 T型通道挤压变形ZK60镁合金的组织与力学性能孔晶侯文婷彭勇辉康志新李元元(华南理工大学机械与汽车工程学院 国家金属材料近净成形工程技术研究中心,广东省广州市 510640)摘要:采用一种新型剧塑性变形工艺—T型通道挤压 (TCP) 对ZK60镁合金在673 K温度下以A和Bc两种路径进行1~4道次挤压变形,通过光学显微镜观察了变形镁合金的显微组织。

结果表明,经两种路径TCP变形后晶粒尺寸均明显细化,其中1道次变形后变形过程不均匀,变形量最大部位为试样中间部位的最底部,组织特征为大晶粒和细小晶粒的混合体,大晶粒呈拉长的流线状;随着道次的增加,由于变形过程发生动态再结晶,晶粒不断细化,经4道次变形后试样底部的组织细小均匀,A路径的平均晶粒尺寸由原始铸态的88.5 μm可最小细化至2.4 μm,Bc路径的平均晶粒尺寸则细化至4.6 μm。

对TCP变形镁合金的不同部位以应变速率4×10-3s-1的条件进行室温拉伸,结果表明变形后强度与塑性都得到提高,在相同道次TCP变形后A路径的屈服强度都优于Bc路径,但抗拉强度和塑性却弱于后者,其中以A路径4道次TCP变形后抗拉强度、屈服强度和伸长率分别为305.1 MPa、223.4 MPa和16.4 %,Bc路径分别为312.3 MPa、194.6 MPa和24.8 %;此外,试样最底部的抗拉强度和屈服强度均高于顶部,以Bc路径经2道次变形后底部与顶部的抗拉强度与屈服强度分别相差31.8和39.2 MPa;随着道次增加,试样顶部与底部的变形趋于均匀,在4道次变形后抗拉强度和屈服强度分别只相差3.1和4.6 MPa。

关键词:镁合金;T型通道挤压;剧塑性变形;显微组织;力学性能Microstructure and Mechanical Properties of ZK60 MagnesiumAlloy Processed by T-shape Channel PressingKONG Jing, HOU Wenting, PENG Yonghui,KANG Zhixin, LI Yuanyuan(National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials,School of Mechanical & Automotive Engineering, South China University of Technology,Guangzhou 510640, China)Abstract: ZK60 magnesium alloy was deformed by a new process of severe plastic deformation (SPD) —T-shape channel pressing (TCP) from 1 pass to 4 passes at 673 K using route A and route B c.Microstructure was observed through optical microscope. The experimental results show that TCPed grain size is greatly refined after two routes. Deformation process is heterogeneous after 1 pass only, the biggest deformation is located at the bottom of sample, and microstructure character is combination of large and small grains which large grains are elongated with the shape of streamline. As the passes increased, the grain was refined gradually due to the dynamic recrystallization during deformation. The grains of the bottom are基金项目:广州市科技支撑计划资助项目(2009Z2-D811)作者简介:孔晶,女,在读硕士,师承康志新教授,从事高性能镁合金研究;E-mail:******************。

对双峰织构类型AZ31_镁合金板材力学性能各向异性的分析

对双峰织构类型AZ31_镁合金板材力学性能各向异性的分析

精 密 成 形 工 程第15卷 第8期10 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年8月收稿日期:2023-04-18 Received :2023-04-18基金项目:国家自然科学基金(U1810208)Fund :The National Natural Science Foundation of China(U1810208) 作者简介:樊家杰(1998—),男,硕士生,主要研究方向为变形镁合金塑性加工。

Biography :FAN Jia-jie(1998-), Male, Postgraduate, Research focus: plastic processing of deformed magnesium alloy. 通讯作者:梁伟(1963—),男,博士,教授,主要研究方向为新型镁铝合金开发与加工。

Corresponding author :LIANG Wei(1963-), Male, Doctor, Professor, Research focus: the development and processing of new magnesium-aluminum alloys.引文格式:樊家杰, 鲁辉虎, 张王刚, 等. 对双峰织构类型AZ31镁合金板材力学性能各向异性的分析[J]. 精密成形工程, 2023, 15(8): 10-18.FAN Jia-jie, LU Hui-hu, ZHANG Wang-gang, et al. Analysis on Anisotropy of Mechanical Properties of Bimodal Texture Type 对双峰织构类型AZ31镁合金板材力学性能各向异性的分析樊家杰1,2,鲁辉虎3,张王刚1,2,梁伟1,2(1.太原理工大学 材料科学与工程学院,太原 030024;2.先进镁基材料山西省重点实验室,太原 030024:3.中北大学 机械工程学院,太原 030051) 摘要:目的 制备双峰织构类型的AZ31镁合金板,以改善板材微观组织和弱化基面织构,研究微观组织对力学性能各向异性的影响规律,以提高镁合金板材的成形性能。

热加工工艺期刊论文题目

热加工工艺期刊论文题目

热加工工艺期刊论文题目热加工工艺是指在高温下对金属材料进行塑性变形,从而改变其结构、性能和形状的加工过程。

在机械制造、航空航天、能源等领域都具有重要的应用价值。

本文将就热加工工艺的研究进展进行探讨,着重分析热加工工艺期刊论文的题目,为相关研究提供参考。

一、热加工工艺的研究进展随着热加工工艺的不断发展,其研究内容也越来越广泛,主要分为以下几个方面:1.热加工工艺材料的选择和设计。

热加工工艺通常用于生产高强度、高耐磨和高温度材料。

因此,选择适合的材料和设计充分的热加工方案是十分重要的。

2.热加工工艺的参数优化。

热加工的参数包括温度、变形速率、应变等。

研究者需要通过试验和模拟,确定最优的热加工参数,以提高加工效率和产品质量。

3.热加工工艺对材料性能的影响。

热加工工艺可以改变材料的晶体结构、晶界和微观组织,从而改变其力学性能、物理性能和耐磨性。

因此,对热加工工艺对材料性能的影响进行深入研究,有助于提高材料的性能和可靠性。

4.热加工工艺的控制和监测。

热加工工艺需要通过高温下的塑性变形来实现材料的形状和尺寸的改变,因此需要对热加工工艺过程进行控制和监测,以确保加工质量和产品质量。

二、热加工工艺期刊论文的题目1. Investigation of the Effect of Processing Parameters on Microstructure and Mechanical Properties of TitaniumAlloy Processed by Hot Deformation.这篇论文探讨了热加工工艺对钛合金的组织结构和力学性能的影响,研究了不同的热加工参数对材料微观结构和力学性能的影响。

该研究可以为优化钛合金热加工工艺提供参考。

2. Experimental Investigation and Mathematical Modeling of Hot Forging of a Nickel-Based Superalloy.这篇论文从实验和数学模型两个方面研究热锻镍基高温合金的热加工工艺。

Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys

Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys

Study to Microstructure and Mechanical Properties of Mg ContainingHigh Entropy AlloysRui Li 1, a , Jiacheng Gao 1, b , Ke Fan 1, c1College of Materials Science and Engineering, Chongqing University,Chongqing City, 400030, Chinaa email:cqu_cos@,b email:gaojch@,c email:fanke_524@Key words : high entropy alloy; quasicrystal; microstructure; mechanical propertiesAbstract: In this paper, alloys with compositions of Mg x (MnAlZnCu)100-x (x : atomic percentage; x =20, 33, 43, 45.6 and 50 respectively) were designed by using the strategy of equiatomic ratio and high entropy of mixing. Microstructure and mechanical properties of the new high entropy alloy were studied. The alloys were prepared by induction melting and then were cast in a copper mold in air. The alloy samples were examined by microhardness tester, XRD, SEM, thermal analyzer and testing machine for material strength. Alloys were composed mainly of h.c.p phase and Al-Mn icosahedral quasicrystal phases. The alloys exhibited moderate densities which were from 4.29g·cm -3 to2.20g·cm -3, high hardness (429HV-178HV) and high compression strength (500MPa-400MPa) at room temperature. The extensibility was increased with Mg from 20at% (atomic percentage) to 50at%.IntroductionThe general strategy of developing alloys is selecting one or two metals as the principal components and the other minor elements, such as steels, TiAl intermetallics [1], bulk metallic glasses [2-4]to optimize microstructure and properties. . According to the general strategy of developing alloys, multiprincipal will lead to the formation of intermetallic compounds and other complicated microstructures in alloy preparation, which would make alloys fragile in processing and difficult to analysis [5].The strategy of developing alloys that equiatomic ratio and high entropy of mixing [6, 7] was published in 2004 by two research teams respectively. They found the high entropy alloys have simple microstructures, the number of phases is less than 3 and cubic solution is the main phase. Other researchers studied the mechanical properties of high entropy alloys [8-10]. They found that the alloys had excellent room temperature mechanical properties, some properties were even superior to most of the reported high-strength alloys. For example, the max yield strength of AlCoCrFeNiTi x high entropy alloys was reached 2.26GPa when x is 0.5, and the alloy was ductile [10]; when x is 1.5, the hardness of AlCoCrFeNiTi x alloy could be HV768[11]. High entropy alloys were corrosion resisting, for example, CuTiVFeNiZrCo alloy could not be corroded in HCl(1mol/L), H 2SO 4(1mol/L) and HNO 3(1mol/L) respectively [6].In recent years, the mechanical properties of high entropy alloys were studied widely and deeply, and the components of high entropy alloys were focused on Fe, Co, Cr, Ni, Ti, V, Cu and Al. But there were so few of papers reporting to the other components, like Mg, Mn and Zn. Mg is considered to be one of the next generation light metal engineering materials; the studies of improving mechanical properties of Mg alloys are popular in the world nowadays. The reported high entropy alloys always obtain high hardness and strength, so it is necessary to study Mg containing high entropy alloys. Mg x (MnAlZnCu)100-x alloys (x : atomic percentage; x =20, 33, 43, 45.6 and 50 respectively) were designed to study the microstructure and mechanical properties of Mg containing high entropy alloys in this paper.Materials Science Forum Vol. 650 (2010) pp 265-271Online available since 2010/May/04 at © (2010) Trans Tech Publications, Switzerlanddoi:10.4028//MSF.650.265Background knowledgeHigh entropy of mixing. According to the Gibbs phase rule, F=C−P+1 (F: degree of freedom, C: number of components, and P: number of phase), and the maximum number of equilibrium phases in the C components system at constant pressure is P=C+1. In this study, the P should be 6.Following Boltzmann’s theory, the mixing entropy of regular solution alloys which contain n-elements is as follows:1ln n mix i ii S R c c ==−∑ (1)11ni i c ==∑,i c is mole percent of component, and R is gas constant. The entropy of mixing reaches maximum when the alloy is at equiatomic ratio. As following is the formula of Gibbs free energymix mix mix G H TS =− (2)mix H is the enthalpy of mixing and T is the absolute temperature. mix H and mix S are competing in equation (2). The high entropy of mixing can significantly decrease the free energy. It reduces the tendency of order and segregate, and also makes random solid solution form more easily than intermetallics or other ordered phases, especially at high temperature [12-14].Al-Mn icosahedral quasicrystal. Quasicrystal phase was found by Shechtman in 1982 [15], which was always icosahedral and obtained high hardness, high anticorrosion and heat-resistance [16].Al-Mn phase was an icosahedral quasicrystal phase which had been discovered by quenching rapidly [15]. It was a heat-unstable product of rapid solidification. High quenching rate was needed to avoid equilibrium phases appearing in the rapid quenching [17].Experimental proceduresSamples preparation. The alloy ingots with nominal composition of Mg x (MnAlZnCu)100-x (x : atomic percentage; x =20, 33, 43, 45.6 and 50 respectively) were mixed by pure metals in magnesium oxide pots and prepared by induction melting with a high purity argon atmosphere. Rabbling 2-3 minutes after all metals were melted, shut down the power, and then the melts were cast in a copper mold in air. The alloy ingots were cut to Φ10mm×10mm column.Test methods. The densities and hardness of alloy samples were tested by Archimedes principle and microhardness tester. The microstructures of as-cast samples were characterized by a D/Max-2000 x-ray diffraction (XRD). The morphologies of alloys were examined by a TESCAN VEGA Ⅱ LMU scanning electron microscope (SEM). The mechanical properties at room temperature were tested by Gleeble 1500. Thermal analysis was tested by STA449C thermal analyzer. Results and discussionsMicrostructures of Mg x (MnAlZnCu)100-x alloys. The thermal analysis results were shown in fig 1. Mg 20(MnAlZnCu)80 was melted at about 975K, and the other alloys were melted at about 875K. There were weak peaks at about 625K except Mg 20(MnAlZnCu)80. The temperature of peaks was almost at the melting point of Mg 7Zn 3, the XRD results were agreeing with the results of thermal analysis. According to the DSC result of Mg 20(MnAlZnCu)80, it could be deduced that the Al-Mnquasicrystal phase in the high entropy alloy was heat-stable. It was quite different from the Al-Mn quasicrystal which was obtained by rapid quenching process.Fig. 1 DSC curves of Mg x (MnAlZnCu)100-x alloysThe XRD patterns were shown in fig 2. According to equation (1), the entropy of mixing reached maximum when the alloy was equiatomic ratio, so the entropy of mixing was decreasing with the increase of atomic percentage of Mg. The effect of high entropy of mixing was most significant in Mg 20(MnAlZnCu)80 alloy, simple solid solution phases were formed prior to complex intermetallic phases. So, only h.c.p and Al-Mn icosahedral quasicrystal phases were found in Mg 20(MnAlZnCu)80. The high confusion of atoms in Al-Mn system was kept by the effect of high entropy of mixing, and the quasicrystal phases were formed in Mg 20(MnAlZnCu)80 alloy with a moderation cooling speed. For the decrease of mixing entropy, the phases in Mg x (MnAlZnCu)100-x were complex. The number of phases in the alloys except Mg 20(MnAlZnCu)80 was increased to 4, which were h.c.p phase, icosahedral phase, Mg, and Mg 7Zn 3.Fig. 2 XRD patterns of Mg x (MnAlZnCu)100-x alloysThe SEM images of as-cast Mg x (MnAlZnCu)100-x alloys were shown in fig 3. The dark flower phase was distributed dispersedly in the base phase, which was confirmed to be Al-Mn icosahedral quasicrystal by electron probe. The widths of flower phase were fewer than 5µm. The base phase wasa solid solution, which was h.c.p phase and made up by five metal elements. The morphologies of Mg x (MnAlZnCu)100-x except Mg 20(MnAlZnCu)80 were complex.Fig. 3 SEM images of Mg x (MnAlZnCu)100-x alloys: (a) Mg 20(MnAlZnCu)80 (b) Mg 33(MnAlZnCu)67(c) Mg 43(MnAlZnCu)57 (d) Mg 45.6(MnAlZnCu)55.4 (e) Mg 50(MnAlZnCu)50Mechanical properties of Mg x (MnAlZnCu)100-x alloys. The results of compression tests were shown in fig 4. The basic mechanical properties were listed in table 1. According to the tested results, Mg x (MnAlZnCu)100-x alloys exhibited high compressive strength, but the plasticity of alloys was bad.The alloys were fragile except Mg 50(MnAlZnCu)50, and Mg 50(MnAlZnCu)50 alloy could be deformed1.80% plastically.Solution strengthening and quasicrystal dispersion strengthening were the main strengthening mechanics of Mg x (MnAlZnCu)100-x alloys. The effect of solution strengthening was most signification in Mg 20(MnAlZnCu)80 for the maximum entropy of mixing. High confusion atoms in the alloys were kept by effect of high entropy, and the alloys were formed as super solid solution. For the atomic radiuses of components were different dramatically, the distortion energy of lattice was very high. Dislocations in alloys were hard to move, so the strengths of alloys were high. There were a few slip systems in the lattice of h.c.p phase, it caused the bad plasticity of alloys. The mixing entropy was decreased with the increase of atomic percentage of Mg, so the effect of solution strengthening was also decreased. It might cause the plasticity improving in Mg 50(MnAlZnCu)50. The quasicruystal phases were hard and fine, they were distributed uniformly in base phases, and the compressive strength of alloys could be enhanced by quasicrystal dispersion strengthening. According to fig 3, it could be deduced that the effective of quasicrystal dispersion strengthening was most signification in Mg 43(MnAlZnCu)57 alloy.Fig. 4 Compressive true stress-strain curves of Mg x (MnAlZnCu)100-x alloysTable 1 Compressive mechanical properties of Mg x (MnAlZnCu)100-x alloys at room temperatureAlloysE (GPa) σy (MPa) σmax (MPa) ε (%) Mg 20(MnAlZnCu)8013.01 428 428 3.29 Mg 33(MnAlZnCu)6712.82 437 437 3.41 Mg 43(MnAlZnCu)5713.20 500 500 3.72 Mg 45.6(MnAlZnCu)54.411.87 482 482 4.06 Mg 50(MnAlZnCu)5011.18 340 400 4.83The densities and hardness of Mg x (MnAlZnCu)100-x alloys were shown in fig 5 and fig 6 respectively. Mg x (MnAlZnCu)100-x alloys exhibited moderate densities (4.29g·cm -3-2.20g·cm -3) and high hardness (431HV-178HV). The high hardness might be caused by effect of rapid solution and quasicrystal phase. According to the results, the relationship of densities and atomic percentage magnesium could be expressed by Y=5.72-0.07X. And the relationship of hardness and atomic percentage magnesium could be expressed by Y=588-8X.Fig. 5 Densities of Mg x (MnAlZnCu)100-x alloysFig. 6 Hardness of Mg x (MnAlZnCu)100-x alloysConclusions(1) Mg x (MnAlZnCu)100-x alloys were designed by using the strategy of equiatomic ratio and high entropy of mixing. The alloys were multiphase and crystalline. Mg 20(MnAlZnCu)80 was consisted of h.c.p phase and Al-Mn icosahedral quasicrystal phase. And the total number of phases was much smaller than the maximum equilibrium number allowed by the Gibbs phase rule.(2) Mg x (MnAlZnCu)100-x alloys have a high compressive strength (500MPa-400MPa), plasticity (3.29%-4.83%), and high hardness (431HV-178HV). The densities of alloys were moderate (4.29g·cm -3 to 2.20g·cm -3). Solution strengthening and quasicrystal dispersion strengthening were the strengthening mechanics of the alloys.(3) The Al-Mn icosahedral quasicrystal phase formed in Mg x (MnAlZnCu)100-x alloys without rapidly quenching. The quasicrystal phase in this kind of alloy was heat-stable, which was quite different from the heat-unstable Al-Mn quasicrystal, which was prepared by rapid quenching process.AcknowledgementsThis project is supported by Hi-Technology Research and Development Program of China (863), SN: 2008AA0312.References[1]G.L.Chen, C.T.Liu: Int.Mater.Rev Vol.46 (2001), p.253[2] A.Peker, W.L.Johnson: Appl.Phys.Lett Vol.63(1993), p.2342[3] A.Inoue, A.Takeuchi: Mater.Sci.Eng.A Vol.375-377(2004), p.16[4]W.H.Wang, C Dong and C H Shek: Mater.Sci.Eng.R Vol.44(2004), p.45[5] A.L.Greer: Nature Vol.366(1993), p.303[6]J.W.Yeh, S.K.Chen, S.J.Lin, J.Y.Gan, T.S.Chin, T.T.Shun, C.H.Tsau and S.Y.Chang:Adv.Eng.Mater Vol.6(2004), p.299[7] B.Cantor, I.T.H.Chang, P.K.Night and A.J.Vincent: Mater.Sci.Eng.A Vol.375-377 (2004), p.213[8]X.F.Wang, Y.Zhang, Y.Qiao and G.L.Chen: Intermetallics Vol.15(2007), p.357[9]Y.J.Zhou, Y.Zhang, Y.L.Wang and G.L.Chen: Mater.Sci.Eng.A Vol.454-455(2007), p.260[10]Y.J.Zhou, Y.Zhang, Y.L.Wang and G.L.Chen: Appl.Phys.Lett Vol.90(2007), p.181904[11]Y.J.Zhou, Y.Zhang, Y.L.Wang and G.L.Chen: Chinese Journal of Materials ResearchVol.22(2008), p.461[12]C.J.Tong, Y.L.Chen, S.K.Chen, J.W.Yeh, T.T.Shun, C.H.Tsau, S.J.Lin and S.Y.Chang:Metall.Mater.Trans.A Vol.36(2005), p.881[13]K.A.Porter, K.E.Easterling: Phase Transformation in Metals and Alloys(Chapman and Hall,London 1981).[14]F.R.Boer, P.D.G.Ettifor: Cohesion in Metals: Transition Metal Alloys, Vol.1(North-Holland,Amsterdam 1989).[15]D.Shechtman, I.Blech, D.Gratias and J.W.Cahn: Phys.Rev.Lett Vol.53(1984), p.1951[16]S.S.Kang, J.M.Dubors: Phil.Mag.A Vol.66 (1992), p.151[17]J.Bigot, K.Yu-Zhang and M.Harmelin: Mater.Sci.Eng Vol.99(1988), p.453Energy and Environment Materials10.4028//MSF.650Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys10.4028//MSF.650.265DOI References[6] J.W.Yeh, S.K.Chen, S.J.Lin, J.Y.Gan, T.S.Chin, T.T.Shun, C.H.Tsau and S.Y.Chang: Adv.Eng.Mater Vol.6(2004), p.299doi:10.1002/adem.200300567[12] C.J.Tong, Y.L.Chen, S.K.Chen, J.W.Yeh, T.T.Shun, C.H.Tsau, S.J.Lin and S.Y.Chang:Metall.Mater.Trans.A Vol.36(2005), p.881doi:10.1007/s11661-005-0283-0。

稀土镁合金

稀土镁合金

稀土镁合金镁合金是工程应用中最轻的金属结构材料,具有密度低、比强度高、比刚度高、减震性高、易加工、易回收等优点,在航天、军工、电子通讯、交通运输等领域有着巨大的应用市场,特别是在全球铁、铝、锌等金属资源紧缺大背景下,镁的资源优势、价格优势、产品优势得到充分发挥,镁合金成为一种迅速崛起的工程材料。

面临国际镁金属材料的高速发展,我国作为镁资源生产和出口大国,对镁合金开展深入研究和应用前期开发工作意义重大。

中文名稀土镁合金外文名containing magnesium alloy含量稀土元素优点密度低、比强度高、比刚度高市场航天、军工、电子通讯出口大国中国材料工程材料目录1简介2作用3常用元素▪ Y▪ Ce▪ Nd▪ Gd▪ La4参考文献1简介RE containing magnesium alloy泛指含有稀土元素(rare earth)的镁合金。

镁合金是工程应用中最轻的金属结构材料,具有密度低、比强度高、比刚度高、减震性高、易加工、易回收等优点,在航天、军工、电子通讯、交通运输等领域有着巨大的应用市场,特别是在全球铁、铝、锌等金属资源紧缺大背景下,镁的资源优势、价格优势、产品优势得到充分发挥,镁合金成为一种迅速崛起的工程材料。

面临国际镁金属材料的高速发展,我国作为镁资源生产和出口大国,对镁合金开展深入研究和应用前期开发工作意义重大。

然而普通镁合金强度偏低、耐热耐蚀等性能较差仍然是制约镁合金大规模应用的瓶颈问题。

大部分稀土元素与镁的原子尺寸半径相差在±15%范围内,在镁中有较大固溶度,具有良好的固溶强化、沉淀强化作用;可以有效地改善合金组织和微观结构、提高合金室温及高温力学性能、增强合金耐蚀性和耐热性等;稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用;稀土元素还有很好的时效强化作用,可以析出非常稳定的弥散相粒子,从而能大幅度提高镁合金的高温强度和蠕变抗力。

因此在镁合金领域开发出一系列含稀土的镁合金,使它们具有高强、耐热、耐蚀等性能,将有效地拓展镁合金的应用领域。

轧制方式对ZK60_镁合金组织与性能的影响

轧制方式对ZK60_镁合金组织与性能的影响

第15卷 第12期 精 密 成 形 工 程收稿日期:2023-01-06 Received :2023-01-06基金项目:国家自然科学基金(U20A201792)Fund :The National Natural Science Foundation of China (U20A201792)引文格式:薄东明, 卢遥, 孙静娜, 等. 轧制方式对ZK60镁合金组织与性能的影响[J]. 精密成形工程, 2023, 15(12): 1-11. BO Dong-ming, LU Yao, SUN Jing-na, et al. Effect of Rolling Methods on Microstructure and Properties of ZK60 Magnesium Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(12): 1-11. *通信作者(Corresponding author ) 薄东明1,卢遥2,孙静娜1,黄华贵1*,邓关宇3(1.燕山大学 国家冷轧板带装备及工艺工程技术研究中心,河北 秦皇岛 066004;2.苏州汇川技术有限公司,江苏 苏州 215100;3.昆士兰大学 机械及矿业工程学院,昆士兰 4072) 摘要:目的 通过显微组织表征和拉伸性能测试等方法,研究轧制温度、多道次累积压下率及轧制路径对ZK60镁合金组织演变和力学性能的影响。

方法 通过在不同温度(300、340、380、420 ℃)与同一多道次累积压下率下进行轧制实验,明确了后续轧制实验的轧制温度。

随后在同一温度、单个道次压下率为10%、不同累积压下率下进行多道次单向轧制及交叉轧制实验,并对轧制后试样的力学性能及微观组织进行分析。

结果 当轧制温度为380 ℃、累积压下率为40.1%时,材料动态再结晶程度最大,平均晶粒尺寸减小为15.48 μm ,合金抗拉强度和断后伸长率最大,分别为301.46 MPa 和20.56%。

在线加热轧制Mg-6Al-1Sn-Mn板材显微组织及力学性能

在线加热轧制Mg-6Al-1Sn-Mn板材显微组织及力学性能

第51卷第11期2020年11月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.51No.11Nov.2020在线加热轧制Mg-6Al-1Sn-Mn 板材显微组织及力学性能刘强1,2,宋江凤1,2,赵华1,2,肖毕权1,2,潘复生1,2(1.重庆大学材料科学与工程学院,重庆,400044;2.重庆大学国家镁合金工程技术研究中心,重庆,401123)摘要:通过对挤压态Mg-6Al-1Sn-Mn 合金(AT61M)板材进行在线加热轧制,研究150,200和250°C 这3种温度下轧制板材显微组织和力学性能的变化规律。

研究结果表明:在线加热轧制能够提高AT61M 板材的轧制性能,轧制温度升高,能促进柱面及锥面等非基面滑移更多地激活,板材塑性增强,且促进再结晶而使组织均匀细化,平均晶粒粒径从8.1μm 减小到5.9μm ;板材沿轧制方向的屈服强度及抗拉强度随着轧制温度升高而增加,在较高温度下,轧板沿着横向(TD)的屈服强度、抗拉强度及伸长率都比轧向(RD)的高;在250°C 轧制后,板材横向(TD)的屈服强度约为222.1MPa ,抗拉强度约为342.2MPa ,伸长率约为8.8%,表现出最优的综合力学性能。

关键词:AT61M 镁合金板材;在线加热轧制;显微组织;力学性能中图分类号:TG146.2+2文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2020)11-3159-10Microstructure and mechanical properties of Mg-6Al-1Sn-Mnsheets prepared by on-line heating rollingLIU Qiang 1,2,SONG Jiangfeng 1,2,ZHAO Hua 1,2,XIAO Biquan 1,2,PAN Fusheng 1,2(1.College of Materials Science and Engineering,Chongqing University,Chongqing 400044,China;2.National Engineering Research Center for Magnesium Alloy,Chongqing University,Chongqing 401123,China)Abstract:The microstructure and mechanical properties of on-line heating rolled of extruded Mg-6Al-1Sn-Mn alloy(AT61M)sheets were investigated at 150,200and 250°C.The results show that the on-line heating rolling technology can effectively improve the rolling ability of AT61M sheets.With the increase of the rolling temperature,the non-basal slips such as prismatic and pyramidal slip are activated greatly,leading to the enhanced plasticity.Meanwhile,the recrystallization is promoted due to the operation of non-basal slips,and the average grain size reduces from 8.1μm to 5.9μm.The yield strength and ultimate tensile strength of rolled sheets alongDOI:10.11817/j.issn.1672-7207.2020.11.019收稿日期:2020−08−31;修回日期:2020−10−22基金项目(Foundation item):国家自然科学基金资助项目(52071036,51701027);国家重点研发计划项目(2017YFF0209100,2016YFB0101700,2016YFB0301100);中央高校基本科研专项资金资助项目(2020CDJQY-A002)(Projects(52071036,51701027)supported by the National Natural Science Foundation of China;Projects(2017YFF0209100,2016YFB0101700,2016YFB0301100)supported by the National Key Research and Development Program of China;Project(2020CDJQY-A002)supported by the Fundamental Research Funds for the Central Universities)通信作者:宋江凤,博士,副教授,从事镁合金铸造热裂纹和轧制边裂研究;E-mail:**********************.cn第51卷中南大学学报(自然科学版)the rolling direction increase with the increase of the rolling temperature,and the yield strength,ultimate strength and elongation along the transverse direction(TD)are better than those in the rolling direction(RD)at relative high temperature.After rolling at250°C,the yield strength,ultimate tensile strength and elongation in TD are222.1 MPa,342.2MPa and8.8%,respectively,displaying the best comprehensive mechanical properties.Key words:AT61M magnesium alloy plate;on-line heating rolling;microstructure;mechanical properties镁合金作为金属结构材料,因其具有密度低、比强度高以及较强的导热导电性、电磁屏蔽性以及阻尼减震性等优点,在交通、3C通讯、国防军工等诸多领域具有广阔的应用前景[1−5]。

屑挤压ZM6-3.5Ce镁合金的组织和力学性能

屑挤压ZM6-3.5Ce镁合金的组织和力学性能

屑挤压ZM6-3.5Ce镁合金的组织和力学性能文丽华;宁慧燕;翁江翔;孙圣迪;王东胜;毕凤阳;徐莉【摘要】采用屑挤压法合成ZM6镁合金废屑和Mg-Ce中间合金屑制成棒材,研究Mg-Ce中间合金屑形状对合成镁合金棒的组织和性能影响,并讨论其断裂行为.结果表明:屑挤压后,Mg-Ce中间合金屑没有被打碎,合金棒材的力学性能较差.相比较而言,含w(Ce)=3.5%(屑状)的ZM6镁合金综合性能好一些,抗拉强度为180 N/mm2,伸长率为5.5%,试样的断裂方式为脆性断裂.【期刊名称】《轻合金加工技术》【年(卷),期】2018(046)006【总页数】4页(P52-55)【关键词】ZM6镁合金;Mg-Ce中间合金;热挤压;组织;力学性能【作者】文丽华;宁慧燕;翁江翔;孙圣迪;王东胜;毕凤阳;徐莉【作者单位】黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050;黑龙江工程学院机电工程学院,黑龙江哈尔滨150050【正文语种】中文【中图分类】TG146.22镁合金作为金属结构材料之一,具有密度低、比强度和比刚度高、导热性好、阻尼减震性好、电磁屏蔽效果佳、机械加工性能优良、零件尺寸稳定等优点[1]。

镁合金应用于航空航天、汽车、计算机、电子、通讯和家电等行业[2]。

但由于镁合金高温强度和高温抗蠕变性能较差,限制了镁合金在高温条件下的应用。

在镁合金中加入稀土元素后能显著提高合金的强度和耐热温度[3]。

随着镁合金应用范围的不断扩大,将产生大量的工艺废料和废屑。

屑挤压是将镁合金边角料或回收料加工成屑,加入适量的中间合金,经塑性变形直接成形。

具体工艺为先冷压或热压,再在300℃~500℃下热挤出成形。

热处理对ZM6镁合金TIG焊后组织性能的影响

热处理对ZM6镁合金TIG焊后组织性能的影响

热处理对ZM6镁合金TIG焊后组织性能的影响张铁磊;吉泽升;赵振华【摘要】Tungsten inert gas welds were performed on cast ZM6 magnesium alloy and T6 heat treatment was carried out followed. The microstructures of welded joints and heat treated joints were investigated by optical and scanning electron microscopy. The microhardness and tensile strength were determined. The results demonstrate that after solution treatment at 540℃, the compounds in the grain boundary dissolve into the matrix. After aging at 200℃for 16 h, three kinds of precipitates appear. The microhardness of weld seam and base metal reaches the maximum, which are 85HV and 81HV, respectively. The fracture locations of heat treated specimens in the tensile test are near the fusion zone. The heat treated specimens show the ultimate tensile strength of 260 MPa. Compared with not heat­treated of 160 MPa, the tensile strength of heat treated specimens is improved significantly. The tensile fracture of heat treated specimen surface shows two different areas, which are cleavage fracture and dimple­cleavage mixed fracture, respectively.%采用钨极氩弧焊对ZM6铸造镁合金进行焊接,并对其进行了T6热处理,利用光学显微镜及扫描电镜对焊后及热处理后的焊接接头显微组织进行观察,对试样进行显微硬度和抗拉强度测试。

Sn对时效态ZM61镁合金高温力学性能的影响

Sn对时效态ZM61镁合金高温力学性能的影响

Sn对时效态ZM61镁合金高温力学性能的影响唐甜;张丁非;孙静;胡光山;胥钧耀;潘复生【摘要】利用金相显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)和高温拉伸对时效态ZM61‐xSn(x=0,6,8,10,质量分数/%,下同)合金的高温拉伸性能及断裂机制进行了研究。

结果表明:ZM61‐xSn(x=6,8,10)合金的物相由α‐Mg ,α‐Mn ,MgZn2,Mg2 Sn相组成。

添加Sn元素可有效细化ZM61合金组织,提高合金高温强度,但降低合金塑性。

ZM61‐xSn(x=6,8,10)合金在300℃下拉伸的抗拉强度分别为149,140,145MPa ,较相同温度下拉伸的ZM61合金的抗拉强度分别提高了26%,17%,23%。

ZM61‐xSn(x=0,6,8,10)合金在300℃下拉伸的伸长率分别为39.95%,5.65%,7.01%和6.33%。

拉伸温度对ZM61‐xSn(x=6,8,10)合金的断裂机制产生显著影响。

当拉伸温度低于220℃,合金为穿晶断裂;高于220℃时,合金变为沿晶断裂。

%The elevated temperature mechanical properties and fracture mechanisms of as‐aged ZM61‐xSn(x=0 ,6 ,8 ,10 ,massfraction/% )alloys are investigated by optical microscope (OM ) ,X‐ray dif‐fraction(XRD) ,scanning electron microscope (SEM ) and high temperature tensile test .The results show that the phase compositions of ZM61‐xSn(x=6 ,8 ,10)alloys areα‐Mg ,α‐Mn ,MgZn2 and Mg2Sn phases .The Sn element can refine the microstructure ,improve the high temperature tensile strength , but deteriorate the elongation of ZM61 alloy .The ultimate tensile strength of ZM61‐xSn(x=6 ,8 ,10) alloys with tensile test at 300℃are 149 ,140 ,145MPa ,compared with ZM61 alloy which is carriedout tensile test at the same temperature ,the tensile strength increased26% ,17% and 23% ,respectively . The elongation of ZM61‐xSn(x=0 ,6 ,8 ,10)alloys with tensile test at 300℃ are 39 .95% ,5 .65% , 7 .01% and 6 .33% .The tensile temperature exerts dominating effect for ZM 61‐xSn(x=6 ,8 ,10)al‐loys on the fracture mechanism .As t ensile temperature lower than 220℃ ,the alloys show transgran‐ular fracture characteristics .The alloys show intergranular fracture characteristics when the tensile temperature is higher than 220℃ .【期刊名称】《材料工程》【年(卷),期】2016(044)011【总页数】7页(P9-15)【关键词】ZM61-Sn合金;显微组织;高温拉伸性能;断裂机制【作者】唐甜;张丁非;孙静;胡光山;胥钧耀;潘复生【作者单位】重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400045; 国家镁合金材料工程技术研究中心,重庆400044【正文语种】中文【中图分类】TG146.2+2镁合金作为最轻的金属结构材料,具有比强度高,导热减震性好、电磁屏蔽性能优良等特点,在航空航天,电子电工及汽车工程等领域得到广泛的应用[1-4]。

镁及其合金的电磁屏蔽性能研究

镁及其合金的电磁屏蔽性能研究

镁及其合金的电磁屏蔽性能研究张志华;潘复生;陈先华;刘娟【摘要】The electromagnetic shielding properties of pure magnesium, magnesium alloys and the difference with other metals were investigated by using the coaxial cable method. The results show that electromagnetic shielding property of pure magnesium is great, and those of magnesium alloys vary with the alloy elements. Among magnesium alloys, Mg-Al-Zn based alloys are the best for electromagnetic shielding. The cause of different shielding properties among different materials and the effects of thickness, electric conductivity on electromagnetic shielding property were also discussed.%采用同轴线法研究了纯镁及常见镁合金的电磁屏蔽性能,比较了纯镁、不同系列镁合金与其他金属电磁屏蔽性能的差别.结果表明:纯镁具有良好的电磁屏蔽性能,合金化后,根据合金元素的不同,屏蔽性能有所改变,其中AZ系镁合金具有最高的屏蔽效能.同时讨论了不同材料电磁屏蔽性能差异的原因以及厚度、电导率对电磁屏蔽性能的影响.【期刊名称】《材料工程》【年(卷),期】2013(000)001【总页数】6页(P52-57)【关键词】镁;镁合金;电磁屏蔽;屏蔽效能;电导率【作者】张志华;潘复生;陈先华;刘娟【作者单位】重庆大学材料科学与工程学院,重庆400044;重庆大学材料科学与工程学院,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学材料科学与工程学院,重庆400044【正文语种】中文【中图分类】TG146.2+2随着科技的发展,电磁波引起的电磁干扰与电磁兼容问题日益严重。

ZK60镁合金热压变形和退火中的组织与织构演变_王敏

ZK60镁合金热压变形和退火中的组织与织构演变_王敏
常 温 下 镁 合 金 变 形 时 滑 移 系 少 ,主 要 靠 机 械 孪 生 和{0001} 〈11 20〉基 面 滑 移 产 生 塑 性 变 形,变 形 能 力 相对较差。高温下〈c + a〉非基面滑移系统如{10 10 } 〈11 20〉柱面和 { 10 11 } 〈11 20 〉锥 面 滑 移 得 以 开 动, 临界剪切应力迅 速 下 降,大 量 非 基 面 滑 移 系 被 激 发。 多系统滑移和孪 生 的 开 动,促 使 再 结 晶 发 生,使 晶 粒
对试样进 行 光 学 电 镜 ( OM) 和 扫 描 电 镜 悬 挂 的 EBSD 波散射衍射实验观察。OM 观察前首先利用 3、 2 和 1 μm 的 金 刚 石 悬 浮 液 对 试 样 进 行 机 械 抛 光,腐 蚀剂的比例为:苦味酸∶ 醋酸∶ 蒸馏水∶ 酒精 = 1 g∶ 1 ml ∶ 2 ml∶ 20 ml。用图像分析软件计算平均晶粒尺寸,利 用背散射衍射技术观察晶粒微观结构演变及晶界分 布。对 EBSD 试样分别进行机械抛光和电解抛光,机 械抛光在覆盖 2000 号 砂 纸 的 抛 光 机 上 进 行,电 解 抛 光电压 11 V,抛光时间 ~ 120 s,抛光剂为丁基 乙二醇 ∶ 酒精∶ 高氯酸 = 10∶ 2 ∶ 1,抛 光 温 度 为 - 15 ℃ 。 EBSD 数据在 JEOL JSM-7001F 场 发 射 扫 描 电 镜 上 进 行,并 用 5 通道 EBSD 软 件 ( HKL Technology,Denmark) 进 行处理。利用 JEM-2100F 透射电镜 ( TEM) 观察位错 和亚结构分布。制备 TEM 试样时要求试样法线平行 于压缩方向,对试 样 进 行 电 解 双 喷 和 离 子 减 薄,双 喷 溶剂为高氯 酸 ( HClO4 ,5% ) + 丁 醇 ( butanol,35% ) + 甲醇( methanol,60% ) 。

铸态、挤压态和快速凝固态ZK60镁合金微观组织及压缩性能

铸态、挤压态和快速凝固态ZK60镁合金微观组织及压缩性能

铸态、挤压态和快速凝固态ZK60镁合金微观组织及压缩性能王敬丰;魏怡芸;吴夏;潘复生;汤爱涛;丁培道【摘要】Rapid solidified ZK60 magnesium alloy was prepared by copper mold casting. The micro-structure of the as-cast, as-extruded and rapid solidified ZK60 magnesium alloys were analyzed by X-ray diffractometer(XRD) and scanning electron microscope(SEM). The results show that the micro-structure of rapid solidified ZK60 magnesium alloys are refined and MgZn phases in dispersed particles are uniformly distributed in the matrix. In addition, the eutectic microstructure with high Zr content can be found in the matrix. The compression strength of rapid solidified ZK60 magnesium alloys were higher than those of as-cast and as-extruded conditions,e. g. an ultimate strength of 444MPa in rapid solidified ZK60 magnesium alloys.%采用铜模喷铸的方法制备得到快速凝固态ZK60镁合金,并通过X射线衍射仪,扫描显微镜和能谱分析仪对铸态、挤压态和快速凝固态ZK60镁合金的组织结构及相的组成进行表征.结果发现:快速凝固态ZK60镁合金的组织均匀细小,并且样品中弥散分布着颗粒状的MgZn相,除此之外,该合金中还存在尺寸较大的富Zr共晶团.通过压缩实验发现,快速凝固态ZK60镁合金具有高强度,其压缩断裂强度达到444MPa,远高于铸态和挤压态.【期刊名称】《材料工程》【年(卷),期】2011(000)008【总页数】5页(P32-35,41)【关键词】快速凝固;镁合金;压缩性能【作者】王敬丰;魏怡芸;吴夏;潘复生;汤爱涛;丁培道【作者单位】重庆大学国家镁合金材料工程技术研究中心,重庆400044;燕山大学亚稳材料制备技术与科学国家重点实验室,河北秦皇岛066004;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044;重庆大学国家镁合金材料工程技术研究中心,重庆400044【正文语种】中文【中图分类】TG146.2近年来,随着航空航天及汽车等领域的快速发展,对材料的轻质高强性能提出了越来越高的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档