苏科新版八年级下册《平行四边形》单元测试卷含解析
八年级数学下册《平行四边形》单元测试卷(附答案)
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
新苏科版八年级数学下册《平行四边形》题及答案一.docx
(新课标)苏科版八年级下册平行四边形(1)1.已知□ABCD的周长为32,AB=4,则BC=( ) A.4 B.12 C.24 D.28 2.如图,□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线的和是( )A.18 B.28 C.36 D.463.在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为_______cm.4.如图,在□ABCD中,∠A=120°,则∠D=_______°5.如图,在□ABCD中,对角线AC、BD相交于点O,若AC =14,BD=8,AB=10,则△OAB的周长为_______.6.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB.那么△AEF与△DFC是否全等?为什么?7.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形个数共有( )A.12个B.9个C.7个D.5个8.如图,在□ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1等于( )A.40°B.50°C.60°D.80°9.如图,在□ABCD中,已知∠ODA=90°,AC=10 cm,BD =6 cm,则AD的长为( )A.4cm B.5 cm C.6 cm D.8 cm 10.如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE 的周长是_______.11.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______.12.如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.求证:△AOF≌△COF.13.如图,已知平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.那∠AE 与DG相等吗?为什么?14.如图,在平行四边形ABCD的对角线AC上取两点E和F,若AE=CF,那么∠AFD与∠CEB是否相等?为什么?参考答案1.B 2.C 3.28 4.60 5.21 6.△AEF与△DFC 全等.7.B 8.B 9.A 10.10 11.25°12.略13.AE与DG相等.14.略。
2020-2021学年苏科 版八年级下册数学 第9章 中心对称图形——平行四边形 单元测试卷
2020-2021学年苏科新版八年级下册数学《第9章中心对称图形——平行四边形》单元测试卷一.选择题1.经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.下列判断四边形是平行四边形的是()A.两组角相等的四边形B.对角线平分的四边形C.一组对边相等,一组对角相等的四边形D.两组对边分别相等的四边形3.四边相等的四边形一定是()A.矩形B.菱形C.正方形D.无法判定4.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是()A.4B.8C.4或6D.4或85.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格.②先以点O为中心作其中心对称图形,再以点A的对应点为中心逆时针方向旋转90°.③先以直线MN为轴作其轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中变换后的图形为三角形PQR的是()A.①②B.①③C.②③D.①②③6.按图中所示的排列规律,在空格中应填()A.B.C.D.7.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A.30°B.60°C.120°D.180°8.观察下列图形,其中是旋转对称图形的有()A.1个B.2个C.3个D.4个9.如图所示的图案中,能够绕自身的某一点旋转180°后还能与自身重合的图形的个数是()A.1B.2C.3D.410.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题11.如图,在△ABC中,AB=4,AC=2.4,BC=3.6,AD⊥BC于点D,E,F分别是AB,AC的中点,则EF=,DE=,DF=.12.根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是.13.矩形的两邻边分别为8cm和6cm,则其对角线为cm,矩形面积为cm2.14.(1)若直角三角形斜边上的高和中线分别为10cm、12cm,则它的面积为cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为.15.如图,在▱ABC D中,E是AB上一点,F是AB延长线上一点,则S△CDE S△CDF(在横线上填“<”或“>”或“=”).16.一般来说,反证法有如下三个步骤:(1),(2)(3).17.国旗上的五角星是旋转对称图形,它的最小旋转角是.18.如图,已知四边形ABCD是一个平行四边形,则只须补充条件,就可以判定它是一个菱形.19.如果▱ABCD和▱ABE F有公共边AB,那么四边形DCEF是.20.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是.三.解答题21.如图所示,已知DE,EF是△ABC的两条中位线.求证:四边形BFED是平行四边形.22.怎样将图中的甲图案变成乙图案.23.如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?24.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,证明:CH⊥DF.25.如图,在平面直角坐标系中,有一个平行四边形ABCD,其中点A,B在x轴上,点D 在y轴上,点C在第一象限.已知AD⊥BD,AD=4,∠ABD=30°,求A,B,C,D 各点的坐标.26.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)27.有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?1234523456345674567856789参考答案与试题解析一.选择题1.解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选:C.2.解;根据平行四边形的判定可知,A、B、C不能判定为平行四边形.故选:D.3.解:根据菱形的判定:四边相等的四边形是菱形.故选:B.4.解:由题意得,周长=2×8=16,①当底边=4时,此时腰长=6,符合题意;②当腰长=4时,此时底边=8,4+4=8,不能构成三角形,不符合题意.综上可得,底边长为4.故选:A.5.解:①通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,②通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,③通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,故选:D.6.解:观察图形,发现:图形绕三角形的中心按顺时针方向转动90°.故选:A.7.解:第一个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第二个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第三个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第四个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到.上述选项中只有180°是90°的整数倍.故选:D.8.解:旋转对称图形是(1),(3),(4);不是旋转对称图形的是(2).故选:C.9.解:4个图形都符合条件.故选D.10.解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.二.填空题11.解:如图∵E,F分别是AB,AC的中点,∴EF为△ABC的中位线,∴EF=BC=1.8;∵AD⊥BC,E是AB的中点,∴DE=AB=2;同理可得DF=AC=1.2.12.解:∵矩形、菱形、正方形的对角线都具有平分的性质,则根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是平分.故答案为平分.13.解:矩形的对角线为=10cm,面积S=6×8=48cm2故答案为10,48.14.解:(1)∵直角三角形斜边上的中线为12cm,∴斜边=2×2=24cm,∴它的面积=×24×10=120cm2;(2)∵等腰三角形的一个外角为100°,∴与这个外角相邻的内角是180°﹣100°=80°,若80°角是顶角,则顶角为80°,若80°角是底角,则顶角为180°﹣80°×2=20°,所以,这个等腰三角形的顶角为80°或20°.故答案为:(1)120;(2)80°或20°.15.解:∵四边形ABCD是平行四边形,∴AB∥DC,∴AB和CD之间的距离处处相等,即S△CDE =S△CDF,故答案为:=.16.解:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.17.解:∵360°÷5=72°,∴该图形绕中心至少旋转72度后能和原来的图案互相重合.故答案为:72°.18.解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.19.解:由题意可得:AB平行且等于CD,AB平行且等于EF∴CD平行且等于EF,又∵两个平行四边形在同一平面∴四边形DCEF是平行四边形.故答案为:平行四边形.20.解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.三.解答题21.证明:∵DE,EF是△ABC的两条中位线.∴DE∥BC,EF∥AB,∴四边形BFED是平行四边形.22.解:步骤:(1)将图甲绕O点逆时针旋转一定角度,使树干与地面垂直.(2)接着将图(1)向右平移至与图乙重合即可.23.解:这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.24.证明:延长AE、DC交于点P,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠PCE,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE(ASA),∴PC=AB=CD,∵H为DF的中点,∴CH是△PDF的中位线,∴CH∥AE,∵DF⊥AE,∴CH⊥DF.25.解:∵在直角△ABD中,∠ABD=30°,∴AB=2AD=8,又∵直角△ABD中,OD⊥AB,∴∠ADO=∠ABD=30°,在直角△AOD中,AO=AD=2,OD=AD•cos30°=4×=2,则OB=AB﹣0A=8﹣2=6,则A的坐标是(﹣2,0),B的坐标是(6,0),C的坐标是(8,2),D的坐标是(0,2).26.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.27.解:∵(1+9)+(2+8)+(3+7)+(4+6)+…+(8+2)+(3+7)+(4+6)+(5+5)+(6+4)+5=10×12+5=120+5=125∴这组数和为125.。
9.3 平行四边形 苏科版数学八年级下册素养综合检测(含解析)
第9章 中心对称图形——平行四边形9.3 平行四边形基础过关全练知识点1 平行四边形的概念1.(2023吉林中考改编)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形,其判定的依据是 .知识点2 平行四边形的性质2.(2023四川成都中考)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是( )A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD3.(2023江苏苏州高新区阶段测试)平行四边形ABCD中,对角线AC=4 cm,BD=6 cm,则边AD 的长可以是( )A.4 cmB.5 cmC.6 cmD.7 cm4.【新考法】【一题多变】如图,在▱ABCD中,由尺规作图的痕迹,判断下列结论不一定成立的是( )A.∠DAE=∠BAEB.AD=DEC.DE=BED.BC=DE[变式·求线段长]在上题的条件下,如图,若AE 的延长线交BC 的延长线于点F,且BF=5,CE=2,则AD 的长为( )A.52B.3C.72D.45.(2023四川南充中考)如图,在▱ABCD 中,点E,F 在对角线AC 上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE ∥DF.知识点3 平行四边形的判定6.【真实情境】(2023北京人大附中月考)为了保证铁路的两条直铺的铁轨互相平行,只要使互相平行的夹在铁轨之间的枕木长度相等就可以了,请你说出其依据: .7.【教材变式·P69例3】如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若动点E,F分别从A,C两点同时出发向C,A运动,则当点E,F运动的速度满足什么条件时,四边形DEBF是平行四边形(E、F重合时除外)?并说明理由.知识点4 反证法8.(2023江苏泰州靖江期中)用反证法证明“在△ABC中,∠A、∠B的对边分别是a、b.若∠A<∠B,则a<b.”第一步应假设( )A.a>bB.a=bC.a≤bD.a≥b能力提升全练9.(2023湖南邵阳中考,9,★☆☆)如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列可添加的条件是( )A.AD=BCB.∠ABD=∠BDCC.AB=ADD.∠A=∠C10.(2023北京清华附中期中,4,★☆☆)下列条件能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD=BCB.AB=CD,AD=BCC.∠A=∠B,∠C=∠DD.AB=AD,CB=CD11.(2023江苏江阴期中,6,★☆☆)用反证法证明“若|a|≠|b|,则a≠b”时,应首先假设( )A.a>bB.a=bC.a<bD.|a|=|b|12.(2022江苏南通海安期中,8,★★☆)如图,在平面直角坐标系中,点A,B,C的坐标分别是A(1,0),B(-1,3),C(-2,-1),再找一点D,使它与点A,B,C构成的四边形是平行四边形,则点D的坐标不可能是( )A.(-3,2)B.(-4,2)C.(0,-4)D.(2,4)13.【数学文化】(2023江苏扬州江都月考,17,★★☆)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是平行四边形ABCD的对角线,点E在AC上,AD=AE=BE,∠D=105°,则∠BAC的大小是 .14.【倍长中线法】(2023江苏无锡锡东片期中,17,★★☆)如图,▱ABCD中,∠B=80°,BC=2AB,点E 是BC的中点,过点A作AF⊥CD,垂足为F,连接AE、EF,则∠EFC= °.15.(2023江苏无锡梁溪期中,19,★☆☆)如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF.求证:AC、EF互相平分.素养探究全练16.【新定义试题】【几何直观】定义:作▱ABCD的一组邻角的平分线,设交点为P,P 与这组邻角的两个顶点构成的三角形为▱ABCD的“伴侣三角形”,图中△PBC为▱ABCD的伴侣三角形.AB=m,BC=4,连接AP并延长交直线CD于点Q,若Q点落在线段CD上(包括端点C、D),则m的取值范围是 .17.【推理能力】(2023江苏江阴期中)如图1,在▱ABCD中,AB=3,AD=6,动点P沿AD边以个单位长度的速度从点A向点D运动,设点P运动的时间为t(t>0)秒.每秒12(1)当CP平分∠BCD时,求t的值;(2)如图2,另一动点Q以每秒2个单位长度的速度从点C出发,在CB上往返运动,P、Q两点同时出发.①若点P到达点D处停止运动,点Q也随之停止运动,当以P、D、Q、B为顶点的四边形是平行四边形时,请求出t的值;②若点P在AD上往返运动,当以P、D、Q、B为顶点的四边形第2 023次成为平行四边形时,直接写出此时t的值为 .答案全解全析基础过关全练1.答案 两组对边分别平行的四边形叫平行四边形解析 ∵两张对边平行的纸条,随意交叉叠放在一起,∴MN ∥EF,NE ∥MF,∴四边形EFMN 是平行四边形(两组对边分别平行的四边形叫平行四边形).2.B 平行四边形的对角线互相平分,但不一定相等,故A 中结论错误,不合题意;因为平行四边形的对角线互相平分,所以OA=OC,故B 中结论正确,符合题意;平行四边形的对角线不一定垂直,故C 中结论错误,不合题意;平行四边形的对角相等,但邻角不一定相等,故D 中结论错误,不合题意,故选B.3.A 如图,∵四边形ABCD 是平行四边形,∴AO=12AC=2 cm,OD=12BD=3 cm,根据三角形三边关系,得1 cm<AD<5 cm.∴边AD 的长可以是4 cm.故选A.4.C 本题新颖之处在于结合尺规作图考查平行四边形的性质.由作图痕迹得AE 平分∠BAD,∴∠DAE=∠BAE,∴A 选项成立,不符合题意;∵四边形ABCD 为平行四边形,∴CD ∥AB,AD=BC,∴∠BAE=∠DEA,∴∠DEA=∠DAE,∴AD=DE,∴B 选项成立,不符合题意;∵AD=BC,AD=DE,∴BC=DE,∴D 选项成立,不符合题意;根据已知条件不能确定DE=BE,∴C选项不一定成立,符合题意.故选C. [变式] 答案 B解析 ∵在▱ABCD中,AB=CD,AD∥BC,∴∠DAE=∠F,由尺规作图可知AE平分∠BAD,∴∠DAE=∠BAF,∴∠BAF=∠F,∴BA=BF=5,∴CD=5,∵CE=2,∴DE=CD-CE=5-2=3.易证AD=DE=3,故选B.5.证明 (1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,在△ADF与△CBE中,∠ADF=∠CBE,∴△ADF≌△CBE(ASA),AD=CB,∠DAF=∠BCE,∴AF=CE,∴AF-EF=CE-EF,∴AE=CF.(2)∵△ADF≌△CBE,∴∠AFD=∠CEB,∴BE∥DF.6.答案 一组对边平行且相等的四边形是平行四边形解析 如图所示,设l1与l2为两条铁轨,AD,BE,CF等均为枕木,由题意,得AD∥BE,AD=BE,∴四边形ADEB为平行四边形,∴AB∥DE,同理可证,四边形BEFC等均为平行四边形,∴l1∥l2,∴为了保证铁路的两条直铺的铁轨互相平行,只要使互相平行的夹在铁轨之间的枕木长度相等就可以了,其依据是一组对边平行且相等的四边形是平行四边形.7.解析 当点E,F运动的速度相同时,四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.若点E,F运动的速度相同,则AE=CF,点E,F相遇前,OE=OA-AE,OF=OC-CF,∴OE=OF;点E,F相遇后,OE=AE-OA,OF=CF-OC,∴OE=OF,又∵OB=OD,∴两种情况中,四边形DEBF均是平行四边形,∴当点E,F运动的速度相同时,四边形DEBF是平行四边形.8.D 根据反证法的步骤,得第一步应假设结论的反面成立,即a≥b.故选D.能力提升全练9.D ∵AB∥CD,∴∠ABC+∠C=180°,若添加∠A=∠C,则∠ABC+∠A=180°,则AD ∥BC,则四边形ABCD是平行四边形,故选项D符合题意.故选D.10.B A.AB∥CD,AD=BC,则四边形ABCD可能为等腰梯形,故本选项不合题意;B.AB=CD,AD=BC,则四边形ABCD为平行四边形,故本选项符合题意;C.∠A=∠B,∠C=∠D,则四边形ABCD可能为等腰梯形,故本选项不合题意;D.AB=AD,CB=CD,则四边形ABCD可能为筝形,故本选项不合题意.故选B.重点解读 筝形:AB=AD,BC=CD.11.B “若|a|≠|b|,则a≠b”的条件是|a|≠|b|,结论是a≠b,∴用反证法证明时应先假设a=b.故选B.12.A 如图所示.满足条件的点D有三个,坐标分别为(2,4),(-4,2),(0,-4),故选A.13.答案 25°解析 ∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB∥CD,∴∠BCA=∠DAC,∠D+∠DAB=180°,∴∠DAB=180°-105°=75°.∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠BCE,又∠BEC是△ABE的外角,∴∠BEC=∠EAB+∠EBA=2∠EAB,∴∠DAC=∠BCA=∠BEC=2∠EAB,∴∠EAB=13∠DAB=25°.故答案为25°.14.答案 50解析 延长AE交DC的延长线于G,如图,在▱ABCD中,AB∥CD,∴∠BAE=∠G,∵点E是BC的中点,∴BE=CE,又∵∠AEB=∠GEC,∴△ABE≌△GCE,∴AE=GE.∵AF ⊥CD,∴EF=EG=AE,∴∠G=∠EFC.∵BC=2AB,点E 是BC 的中点,∴AB=BE,∴∠BAE=12(180°-∠B)=50°,∴∠EFC=∠G=∠BAE=50°.故答案为50.方法解读 倍长中线法:三角形中,延长一条边上的中线并取等长,将得到全等三角形,这个方法可以拓展到只要图形的一边有中点,都可以倍长过中点的线段,得到全等图形.15.证明 如图,连接AE,CF,∵四边形ABCD 为平行四边形,∴AD ∥BC,AD=BC,又∵DF=BE,∴AF=CE,又∵AF ∥CE,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.素养探究全练16.答案 2≤m≤4解析 在▱ABCD 中,∠ABC+∠BCD=180°,∵BP 平分∠ABC,CP 平分∠BCD,∴∠PBC=12∠ABC,∠PCB=12∠BCD,∴∠PBC+∠PCB=12(∠ABC+∠BCD)=90°,∴∠BPC=90°,当点Q 与点C 重合时,如图所示:∵CA 平分∠BCD,∴∠ACD=∠ACB,∵AB ∥CD,∴∠BAC=∠ACD,∴∠BAC=∠ACB,∴AB=BC=4,即m=4.当点Q 与点D 重合时,如图所示:∵BP 平分∠ABC,∴∠ABP=∠PBC,∵AD ∥BC,∴∠APB=∠PBC,∴∠ABP=∠APB,∴AP=AB=m,同理可得DP=DC=AB=m,∵AP+DP=AD=BC=4,∴2m=4,∴m=2.综上所述,当点Q 落在线段CD 上时,m 的取值范围是2≤m≤4.故答案为2≤m≤4.17.解析 (1)在▱ABCD 中,CD=AB=3,AD ∥BC,∴∠DPC=∠PCB,∵CP 平分∠BCD,∴∠DCP=∠PCB,∴∠DPC=∠DCP,∴PD=CD=3,∴12t+3=6,∴t=6.(2)①若以P 、D 、Q 、B 为顶点的四边形是平行四边形,则BQ ∥PD,BQ=PD,点P 到达点D 处时,t=612=12,∴t 的取值范围是0<t<12.当点Q 没有到达点B 时,6-12t=6-2t,∴t=0(不合题意,舍去),当点Q 到达点B 后,返回时,6-12t=2t-6,∴t=245,当点Q 返回点C 后,再向点B 运动时,6-12t=6×3-2t,∴t=8,当点Q 第二次到达点B 后,再向点C 运动时,6-12t=2t-6×3,∴t=485,当点Q 第二次返回点C 后,再向点B 运动时,6-t 2=6×5-2t,∴t=16,16>12,不合题意,舍去.综上所述,t 的值为245或8或485.②6 936.提示:由①可知,P 从点A 运动到点D,以P 、D 、Q 、B 为顶点的四边形可构成3次平行四边形,当t=12时,P 到达点D,此时Q 也第2次返回点C,当P 从点D 返回点A 时,当12<t≤15时,由PD=BQ 得12t-6=30-2t,解得t=725,当15<t≤18时,由PD=BQ 得12t-6=2t-30,解得t=16,当18<t≤21时,由PD=BQ 得12t-6=42-2t,解得t=965,当21<t≤24时,由PD=BQ 得12t-6=2t-42,解得t=24,∴P 从点A 运动到点D,再返回点A,以P 、D 、Q 、B 为顶点的四边形可构成7次平行四边形,此时t=24,P,Q 恰好运动到初始位置,∵2 023÷7=289,∴以P 、D 、Q 、B 为顶点的四边形第2 023次成为平行四边形时,t=289×24=6 936.。
苏科版数学八年级下册 9.3平行四边形练习(含答案解析)
苏科版数学八年级下册9.3平行四边形练习(含答案解析)一、单选题(共13题;共26分)1.下列图形中,可以由其中一个图形通过平移得到的是()A. B.C. D.【答案】C【解析】【解答】A、此图案是将左边的图案绕着某一点旋转得到的,故A不符合题意;B、此图案是由一个基本图案旋转60°,120°,180°,240°,300°而得到的,故B不符合题意;C、此图案是由基本图案通过平移得到的,故C符合题意;D、此图案是通过折叠得到的,故D不符合题意;故答案为:C【分析】根据平移和旋转的性质,对各选项逐一判断即可。
2.如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对B.5对C.6对D.7对【答案】C【解析】【解答】解:在△ABD和△CDB中,{AB=CD AD=BCBD=DB,∴△ABD≌△CDB(SSS),同理可得△ABC≌△CDA,∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴OA=OC ,OB=OD ,在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,∴△AOB ≌△BOD (SAS ),同理可得△BOC ≌△DOA ,由平行四边形的性质可得AD ∥BC ,∴∠EAO=∠FCO ,∠AEO=∠CFO ,在△AEO 和△CFO 中,{∠EAO =∠FCO∠AEO =∠CFO OA =OC,∴△AEO ≌△CFO (AAS ),同理可得△DOE ≌△BOF ,所以共有六组.故答案为:C .【分析】根据三角形全等的判定定理,进行判断即可;证明过程中,为防止遗漏,可以按照三角形由小到大的顺序进行证明即可。
3.如图,在ABCD 中,AB = 6,AD = 9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG = 4√2 ,则△CEF 的周长为( )A. 8B. 9.5C. 10D. 11.5【答案】A【解析】【解答】解:∵在平行四边形ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴AB ∥DC ,∠BAF=∠DAF ,∴∠BAF=∠F ,∴∠DAF=∠F ,∴AD=FD ,∴△ADF 是等腰三角形,同理△ABE 是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG 中,BG ⊥AE ,AB=6,BG= 4√2 ,可得:AG=2,又BG ⊥AE ,∴AE=2AG=4,∴△ABE 的周长等于16,又∵平行四边形ABCD ,∴△CEF ∽△BEA ,相似比为1:2,∴△CEF 的周长为8.故答案为:A .【分析】根据平行四边形对边平行且相等,借助角平分线可得AD=DF=9、AB=BE=6,又由BG ⊥AE 、BG = 4√2 , 利用等腰三角形三线合一和勾股定理可得△ABE 的周长等于16,再根据△CEF ∽△BEA 周长比等于相似比即可判断。
苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案(完美版)
苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、小明在某次投篮中刚好把球打到篮板的点D处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB= 米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A.2.7米B.3.0米C.3.2米D.3.4米2、下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.正方形的对角线互相平分3、如图,在平行四边形中,点A1, A2, A3, A4和C1, C2, C3, C4分别是ABCD的五等分点,点B1, B2和D1, D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为()A.4B.C.D.304、下列命题中正确是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角分别相等的四边形是平行四边形5、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2014C2015B的面积为()A. B. C. D.6、正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7、如图,在正方形ABCD中∠DAE=25°,AE交对角线BD于E点,那么∠BEC等于()A.45°B.60°C.70°D.75°8、如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A. B. C. D.9、下列命题中,属于假命题的是( )A.相等的角是对顶角B.两直线平行,同旁内角互补C.平行四边形的对角线互相平分D.矩形的对角线相等10、已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7B.7、8C.6、7、8D.6、8、911、若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形12、已知菱形ABCD的对角线AC、BD的长分别为4和6,则该菱形面积是()A.48B.24C.12D.613、顶点为A(6,6),B(-4,3),C(-1,-7),D(9,-4)的正方形在第一象限的面积是()A.25B.36C.49D.3014、对描述错误的一项是()A.面积为2的正方形的边长B.它是一个无限不循环小数C.它是2的一个平方根D.它的小数部分大于2-15、如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角线OB=,反比例函数经过点C,则k的值等于()A.12B.8C.15D.9二、填空题(共10题,共计30分)16、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为________cm2.17、如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= ________.18、正△ABC的边长为3cm,边长为1cm的正的顶点尺与点一重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为________cm.(结果保留)19、如图,在平行四边形ABCD中,E为AB边上的点,BE=BC,将△ADE沿DE翻折,点A的对应点F恰好落在CE上,∠ADF=84°,则∠BEC=________。
苏科版八年级数学下册第九章《中心对称图形——平行四边形》单元测试卷(解析版)
第9章《中心对称图形——平行四边形》单元测试卷一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.82.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.53.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.45.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.411.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.19.正方形至少旋转度才能与自身重合.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.答案与解析一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选:D.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.5【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.3.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm【分析】根据三角形中位线定理可以求得三条边的长度,然后由三角形的周长公式可知原三角形的周长.【解答】解:∵三角形的三条中位线长分别为2cm,3cm,4cm,∴原三角形的三条边长分别为2cm×2=4cm,3cm×2=6cm,4cm×2=8cm,∴原三角形的周长为:4cm+6cm+8cm=18cm;故选:B.【点评】本题考查了三角形中位线定理,即三角形的中位线平行于第三边且等于第三边的一半.4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.4【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形进行分析即可.【解答】解:A、AB=CD,AD=BC能判定四边形ABCD为平行四边形,故此选项不符合题意;B、AD=CB,AB∥DC不能判定四边形ABCD为平行四边形,故此选项符合题意;C、AB=CD,AB∥CD能判定四边形ABCD为平行四边形,故此选项不符合题意;D、AB∥CD,AD∥BC能判定四边形ABCD为平行四边形,故此选项不符合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定【分析】因为要求证明PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,求出等于AB,根据三角形的周长求出AB即可.【解答】解:延长EP交AB于点G,延长DP交AC与点H,∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB==6,故选:C.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.【分析】根据平移和旋转的概念,结合选项中图形的性质进行分析,排除错误答案.【解答】解:A、只要平移即可得到,故错误;B、只能旋转就可得到,故错误;C、只有两个基本图形旋转得到,故错误;D、既要平移,又要旋转后才能得到,故正确.故选:D.【点评】解决本题要熟练运用平移和旋转的概念.①图形平移前后的形状和大小没有变化,只是位置发生变化;②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线段的垂直平分线的交点是旋转中心.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形【分析】求出各图的中心角,度数为60°的即为正确答案.【解答】解:选项中的几个图形都是旋转对称图形,A、正三角形的旋转最小角是=120°,故此选项错误;B、正方形的旋转最小角是=90°,故此选项错误;C、正五边形的旋转最小角是=72°,故此选项错误;D、正六边形旋转的最小角度是=60°,故此选项正确;故选:D.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法.考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.4【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,据此对各结论进行判断.【解答】解:△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,即点O就是▱ABCD的对称中心,则有:(1)点E和点F,B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为4个,故选:D.【点评】本题主要考查了中心对称的性质以及平行四边形的性质的运用,熟练掌握平行四边形的性质及中心对称图形的性质是解决此题的关键.解题时注意:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.11.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二个图形是轴对称图形,也是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,也是中心对称图形.则既是轴对称图形又是中心对称图形的有3个.故选:C.【点评】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.【分析】根据旋转的性质,△AOB绕点O旋转180°得到△DOE,点A与点D、B与E 关于点O成中心对称解答.【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确是C选项图形.故选:C.【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 2.5.【分析】根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.【解答】解:∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,∵CD是△ABC中线,∴CD=AB=×5=2.5,故答案为:2.5.【点评】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于24.【分析】由▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AC⊥AB,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,且AC=6,BD=10,AB=4,∴OA=OC=AC=3,OB=OD=5,∴OA2+AB2=OB2,∴△OAB是直角三角形,且∠BAO=90°,即AC⊥AB,∴▱ABCD面积为:AB•AC=4×6=24.故答案为:24.【点评】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.【解答】解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是3.【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.19.正方形至少旋转90度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE 的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)【分析】作出图形,然后写出已知,求证,延长CD到E,使DE=CD,连接AE、BE,根据对角线互相平分的四边形是平行四边形判断出四边形AEBC是平行四边形,再根据有一个角是直角的平行四边形是矩形可得四边形AEBC是矩形,然后根据矩形的对角线互相平分且相等可得CD=AB.【解答】已知:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的中线,求证:CD=AB;证明:如图,延长CD到E,使DE=CD,连接AE、BE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形AEBC是平行四边形,∵∠ACB=90°,∴四边形AEBC是矩形,∴AD=BD=CD=DE,∴CD=AB.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质证明,作辅助线,构造出矩形是解题的关键.22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.【分析】(1)如图,连接DE、DF.欲证明AD与EF互相平分,只需证得四边形AEDF 是平行四边形即可;(2)由“有一内角为直角的平行四边形是矩形”证得四边形ADEF为矩形.【解答】(1)证明:如图,连接DE、DF.∵D、F分别是BC,AC的中点,∴DF∥AB,同理,DE∥AC∴四边形AEDF是平行四边形.∴AD与EF互相平分;(2)由(1)得四边形AEDF为平行四边形.∵∠BAC=90°∴四边形ADEF为矩形.【点评】本题考查的知识比较全面,需要用到三角形中位线定理,平行四边形的判定与性质,以及矩形的判定等.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.【分析】(1)由平行四边形的性质可证得△ABE≌△CDF,则可证得BE=DF;(2)由(1)可求得AE=CF,则可证得四边形AECF为平行四边形,可证得AF∥CE.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠ABE=∠CDF,∵∠1=∠2,∴∠AEB=∠CFD,在△ABE和CDF中∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)可知△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF为平行四边形,∴AF∥CE.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的对边平行且相等是解题的关键.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【分析】由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.【分析】(1)根据旋转的性质可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN =45°,从而求出∠MCF=45°,然后利用“边角边”证明△CMF和△CMN全等即可;(2)①根据全等三角形对应边相等可得FM=MN,再根据旋转的性质可得AF=BN,∠CAF=∠B=45°,从而求出∠BAF=90°,再利用勾股定理列式即可得解;②把△BCN绕点C逆时针旋转90°得到△ACF,根据旋转的性质可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“边角边”证明△CMF和△CMN全等,根据全等三角形对应边相等可得MF=MN,然后利用勾股定理列式即可得解.【解答】解:(1)∵△BCN绕点C逆时针旋转90°得到△ACF,∴CF=CN,∠ACF=∠BCN,∵∠DCE=45°,∴∠ACM+∠BCN=45°,∴∠ACM+∠ACF=45°,即∠MCF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS);(2)①∵△CMF≌△CMN,∴FM=MN,又∵∠CAF=∠B=45°,∴∠FAM=∠CAF+∠BAC=45°+45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2;②如图,把△BCN绕点C逆时针旋转90°得到△ACF,则AF=BN,CF=CN,∠BCN=∠ACF,∵∠MCF=∠ACB﹣∠MCB﹣∠ACF=90°﹣(45°﹣∠BCN)﹣∠ACF=45°+∠BCN ﹣∠ACF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS),∴FM=MN,∵∠ABC=45°,∴∠CAF=∠CBN=135°,又∵∠BAC=45°,∴∠FAM=∠CAF﹣∠BAC=135°﹣45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,此类题目根据相同的思路确定出全等的三角形,然后找出条件是解题的关键.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).【点评】(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.【分析】(1)根据中心对称图形的性质找出各顶点的对应点,然后顺次连接即可;(2)根据三角形的三边关系求解即可.【解答】解:(1)所画图形如下所示:△ADE就是所作的图形.(2)由(1)知:△ADE≌△BDC,则CD=DE,AE=BC,∴AE﹣AC<2CD<AE+AC,即BC﹣AC<2CD<BC+AC,∴2<2CD<10,解得:1<CD<5.【点评】本题考查中心对称图形及三角形三边关系的知识,难度适中,解答第(2)问的关键是通过△ADE≌△BDC,将2CD放在△ACE中求解.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为(﹣1,3).【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.。
苏科版八年级数学下册第9章《中心对称图形—平行四边形》单元测试题(含答案)
苏科版八年级数学下册第9章《中心对称图形—平行四边形》单元测试题满分120分,时间100分钟班级___________姓名____________成绩__________一.选择题(共12小题,共36分)1.下列图形中:①等边三角形;②矩形;③平行四边形;④菱形;既是中心对称图形又是轴对称图形的有()个.A.4B.3C.2D.12.下列事件中,属于旋转运动的是()A.小明向北走了4米B.时针转动C.电梯从1楼到12楼D.一物体从高空坠下3.下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A.正方形B.正五边形C.正六边形D.正八边形4.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.55.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°6.如图,在△ABC中,D,E分别是AB,AC边的中点,若DE=2,则BC的长度是()A.6B.5C.4D.37.平行四边形的边长为5,则它的对角线长可能是()A.4和6B.2和12C.4和8D.4和38.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等9.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m10.如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AD∥BC,AB=DC D.AB∥DC,AB=DC11.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当AB=2,∠B=60°时,AC的长是()A.B.C.2D.212.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形,其中正确的结论的个数为()A.1个B.2个C.3个D.4个二.填空题(共8小题,共24分)13.矩形是中心对称图形,对矩形ABCD而言,点A的对称点是点.14.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=度.15.在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5.则AC=.16.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为.17.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)18.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s 后,四边形ABPQ成为矩形.20.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是.三.解答题(共8小题,共60分)21.把三角形绕A点按顺时针方向旋转90°.画出旋转后的图形.22.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.23.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF 是平行四边形.24.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.25.如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.26.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.27.在矩形ABCD中,点E在BC上.DF⊥AE,重足为F,DF=AB.(1)求证.AE=BC;(2)若∠FDC=30°,且AB=4,连结DE,求∠DEF的大小和AD.28.如图,在等边△ABC中,D,E分别为AB,AC的中点,延长BC至点F,使CF=BC,连结CD和EF.(1)求证:CD=EF;(2)猜想:△ABC的面积与四边形BDEF的面积的关系,并说明理由.参考答案一.选择题(共12小题)1.下列图形中:①等边三角形;②矩形;③平行四边形;④菱形;既是中心对称图形又是轴对称图形的有()个.A.4B.3C.2D.1【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:②矩形;④菱形既是中心对称图形又是轴对称图形,共2个,故选:C.2.下列事件中,属于旋转运动的是()A.小明向北走了4米B.时针转动C.电梯从1楼到12楼D.一物体从高空坠下【分析】把一个图形绕着某一个点旋转一个角度的图形变换叫做旋转,根据旋转的定义对各个选项进行判断即可.【解答】解:A.小明向北走了4米是平移,不合题意;B.时针转动是旋转运动,符合题意;C.电梯从1楼到12楼是平移,不合题意;D.一物体从高空坠下是平移,不合题意;故选:B.3.下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A.正方形B.正五边形C.正六边形D.正八边形【分析】求出各个选项图形的最小旋转角度,即可做出判断.【解答】解:A、正方形的最小旋转角度为90°,故本选项错误;B、正五边形的最小旋转角度为=72°,故本选项正确;C、正六边形的最小旋转角度为=60°,故本选项错误;D、正八边形的最小旋转角度为=45°,故本选项错误;故选:B.4.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.5【分析】由四边形ABCD为平行四边形,得到AD与BC平行,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD﹣AE求出ED的长即可.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=7,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD﹣AE=BC﹣AE=7﹣4=3.故选:B.5.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°【分析】根据平行四边形的性质即可求解.【解答】解:设平行四边形的一个内角为x°,则另一个内角为(4x)°,根据平行四边形对边平行,同旁内角互补,得x°+(4x)°=180°,解得x=36.故选:B.6.如图,在△ABC中,D,E分别是AB,AC边的中点,若DE=2,则BC的长度是()A.6B.5C.4D.3【分析】直接利用三角形中位线定理与性质进而得出答案.【解答】解:∵在△ABC中,D,E分别是AB,AC边的中点,∴DE是△ABC的中位线,∵DE=2,∴BC的长度是:4.故选:C.7.平行四边形的边长为5,则它的对角线长可能是()A.4和6B.2和12C.4和8D.4和3【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、对角线一半分别是2和3,2+3=5,故不能构成三角形,故本选项错误;B、对角线一半分别是1和6,6﹣1=5,故不能构成三角形,故本选项错误.C、对角线一半分别是2和4,符合三角形的三边关系,能构成三角形,故本选项正确;D、对角线一半分别是2和,2+<5,故不能构成三角形,故本选项错误.故选:C.8.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【分析】根据平行四边形的判断方法和各种性质解答即可.【解答】解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.9.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m【分析】判断出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2OD.【解答】解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.10.如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AD∥BC,AB=DC D.AB∥DC,AB=DC【分析】注意题目所问是“不能”,根据平行四边形的判定条件可解出此题.【解答】解:平行四边形的判定条件:1、两组对边分别平行的四边形是平行四边形(定义判定法);即选项A;2、一组对边平行且相等的四边形是平行四边形;即选项D;3、两组对边分别相等的四边形是平行四边形;即选项B故选:C.11.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当AB=2,∠B=60°时,AC的长是()A.B.C.2D.2【分析】由题意可证△ABC是等边三角形,即可求解.【解答】解:如图,连接AC,∵BC=AB=2,∠B=60°,∴△ABC是等边三角形,∴AC=AB=2,故选:D.12.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形,其中正确的结论的个数为()A.1个B.2个C.3个D.4个【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;故选:C.二.填空题(共8小题)13.矩形是中心对称图形,对矩形ABCD而言,点A的对称点是点C.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为:C.14.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=30度.【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【解答】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=30°,故答案为:30.15.在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5.则AC=10.【分析】根据直角三角形斜边上的中线性质得出AC=2BD,代入求出即可.【解答】解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故答案为:10.16.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为3.【分析】AC⊥AB,点E为BC边中点,所以AE=BE=EC【解答】解:∵AC⊥AB,点E为BC边中点,∴AE=BE=EC∵四边形ABCD为平行四边形ABCD∴AD=BC=6∴AE=3故答案为3.17.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是∠ABC=90°或AC=BD(只需添加一个即可)【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.18.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为6.【分析】先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3cm与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.【解答】解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快4s 后,四边形ABPQ成为矩形.【分析】根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是.【分析】由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.【解答】解:∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=7,∴△A1B1C1的周长是16,∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,…,以此类推,则△A4B4C4的周长是×16,∴△A n B n∁n的周长是,则第2020个三角形的周长是=.故答案为:.三.解答题(共8小题)21.把三角形绕A点按顺时针方向旋转90°.画出旋转后的图形.【分析】利用网格特点和旋转的性质画出B、C的对应点B′、C′即可.【解答】解:如图,△AB′C′为所作.22.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【分析】(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积;(3)可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.23.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF 是平行四边形.【分析】只要证明AF=CE,AF∥CE即可;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形.24.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.【分析】(1)由题意可证BE=DE,四边形BEDF是平行四边形,即可证四边形BEDF 为菱形;(2)由三角形内角和定理求出∠ABC=50°,由菱形的性质即可得出答案.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.25.如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.【分析】(1)只要证明四边形AECF是平行四边形即可解决问题;(2)只要证明AC=EF即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AF=CE,AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.(2)∵∠FOC=∠OEC+∠OCE=2∠OCE,∴∠OEC=∠OCE,∴OE=OC,∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∴AC=EF,∴四边形AECF是矩形.26.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.【分析】先证∠BCG=∠DCE,再证明△BCG≌△DCE,即可得出结论.【解答】证明:(1)∵四边形ABCD和CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCD+∠DCG=∠GCE+∠DCG,即:∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),∴BG=DE,(2)∵△BCG≌△DCE,∴∠GBC=∠EDC,∵∠GBC+∠BOC=90°,∠BOC=∠DOG,∴∠DOG+∠EDC=90°,∴BG⊥DE.27.在矩形ABCD中,点E在BC上.DF⊥AE,重足为F,DF=AB.(1)求证.AE=BC;(2)若∠FDC=30°,且AB=4,连结DE,求∠DEF的大小和AD.【分析】(1)证明△ABE≌△DF A(AAS),得出AE=AD,进而得出结论;(2)证明Rt△DEF≌Rt△DCE(HL),得出∠FDE=∠CDE,由直角三角形的性质进而得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴DA∥BC,∠B=∠ADC,∴∠DAE=∠AEB,∴在△ABE与△DF A中,∴△ABE≌△DF A(AAS),∴AE=AD,∵AD=BC,∴AE=BC;(2)解:∵DF⊥AE,∠C=90°,∴∠DFE∥∠DCE,∵AB=DF,且AB=DC,∴DF=DC,∴在Rt△DEF与Rt△DCE中,∴Rt△DEF≌Rt△DCE(HL),∴∠FDE=∠CDE,∵∠FDC=30°,∴∠FDE=∠CDE=30°÷2=15°,∴∠DEF=180°﹣90°﹣15°=75°,∵△ABE≌△DF A,AB=4,∴DF=4,∵∠FDC=30°,∴∠ADF=90°﹣30°=60°,∴∠DAE=180°﹣90°﹣60°=30°,∵∠DF=4,∴AD=4×2=8,∴∠DEF=75°,AD=8.28.如图,在等边△ABC中,D,E分别为AB,AC的中点,延长BC至点F,使CF=BC,连结CD和EF.(1)求证:CD=EF;(2)猜想:△ABC的面积与四边形BDEF的面积的关系,并说明理由.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形,进而得出DE =FC;(2)△ABC的面积=四边形BDEF的面积,由三角形中位线定理可得△ADE的面积=△ECF的面积,问题得证.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形,∴CD=EF;(2)猜想:△ABC的面积=四边形BDEF的面积,理由如下:∵DE为△ABC的中位线,∴DE∥BC,DE=BC∴△ADE的面积=△DEC的面积,∴四边形DCFE是平行四边形,∴△DEC的面积=△ECF的面积,∴△ADE的面积=△ECF的面积,∴△ABC的面积=四边形BDEF的面积.。
苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案(配有卷)
苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、将矩形纸张ABCD四个角向内折起恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=5,EF=12,则矩形ABCD的面积为()A.30B.60C.120D.2402、如图,,,三点在正方形网格线的交点处,若将绕点逆时针旋转得到,则点的坐标为()A. B. C. D.3、在正方形ABCD中,点E为AD中点,DF= CD,则下列说法:(1)BE⊥EF;(2)图中有3对相似三角形;(3)E到BF的距离为AB;(4)= .其中正确的有()A.4个B.3个C.2个D.1个4、如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cmB.4cmC.6cmD.8cm5、下列现象属于旋转的是()A.摩托车在急刹车时向前滑动B.空中飞舞的雪花C.拧开自来水龙头的过程D.飞机起飞后冲向空中的过程6、能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CDB.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB7、下列剪纸作品中,是中心对称图形的为().A. B. C. D.8、如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD 上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形相似.()A. B. C. 或 D. 或9、如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB,BC,DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S 3=9,则S1的值为()A.18B.12C.9D.310、如图,小明在作线段AB的垂直平分线时,是这样操作的:分别以点A、B 为圆心,大于线段AB长度一半的长为半径画弧,相交于C、D,则直线CD即为所求,连接AC、BC、BD,根据他的作图方法可知,四边形ADBC一定是()A.矩形B.菱形C.正方形D.梯形11、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE 对折至△AFE,延长EF交边BC与点G,连结AG、CF.则S△FCG为()A.3.6B.2C.3D.412、如图,在△ABC中,AB=AC=6,点D在BC上,DE∥AC交AB于点E,DF∥AB 交AC于点F则四边形DEAF的周长是()A.6B.8C.12D.1613、下列电视台的台标,是中心对称图形的是()A. B. C. D.14、给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直且相等的四边形是正方形;④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A.1个B.2个C.3个D.4个15、如图,菱形ABCD的边长为4,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为()A.4B.3C.3D.二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为________.17、已知:如图,在长方形中,延长到点,使,连接,动点从点出发,以每秒2个单位长度的速度沿向终点运动,设点的运动时间为秒,当的值为________时,和全等.18、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为________cm2.19、如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO= ,那么BC=________.20、如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A 落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为________.21、如图,矩形中,,点E是边上一点,连接,把沿折叠,使点B落在点F处,当为直角三角形时,的长为________.22、如图,在矩形中,对角线,相交于点O,已知,,则的长为________cm.23、已知矩形中,平分交矩形的一边于点,若,,则线段AB的长为________.24、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.25、如图,在平面直角坐标系中,点A,B,D的坐标为(1,0),(3,0),(0,1),点C在第四象限,∠ACB=90°,AC=BC.若△ABC与△A'B'C'关于点D成中心对称,则点C'的坐标为________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图1,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC=90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图2所示,设△AEF的移动时间为t(s)(0<t<4).(1)当t=1时,求EH的长度;(2)若EG⊥AG,求证:EG2=AE•HG;(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.28、如图,在▱ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.29、如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE, 则线段DE与线段AC有怎样的数量关系?请证明你的结论。
苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷(含答案)
苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷一、单选题1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.下列结论中,正确的是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒4.如图,在矩形ABCD 中,AB =8,AD =6,过点D 作直线m∥AC ,点E 、F 是直线m 上两个动点,在运动过程中EF∥AC 且EF =AC ,四边形ACFE 的面积是( )A .48B .40C .24D .305.如图,四边形ABCD 中,90DAB CBA ∠=∠=︒,将CD 绕点D 逆时针旋转90︒至DE ,连接AE ,若6AD =,10BC =,则ADE ∆的面积是( )A .272B .12C .9D .86.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5 B .4 C .7 D .147.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒.下列三个结论:∥当MN =时,则22.5BAM ∠=︒;∥290AMN MNC ∠-∠=︒;∥MNC ∆的周长不变,其中正确结论的个数是( )A .0B .1C .2D .38.如图,在∥ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE∥AB 于 E ,PF∥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.59.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .C .D .810.如图,在∥ABC中,∥ACB=90o,∥B=30o,AC=1,AB=2,AC在直线l上,将∥ABC绕点A顺时针转到位置∥可得到点P1,此时AP1=2;将位置∥的三角形绕点P1顺时针旋转到位置∥,可得到点P2,此时AP2=2+∥的三角形绕点P2顺时针旋转到位置∥,可得到点P3,此时AP3,按此顺序继续旋转,得到点P2016,则AP2016=( )A.B.C.D.二、填空题11.如图,在∥ABC中,∥BAC=65°,将∥ABC绕点A逆时针旋转,得到∥AB'C',连接C'C.若C'C∥AB,则∥BAB'=_____°.12.如图,矩形ABCD的对角线AC和BD相交于点O,直线EF经过点O,交BC于点E,AD于点F,若AB=5cm,AC=13 cm,则阴影部分的面积为_________.13.在菱形ABCD中,对角线AC=2,BD=4,则菱形ABCD的周长是________.14.如图.将长方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∥EBF的大小为_____ .15.如图,在∥ABC中,∥ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∥BPC=90°时,AP的长为______.16.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.17.如图,∥ABC 中,AB=AC ,BE∥AC ,D 为AB 中点,若DE=5,BE=8.则EC=______.18.如图,在∥ABC 中,CD∥AB 于点D ,BE∥AC 于点E ,F 为BC 的中点,DE =5,BC =8,则∥DEF 的周长是______.19.如图,在ABC V 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 的中点,则AM 的最小值为________.20.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:∥四边形CFHE是菱形;∥EC平分∥DCH;∥线段BF的取值范围为3≤BF≤4;∥当点H与点A重合时,以上结论中,你认为正确的有.(填序号)三、解答题21.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.22.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.23.如图,在边长为1的正方形网格中,∥ABC 的顶点均在格点上.(1)画出∥ABC 绕点O 顺时针旋转90°后的∥A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).24.如图,在ABCD Y 中,对角线BD 平分ABC ∠,过点A 作AE BD P ,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F .(1)求证:四边形ABCD 是菱形;(2)若452ABC BC ∠︒=,=,求EF 的长.25.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且DE AC P ,CE BD P .求证:四边形OCED 是菱形.26.如图,在∥ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC∥EF .求证:四边形AECF 是菱形.27.如图,在ABCD Y 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.28.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∥PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,∥PBE为等腰三角形?29.在∥ABCD中,∥BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∥ABC=90°,G是EF的中点(如图2),直接写出∥BDG的度数;(3)若∥ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∥BDG的度数.30.如图,∥ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE∥AB于E,连接PQ交AB于D.(∥)若设AP=x,则PC=,QC=;(用含x的代数式表示)(∥)当∥BQD=30°时,求AP的长;(∥)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.苏科版八年级数学下册第9章中心对称图形-平行四边形单元测试卷(含答案)一、填空题1.C 2.B 3.C 4.A 5.B6.A 7.D 8.C 9.C 10.B二、填空题11.50 12.15cm2 13.14.45° 15.±216.4-17.4 18.13 19.1.2 20.∥∥∥三、解答题21.证明见解析.【分析】求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据∥AOE∥∥COF即可证明OE=OF.【详解】证明:∥平行四边形ABCD中AB∥CD,∥∥OAE=∥OCF,又∥OA=OC,∥COF=∥AOE,∥∥AOE∥∥COF(ASA),∥OE=OF,又∥OA=OC∥四边形AECF是平行四边形.22.证明见解析.根据平行四边形的判定推出四边形OBEC 是平行四边形,根据菱形性质求出∥AOB=90°,根据矩形的判定推出即可.【详解】∥BE∥AC ,CE∥DB ,∥四边形OBEC 是平行四边形,又∥四边形ABCD 是菱形,且AC 、BD 是对角线,∥AC∥BD ,∥∥BOC =90°,∥平行四边形OBEC 是矩形.23.(1)画图见解析;(2)点B 绕点O 旋转到点B′. 【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A′、B′、C′,从而得到∥A′B′C′;(2)先计算出OB 的长,然后根据弧长公式计算点B 绕点O 旋转到点B′的路径长.【详解】(1)如图,∥A′B′C′为所作;(2)OB =,点B 绕点O 旋转到点B′的路径长=90180π⨯⨯π.24.(1)见解析;(2)(1)证明ADB ABD ∠∠=,得出AB AD =,即可得出结论;(2)由菱形的性质得出2AB CD BC ===,证明四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,得出24AB DE CE CD DE +==,==,在Rt CEF △中,由等腰直角三角形的性质和勾股定理即可求出EF 的长.【详解】(1)证明:∥四边形ABCD 是平行四边形,AD BC AB CD AB CD ∴P P ,=,,ADB CBD ∴∠∠=,, ∥BD 平分ABC ∠,ABD CBD ∴∠∠=,, ADB ABD ∴∠∠=,, AB AD ∴=,, ABCD ∴Y 是菱形;(2)解:∥四边形ABCD 是菱形,2AB CD BC ∴===,AB CD AE BD Q P P ,,∥四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,2AB DE ∴==,4CE CD DE ∴+==,45EF BC ECF ⊥∠︒Q ,=,CEF ∴V 是等腰直角三角形,2EF CF ∴=== 25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∥DE AC P ,CE BD P ,∥四边形OCED 是平行四边形,∥四边形ABCD 是矩形,∥AC BD =,OA OC =,OB OD =,∥OC OD =,∥四边形OCED 是菱形.26.见解析.【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】证明:Q 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF =Q ,AE CF ∴=,//AE CF Q ,∴四边形AECF 是平行四边形,AC EF ⊥Q ,∴四边形AECF 是菱形.27.(1)见解析;(2)245【解析】试题分析:(1)先证明四边形AEFD 是平行四边形,再证明∥AEF=90°即可.(2)证明∥ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∥CF=BE ,∥CF+EC=BE+EC .即 EF=BC .∥在∥ABCD 中,AD∥BC 且AD=BC ,∥AD∥EF 且AD=EF .∥四边形AEFD是平行四边形.∥AE∥BC,∥∥AEF=90°.∥四边形AEFD是矩形;(2)∥四边形AEFD是矩形,DE=8,∥AF=DE=8.∥AB=6,BF=10,∥AB2+AF2=62+82=100=BF2.∥∥BAF=90°.∥AE∥BF,∥∥ABF的面积=12AB•AF=12BF•AE.∥AE=•6824105 AB AFBF⨯==.28.(1)45°(t,t);(2)t=4秒或(-4)秒【分析】(1)易证∥BAP∥∥PQD,从而得到DQ=AP=t,从而可以求出∥PBD的度数和点D的坐标.(2)由于∥EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于∥PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.【详解】(1)如图1,由题可得:AP=OQ=1×t=t(秒)∥AO=PQ .∥四边形OABC 是正方形,∥AO=AB=BC=OC ,∥BAO=∥AOC=∥OCB=∥ABC=90°.∥DP∥BP ,∥∥BPD=90°.∥∥BPA=90°-∥DPQ=∥PDQ .∥AO=PQ ,AO=AB ,∥AB=PQ .在∥BAP 和∥PQD 中,BAP PQD BPA PDQ AB PQ ∠∠∠∠⎧⎪⎨⎪⎩===∥∥BAP∥∥PQD (AAS ).∥AP=QD ,BP=PD .∥∥BPD=90°,BP=PD ,∥∥PBD=∥PDB=45°.∥AP=t ,∥DQ=t .∥点D 坐标为(t ,t ).故答案为:45°,(t ,t ).(2)∥若PB=PE ,则t=0(舍去),∥若EB=EP ,则∥PBE=∥BPE=45°.∥∥BEP=90°.∥∥PEO=90°-∥BEC=∥EBC .在∥POE 和∥ECB 中,PEO EBC POE ECB EP BE ∠∠∠∠⎧⎪⎨⎪⎩===∥∥POE∥∥ECB (AAS ).∥OE=CB=OC .∥点E 与点C 重合(EC=0).∥点P 与点O 重合(PO=0).∥点B (-4,4),∥AO=CO=4.此时t=AP=AO=4.∥若BP=BE ,在Rt∥BAP 和Rt∥BCE 中,BA BC BP BE ⎧⎨⎩== ∥Rt∥BAP∥Rt∥BCE (HL ).∥AP=CE .∥AP=t ,∥CE=t .∥PO=EO=4-t .∥∥POE=90°,4-t ).延长OA 到点F ,使得AF=CE ,连接BF ,如图2所示.在∥FAB 和∥ECB 中,90AB CB BAF BCE AF CE ⎧⎪⎨⎪∠∠⎩︒====∥∥FAB∥∥ECB .∥FB=EB ,∥FBA=∥EBC .∥∥EBP=45°,∥ABC=90°,∥∥ABP+∥EBC=45°.∥∥FBP=∥FBA+∥ABP=∥EBC+∥ABP=45°.∥∥FBP=∥EBP .在∥FBP 和∥EBP 中,BF BE FBP EBP BP BP ⎪∠⎪⎩∠⎧⎨===∥∥FBP∥∥EBP (SAS ).∥FP=EP .∥EP=FP=FA+AP=CE+AP .∥EP=t+t=2t .(4-t )=2t .解得:-4∥当t 为4秒或(-4)秒时,∥PBE 为等腰三角形.29.(1)见解析;(2)45°;(3)见解析.【分析】(1)根据AF 平分∥BAD ,可得∥BAF=∥DAF ,利用四边形ABCD 是平行四边形,求证∥CEF=∥F 即可;(2)根据∥ABC=90°,G 是EF 的中点可直接求得;(3)分别连接GB 、GC ,求证四边形CEGF 是平行四边形,再求证∥ECG 是等边三角形,由AD∥BC 及AF 平分∥BAD 可得∥BAE=∥AEB ,求证∥BEG∥∥DCG ,然后即可求得答案.【详解】(1)证明:如图1,∥AF 平分∥BAD ,∥∥BAF=∥DAF ,∥四边形ABCD 是平行四边形,∥AD∥BC ,AB∥CD ,∥∥DAF=∥CEF ,∥BAF=∥F ,∥∥CEF=∥F .∥CE=CF .(2)解:连接GC 、BG ,∥四边形ABCD 为平行四边形,∥ABC=90°,∥四边形ABCD 为矩形,∥AF 平分∥BAD ,∥∥DAF=∥BAF=45°,∥∥DCB=90°,DF∥AB ,∥∥DFA=45°,∥ECF=90°∥∥ECF 为等腰直角三角形,∥G 为EF 中点,∥EG=CG=FG ,CG∥EF ,∥∥ABE 为等腰直角三角形,AB=DC ,∥BE=DC ,∥∥CEF=∥GCF=45°,∥∥BEG=∥DCG=135°在∥BEG 与∥DCG 中,∥EG CG BEG DCG BE DC =⎧⎪∠=∠⎨⎪=⎩,∥∥BEG∥∥DCG ,∥BG=DG ,∥CG∥EF ,∥∥DGC+∥DGA=90°,又∥∥DGC=∥BGA ,∥∥BGA+∥DGA=90°,∥∥DGB为等腰直角三角形,∥∥BDG=45°.(3)解:延长AB、FG交于H,连接HD.∥AD∥GF,AB∥DF,∥四边形AHFD为平行四边形∥∥ABC=120°,AF平分∥BAD∥∥DAF=30°,∥ADC=120°,∥DFA=30°∥∥DAF为等腰三角形∥AD=DF,∥CE=CF,∥平行四边形AHFD为菱形∥∥ADH,∥DHF为全等的等边三角形∥DH=DF,∥BHD=∥GFD=60°∥FG=CE,CE=CF,CF=BH,∥BH=GF在∥BHD与∥GFD中,∥DH DFBHD GFD BH GF=⎧⎪∠=∠⎨⎪=⎩,∥∥BHD∥∥GFD,∥∥BDH=∥GDF∥∥BDG=∥BDH+∥HDG=∥GDF+∥HDG=60°.30.(∥)6﹣x,6+x;(∥)2;(∥)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可.(3) 作QF∥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明∥APE∥∥BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(∥)∥∥ABC是边长为6的等边三角形,∥AB =BC =AC =6,设AP =x ,则PC =6﹣x ,QB =x ,∥QC =QB +BC =6+x ,故答案为:6﹣x ,6+x ;(∥)∥在Rt∥QCP 中,∥BQD =30°,∥PC =12QC ,即6﹣x =12(6+x ),解得x =2, ∥AP =2;(∥)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ∥AB ,交直线AB 的延长线于点F ,连接QE ,PF , 又∥PE ∥AB 于E ,∥∥DFQ =∥AEP =90°,∥点P 、Q 速度相同,∥AP =BQ ,∥∥ABC 是等边三角形,∥∥A =∥ABC =∥FBQ =60°,在∥APE 和∥BQF 中,∥∥AEP =∥BFQ =90°,∥∥APE =∥BQF ,∥在∥APE 和∥BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥APE∥∥BQF(AAS),∥AE=BF,PE=QF且PE∥QF,∥四边形PEQF是平行四边形,∥DE=12 EF,∥EB+AE=BE+BF=AB,∥DE=12 AB,又∥等边∥ABC的边长为6,∥DE=3,∥当点P、Q运动时,线段DE的长度不会改变.。
新苏科版八年级数学下册《平行四边形》题及答案解析.docx
(新课标)苏科版八年级下册9.3 平行四边形一.选择题1.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°2.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④3.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.264.如图,平行四边形ABCD的周长是26cm,对角线AC与BD 交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm5.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH6.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A.3 B.5 C.2或3 D.3或57.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.148.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE 9.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S310.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.11.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.612.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°13.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③14.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线二.填空题15.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.16.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.17.如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.18.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.19.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.20.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.21.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD= .22.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.23.如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC 于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S= ;(2)若AB>DC,则此时四边形ABCD的面积S′S(用“>”或“=”或“<”填空).24.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.三.解答题25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE 交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.26.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.27.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD.连结CE,求证:CE平分∠BCD.28.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.29.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O 且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.30.如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.答案与解析一.选择题1.(2016•河池)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°【分析】由在平行四边形ABCD中,∠ABC的平分线交AD于E,易证得∠AEB=∠ABE,又由∠BED=150°,即可求得∠A的大小.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.2.(2016•菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD 为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.3.(2016•丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.26【分析】由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.4.(2016•绵阳)如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm【分析】由▱ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OB+AD)﹣(OA+OD+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.5.(2016•湖北襄阳)如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,【解答】解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.6.(2016•孝感)在▱ABCD中,AD=8,AE平分∠BAD交BC 于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A.3 B.5 C.2或3 D.3或5【分析】根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴AB=5;②在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB+EF=8,∴AB=3;综上所述:AB的长为3或5.故选D.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出BA=BE=CF=CD.7.(2016•丹东)如图,在▱ABCD中,BF平分∠ABC,交AD 于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC 的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.8.(2016•株洲)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE 【分析】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OB≠OC,得出∠OBE≠∠OCE,选项D错误;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.【点评】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.9.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.10.(2016•济南)如图,在▱ABCD中,AB=12,AD=8,∠ABC 的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.【解答】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.11.(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.12.(2016•河北)如图,将▱ABCD沿对角线AC折叠,使点B 落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.13.(2016•绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点评】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.14.(2016•天门)在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.【点评】本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是记住全等三角形的判定方法以及平行四边形的判定方法,属于中考常考题型.二.填空题15.(2016•河南)如图,在▱ABCD中,BE⊥AB交对角线AC 于点E,若∠1=20°,则∠2的度数为110°.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.16.(2016•巴中)如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是1<a<7 .【分析】由平行四边形的性质得出OA=4,OD=3,再由三角形的三边关系即可得出结果.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.【点评】本题考查了平行四边形的性质和三角形的三边关系;熟练掌握平行四边形的性质,由三角形的三边关系得出结果是解决问题的关键.17.(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D 作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF 的度数为50°.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.18.(2016•十堰)如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长 4 cm.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.【解答】解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.19.(2016•无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为 5 .【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B 作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC 是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点评】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(2016•宁夏)在平行四边形ABCD中,∠BAD的平分线AE 交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 2 .【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.21.(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD= 55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.22.(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.23.(2016•泉州)如图,在四边形ABCD中,AB∥DC,E是AD 中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S= 15 ;(2)若AB>DC,则此时四边形ABCD的面积S′= S(用“>”或“=”或“<”填空).【分析】(1)若AB=DC,则四边形ABCD是平行四边形,据此求出它的面积是多少即可.(2)连接EC,延长CD、BE交于点P,证△ABE≌△DPE可得S△ABE=S△DPE、BE=PE,由三角形中线性质可知S△BCE=S△PCE,最后结合S四边形ABCD=S△ABE+S△CDE+S△BCE可得答案.【解答】解:(1)∵AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积S=5×3=15,故答案为:15.(2)如图,连接EC,延长CD、BE交于点P,∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵,∴△ABE≌△DPE(AAS),∴S△ABE=S△DPE,BE=PE,∴S△BCE=S△PCE,则S四边形ABCD=S△ABE+S△CDE+S△BCE=S△PDE+S△CDE+S△BCE=S△PCE+S△BCE=2S△BCE=2××BC×EF=15,∴当AB>DC,则此时四边形ABCD的面积S′=S,故答案为:=.【点评】此题主要考查了平行四边形的判定和性质的应用及全等三角形的判定与性质,通过构建全等三角形将梯形面积转化为三角形面积去求是解题的关键.24.(2016•常州)如图,△APB中,AB=2,∠APB=90°,在AB 的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是 1 .【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP 的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三.解答题25.(2016•永州)如图,四边形ABCD为平行四边形,∠BAD 的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题(2)的关键.26.(2016•西宁)如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.27.(2016•巴中)已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD.连结CE,求证:CE平分∠BCD.【分析】由平行四边形的性质得出AB∥CD,AB=CD,AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,∴∠E=∠DCE,∵AE+CD=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.【点评】本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出BE=BC 是解决问题的关键.28.(2016•青岛)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC 的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、菱形的判定.熟练掌握平行四边形的性质,证出四边形BEDF 是平行四边形是解决问题(2)的关键.29.(2016•本溪)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.30.(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC 的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE ∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF。
苏科版初二数学下册《中心对称图形——平行四边形》单元测试卷及答案解析
苏科版初二数学下册《中心对称图形——平行四边形》单元测试卷及答案解析一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2、下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3、如图,若四边形ABCD是菱形,则下列结论不成立的是()A.AC=BD B.AO⊥BOC.∠BAD=∠BCD D.AB=AD4、如图,在平行四边形ABCD中,都不一定成立的是;;;.A.和B.和C.和D.和5、如图,在□ ABCD中,AD=4,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3C.4 D.56、如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30º,则∠E 的度数是()A.15ºB.30ºC.22.5ºD.10º7、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是()A.矩形B.菱形C.正方形D.菱形、矩形或正方形8、小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②③D.③④9、在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB//CD,AD=BCC.AB//CD,AB=CD D.AB//CD,AD//BC10、如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=6,OE=3,那么四边形EFCD的周长是()A.16 B.13C.11 D.10二、填空题11、如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是______.12、如图,平行四边形ABCD中,对角线AC与BD相交于点O.且AC⊥AB,垂足为点A.若AB=12,AC=10,则BD的长为________.(第11题图)(第12题图)(第13题图)13、如图,在▱ABCD中,,的平分线AE交DC于点E,连接若,则的度数为______.14、矩形的两条对角线的夹角60º,较短的边长为12,则对角线长为_______.15、在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若,则的值为______.16、如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,AB=5cm,EC=2cm,则BC=_________.(第16题图)(第18题图)17、在平行四边形ABCD中,∠A、∠B的度数之比为5:4,则∠C等于__________.18、如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC 交AD于点E,则DE的长是_____________.三、解答题19、如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.20、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.21、的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.22、已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.23、如图,AC是▱ABCD的对角线,以点C为圆心,CD长为半径作圆弧,交AC与点E,连结DE并延长交AB于点F,求证:AF=AE.24、如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.参考答案1、D2、A3、A4、D5、A6、A7、C8、C9、B10、A11、2012、2613、14、2415、或16、3cm17、100°18、319、见解析20、见解析21、证明见解析.22、(1)证明见解析;(2)四边形DEBF的周长为12 ,面积是423、见解析24、(1)见解析;(2)2【解析】1、分析:根据中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合;轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合,对各选项逐一判断即可.详解:A.是轴对称图形,不是中心对称图形.故不符合题意;B.是轴对称图形,不是中心对称图形.故不符合题意;C.不是轴对称图形,是中心对称图形.故不符合题意;D.是轴对称图形,又是中心对称图形.故符合题意.故选:D.点睛:此题主要考查了轴对称图形,中心对称图形识别,关键是掌握轴对称图形和中心对称图形的概念,会确定对称轴和对称中心.2、分析:根据平行四边形的判定与性质,矩形的判定,菱形的判定以及正方形的判定来分析,也可以举出反例来判断选项的正误.详解:A、四个角相等的菱形是正方形,正确;B、对角线互相垂直的四边形有可能是筝形,故不正确;C、有一组邻边相等的平行四边形是菱形,故不正确;D、两条对角线相等的四边形是梯形或矩形,故不正确.故选:A.点睛:本题考查了正方形、平行四边形、矩形以及菱形的判定.注意正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.3、分析:根据菱形的性质(菱形的对角线互相垂直、四条边相等)和平行四边形的性质(平行四边形的对角相等)即可判断.详解:∵四边形ABCD是菱形,∴AC⊥BD,∠BAD=∠BCD,AB=AD,故选项B、C、D正确,故选:A.点睛:本题考查菱形的性质,解题的关键是熟练掌握菱形的性质,属于中考基础题.4、分析:由四边形ABCD是平行四边形,即可得①和③正确,然后利用排除法即可求得答案.详解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.点睛:此题考查了平行四边形的性质.注意掌握平行四边形的对角线互相平分,对边平行是解此题的关键.5、分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=4,又由点E、F分别是BD、CD的中点,利用三角形中位线等于第三边的一半,即可求得答案.详解:∵四边形ABCD是平行四边形,∴BC=AD=4,∵点E、F分别是BD、CD的中点,∴EF=BC=×4=2.故选:A.点睛:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意数形结合思想的应用.6、分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.详解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,∴∠E=15°.故选:A点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.7、分析:根据正方形的判别方法知,对角线互相平分,互相垂直且相等的四边形是正方形.详解:根据对角线互相平分,互相垂直且相等的四边形是正方形,故选C.点睛:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.8、分析:确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.详解:只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选C.点睛:本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.9、A、AB=CD,AD=BC能判定四边形ABCD为平行四边形,故此选项不符合题意;B、AD=CB,AB∥DC不能判定四边形ABCD为平行四边形,故此选项符合题意;C、AB=CD,AB∥CD能判定四边形ABCD为平行四边形,故此选项不符合题意;D、AB∥CD,AD∥BC能判定四边形ABCD为平行四边形,故此选项不符合题意;故选:B.10、根据平行四边形的性质,得AO=OC,∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OF=OE=3,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=6,故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=3+3+6+4=16,故选A.【点睛】本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.11、【分析】先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果. 【详解】因为,四边形ABCD是菱形,所以,AD=AB,因为,AE:AD=3:5,所以,AE:AB=3:5,所以,AE:BE=3:2,因为,BE=2,所以,AE=3,AB=CD=5,所以,DE=,所以,菱形ABCD的面积是AB∙DE=5×4=20故答案为:20【点睛】本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.12、【分析】根据平行四边形的对角线互相平分可得出BD=2BO,AO=CO,先由勾股定理BO2=AB2+AO2可求出BO,继而可求出BD的长.【详解】因为,在平行四边形ABCD中,对角线AC与BD相交于点O.所以,BD=2BO,AO=CO=.因为AC⊥AB,所以三角形AOB是直角三角形.所以,BO2=AB2+AO2所以,.所以,BD=2BO=26.故正确答案为26.【点睛】此题考核知识点:平行四边形对角线互相平分性质和勾股定理运用.解题关键是熟悉相关性质.13、分析:由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°-∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.详解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°-∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°-40°)÷2=70°,∴∠EBC=∠ABC-∠ABE=30°;故答案为:30°.点睛:此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14、分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.15、分析:根据平行四边形面积求出AE和AF,然后根据题意画出图形:有两种情况,求出BE、DF的值,求出CE和CF的值,继而求得出答案.详解:∵四边形ABCD是平行四边形,∴AB=CD=4,BC=AD=6,①如图:∵S▱ABCD=BC•AE=CD•AF=12,∴AE=2,AF=3,在Rt△ABE中:BE=2,在Rt△ADF中,DF=3,∴CE+CF=BC-BE+DF-CD=2+;②如图:∵S▱ABCD=BC•AE=CD•AF=12,∴AE=2,AF=3,在Rt△ABE中:BE=2,在Rt△ADF中,DF=3,∴CE+CF=BC+BE+DF+CD=10+5,综上可得:CE+CF的值为10+5或2+.点睛:此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握分类讨论思想思想与数形结合思想的应用.16、分析:根据平行四边形的性质得到DC=AB=5cm,AB∥CD,根据平行线的性质和角平分线的性质证出∠DEA=∠DAE,根据等腰三角形的判定得到DE=AD,代入计算即可.详解:∵四边形ABCD是平行四边形,∴DC=AB=5cm,AB∥CD,AD=BC∴∠DEA=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD∵EC=2cm∴BC=AD=CD-EC=5-2=3cm,点睛:本题主要考查了平行四边形的性质,角平分线的定义,平行线的性质,等腰三角形的判定等知识;熟练掌握平行四边形的性质,证明DE=AD是解决问题的关键.17、分析:根据平行四边形的邻角互补求∠A,由平行四边形的对角相等求解..详解:因为四边形ABCD是平行四边形,所以∠A+∠B=180°,所以∠A=×180°=100°,因为∠A=∠C,所以∠C=100°.故答案为100°.点睛:本题考查了平行四边形的性质,平行四边形的对边平行且相等,对角相等,对角线互相平分.18、分析:连接CE,设DE=x,则AE=8-x,判断出OE是AC的垂直平分线,即可推得CE=AE=8-x,然后在Rt△CDE中,根据勾股定理,求出DE的长是多少即可.详解:如图,连接CE,,设DE=x,则AE=8-x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8-x,在Rt△CDE中,x2+42=(8-x)2,解得x=3,∴DE的长是3.故答案为:3.点睛:此题主要考查了矩形的性质、中垂线的性质和勾股定理,熟练掌握矩形的对角线互相平分和中垂线的性质是解题的关键.19、分析:根据平行四边形的性质和三角形全等的边角边定理证明△AED≌△CFB,再根据“全等三角形对应边相等”即可得到AE=CF.详解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠EDA=∠FBC.在△AED和△CFB中,∴△AED≌△CFB(SAS).∴AE=CF.点睛:本题主要考查平行四边形的性质,全等三角形的判定与性质,证明△AED≌△CFB是解答本题的关键.20、分析:(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.详解:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,∵AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL);(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.点睛:本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.21、分析:连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD 为平行四边形,利用平行四边形的性质即可得证.详解:证明:连接DE,FG,,CE是的中位线,,E是AB,AC的中点,,,同理:,,,,四边形DEFG是平行四边形,,.点睛:此题考查了三角形中位线定理,以及平行线的判定,熟练掌握中位线定理是解本题的关键.22、分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.(2)求四边形DEBF的周长,求出BE和DE即可.详解:(1)∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,AD=BC∵DE、BF分别是∠ADC和∠ABC的角平分线∴∠ADE="∠CDE,∠CBF=∠ABF"∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF∴∠AED="∠ADE,∠CFB=∠CBF"∴AE="AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF" 即BE="DF"∵DF∥BE,∴四边形DEBF是平行四边形∵∠A=60°,AE=AD∴△ADE是等边三角形∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE="2"∴四边形DEBF的周长="2(BE+DE)=2(4+2)=12"过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=∴四边形DEBF的面积=BE×DG=2×=4点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.23、【分析】根据CD=CE,可得∠CDE=∠CED,再根据平行四边形的性质以及对顶角相等,即可得到∠AFD=∠AEF,从而即可得AE=AF.【详解】由题可得,CD=CE,∴∠CDE=∠CED,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AFD=∠CDE,∵∠AEF=∠CED,∴∠AFD=∠AEF,∴AE=AF.【点睛】本题考查了平行四边形的性质、等腰三角形的性质等,熟知平行四边形的对边相互平行是解题的关键.24、分析:(1)由四边形ABCD是菱形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.(2)利用平行四边形的判定和性质解答即可.详解:(1)∵四边形ABCD是菱形,∴AO=CO,AB∥CD,∴∠EAO=∠FCO,∠AEO=∠CFO.在△OAE和△OCF中,∠EAO=∠FCO,AO=CO,∠AEO=∠CFO,∴△AOE≌△COF,∴AE=CF;(2)∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形,∵AB=2,∴EF=BC=AB=2.点睛:此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.。
初中数学八年级下册《平行四边形》单元测试卷(整理含答案)
初中数学八年级下册《平行四边形》单元测试卷(整理含答案)初中数学八年级下册《平行四边形》单元测试卷一时间:90分钟满分:100分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于360º,外角和等于360º。
2.正方形的面积为4,它的边长为2,一条对角线长为2√2.3.一个多边形,若它的内角和等于外角和的3倍,则它是五边形。
4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件):AB × CD + AD × BC = AC × BD。
5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为4√5 cm。
6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20 cm²。
7.平行四边形ABCD,加一个条件:AB = BC,它就是菱形。
8.等腰梯形的上底是10cm,下底是14cm,高是2cm,则等腰梯形的周长为36 cm。
9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为10 cm。
10.如图,ABCD中,XXX于E,AF⊥DC于F,BC=5,AB=4,AE=3,则AF的长为 4.11.如图,梯形ABCD中,AD∥BC,已知AD=4,BC=8,则EF=2,EF分梯形所得的两个梯形的面积比S₁:S₂为3:1.12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形B。
13.如图,XXX从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了20米。
14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是(n-1)/4.二、填空题(共4小题,每题3分,共12分)15.如图,ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于60°。
苏科版数学八年级下册第9章中心对称图形—平行四边形测试题含答案
苏科版数学八年级下册第9章中心对称图形—平行四边形测试题含答案一、选择题(每小题3分,共30分)1.(2015年汕尾)下列命题中正确的是( )A. 一组对边相等,另一组对边平行的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直平分且相等的四边形是正方形2.如图1,将△ABC 沿BC 方向平移得到△DCE ,连接AD ,下列条件能够判定四边形ACED 为菱形的是( )A .AB =BC B .AC =BC C .∠B =60°D .∠ACB =60°3.如图2,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是( ) A .7.5 B .30 C .15 D .24 4.如图3,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 的度数为( ) A. 50° B .60° C .70° D .80°5.如图4,在□ABCD 中,对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE ,CF ,则四边形AECF 是( ) A .矩形 B .菱形 C .正方形 D .无法确定 6.如图5,在正方形ABCD 中,E ,F 分别为AB ,CD 的中点,连接DE ,BF ,CE ,AF ,正方形ABCD 的面积为1,则阴影部分的面积为( )A .21 B .31 C .41D .517. 用两个完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形.一定能拼成的图形是( ) A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤8.如图6,将矩形纸片ABCD 折叠,使点A 落在BC 上的点F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( ) A .邻边相等的矩形是正方形 B .对角线相等的菱形是正方形 C .两个全等的直角三角形构成正方形 D .轴对称图形是正方形9.如图7,把一个矩形纸片对折两次,然后沿虚线剪下一个角,为了得到一个内角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°10.如图8,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=1,DE=3,∠EFB=60°,则矩形ABCD的面积是()A.3 B.6 C.33D.43二、填空题(每小题4分,共32分)11.在□ABCD中,若添加一个条件:____,则四边形ABCD是矩形;若添加一个条件:____,则四边形ABCD是菱形.12.如图9,矩形ABCD内有一点E,连接AE,DE,CE,若AD=ED=EC,∠ADE =20°,则∠AEC的度数为____.13.在菱形ABCD中,AE⊥BC于点E,若菱形ABCD的面积为48 cm2,且AE=6 cm,则AB的长为_________.14. 如图10,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________.15. (2015年赤峰)如图11,在四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长,交AD的延长线于点F,请你只添加一个条件:____________,使得四边形BDFC 为平行四边形.16. 如图12,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形E FGH的面积为_________.17. 如图13,在□ABCD中,AC,BD相交于点O,AB=10 cm,AD=8 cm,AC⊥BC,则OB的长为_________cm.18.如图14,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________.三、解答题(共58分)19.(8分)如图15,在四边形ABCD中,∠ABC=∠ADC=90°,P是AC的中点.求证:∠BDP=∠DBP.20.(8分)如图16,在直线MN上和直线MN外分别取点A,B,过线段AB的中点O作CD∥MN,分别与∠MAB与∠NAB的平分线相交于点C,D.求证:四边形ACBD是矩形.21.(10分)如图17,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E,F,且DE=DF.求证:(1)△AE D≌△CFD;(2)四边形ABCD是菱形.22. (10分)如图18,在□ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE=12,CE=5.求□ABCD的周长和面积.23.(10分)如图19,在△ACD中,∠ADC=90°,∠ADC的平分线交AC于点E,EF⊥AD交AD于点F,EG⊥DC交DC于点G,请你说明四边形EFDG是正方形.24.(12分)如图20,在矩形ABCD中,对角线AC,BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于点Q.(1)求证:四边形PBQD为平行四边形.(2)若AB=3 cm,AD=4 cm,P从点A出发,以1 cm/s的速度向点D匀速运动,设点P的运动时间为t s,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.附加题(15分,不计入总分)以四边形ABCD 的边AB ,BC ,CD ,DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E ,F ,G ,H ,顺次连接这四个点,得到四边形EFGH .(1)如图①,当四边形ABCD 为正方形时,我们发现四边形EFGH 也是正方形;如图②,当四边形ABCD 为矩形时,请判断四边形EFGH 的形状(不要求证明).(2)如图③,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°). ①试用含α的代数式表示∠HAE ; ②求证:HE=HG .③四边形EFGH 是什么四边形?并说明理由.参考答案一、1.D 2.B 3.C 4.B 5.B 6.C 7. D 8.A 9.D 10.D二、11.答案不唯一,如∠ADC =90° AB =BC 12.120° 13.8 cm 14.4.8 15. 答案不唯一,如BD ∥FC ,或BC=DF ,或DE=CE 16. 12 17.73 18.35三、19.证明:因为∠ABC =∠ADC =90°,点P 是AC 的中点,所以BP =21AC ,DP =21AC .所以BP =DP .所以∠BDP =∠DBP . 20.证明:因为AD 平分∠BA N,所以∠DA N=∠BAD .因为CD ∥MN,所以∠CDA =∠DA N.所以∠BAD =∠CDA .所以DO =AO .同理,CO =AO .所以CO =DO .又AO =BO ,所以四边形ACBD 是平行四边形.因为AC ,AD 均为角平分线,所以∠CAD =90°,所以平行四边形ACBD 是矩形. 21.证明:(1)因为DE ⊥AB ,DF ⊥BC ,所以∠AED =∠CFD =90°.因为四边形ABCD 是平行四边形,所以∠A =∠C .又DE =DF ,所以△AED ≌△CFD .(2)因为△AED ≌△CFD ,所以AD =CD .因为四边形ABCD 是平行四边形,所以四边形ABCD 是菱形.22.解:因为BE ,CE 分别平分∠AB C ,∠BCD ,所以∠EBC=21∠ABC ,∠ECB=21∠DCB. 因为AB ∥CD ,所以∠ABC+∠DCB=180°.所以∠EBC+∠ECB=21(∠ABC+∠DCB )=90°. 所以△EBC 是直角三角形.因为BE =12,CE =5,由勾股定理,得BC=13. 因为四边形ABCD 是平行四边形,所以AD ∥BC. 所以∠DE C=∠ECB.因为∠ECD=∠ECB ,所以∠DEC=∠ECD. 所以DE=CD. 同理,AB=A E.所以AB+CD=AE+DE=AD=BC=13.所以□ABCD 的周长为AB+BC+CD+DA=13+13+13=39. 过点E 作BC 所以S △EBC =21BC·EH=21BE·CE=21×12×5=30. 所以□ABCD 的面积为BC·EH=2×30=60.23.解:因为∠ADC =90°,EF ⊥AD ,EG ⊥CD ,所以四边形EFDG 是矩形. 又DE 平分∠ADC ,所以EF =EG .所以四边形EFDG 是正方形.24.(1)证明:因为四边形ABCD 是矩形,所以A D ∥BC ,OD =OB .所以∠PDO =∠QBO .又∠POD =∠QOB ,所以△POD ≌△QOB .所以OP =OQ .所以四边形PBQD 为平行四边形.(2)解:能.由题意,知AP =t cm ,PD =(4-t ) cm .当PB =PD =(4-t ) cm 时,四边形PBQD 是菱形.因为四边形ABCD 是矩形,所以∠BAP =90°.在Rt △ABP 中,AP 2+AB 2=PB 2,即t 2+32=(4-t )2.解得t =87.所以当点P 的运动时间为87s 时,四边形PBQD 是菱形.附加题(1)解:四边形EFGH 是正方形. (2)①解:在□ABCD 中,AB ∥CD ,所以∠BAD =180°-∠ADC =180°-α.因为△HAD 和△EAB 都是等腰直角三角形,所以∠HAD =∠EAB =45°. 所以∠HAE =360°-∠HAD -∠EAB -∠BAD =360°-45°-45°-(180°-α)=90°+α.②证明:因为△AEB 和△DGC 都是等腰直角三角形,所以AE =22AB ,DG =22CD .在□ABCD 中,AB =CD ,所以AE =DG .因为△HAD 和△GDC 都是等腰直角三角形,所以∠HDA =∠CDG =45°.所以∠HDG =∠HDA +∠ADC +∠CDG =45°+α+45°=90°+α=∠HAE .又HA =HD ,所以△HAE ≌△HDG ,所以HE =HG . ③解:四边形EFGH 是正方形.理由:同②,得GH =GF ,FG =FE .因为HE =HG ,所以GH =GF =EF =HE .所以四边形EFGH 是菱形.因为△HAE ≌△HDG ,所以∠DHG =∠AHE .因为∠AHD =∠AHG +∠DHG =90°,所以∠EHG =∠AHG +∠AHE =90°.所以四边形EFGH 是正方形.。
苏科新版八级下册《平行四边形》单元测试卷含解析
苏科新版八年级数学下册《平行四边形》20XX 年单元测试卷一、选择题1.已知平行四边形ABCD 的周长为32, AB=4 ,则 BC 的长为 ()A.4B.12C.24D.282.如图,在平行四边形ABCD 中,∠ B=80 °, AE 均分∠ BAD 交 BC 于点 E, CF∥ AE 交AD 于点 F,则∠ 1=()A . 40° B. 50° C. 60° D. 80°3.按序连结矩形四边中点获得的四边形必定是()A .正方形B .矩形C .菱形D .平行四边形4.如图,平行四边形ABCD 中, AB=3 , BC=5 ,AC 的垂直均分线交AD 于 E,则△ CDE 的周长是 ()A.6B.8C.9D.105.以下条件之一能使菱形ABCD 是正方形的为()① AC ⊥ BD② ∠BAD=90° ③ AB=BC④ AC=BD.A.①③B.②③C.②④D.①②③6.如图,菱形ABCD 中,AB=AC CE、AF 交于点H,连结DH 交AG ③ AH+CH=DH 中,正确的选项是 ( ,点 E、 F 分别为边AB 、 BC 上的点,且AE=BF ,连结于点 O.则以下结论① △ABF ≌△ CAE ,② ∠ AHC=120 °,)A .①②④B .①②③C .②③④D .①②③④7.如图,在 ?ABCD 中,E 是 BC 的中点,且∠ AEC= ∠ DCE ,则以下结论不正确的选项是()A . S △ AFD =2S △EFBB .BF= DFC .四边形 AECD 是等腰梯形 D .∠ AEB= ∠ ADC8.不可以判断四边形 ABCD 是平行四边形的是 ()A . AB=CD , AD=BCB .AB=CD , AB ∥CDC . AB=CD ,AD ∥ BC D .AB ∥ CD ,AD ∥ BC 9.如图,周长为 16 的菱形 ABCD 中,点E ,F 分别在 AB ,AD 边上, AE=1 ,AF=3 , P 为 BD 上一动点,则线段 EP+FP 的长最短为 ( )A .3B .4C .5D .610.如图,在矩形 ABCD 中, BC=6 ,CD=3 ,将△ BCD 沿对角线 BD 翻折,点 C 落在点 C1处, BC 1交 AD 于点 E ,则线段 DE 的长为 () A .3B .C .5D . 二、填空题11.直角三角形中,两直角边长分别为12 和 5,则斜边中线长是__________.12.如图,一个含有 30°角的直角三角形的两个极点放在一个矩形的对边上,若∠ 1=25°,则 ∠ 2=__________ .13.如图,菱形ABCD 的两条对角线订交于O,若 AC=6 , BD=4 ,则菱形ABCD 的周长是__________.14.矩形、菱形、正方形都是特别的四边形,它们拥有好多共性,如:__________ .(填一条即可)15. ?ABCD的周长是30, AC 、 BD 订交于点O,△ OAB 的周长比△ OBC 的周长大3,则AB=__________ .16.如图,正方形ABCD 的对角线长为8 ,E 为AB 上一点,若EF⊥ AC 于 F,EG⊥ BD 于 G,则 EF+EG=__________ .三、解答题17.如图,在菱形ABCD 中, M , N 分别是边AB ,BC 的中点, MP⊥AB 交边 CD 于点 P,连结 NM , NP.(1)若∠ B=60 °,这时点 P 与点 C 重合,则∠ NMP=__________ 度;(2)求证: NM=NP ;(3)当△NPC 为等腰三角形时,求∠B 的度数.18.如图,矩形 ABCD 中,点 E,F 分别在 AB ,CD 边上,连结 CE、AF ,∠ DCE= ∠ BAF .试判断四边形 AECF 的形状并加以证明.19.如图,△ ABC 是等腰三角形,AB=BC ,点 D 为 BC 的中点.(1)用圆规和没有刻度的直尺作图,并保存作图印迹:①过点 B 作 AC 的平行线BP;②过点 D 作 BP 的垂线,分别交(2)在( 1)所作的图中,连结AC , BP, BQ 于点 E, F, G.BE, CF.求证:四边形BFCE 是平行四边形.20.如图,在菱形上一动点(不与点ABCD 中, AB=2 ,∠ DAB=60A 重合),延伸 ME 交射线 CD°,点于点E是 ADN,连结边的中点.点MD 、AN .M 是AB 边(1)求证:四边形 AMDN 是平行四边形;(2)填空:①当 AM 的值为 __________时,四边形 AMDN 是矩形;②当 AM 的值为 __________时,四边形 AMDN 是菱形.21.如图,在平行四边形 ABCD 中, AE ⊥ BC 于 E, AF ⊥ CD 于 F, BD 分别与 AE 、AF 订交于 G、H .(1)在图中找出与△ ABE 相像的三角形,并说明原因;(2)若 AG=AH ,求证:四边形 ABCD 是菱形.22.如图,矩形ABCD 的对角线订交于点O, DE∥AC , CE∥ BD .求证:四边形OCED 是菱形.23.( 1)如图 1,在正方形 ABCD 中,E 是 AB 上一点, F 是 AD 延伸线上一点,且 DF=BE .求证: CE=CF;(2)如图 2,在正方形 ABCD 中, E 是 AB 上一点, G 是 AD 上一点,假如∠ GCE=45 °,请你利用( 1)的结论证明: GE=BE+GD .(3)运用( 1)( 2)解答中所累积的经验和知识,达成下题:如图 3,在直角梯形 ABCD 中, AD ∥ BC( BC> AD ),∠ B=90 °, AB=BC ,EAB 上一点,是且∠ DCE=45 °,BE=4 , DE=10 ,求直角梯形 ABCD 的面积.24.如图,在 ?ABCD 中, E、 F 分别为边 ABCD 的中点, BD 是对角线,过 A 点作平行四边形AGDB 交 CB 的延伸线于点 G.(1)求证: DE∥ BF;(2)若∠ G=90 ,求证:四边形 DEBF 是菱形.苏科新版八年级数学下册《平行四边形》20XX年单元测试卷一、选择题1.已知平行四边形ABCD 的周长为32, AB=4 ,则 BC 的长为 ()A.4B.12C.24D.28【考点】平行四边形的性质.【剖析】依据平行四边形的性质获得AB=CD , AD=BC ,依据 2( AB+BC ) =32 ,即可求出答案.【解答】解:∵四边形ABCD 是平行四边形,∴AB=CD , AD=BC ,∵平行四边形ABCD 的周长是32,∴2( AB+BC )=32,∴BC=12 .应选 B.【评论】本题主要考察对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解本题的重点.2.如图,在平行四边形ABCD 中,∠ B=80 °, AE 均分∠ BAD 交 BC 于点 E, CF∥ AE 交AD 于点 F,则∠ 1=()A . 40° B. 50° C. 60° D. 80°【考点】平行四边形的性质.【剖析】依据平行四边形的对边平行和角均分线的定义,以及平行线的性质求∠1 的度数即可.【解答】解:∵ AD ∥BC ,∠ B=80 °,∴∠ BAD=180 °﹣∠ B=100 °.∵AE 均分∠ BAD∴∠ DAE=∠ BAD=50°.∴∠ AEB= ∠DAE=50 °∵C F∥ AE∴∠ 1=∠ AEB=50 °.应选 B.【评论】本题主要考察平行四边形的性质和角均分线的定义,属于基础题型.3.按序连结矩形四边中点获得的四边形必定是()A .正方形B .矩形C .菱形D .平行四边形【考点】中点四边形.【剖析】三角形的中位线平行于第三边,且等于第三边的一半.需注意新四边形的形状只与对角线相关,不用考虑原四边形的形状.【解答】解:如图,连结AC 、BD .在△ ABD 中,∵AH=HD , AE=EB ,∴E H= BD ,同理 FG= BD , HG= AC , EF=AC ,又∵在矩形ABCD 中, AC=BD ,∴E H=HG=GF=FE ,∴四边形 EFGH 为菱形.应选 C.【评论】本题考察了菱形的判断,菱形的鉴别方法是说明一个四边形为菱形的理论依照,常用三种方法:① 定义,② 四边相等,③ 对角线相互垂直均分.4.如图,平行四边形ABCD 中, AB=3 , BC=5 ,AC 的垂直均分线交AD 于 E,则△ CDE 的周长是( )A.6B.8C.9D.10【考点】线段垂直均分线的性质;平行四边形的性质.【专题】压轴题;转变思想.【剖析】依据线段垂直均分线的性质和平行四边形的性质可知,△ CDE 的周长=CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.【解答】解:依据垂直均分线上点到线段两个端点的距离相等知,EC=AE ;依据在平行四边形 ABCD 中有 BC=AD , AB=CD ,∴△ CDE 的周长等于 CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.应选 B.【评论】本题联合线段垂直均分线的性质考察了平行四边形的性质,利用中垂线将已知转变是解题的重点.5.以下条件之一能使菱形ABCD 是正方形的为()① AC ⊥ BD② ∠BAD=90° ③ AB=BC④ AC=BD.A.①③B.②③C.②④D.①②③【考点】正方形的判断.【剖析】直接利用正方形的判断方法,有一个角是 90°的菱形是正方形,以及利用对角线相等的菱形是正方形从而得出即可.【解答】解:∵四边形ABCD 是菱形,∴当∠ BAD=90 °时,菱形ABCD 是正方形,故②正确;∵四边形 ABCD 是菱形,∴当 AC=BD 时,菱形ABCD 是正方形,故④ 正确;应选: C.【评论】本题主要考察了正方形的判断,正确掌握正方形的判断方法是解题重点.6.如图,菱形 ABCD 中, AB=AC ,点 E、 F 分别为边 AB 、 BC 上的点,且 AE=BF ,连结CE、AF 交于点 H,连结 DH 交 AG 于点 O.则以下结论① △ABF ≌△ CAE ,② ∠ AHC=120 °,③ AH+CH=DH中,正确的选项是()A .①②④B .①②③C .②③④D .①②③④【考点】菱形的性质;全等三角形的判断与性质.【剖析】由菱形 ABCD 中,AB=AC ,易证得△ ABC 是等边三角形,则可得∠ B= ∠ EAC=60 °,由 SAS 即可证得△ ABF ≌△ CAE ;则可得∠ BAF= ∠ACE ,利用三角形外角的性质,即可求得∠AHC=120 °;在 HD 上截取 HK=AH ,连结 AK ,易得点 A , H, C,D 四点共圆,则可证得△AHK 是等边三角形,而后由 AAS 即可证得△AKD ≌△ AHC ,则可证得 AH+CH=DH ;2易证得△ OAD ∽△ AHD ,由相像三角形的对应边成比率,即可得AD =OD?DH .∴A B=BC ,∵AB=AC ,∴A B=BC=AC ,即△ ABC 是等边三角形,同理:△ ADC 是等边三角形∴∠ B=∠ EAC=60 °,在△ ABF 和△ CAE 中,,∴△ ABF ≌△ CAE ( SAS);故① 正确;∴∠ BAF= ∠ ACE ,∵∠ AEH= ∠ B+ ∠BCE ,∴∠ AHC= ∠ BAF+ ∠ AEH= ∠BAF+ ∠ B+∠ BCE=∠ B+ ∠ACE+ ∠BCE= ∠ B+ ∠ ACB=60 °+60 °=120°;故② 正确;在 HD 上截取 HK=AH ,连结 AK ,∵∠AHC+ ∠ ADC=120 °+60 °=180 °,∴点 A ,H ,C,D 四点共圆,∴∠ AHD= ∠ ACD=60 °,∠ ACH= ∠ADH ,∴△ AHK 是等边三角形,∴AK=AH ,∠ AKH=60 °,∴∠ AKD= ∠ AHC=120 °,在△ AKD 和△ AHC 中,,∴△ AKD ≌△ AHC ( AAS ),∴CH=DK ,∴DH=HK+DK=AH+CH;故③ 正确;∵∠ OAD= ∠ AHD=60 °,∠ ODA= ∠ADH ,∴△ OAD ∽△ AHD ,∴AD : DH=OD : AD ,2故④ 正确.应选 D.【评论】本题考察了相像三角形的判断与性质、菱形的性质、等边三角形的判断与性质以及全等三角形的判断与性质.本题难度较大,注意掌握协助线的作法,注意数形联合思想的应用.7.如图,在 ?ABCD 中,E 是 BC 的中点,且∠ AEC= ∠ DCE ,则以下结论不正确的选项是()A . S△AFD=2S△EFB B .BF= DFC.四边形 AECD 是等腰梯形 D .∠ AEB= ∠ ADC【考点】平行四边形的性质;相像三角形的判断与性质.【专题】压轴题.【剖析】本题要综合剖析,但主要依照都是平行四边形的性质.【解答】解: A 、∵ AD ∥BC∴△ AFD ∽△ EFB∴= = =故 S△AFD =4S△EFB;B、由 A 中的相像比可知,BF= DF,正确.C、由∠ AEC= ∠ DCE 可知正确.D、利用等腰三角形和平行的性质即可证明.应选: A.【评论】解决本题的重点是利用相像求得各对应线段的比率关系.8.不可以判断四边ABCD 是平行四边形的是( )形A . AB=CD , AD=BCB .AB=CD , AB ∥CDC . AB=CD ,AD ∥ BC D .AB ∥ CD ,AD ∥ BC 【考点】平行四边形的判断.【剖析】 A 、 B、 D,都能判断是平行四边形,只有C 不可以,由于等腰梯形也知足这样的条件,但不是平行四边形.【解答】解:依据平行四边形的判断:A 、 B、 D 可判断为平行四边形,而C 不具备平行四边形的条件,应选: C.【评论】平行四边形的五种判断方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;( 3)一组对边平行且相等的四边形是平行四边形;( 4)两组对角分别相等的四边形是平行四边形;( 5)对角线相互均分的四边形是平行四边形.9.如图,周长为16 的菱形 ABCD 中,点( E,F 分别AB ,AD 边上, AE=1 ,AF=3 , P 为BD 上一动点,则线段EP+FP 的长最短为在 )A.3B.4C.5D.6【考点】轴对称 -最短路线问题;菱形的性质.【剖析】在 DC 上截取 DG=FD=AD ﹣ AF=4 ﹣3=1,连结 EG,则 EG 与 BD 的交点就是 P.EG的长就是 EP+FP 的最小值,据此即可求解.【解答】 解:在 DC 上截取 DG=FD=AD ﹣AF=4 ﹣ 3=1 ,连结 EG ,则 EG 与 BD 的交点就是P .∵AE=DG ,且 AE ∥ DG ,∴四边形 ADGE 是平行四边形, ∴ E G=AD=4 . 应选 B .【评论】 本题考察了轴对称,理解菱形的性质,对角线所在的直线是菱形的对称轴是重点.10.如图,在矩形 ABCD 中, BC=6 ,CD=3 ,将△ BCD 沿对角线 BD 翻折,点 C 落在点 C1处, BC 1交 AD 于点 E ,则线段 DE 的长为 ()A . 3B .C . 5D .【考点】 翻折变换(折叠问题) .【剖析】 第一依据题意获得BE=DE ,而后依据勾股定理获得对于线段 解方程即可解决问题.AB 、AE 、BE的方程,【解答】 解:设 ED=x ,则 AE=6 ﹣ x , ∵四边形 ABCD 为矩形, ∴AD ∥BC ,∴∠ EDB= ∠DBC ;由题意得:∠ EBD= ∠DBC , ∴∠ EDB= ∠EBD , ∴ E B=ED=x ; 由勾股定理得:BE 2=AB 2 +AE 2,即 x 2=9+ ( 6﹣x ) 2,解得: x=3.75 ,∴ED=3.75 应选: B .【评论】 本题主要考察了几何变换中的翻折变换及其应用问题; 解题的重点是依据翻折变换 的性质,联合全等三角形的判断及其性质、勾股定理等几何知识,灵巧进行判断、剖析、推理或解答.二、填空题11.直角三角形中,两直角边长分别为12 和 5,则斜边中线长是.【考点】直角三角形斜边上的中线;勾股定理.【剖析】依据勾股定理求出斜边,依据直角三角形斜边上的中线是斜边的一半计算即可.【解答】解:∵直角三角形中,两直角边长分别为12和 5,∴斜边 = =13,则斜边中线长是,故答案为:.【评论】本题考察的是勾股定理的应用和直角三角形的性质的运掌握直角三角形斜边上用,的中线是斜边的一半是解题的重点.12.如图,一个含有30°角的直角三角形的两个极点放在一个矩形的对边上,若∠ 1=25°,则∠2=115°.【考点】平行线的性质.2=∠DEG= ∠1+∠ FEG,从而可得出【剖析】将各极点标上字母,依据平行线的性质可得∠答案.【解答】解:∵四边形ABCD 是矩形,∴AD ∥BC,∴∠ 2=∠ DEG= ∠ 1+∠ FEG=115 °.故答案为: 115°.【评论】本题考察了平行线的性质,解答本题的重点是掌握平行线的性质:两直线平行内错角相等.13.如图,菱形A BCD 的两条对角线订交于O,若 AC=6 , BD=4 ,则菱形ABCD 的周长是4.【考点】菱形的性质.【剖析】在 Rt△ AOD 中求出AD 的长,再由菱形的四边形等,可得菱形ABCD 的周长.【解答】解:∵四边形ABCD 是菱形,∴AO=AC=3 , DO= BD=2, AC⊥BD ,在 Rt△ AOD中, AD= = ,∴菱形 ABCD 的周长为 4.故答案为: 4.【评论】本题考察了菱形的性质,解答本题的重点是掌握菱形的对角线相互垂直且均分.14.矩形、菱形、正方形都是特别的四边形,它们拥有好多共性,如:对角线相互均分.(填一条即可)【考点】正方形的性质;平行四边形的性质;菱形的性质.【专题】压轴题;开放型.【剖析】在矩形、菱形、正方形这类特别的四边形中,它们都平行四边形,因此平行四边形全部的性质都是它们的共性.【解答】解:∵矩形、菱形、正方形都是特别的平行四边形,∴它们都拥有平行四边形的性质,因此填两组对边分别平行、或两组对边分别相等、或对角线相互均分等.【评论】本题主要考察了平行四边形的性质,矩形、菱形、正方形都是特别的平行四边形.15. ?ABCD 的周长是 30, AC 、 BD 订交于点 O,△ OAB 的周长比△ OBC 的周长大 3,则AB=9 .【考点】平行四边形的性质.【剖析】如图:由四边形 ABCD 是平行四边形,可得 AB=CD ,BC=AD ,OA=OC ,OB=OD ;又由△ OAB 的周长比△ OBC 的周长大 3,可得 AB ﹣ BC=3 ,又由于 ?ABCD 的周长是 30,因此AB+BC=10 ;解方程组即可求得.【解答】解:∵四边形ABCD 是平行四边形,∴AB=CD , BC=AD , OA=OC ,OB=OD ;又∵△ OAB 的周长比△ OBC 的周长大3,∴AB+OA+OB ﹣( BC+OB+OC )=3∴AB ﹣ BC=3 ,又∵ ?ABCD 的周长是30,∴A B+BC=15 ,∴A B=9 .故答案为 9.【评论】本题考察了平行四边形的性质:平行四边形的对边相等,对角线相互均分.解题时要注意利用方程思想与数形联合思想求解.16.如图,正方形ABCD 的对角线长为8,E为AB上一点,若EF⊥ AC 于 F,EG⊥ BD 于 G,则 EF+EG=4 .【考点】正方形的性质.【专题】几何图形问题.【剖析】正方形 ABCD 的对角线交于点O,连结 0E,由正方形的性质和对角线长为8 ,得出 OA=OB=4 ;进一步利用S△ABO =S△AEO +S△EBO,整理得出答案解决问题.【解答】解:如图:∵四边形 ABCD 是正方形,∴OA=OB=4,又∵ S△ABO =S△AEO+S△EBO,∴OA ?OB= OA ?EF+ OB?EG,即×4×4 =×4 ×(EF+EG )∴EF+EG=4.利用三角形的面积奇妙成立所求故答案为: 4.【评论】本题考察正方形的性质,三角形的面积计算公式;线段与已知线段的关系,进一步解决问题.三、解答题17.如图,在菱形 ABCD 中, M , N 分别是边 AB ,BC 的中点, MP⊥AB 交边 CD 于点 P,连结NM , NP.(1)若∠ B=60 °,这时点 P 与点 C 重合,则∠ NMP=30 度;(2)求证: NM=NP ;(3)当△NPC 为等腰三角形时,求∠B 的度数.【考点】四边形综合题.【专题】压轴题.【剖析】( 1)依据直角三角形的中线等于斜边上的一半,即可得解;(2 )延伸 MN 交 DC 的延伸线于点 E,证明△ MNB ≌△ ENC,从而得解;(3 ) NC 和 PN 不行能相等,因此只要分PN=PC 和 PC=NC 两种状况进行议论即可.【解答】解:( 1)∵ MP⊥ AB 交边 CD 于点 P,∠ B=60 °,点 P 与点 C 重合,∴∠ NPM=30 °,∠ BMP=90 °,∵N 是 BC 的中点,∴ MN=PN ,∴∠ NMP= ∠ NPM=30 °;(2)如图 1,延伸 MN 交 DC 的延伸线于点E,∵四边形 ABCD 是菱形,∴ AB ∥ DC ,∴∠ BMN= ∠ E,∵点 N 是线段 BC 的中点,∴ BN=CN ,在△ MNB 和△ENC 中,,∴△ MNB ≌△ ENC,∴MN=EN ,即点 N 是线段 ME 的中点,∵MP ⊥ AB 交边 CD 于点 P,∴MP⊥DE,∴∠ MPE=90 °,∴PN=MN=ME ;(3)如图 2∵四边形 ABCD 是菱形,∴ AB=BC ,又 M,N 分别是边 AB , BC 的中点,∴MB=NB ,∴∠ BMN= ∠ BNM ,由( 2)知:△ MNB ≌△ ENC ,∴∠ BMN= ∠ BNM= ∠ E= ∠CNE ,又∵ PN=MN=NE ,∴∠ NPE=∠ E,设∠ BMN= ∠ BNM= ∠ E= ∠CNE= ∠ NPE=x °,则∠ NCP=2x °,∠ NPC=x °,①若 PN=PC ,则∠ PNC= ∠ NCP=2x °,在△ PNC 中, 2x+2x+x=180 ,解得: x=36,∴∠ B=∠ PNC+ ∠ NPC=2x °+x °=36 °×3=108 °,②若 PC=NC ,则∠ PNC= ∠ NPC=x °,在△ PNC 中, 2x+x+x=180 ,解得: x=45,∴∠ B=∠ PNC+ ∠ NPC=x °+x °=45°+45 °=90 °.【评论】本题主要考察了菱形的性质,以及直角三角形的性质,正确作出协助线是解题的重点,有很强的综合性,要注意平等腰三角形进行分类议论,注意仔细总结.18.如图,矩形 ABCD 中,点 E,F 分别在 AB ,CD 边上,连结 CE、AF ,∠ DCE= ∠ BAF .试判断四边形 AECF 的形状并加以证明.【考点】平行四边形的判断;矩形的性质.【剖析】证得 FA ∥ CE 后利用两组对边分别平行的四边形是平行四边形进行判断即可.【解答】解:四边形AECF 是平行四边形.证明:∵矩形ABCD 中, AB ∥ DC ,∴∠ DCE= ∠CEB ,∵∠ DCE= ∠BAF ,∴∠ CEB= ∠ BAF ,∴FA∥ CE,又矩形 ABCD 中,FC∥AE ,∴四边形 AECF 是平行四边形.【评论】考察了平行四边形的判断及矩形的性质,解题的重点是切记平行四边形的五种判断方法,难度不大.19.如图,△ ABC 是等腰三角形,AB=BC ,点 D 为 BC 的中点.(1)用圆规和没有刻度的直尺作图,并保存作图印迹:①过点 B 作 AC 的平行线BP;②过点 D 作 BP 的垂线,分别交AC , BP, BQ 于点 E, F, G.(2)在( 1)所作的图中,连结BE, CF.求证:四边形BFCE 是平行四边形.【考点】作图—复杂作图;等腰三角形的性质;平行四边形的判断.【剖析】( 1)作出与∠ C 相等的内错角即可获得 AC 的平行线,过直线外一点作已知直线的垂线即可;(2)第一证得△ ECD≌△ FBD ,从而获得 CE=BF ,利用一组对边平行且相等的四边形是平行四边形进行判断即可.【解答】解:( 1)如图:(2)证明:如图:∵BP ∥AC ,∴∠ ACB= ∠ PBC,在△ ECD 和△ FBD 中,,∴△ ECD ≌△ FBD ,∴CE=BF ,∴四边形 ECFB 是平行四边形.【评论】本题考察了基本作图的知识及平行四边形的判断,作图,难度不大.解题的重点是能够掌握一些基本20.如图,在菱形上一动点(不与点ABCD 中, AB=2 ,∠ DAB=60A 重合),延伸 ME 交射线 CD°,点于点E是 ADN,连结边的中点.点MD 、AN .M 是AB 边(1)求证:四边形 AMDN 是平行四边形;(2)填空:①当 AM 的值为 1 时,四边形 AMDN 是矩形;②当 AM 的值为 2 时,四边形 AMDN 是菱形.【考点】菱形的判断与性质;平行四边形的判断;矩形的判断.【剖析】( 1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有( 1)可知四边形 AMDN 是平行四边形,利用有一个角为直角的平行四边形为矩形即∠ DMA=90 °,因此 AM= AD=1 时即可;②当平行四边形 AMND 的邻边 AM=DM 时,四边形为菱形,利用已知条件再证明三角形 AMD 是等边三角形即可.【解答】( 1)证明:∵四边形ABCD 是菱形,∴ND ∥AM ,∴∠ NDE= ∠ MAE ,∠ DNE= ∠ AME ,又∵点 E 是 AD 边的中点,∴D E=AE ,∴△ NDE ≌△ MAE ,∴ND=MA ,∴四边形 AMDN是平行四边形;(2)解:①当 AM 的值为 1 时,四边形 AMDN 是矩形.原因以下:∵AM=1= AD ,∴∠ ADM=30 °∵∠ DAM=60 °,∴∠ AMD=90 °,∴平行四边形AMDN是矩形;故答案为: 1;②当 AM 的值为 2 时,四边形AMDN是菱形.原因以下:∵A M=2 ,∴A M=AD=2 ,∴△ AMD 是等边三角形,∴AM=DM ,∴平行四边形AMDN是菱形,故答案为: 2.【评论】本题考察了菱形的性质、平行四边形的判断和性质、的判断和性质,解题的重点是掌握特别图形的判断以及重要的性质.矩形的判断、以及等边三角形21.如图,在平行四边形 ABCD 中, AE ⊥ BC 于 E, AF ⊥ CD 于 F, BD 分别与 AE 、AF 订交于 G、H .(1)在图中找出与△ ABE 相像的三角形,并说明原因;(2)若 AG=AH ,求证:四边形 ABCD 是菱形.【考点】相像三角形的判断与性质;平行四边形的性质;菱形的判断.【剖析】( 1)利用平行四边形的性质求出相等的角,而后判断出△ ABE∽△ ADF;(2)判断出四边形 ABCD 是平行四边形,再加上条件 AB=AD 能够判断出四边形 ABCD 是菱形.【解答】解:( 1)△ABE ∽△ ADF .原因以下:∵ AE ⊥ BC 于 E, AF⊥ CD 于 F,∴∠ AEB= ∠AFD=90 °.∵四边形 ABCD 是平行四边形,∴∠ABE= ∠ADF .∴△ ABE ∽△ ADF .(2)证明:∵ AG=AH ,∴∠ AGH= ∠ AHG .∴∠ AGB= ∠ AHD .∵△ ABE ∽△ ADF ,∴∠ BAG= ∠ DAH .∴∠ BAG ≌∠ DAH .∴A B=AD ,∵四边形 ABCD 是平行四边形,AB=AD ,∴平行四边形ABCD 是菱形.【评论】本题考察了相像三角形的判断与性质、平行四边形的性质、菱形的判断,特点是解题的重点.熟习图形22.如图,矩形ABCD 的对角线订交于点O, DE∥AC , CE∥ BD .求证:四边形OCED 是菱形.【考点】菱形的判断;矩形的性质.【专题】证明题.【剖析】第一依据两对边相互平行的四边形是平行四边形证明四边形 OCED 是平行四边形,再依据矩形的性质可得 OC=OD ,即可利用一组邻边相等的平行四边形是菱形判断出结论.【解答】证明:∵ DE∥AC , CE∥ BD ,∴四边形 OCED 是平行四边形,∵四边形 ABCD 是矩形,∴OC=OD ,∴四边形 OCED 是菱形.【评论】本题主要考察了菱形的判断,矩形的性质,重点是掌握菱形的判断方法:定义:一组邻边相等的平行四边形是菱形;② 四条边都相等的四边形是菱形;相垂直的平行四边形是菱形.① 菱形③ 对角线互23.( 1)如图 1,在正方形 ABCD 中,E 是 AB 上一点, F 是 AD 延伸线上一点,且 DF=BE .求证: CE=CF;(2)如图 2,在正方形 ABCD 中, E 是 AB 上一点, G 是 AD 上一点,假如∠ GCE=45 °,请你利用( 1)的结论证明: GE=BE+GD .(3)运用( 1)( 2)解答中所累积的经验和知识,达成下题:如图 3,在直角梯形 ABCD 中, AD ∥ BC( BC> AD ),∠ B=90 °, AB=BC ,E是且∠ DCE=45 °,BE=4 , DE=10 ,求直角梯形 ABCD 的面积.AB 上一点,【考点】正方形的性质;全等三角形的判断与性质;勾股定理;直角梯形.【专题】几何综合题;压轴题.【剖析】( 1)由四边形是 ABCD 正方形,易证得△CBE≌△ CDF(SAS),即可得CE=CF ;(2)第一延AD 至 F,使 DF=BE ,接 CF,由( 1)知△CBE ≌△ CDF ,易得∠E CF= ∠ BCD=90 °,又由∠ GCE=45 °,可得∠ GCF= ∠ GCE=45 °,即可得△ ECG ≌△ FCG,而可得 GE=BE+GD ;(3 )第一 C 作 CG⊥ AD ,交 AD 延于 G,易得四形 ABCG 正方形,由(1)(2 )可知, ED=BE+DG ,即可求得 DG 的, AB=x ,在 Rt△ AED 中,由勾股定理DE 2=AD2+AE2,可得方程,解方程即可求得AB 的,而求得直角梯形ABCD 的面.【解答】( 1)明:∵四形ABCD 是正方形,∴BC=CD ,∠ B=∠ CDF=90 °,∵∠ ADC=90 °,∴∠ FDC=90 °.∴∠ B=∠ FDC ,∵B E=DF ,∴△ CBE ≌△ CDF ( SAS).∴C E=CF .(2)明:如 2,延 AD 至 F,使 DF=BE ,接 CF.由( 1)知△ CBE ≌△ CDF ,∴∠ BCE= ∠ DCF .∴∠ BCE+ ∠ ECD= ∠DCF+ ∠ECD,即∠ ECF=∠ BCD=90 °,又∠ GCE=45 °,∴∠ GCF= ∠ GCE=45 °.∵C E=CF , GC=GC ,∴△ ECG≌△FCG.∴GE=GF ,∴GE=GF=DF+GD=BE+GD .(3)解:如 3, C 作 CG⊥ AD ,交 AD 延于 G.在直角梯形ABCD 中,∵AD ∥BC,∴∠A= ∠ B=90 °,又∵∠ CGA=90 °, AB=BC ,∴四形 ABCG 正方形.∴AG=BC .⋯∵∠ DCE=45 °,依据( 1)(2)可知,ED=BE+DG .⋯∴10=4+DG ,即 DG=6 .AB=x , AE=x 4, AD=x 6,在 Rt△ AED 中,2 2 2,即 10 2 2 2∵DE =AD +AE =( x 6) +( x 4 ).解个方程,得:x=12 或 x= 2(舍去).⋯∴A B=12 .∴S 梯形ABCD =(AD+BC AB=×(6+12 12=108.) ? )×即梯形 ABCD 的面 108.⋯【点】此考了正方形的性与判断、全等三角形的判断与性、直角梯形的性以及勾股定理等知.此合性,度大,注意掌握助的作法是解此的关,注意数形合思想与方程思想的用.24.如,在 ?ABCD 中, E、 F 分 ABCD 的中点, BD 是角, A 点作平行四形 AGDB 交 CB 的延于点 G.(1)求: DE∥ BF;(2)若∠ G=90 ,求:四形 DEBF 是菱形.【考点】菱形的判断;平行四形的性.【】明.【剖析】( 1)依据已知条件明 BE=DF , BE ∥ DF,从而得出四形 DFBE 是平行四形,即可明 DE ∥BF,(2)先明 DE=BE ,再依据相等的平行四形是菱形,从而得出.【解答】明:( 1)在平行四形 ABCD 中, AB ∥ CD,AB=CD∵E、 F 分 AB 、 CD 的中点∴D F= DC ,BE= AB∴D F ∥ BE, DF=BE∴四形 DEBF 平行四形,∴DE ∥ BF;(2)∵ AG∥BD ,∴∠G=∠ DBC=90 °,∴△DBC 直角三角形,又∵ FCD 的中点,∴B F= DC=DF ,又∵四边形DEBF 为平行四边形,∴四边形 DEBF 是菱形.【评论】本题主要考察了平行四边形的性质、菱形的判断.解题时,需要掌握平行四边形与菱形间的相互联系,难度适中.。
苏科版八年级下册 数学第九章平行四边形综合提优测试卷(Word版含解析)
平行四边形综合提优测试卷1.在四边形ABCD中,已知AB=CD,再添加一个条件:_______________,使四边形ABCD为平行四边形(不再添加任何辅助线)。
2. 已知▱ABCD的周长为40cm,△A0B的周长比△B0C的周长大4cm,则AD=_______,CD=________。
3. 如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为__________。
4. 如图,在▱ABCD中,已知∠0DA=90°,AC= 10cm,BD=6cm,则AD=____________。
第3题第4题第9题5. 已知点A(0, 3),B(-2, 0),C(3,1)。
(1)如果四边形ABCD是平行四边形,则点D的坐标是___________。
(2)如果以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_________________。
6. 已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为___________。
7. 已知S▱ABCD=5,(1) P为AB边上一点,则S△PCD =________;(2) P为AB延长线上一点,则S△PCD =________;(3) P为平行四边形ABCD内一点,则S△PAB+S△PCD=________。
8. 若平行四边形相邻两边的长分别是12cm和8cm,较长两边间的距离为4cm,则较短两边间的距离为_________。
9. 如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出______个平行四边形。
10. 如图,▱ABCD 中,点E 在边AD 上,以BE 为折痕将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为_________。
第10题 第11题 第12题11.如图,一个四边形花坛ABCD ,被两条线段MN ,EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1,S 2,S 3,S 4,若MN// AB// DC ,EF // DA// CB ,则有( )A. S 1=S 4B. S 1+S 4=S 2+S 3C. S 1S 4=S 2S 3D. 都不对12. 如图,在平行四边形ABCD 中, 点A 、A 、As 、A 和G 、C2、G 、G 分别AB 和CD 的五等分点,点B 、B 和D 、D 分别是BC 和DA 的三等分点已知四边形AB G D 的积为1,则平行四边形ABCD 面积为( )A. 2B. 53C. 35D. 15 13.如图,在△ABC 中,AD 平分 ∠BAC 交BC 于点D ,点E 、F 分别在边AB 、AC 上,且BE=AF , FG//AB 交线段AD 于点G ,连接BG 、EF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科新版八年级下册《平行四边形》单元测试卷含解析一、选择题1.已知平行四边形ABCD的周长为32,AB=4,则BC的长为( )A.4 B.12 C.24 D.282.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°3.顺次连接矩形四边中点得到的四边形一定是( )A.正方形B.矩形C.菱形D.平行四边形4.如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )A.6 B.8 C.9 D.105.下列条件之一能使菱形ABCD是正方形的为( )①AC⊥BD ②∠BAD=90°③AB=BC ④AC=BD.A.①③B.②③C.②④D.①②③6.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是( )A.①②④B.①②③C.②③④D.①②③④7.如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是( )A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC8.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC9.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.610.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )A.3 B.C.5 D.二、填空题11.直角三角形中,两直角边长分别为12和5,则斜边中线长是__________.12.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=__________.13.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是__________.14.矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:__________.(填一条即可)15.▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=__________.16.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG=__________.三、解答题17.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=__________度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.18.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.19.如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B作AC的平行线BP;②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G.(2)在(1)所作的图中,连接BE,CF.求证:四边形BFCE是平行四边形.20.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为__________时,四边形AMDN是矩形;②当AM的值为__________时,四边形AMDN是菱形.21.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.(1)在图中找出与△ABE相似的三角形,并说明理由;(2)若AG=AH,求证:四边形ABCD是菱形.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.24.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB 交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.苏科新版八年级数学下册《平行四边形》2015年单元测试卷一、选择题1.已知平行四边形ABCD的周长为32,AB=4,则BC的长为( )A.4 B.12 C.24 D.28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.2.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.【点评】此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.3.顺次连接矩形四边中点得到的四边形一定是( )A.正方形B.矩形C.菱形D.平行四边形【考点】中点四边形.【分析】三角形的中位线平行于第三边,且等于第三边的一半.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.4.如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )A.6 B.8 C.9 D.10【考点】线段垂直平分线的性质;平行四边形的性质.【专题】压轴题;转化思想.【分析】根据线段垂直平分线的性质和平行四边形的性质可知,△CDE的周长=CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE;根据在平行四边形ABCD中有BC=AD,AB=CD,∴△CDE的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.故选B.【点评】本题结合线段垂直平分线的性质考查了平行四边形的性质,利用中垂线将已知转化是解题的关键.5.下列条件之一能使菱形ABCD是正方形的为( )①AC⊥BD ②∠BAD=90°③AB=BC ④AC=BD.A.①③B.②③C.②④D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABCD是菱形,∴当∠BAD=90°时,菱形ABCD是正方形,故②正确;∵四边形ABCD是菱形,∴当AC=BD时,菱形ABCD是正方形,故④正确;故选:C.【点评】此题主要考查了正方形的判定,正确掌握正方形的判定方法是解题关键.6.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是( )A.①②④B.①②③C.②③④D.①②③④【考点】菱形的性质;全等三角形的判定与性质.【分析】由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS 即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH;易证得△OAD∽△AHD,由相似三角形的对应边成比例,即可得AD2=OD•DH.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;故②正确;在HD上截取HK=AH,连接AK,∵∠AHC+∠ADC=120°+60°=180°,∴点A,H,C,D四点共圆,∴∠AHD=∠ACD=60°,∠ACH=∠ADH,∴△AHK是等边三角形,∴AK=AH,∠AKH=60°,∴∠AKD=∠AHC=120°,在△AKD和△AHC中,,∴△AKD≌△AHC(AAS),∴CH=DK,∴DH=HK+DK=AH+CH;故③正确;∵∠OAD=∠AHD=60°,∠ODA=∠ADH,∴△OAD∽△AHD,∴AD:DH=OD:AD,∴AD2=OD•DH.故④正确.故选D.【点评】此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.7.如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是( )A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴===故S△AFD=4S△EFB;B、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.8.不能判断四边形ABCD是平行四边形的是( )A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC【考点】平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.【点评】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.9.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.【点评】本题考查了轴对称,理解菱形的性质,对角线所在的直线是菱形的对称轴是关键.10.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )A.3 B.C.5 D.【考点】翻折变换(折叠问题).【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题11.直角三角形中,两直角边长分别为12和5,则斜边中线长是.【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边,根据直角三角形斜边上的中线是斜边的一半计算即可.【解答】解:∵直角三角形中,两直角边长分别为12和5,∴斜边==13,则斜边中线长是,故答案为:.【点评】本题考查的是勾股定理的应用和直角三角形的性质的运用,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.12.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=115°.【考点】平行线的性质.【分析】将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=115°.故答案为:115°.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.13.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是4.【考点】菱形的性质.【分析】在Rt△AOD中求出AD的长,再由菱形的四边形等,可得菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.【点评】本题考查了菱形的性质,解答本题的关键是掌握菱形的对角线互相垂直且平分.14.矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:对角线相互平分.(填一条即可)【考点】正方形的性质;平行四边形的性质;菱形的性质.【专题】压轴题;开放型.【分析】在矩形、菱形、正方形这种特殊的四边形中,它们都平行四边形,所以平行四边形所有的性质都是它们的共性.【解答】解:∵矩形、菱形、正方形都是特殊的平行四边形,∴它们都具有平行四边形的性质,所以填两组对边分别平行、或两组对边分别相等、或对角线相互平分等.【点评】本题主要考查了平行四边形的性质,矩形、菱形、正方形都是特殊的平行四边形.15.▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=9.【考点】平行四边形的性质.【分析】如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB 的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OA=OC,OB=OD;又∵△OAB的周长比△OBC的周长大3,∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3,又∵▱ABCD的周长是30,∴AB+BC=15,∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等,对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.16.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG=4.【考点】正方形的性质.【专题】几何图形问题.【分析】正方形ABCD的对角线交于点O,连接0E,由正方形的性质和对角线长为8,得出OA=OB=4;进一步利用S△ABO=S△AEO+S△EBO,整理得出答案解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴OA=OB=4,又∵S△ABO=S△AEO+S△EBO,∴OA•OB=OA•EF+OB•EG,即×4×4=×4×(EF+EG)∴EF+EG=4.故答案为:4.【点评】此题考查正方形的性质,三角形的面积计算公式;利用三角形的面积巧妙建立所求线段与已知线段的关系,进一步解决问题.三、解答题17.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=30度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.【考点】四边形综合题.【专题】压轴题.【分析】(1)根据直角三角形的中线等于斜边上的一半,即可得解;(2)延长MN交DC的延长线于点E,证明△MNB≌△ENC,进而得解;(3)NC和PN不可能相等,所以只需分PN=PC和PC=NC两种情况进行讨论即可.【解答】解:(1)∵MP⊥AB交边CD于点P,∠B=60°,点P与点C重合,∴∠NPM=30°,∠BMP=90°,∵N是BC的中点,∴MN=PN,∴∠NMP=∠NPM=30°;(2)如图1,延长MN交DC的延长线于点E,∵四边形ABCD是菱形,∴AB∥DC,∴∠BMN=∠E,∵点N是线段BC的中点,∴BN=CN,在△MNB和△ENC中,,∴△MNB≌△ENC,∴MN=EN,即点N是线段ME的中点,∵MP⊥AB交边CD于点P,∴MP⊥DE,∴∠MPE=90°,∴PN=MN=ME;(3)如图2∵四边形ABCD是菱形,∴AB=BC,又M,N分别是边AB,BC的中点,∴MB=NB,∴∠BMN=∠BNM,由(2)知:△MNB≌△ENC,∴∠BMN=∠BNM=∠E=∠CNE,又∵PN=MN=NE,∴∠NPE=∠E,设∠BMN=∠BNM=∠E=∠CNE=∠NPE=x°,则∠NCP=2x°,∠NPC=x°,①若PN=PC,则∠PNC=∠NCP=2x°,在△PNC中,2x+2x+x=180,解得:x=36,∴∠B=∠PNC+∠NPC=2x°+x°=36°×3=108°,②若PC=NC,则∠PNC=∠NPC=x°,在△PNC中,2x+x+x=180,解得:x=45,∴∠B=∠PNC+∠NPC=x°+x°=45°+45°=90°.【点评】本题主要考查了菱形的性质,以及直角三角形的性质,正确作出辅助线是解题的关键,有很强的综合性,要注意对等腰三角形进行分类讨论,注意认真总结.18.如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.【考点】平行四边形的判定;矩形的性质.【分析】证得FA∥CE后利用两组对边分别平行的四边形是平行四边形进行判断即可.【解答】解:四边形AECF是平行四边形.证明:∵矩形ABCD中,AB∥DC,∴∠DCE=∠CEB,∵∠DCE=∠BAF,∴∠CEB=∠BAF,∴FA∥CE,又矩形ABCD中,FC∥AE,∴四边形AECF是平行四边形.【点评】考查了平行四边形的判定及矩形的性质,解题的关键是牢记平行四边形的五种判定方法,难度不大.19.如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B作AC的平行线BP;②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G.(2)在(1)所作的图中,连接BE,CF.求证:四边形BFCE是平行四边形.【考点】作图—复杂作图;等腰三角形的性质;平行四边形的判定.【分析】(1)作出与∠C相等的内错角即可得到AC的平行线,过直线外一点作已知直线的垂线即可;(2)首先证得△ECD≌△FBD,从而得到CE=BF,利用一组对边平行且相等的四边形是平行四边形进行判定即可.【解答】解:(1)如图:(2)证明:如图:∵BP∥AC,∴∠ACB=∠PBC,在△ECD和△FBD中,,∴△ECD≌△FBD,∴CE=BF,∴四边形ECFB是平行四边形.【点评】本题考查了基本作图的知识及平行四边形的判定,解题的关键是能够掌握一些基本作图,难度不大.20.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为1时,四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.【考点】菱形的判定与性质;平行四边形的判定;矩形的判定.【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:1;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质.21.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.(1)在图中找出与△ABE相似的三角形,并说明理由;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】相似三角形的判定与性质;平行四边形的性质;菱形的判定.【分析】(1)利用平行四边形的性质求出相等的角,然后判断出△ABE∽△ADF;(2)判断出四边形ABCD是平行四边形,再加上条件AB=AD可以判断出四边形ABCD是菱形.【解答】解:(1)△ABE∽△ADF.理由如下:∵AE⊥BC于E,AF⊥CD于F,∴∠AEB=∠AFD=90°.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)证明:∵AG=AH,∴∠AGH=∠AHG.∴∠AGB=∠AHD.∵△ABE∽△ADF,∴∠BAG=∠DAH.∴∠BAG≌∠DAH.∴AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形.【点评】本题考查了相似三角形的判定与性质、平行四边形的性质、菱形的判定,熟悉图形特征是解题的关键.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.【考点】菱形的判定;矩形的性质.【专题】证明题.【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【点评】此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.23.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.【考点】正方形的性质;全等三角形的判定与性质;勾股定理;直角梯形.【专题】几何综合题;压轴题.【分析】(1)由四边形是ABCD正方形,易证得△CBE≌△CDF(SAS),即可得CE=CF;(2)首先延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,易证得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可证得△ECG≌△FCG,继而可得GE=BE+GD;(3)首先过C作CG⊥AD,交AD延长线于G,易证得四边形ABCG为正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的长,设AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的长,继而求得直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.=(AD+BC)•AB=×(6+12)×12=108.∴S梯形ABCD即梯形ABCD的面积为108.…【点评】此题考查了正方形的性质与判定、全等三角形的判定与性质、直角梯形的性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.24.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB 交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.【考点】菱形的判定;平行四边形的性质.【专题】证明题.【分析】(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答】证明:(1)在平行四边形ABCD 中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=DC,BE=AB∴DF∥BE,DF=BE∴四边形DEBF为平行四边形,∴DE∥BF;(2)∵AG∥BD,∴∠G=∠DBC=90°,∴△DBC 为直角三角形,又∵F为边CD的中点,∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形.【点评】本题主要考查了平行四边形的性质、菱形的判定.解题时,需要掌握平行四边形与菱形间的相互联系,难度适中.。