集合的基本概念
集合的基本概念
一、 集合的概念1. 集合:某些指定的对象集在一起成为集合.集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉; 2. 集合的性质:确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;二、 集合的表示:表示一个集合可用列举法、描述法或图示法;1. 列举法:把集合中的元素一一列举出来,写在大括号内;例如:{1,2,3,4,5},{1,2,3,4,5,} 2. 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内.例如:大于3的所有整数表示为:{|3}x x ∈>Z方程2250x x --=的所有实数根表示为:{x ∈R |2250x x --=}具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.3. 常用数集及其记法:非负整数集(或自然数集),记作N ;正整数集,记作*N 或N +;整数集,记作Z ;有理数集,记作Q ;实数集,记作R .三、 集合之间的关系1. 若集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂); 2. 简单性质:1)A ⊆A ;2)∅⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;3. 真子集关系:对于两个集合A 与B ,若A B ⊆且.A B ≠,则集合A 是集合B 的真子集,记作A B (或B A ) 4. 相等关系:对于两个集合A 与B ,如果A B ⊆,且B A ⊆ ,那么集合A 与B 相等,记作A B =5. 0,{0},∅,{}∅之间的区别与联系①0与{0}是不同的,0只是一个数字,而{0}则表示集合,这个集合中含有一个元素0,它们的关系是0{0}∈②∅与{0}是不同的,∅中没有任何元素,{0}则表示含有一个元素0的集合,它们的关系是两个集合之间的关系({}0∅)③∅与{}∅是不同的,∅中没有任何元素,{}∅则表示含有一个元素∅的集合,它们的关系是{}∅∈∅或{}∅⊆∅或{}∅∅ ④显然,0∉∅,0{}∉∅集合的概念及其关系6. 子集个数问题设集合A 中元素个数为n ,则①子集的个数为2n ,②真子集的个数为21n -,③非空真子集的个数为22n - 一、 交集、并集、补集概念1. 由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集. 记作A B (读作“A 交B ”),即{|,A B x x A =∈且}x B ∈① 数学符号表示:{|,A B x x A =∈且}x B ∈② Venn 图反映:2. 由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集.并集{|}A B x x A x B =∈∈或.(读作“A 并B ”)① 数学符号表示: {|,A B x x A =∈或}x B ∈② Venn 图反映:3. 补集的概念:全集:一般地,如果一个集合含有我们所研究的问题中涉及的所有元素,那么就称这个集合为全集,通常记作U补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作U A ,即{|,U A x x U =∈且}x A ∉①数学符号表示:{|,U A x x U =∈且}x A ∉②Venn 图反映:二、集合的运算性质B AB A B A B AB A B A B A A UA U 集合的基本运算(1),,;A A A A A B B A =∅=∅=(2),;A A A B BA ∅==(3)()();AB A B ⊆ (4);A B A B A A B A B B ⊆⇔=⊆⇔=;(5)()()(),()()().U U U U U U A B A B A B A B ==三、 容斥原理()()()()card A B card A card B card A B =+-.。
集合的全部知识点总结
集合的全部知识点总结集合是数学中的一个基本概念,它是由确定的元素组成的整体。
在数学中,集合论是一个独立的分支,它研究集合的性质、运算和关系。
本文将对集合的基本概念、运算和性质进行总结。
一、集合的基本概念1. 集合符号:集合常用大写字母表示,如A、B、C。
元素通常用小写字母表示,如a、b、c。
2. 集合的表示方法:集合可以通过列举元素的方式表示,例如A={1, 2, 3};也可以用描述性的方式表示,例如B={x | x是自然数,且x<5}。
3. 空集:不包含任何元素的集合被称为空集,用符号∅表示。
二、集合的运算1. 并集:若A和B是两个集合,它们的并集是由两个集合中的所有元素组成的集合,用符号∪表示,即A∪B。
2. 交集:若A和B是两个集合,它们的交集是同时属于A和B的元素组成的集合,用符号∩表示,即A∩B。
3. 差集:若A和B是两个集合,它们的差集是属于A而不属于B的元素组成的集合,用符号A-B表示。
4. 互斥:若A∩B=∅,即A和B的交集为空集,称A和B是互斥的。
三、集合的性质1. 子集:若集合A中的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。
2. 包含关系:若A是B的子集,且B不等于A,则称B包含A,用符号B⊇A表示。
3. 相等关系:当A⊆B且B⊆A时,称A和B相等,用符号A=B表示。
4. 幂集:集合A的所有子集构成的集合被称为A的幂集,用符号P(A)表示。
5. 交换律:并集和交集满足交换律,即A∪B=B∪A,A∩B=B∩A。
6. 结合律:并集和交集满足结合律,即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
7. 分配律:并集和交集满足分配律,即A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
四、常用集合1. 自然数集:包括0、1、2、3......的集合,用符号N表示。
2. 整数集:包括负整数、0、正整数的集合,用符号Z表示。
高中集合知识点
高中集合知识点一、集合的基本概念集合是数学中的基本概念之一,它是由一组确定的元素所组成的整体。
集合中的元素可以是任何事物,可以是数字、字母、符号,甚至是其他集合。
集合的表示通常用大括号{}括起来,元素之间用逗号隔开。
二、集合的运算1. 交集:如果两个集合有共同的元素,则它们的交集就是包含这些共同元素的新集合。
2. 并集:两个集合的并集是指包含这两个集合中所有元素的新集合。
3. 差集:差集是指从一个集合中去掉另一个集合中共有的元素后剩下的元素组成的集合。
4. 互斥集:两个集合的交集为空集时,它们被称为互斥集。
5. 补集:对于给定的集合A,所有不属于A的元素组成的集合称为A的补集。
三、集合的性质1. 互相包含关系:如果一个集合A的所有元素都属于另一个集合B,那么集合A被称为集合B的子集,记作A⊆B。
2. 空集:不包含任何元素的集合称为空集,记作∅。
3. 幂集:对于一个集合A,它的幂集是指包含A的所有子集的集合。
四、集合的表示方法1. 列举法:将集合中的所有元素一一列举出来。
2. 描述法:通过给出满足某种条件的元素的特征描述来表示集合。
五、集合的应用1. 概率论:集合论是概率论的基础,通过集合论可以描述随机事件的样本空间和事件的关系。
2. 几何学:集合论可以用来描述几何图形的集合关系,如点、线、平面等。
3. 逻辑学:集合论可以用来描述命题、命题关系和命题的逻辑推理。
4. 数据分析:集合论可以用来描述数据的集合关系、交集和并集的运算。
六、集合的扩展1. 有限集合:集合中元素的个数是有限的。
2. 无限集合:集合中元素的个数是无限的。
3. 数学集合:指数学中研究的集合。
4. 离散集合:集合中的元素是离散的,没有连续性。
5. 连续集合:集合中的元素是连续的,存在无限多个元素。
总结:集合是数学中的基本概念,它可以用来描述事物的整体性质和元素之间的关系。
集合的运算包括交集、并集、差集等,而集合的性质包括包含关系、空集、幂集等。
集合的基本概念元素集合之间的关系
集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。
我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。
集合的全部知识点总结
集合的全部知识点总结集合是数学中的一个基本概念,广泛应用于各个领域。
本文将对集合的相关概念、运算、性质以及其在实际中的应用进行总结。
一、集合的基本概念1. 集合的定义:集合是由确定的元素组成的整体,没有重复元素,顺序不重要。
2. 元素和集合的关系:元素是集合的组成部分,用于描述集合的特征。
3. 表示方法:- 列举法:将集合的所有元素逐个列举出来。
- 描述法:通过一定的特征或条件来描述集合。
4. 空集和全集:- 空集:不含有任何元素的集合,用符号∅表示。
- 全集:包含所有元素的集合,用符号U表示。
二、集合的运算1. 交集:两个集合中具有相同元素的部分构成的新集合,用符号∩表示。
2. 并集:两个集合的所有元素组成的新集合,用符号∪表示。
3. 差集:一个集合中去掉与另一个集合共有元素后的新集合,用符号-表示。
4. 互补集:在全集中与某个集合没有交集的元素所构成的新集合,用符号A'表示。
5. 笛卡尔积:由两个集合的所有有序对构成的集合,用符号×表示。
三、集合的性质1. 包含关系:集合A包含于集合B,表示为A⊆B,当且仅当A的每个元素都是B的元素。
2. 相等关系:如果两个集合A和B互相包含,即A⊆B且B⊆A,则称A和B相等,表示为A=B。
3. 幂集:一个集合的所有子集所构成的集合,用符号P(A)表示。
4. 交换律、结合律和分配律:集合的交换律、结合律与数的运算性质类似,具有相似的性质。
四、集合的应用1. 概率论与统计学:集合论为概率论和统计学提供了重要的数学基础,通过对事件的集合进行分析与运算。
2. 数据库管理系统:集合运算在数据库查询和数据处理中起着重要的作用,用于筛选、合并和处理数据。
3. 逻辑学与集合论关系:集合论与逻辑学相辅相成,通过集合的运算和逻辑连接词(与、或、非)进行逻辑推理。
4. 集合在数学证明中的应用:集合的性质和运算方式在数学证明中经常被使用,可以简化证明过程。
总结:集合是数学中不可或缺的重要概念,它具有基本的定义、运算和性质。
集合的含义及表示方法
确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。
集合的知识点
集合的知识点集合是数学中一个基本的概念,在许多学科和领域中都有广泛的应用。
本文将介绍集合的定义、基本运算和常用的集合表示方法,以及集合之间的关系和重要的集合定理。
一、集合的定义集合是由元素组成的,元素之间没有顺序关系的整体。
记作A={a,b,c,...},其中a,b,c,...为元素。
集合中的元素可以是任意对象,例如数字、字母、词语、图形等等。
二、集合的基本运算1. 并集(Union):将两个或多个集合中的所有元素合并为一个集合。
记作A∪B。
2. 交集(Intersection):两个或多个集合中共有的元素组成的集合。
记作A∩B。
3. 差集(Difference):从一个集合中减去与另一个集合相同的元素后所剩下的元素组成的集合。
记作A-B。
4. 互斥集(Disjoint):两个集合没有共同的元素,互不相交。
5. 补集(Complement):相对于某个全集U,一个集合未包含的元素组成的集合。
记作A'或A^c。
三、集合的表示方法1. 列举法:直接列举集合中的元素。
例如A={1,2,3,4,5}。
2. 描述法:通过描述集合中元素的特点来表示集合。
例如A={x | x 是正整数,且x<5},表示A是由小于5的正整数组成的集合。
3. 定义法:通过给出集合的定义来表示集合。
例如A是所有偶数的集合,可以表示为A={x | x是偶数}。
四、集合之间的关系1. 包含关系:若集合A中的所有元素都是集合B的元素,则称集合B包含集合A,记作A⊆B。
若A⊆B且B⊆A,则称A和B相等,记作A=B。
2. 子集关系:若集合A中的所有元素都是集合B的元素,且集合B 中存在集合A中没有的元素,则称集合A是集合B的真子集,记作A⊂B。
3. 交集为空:若两个集合的交集为空集,则称两个集合互斥,即A∩B=∅。
4. 并集和交集的关系:对于任意两个集合A和B,有下面两个重要的集合定理:- 分配律:A∩(B∪C) = (A∩B) ∪ (A∩C)- 结合律:A∪(B∩C) = (A∪B) ∩ (A∪C)五、重要的集合定理1. 德摩根定律:- 对于任意两个集合A和B,有 (A∪B)' = A'∩B'- 对于任意两个集合A和B,有(A∩B)' = A'∪B'2. 两个集合互为补集:- 若A和B是某个全集U的子集,且A∪B=U,A∩B=∅,则称A和B互为补集。
集合的基本概念与运算方法
集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。
理解集合的基本概念和运算方法对于解决各种数学问题至关重要。
本文将介绍集合的基本概念以及常用的运算方法。
一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。
例如,集合A可以表示为:A = {1, 2, 3, 4}。
2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。
例如,集合A中的元素1、2、3、4便是集合A的元素。
3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。
用符号表示为A ⊆ B。
例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。
4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。
用符号表示为A = B。
二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。
用符号表示为A ∪ B。
例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。
2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。
用符号表示为A ∩ B。
例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。
3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。
用符号表示为A'。
例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。
4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。
用符号表示为A - B。
例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。
5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。
集合的基本概念
集合的基本概念(1) 集合:把某些特定的对象集在一起就叫做集合.集合的特征:互异性,确定性,无序性(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集∅.例题:集合间的基本关系例题:集合的基本运算1. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )。
记作:A ∪B ,读作:“A 并B ”。
即: {|}A B x x A x B =∈∈或2. 交集:一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B ,读作:“A 交B ”。
即: {|,}A B x x A x B =∈∈且3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:U A ð即:{|,}U A x x U x B =∈∉且ð4. 集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A()()AB C A B C A B C ==,()()()A B C A C B C = ()()A B C A B C A B C ==,()()()A B C A C B C = (U A ð)∪A=U ,(U A ð)∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B例题:【例1】 设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð. 总结:利用数轴来找到集合的关系。
集合的全部知识点总结
集合的全部知识点总结在数学中,集合是一种用来描述事物的概念。
它由一组称为元素的对象组成,没有重复的元素,并且元素之间没有明确的顺序。
集合的概念在数学中非常重要,它被广泛应用于各个领域。
本文将对集合的基本概念、运算、性质以及常见的应用进行总结和探讨。
一、集合的基本概念:1. 元素:集合中的对象称为元素。
用小写字母表示,例如集合A={a,b,c},a,b,c就是A的元素。
2. 空集:不包含任何元素的集合称为空集,用符号∅表示。
3. 相等关系:两个集合A和B相等,当且仅当A中的所有元素都属于B,且B中的所有元素都属于A。
4. 子集:若A的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。
5. 真子集:若A是B的子集且A≠B,则称A是B的真子集,用符号A⊂B表示。
二、集合的运算:1. 并集:将两个集合中的所有元素进行合并得到的新集合,用符号∪表示。
例如A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集:两个集合中共有的元素构成的新集合,用符号∩表示。
例如A={1,2,3},B={3,4,5},则A∩B={3}。
3. 差集:从一个集合中减去另一个集合中相同的元素所得到的新集合,用符号-表示。
例如A={1,2,3},B={3,4,5},则A-B={1,2}。
4. 补集:对于给定的全集U,集合A相对于全集U中的元素不在集合A中的元素所构成的新集合,用符号A'表示。
三、集合的性质:1. 交换律:对于任意两个集合A和B,A∪B=B∪A;A∩B=B∩A。
2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)。
3. 分配律:对于任意三个集合A、B和C,A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)。
4. 同一律:对于任意集合A,A∪∅=A;A∩U=A(其中U为全集)。
5. 非空律:任何一个集合与非空集合的并集等于非空集合本身。
集合的基础知识点
集合的基础知识点一、什么是集合集合是数学中的一个基本概念,它是由一些确定的元素所组成的整体。
集合中的元素可以是任何事物,比如数字、字母、人、动物等等。
集合的概念在数学中具有重要的地位,它是其他数学概念的基础。
二、集合的表示方法集合可以用不同的方式表示和描述,常见的表示方法有两种:1.列举法:通过列举集合中的元素来表示集合。
例如,集合A由元素1、2、3组成,可以表示为A={1, 2, 3}。
2.描述法:通过给出满足某种条件的元素来表示集合。
例如,集合B由大于0且小于10的整数组成,可以表示为B={x | 0 < x < 10}。
三、集合的基本操作集合作为一个整体,可以进行一些基本的操作,包括并集、交集、差集和补集等。
1.并集:将两个集合中的所有元素合并成一个新的集合。
记作A∪B,表示为A和B的并集。
2.交集:找出两个集合中共有的元素,组成一个新的集合。
记作A∩B,表示为A和B的交集。
3.差集:从一个集合中减去另一个集合中共有的元素,得到一个新的集合。
记作A-B,表示为A和B的差集。
4.补集:对于给定的全集U,集合A相对于全集U的补集是指在全集U中但不在集合A中的元素所组成的集合。
记作A’,表示为A的补集。
四、集合的基本性质集合具有一些基本的性质,包括空集、子集和幂集等。
1.空集:不包含任何元素的集合称为空集,记作∅或{}。
空集是任何集合的子集。
2.子集:如果一个集合的所有元素都属于另一个集合,那么这个集合被称为另一个集合的子集。
记作A⊆B,表示A是B的子集。
3.幂集:对于给定集合A,它的幂集是指由A的所有子集所组成的集合。
记作P(A)。
五、集合的运算律集合的运算满足一些基本的运算律,包括交换律、结合律、分配律和幂等律等。
1.交换律:对于任意两个集合A和B,A∪B = B∪A,A∩B = B∩A。
2.结合律:对于任意三个集合A、B和C,(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
集合的全部知识点总结
集合的全部知识点总结在数学中,集合是一种把具有相同特征的对象聚集在一起的概念。
学习集合理论可以帮助我们更好地理解数学,并在解决问题和证明定理时提供基础。
下面将对集合的基本概念、运算、特殊集合和应用进行总结。
一、基本概念1. 集合的定义:集合是由确定的对象组成的整体,这些对象称为集合的元素。
用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。
2. 元素的归属关系:如果某个元素a属于集合A,可以表示为a∈A;如果元素a不属于集合A,可以表示为a∉A。
3. 空集:不包含任何元素的集合称为空集,用符号∅表示。
4. 全集:包含所有可能元素的集合称为全集,用符号U表示。
二、运算1. 交集:集合A和集合B的交集是包含同时属于A和B的所有元素的集合,用符号表示为A∩B。
2. 并集:集合A和集合B的并集是包含属于A或属于B的所有元素的集合,用符号表示为A∪B。
3. 差集:集合A相对于集合B的差集是包含属于A但不属于B的元素的集合,用符号表示为A-B。
4. 互斥集:如果两个集合的交集为空集,则它们被称为互斥集。
5. 补集:相对于全集U,集合A中不属于U的元素组成的集合称为集合A的补集,用符号表示为A'。
三、特殊集合1. 单元素集:只包含一个元素的集合称为单元素集。
2. 空集和全集:空集和全集在集合论中具有特殊的地位,空集是任意集合的子集,全集是任意集合的超集。
3. 自身元素:集合A中的元素也可以是集合A本身,这种集合称为自身元素。
四、应用1. 表示和描述:集合可用于表示和描述各种情况,如自然数集、整数集、有理数集和实数集等。
2. 集合关系:集合的交集、并集和差集等运算可以用于分析和研究集合间的关系。
3. 映射和函数:集合论为映射和函数提供了理论基础,映射是从一个集合到另一个集合的对应关系。
4. 概率和统计:概率和统计学中的事件和样本空间等概念可以用集合表示和运算。
总结:集合论是数学中重要的分支之一,可以帮助我们更好地理解数学概念和解决实际问题。
集合的所有知识点总结
集合的所有知识点总结集合是数学中的一个基础概念,它是一个由确定的对象组成的整体。
集合论是研究集合性质、集合关系以及集合运算的数学分支。
一、集合的基本概念:1.元素:集合中的每个对象都被称为元素,通常用小写字母a、b、c等表示。
2.空集:不含任何元素的集合称为空集,通常用符号∅表示。
3.子集:若集合A中的每个元素都是集合B的元素,则称A为B的子集,用符号A⊆B表示。
4.相等集合:若两个集合A和B具有相同的元素,则称A等于B,用符号A=B表示。
5.无限集合:元素个数无穷多的集合称为无限集合,如自然数集、整数集等。
二、集合的表示方法:1.描述法:通过描述集合元素的特征,将其写成一组确定的元素的方式,如“x是大于0且小于10的整数”的集合{x|0<x<10}。
2.列举法:直接将集合中的每个元素列出来,用大括号{}表示,元素之间用逗号隔开,如集合{1, 2, 3}。
3.集合的图示法:用图形的方式表示集合,如Venn图等。
三、集合间的关系:1.包含关系:若集合A中的每个元素都是集合B的元素,则称A包含于B,用符号A⊆B表示。
2.真子集关系:如果A包含于B,并且A不等于B,则称A 为B的真子集,用符号A⊂B表示。
3.相等集合:若集合A包含于集合B,并且集合B包含于集合A,则称A等于B,用符号A=B表示。
四、集合的运算:1.并集运算:将属于集合A或集合B的元素组成一个新的集合,用符号A∪B表示,即A∪B={x|x∈A或x∈B}。
2.交集运算:将同时属于集合A和集合B的元素组成一个新的集合,用符号A∩B表示,即A∩B={x|x∈A且x∈B}。
3.补集运算:对于给定的全集U,集合A中不属于集合B的元素组成一个新的集合,用符号A-B表示,即A-B={x|x∈A 且x∉B}。
4.差集运算:集合A中属于A而不属于B的元素组成一个新的集合,用符号A-B或A\B表示,即A-B={x|x∈A且x∉B}。
五、集合的性质:1.幂集:给定集合A,由A的所有子集构成的集合称为A的幂集,记作P(A)。
《集合》知识点总结
《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。
3、集合的特性:确定性、互异性、无序性。
二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。
2、并集:把两个集合合并起来,记作A∪B。
3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。
四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。
2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。
3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。
五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。
2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。
3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。
4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。
5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。
6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。
7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。
集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。
2、集合的表示方法:常用的表示方法有列举法和描述法。
列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。
3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。
集合的基本概念
集合的基本概念在数学中,集合是一个基本的概念,它是由确定的对象所组成的整体。
集合的概念是数学中非常重要的基础,它被广泛应用于各个数学分支中,如代数、几何、概率论等等。
本文将详细介绍集合的基本概念,帮助读者更好地理解和运用集合论。
1. 集合的定义集合可以看作是一个确定的对象的组成整体。
例如,我们可以定义一个集合A,其中包含元素a、b、c,记作A={a,b,c}。
集合中的元素可以是数字、字母、符号或其他集合,每个元素在集合中是唯一的,即不同的元素不能重复出现在同一个集合中。
2. 集合的表示方法除了用花括号{}表示集合外,还可以用其他符号表示集合。
常用的表示方法有列表法、描述法和区间表示法。
例如,集合B={1,2,3,4,5}可以用列表法表示;集合C={x|x是整数,0<x<10}可以用描述法表示;集合D=[1,5]可以用区间表示法表示。
3. 子集和真子集如果一个集合的所有元素都是另一个集合的元素,那么这个集合是另一个集合的子集。
如果一个集合是另一个集合的子集且两个集合不相等,那么这个集合是另一个集合的真子集。
例如,集合E={1,2}是集合B的子集,但不是真子集。
4. 并集、交集和差集两个集合的并集是包含两个集合所有元素的集合,交集是两个集合共有元素的集合,差集是一个集合减去另一个集合后的结果。
例如,集合F={1,2,3},集合G={3,4,5},则F∪G={1,2,3,4,5},F∩G={3},F-G={1,2}。
5. 幂集一个集合的幂集是由这个集合所有子集所构成的集合。
例如,集合H={a,b},那么它的幂集是{∅,{a},{b},{a,b}}。
6. 无限集合除了有限集合外,还有无限集合。
无限集合可以分为可数无限集合和不可数无限集合。
可数无限集合的元素可以一一对应自然数集,如整数集合;不可数无限集合的元素不能一一对应自然数集,如实数集。
通过以上对集合的基本概念的介绍,相信读者对集合的概念有了更深入的了解。
集合的基本知识点
集合的基本知识点一.集合的概念。
集合是一些具有某种共同特征事物的总体,我们把这个总体中的每一个个体称为元素,而这些元素组成的总体就是集合。
二.集合元素的特点。
确定性互异性无序性三.集合与元素的关系及表示。
集合用大写字母表示;元素用小写字母表示。
元素在不在集合中用属于或者不属于来描述,具体符号语言为:如果a 在集合A 中,就说a 属于A ,记为a ∈A;若果a 不在集合A 中就说a 不属于A ,用a ∉A 表示。
特殊数集的表示。
N 表示自然数集;N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集。
四.集合的表示方法。
列举法:把集合的元素一一列举出来,中间用逗号隔开,并用花括号表示集合。
例如一个以“1,2,3,4”为元素构成的集合A 可以表示成A={}1,2,3,4。
描述法:{}x A P ∈其中用x 代表元素,x A ∈表示元素在哪一个数集里面取值,P 表示x 要满足的条件。
四.集合的基本关系。
子集:如果对于两个集合A,B 一个集合A 中的任意元素x ,只要x A ∈,就有x B ∈,那么就说集合A 是集合B 的子集,记做A B ⊆,读作A 包含于B 。
也可写成{}{}U =x x A x B C A=x x U x A A B ∈∈∈∉I 或且B A ⊇,读作B 包含A 。
集合相等:如果A 是B 的子集,且B 是A 的子集,那么集合A=B 。
真子集:如果集合A ⊆B ,且存在元素x A x B ∈∉但,则称集合A 是集合B 的真子集。
记为A B ⊂,读作A 真包含于B ,或写成B A ⊃,读作B 真包含A 。
五.集合的基本运算。
交集:由A ,B 公共元素组成的集合叫做A 与B 的交集。
记为A B I ,读作A 交B 。
A B I ={}x B x x ∈∈且并集:由A ,B 中所有元素共同构成的集合称为A ,B 的并集。
记为A B U ,读作A 并B 。
{}=x x A x B A B ∈∈I 或补集:由全集U 中不属于集合A 的所有元素构成的集合称为集合A 相对于集合U 的补集。
集合的基本概念
.
集合的基本概念
1.3 子集合
➢定义4.2
集合A称为集合B的子集合 (或子集,subsets),如果A的每一个
元素都是B的元素,即 x(xAxB)
.
集合的基本概念
1.3 子集合
定理
对任意集合A,B,A=B当且仅当
A B且B A 。
定理4.2 对任意集合A,A U。
定理4.3 设A,B,C为任意集合, 若A B,B C,则A C。
离散数学导论
.
集合的基本概念
1.1集合及其元素
集合是一些确定的、作为整体识别的、互
相区别的对象的总体。
组成集合的对象称为集合的成员(member) 或元素(elements)。
.
集合的基本概念
1.1集合及其元素集Biblioteka 的规定方式有三种:(l)列举法
(2)描述法
(3)归纳法
.
集合的基本概念
1.1集合及其元素
.
集合的基本概念
1.3 子集合
定理4.4 对任何集合A, A。 即空集是任意集合的子集。
定理4.5 空集是唯一的
定理4.6
设 A 为一有限集合,A n,那么 A的子集个数为2n。
.
集合的基本概念
1.3 子集合
定义4.3
集合 A称为集合 B的真子集,如 AB且AB。
“A是B的真子集”记为AB
离散数学导论
定义 空集和只含有有限多个元素的集合称为
有限集(finite sets),否则称为无限集 (infinite sets)。有限集合中元素的个 数称为基数(cardinality)
集合A的基数表示为 A。
.
集合的基本概念
集合的基本概念
集合的基本概念集合是数学中一个基本的概念,它是由一些确定的元素组成的整体。
在集合理论中,元素是构成集合的最基本单位,而集合由元素组成。
本文将介绍集合的基本概念以及相关的一些术语和符号。
一、集合的定义与表示在数学中,集合是由一些确定的对象(即元素)组成的整体。
集合是一个无序的集合,其中的元素不重复。
数学中通常用大写字母A、B、C等来表示集合,而元素则用小写字母a、b、c等来表示。
集合可以通过列举元素的形式进行表示,例如集合A={1, 2, 3}表示了一个包含元素1、2、3的集合A。
另外,我们还可以通过描述集合的特征来表示集合,例如集合B={x | x是自然数,且x<5}表示了一个包含小于5的自然数的集合B。
二、集合的基本性质1. 空集:不包含任何元素的集合称为空集,通常用符号∅来表示。
空集是任何集合的子集。
2. 子集与真子集:对于两个集合A和B,如果A中的每一个元素都属于B,那么我们称A是B的子集,记作A⊆B。
如果存在至少一个元素属于A但不属于B,那么我们称A是B的真子集,记作A⊂B。
3. 相等集:如果两个集合A和B中的元素完全相同,那么我们称A 与B相等,记作A=B。
4. 交集、并集与补集:对于两个集合A和B,交集表示包含属于A 且属于B的所有元素的新集合,记作A∩B。
并集表示包含属于A或属于B的所有元素的新集合,记作A∪B。
A关于某个全集的补集表示全集中不属于A的元素组成的集合,记作A'。
三、集合的运算法则集合的运算法则是用来描述集合之间的关系和运算规则的。
1. 结合律:对于任意三个集合A、B、C,交换交集和并集运算的顺序不改变结果,即(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。
2. 分配律:对于任意三个集合A、B、C,交集和并集运算满足分配律,即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。
3. 德·摩根定律:对于任意两个集合A和B,补集运算满足德·摩根定律,即(A∪B)'=A'∩B',(A∩B)'=A'∪B'。
集合的基本概念
集合的基本概念集合是数学中基础而重要的概念之一。
它被广泛应用于各个数学分支和其他科学领域。
本文将介绍集合的基本概念、符号表示法以及一些常见的集合运算。
1. 集合的定义在数学中,集合可以被定义为由确定的对象所构成的整体。
这些对象可以是任何事物,如数、字母、图形等。
一个集合可以包含零个或多个对象,而且每个对象在集合中只能出现一次。
2. 集合的符号表示法数学中,集合通常用大写字母表示,例如A、B、C等。
对于属于集合的对象,可以用小写字母表示,例如a、b、c等。
表示一个对象属于某个集合,可以使用符号“∈”。
例如,如果a属于集合A,我们可以写作a ∈ A。
相反地,如果一个对象不属于某个集合,可以使用符号“∉”。
例如,如果b不属于集合A,我们可以写作b ∉ A。
3. 集合的描述方法有时,我们需要对集合中的对象进行描述。
有两种常见方法可以描述集合:a. 列举法:通过列举集合中的所有对象来描述集合。
例如,如果集合A包含元素1、2和3,我们可以写作A = {1, 2, 3}。
b. 描述法:通过给出满足某个条件的对象来描述集合。
例如,如果集合B包含所有大于0的整数,我们可以写作B = {x | x > 0},其中“|”表示“满足条件”。
4. 集合的基本运算集合之间可以进行一些常见的运算,包括并集、交集、差集和补集。
a. 并集:两个集合A和B的并集,表示为A ∪ B,包含了A和B中所有的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = {1, 2, 3, 4, 5}。
b. 交集:两个集合A和B的交集,表示为A ∩ B,包含了A和B共有的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。
c. 差集:两个集合A和B的差集,表示为A - B,包含了属于A但不属于B的元素。
例如,如果A = {1, 2, 3},B = {3, 4, 5},则A - B= {1, 2}。
集合的基本概念
二、集合的表示方法 1. 列举法:常用于表示有限集合,把集合中的所有元
素一一列举出来﹐写在花括号内﹐这种表示集合的 方法叫做列举法。{1,2,3,……}
2. 描述法:常用于表示无限集合,把集合中元素的公
共属性用文字﹐符号或式子等描述出来﹐写在花括
本书中常见的无穷集合有: N={0,1,2,3,···},即自然数集合。 Z={···,-2,-1,0,1,2,3,···},即整数集合。 Z+={1,2,3,···},即正整数集合。 Q=有理数集合。 R=实数集合。 C=复数集合。
3.2 集合运算及其性质
集合运算是指用已知的集合去生成新的 集合。假设所有集合都是全集E的子集,即 这些集合是利用子集公理得到的。常见的 集合运算有:并、交和差运算、绝对补集 、对称差
={x|P(x)P(x)} (1) ,{ },{{ }},···
(2)两个集合的包含排斥原理:
A B (A B A B)
其中P(x)为任何谓词公式。 由定义可知, P(A),A P(A)。
F为所有十九世纪的书所组成的书名集 集合运算是指用已知的集合去生成新的集合。
那么全集有而A中没有的3,4就是A的补集。
x(1 1集2A)合矛x的盾由基B律本成概定A立∩念~即义A可=。可。 知,对任何集合A,有A。这是因为
列举法:常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在花括号内﹐这种表示集合的方法叫做列举法。
任意元素x,公式xxA总是为真 全集是个相对性概念,在实际应用中,常常根据具体问题作出选择。
1.并、交和差运算 定义:设A和B是任意两个集合, ① A和B的并是集合,记为A∪B,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一、集合的概念
想一想:考查下列每组对象能否构成一个集合
(1)著名的数学家;
(2)某校2010年在校的所有高个子同学;
(3)不超过20的非负数;
(4)直角坐标平面内第一象限的一些点;
(5)方程x2-9=0在实数范围内的解;
(6)3的近似值的全体.
集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素,简称元
特性:(1)确定性:集合中的元素必须是确定的
(2)互异性:集合中任意2个元素都不同
(3)无序性:集合中的元素不考虑顺序
大显身手:下列各组对象:其中能构成集合的是()
A、接近于0的数的全体
B、比较小的正整数全体
C、平面上到点O的距离等于1的点的全体
D、正三角形的全体
能力提升:下列各种对象,可以构成集合的是_____________
A、使|232
x x
-+|最小的x的值 B、某班比较聪明的学生
C、某书中的难题
D、某班身高超过1米8的女学生知识点二、元素与集合的关系及常用数集记法
1.集合通常用大写拉丁字母A,B,C…表示,用小写拉丁字母a,b,c,…表示集合中的元素.
2.如果a是集合A的元素,就说a属于集合A,记作a∈A,读作“a属于A”,如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”.3.数学中一些常用的数集及其记法
实数集:R 有理数集:Q 整数集:Z 非负整数集N 正整数集N*或N+
例1.用∈,∉填空
1_____N, -3_____N, 0_____N,
_____N,
1_____Z,
例2.下面命题:正确的个数是______个。
1、集合N中最小的数是1
2、若-a不属于N,则a属于N 知识点三、集合的表示方法
1、自然语言:通过日常语言来描述集合问题中被研究的对象,如全体实数组成的集合、正整数集等
2、列举法:把集合的元素一一列出来写在大括号的方法。
如{1,-2}
说明:(1)元素之间,逗号隔开;
(2)不考虑顺序;
(3)表示特殊集合(如数列)时,通常按惯用的次序;
(4)在列出集合中的所有元素不方便或不可能时,可以列出该集合的
一部分元素,以提供某种规律,其余元素用省略号代替。
例1.用列举法表示下列集合:
例2、不等式x-7<3的解集,怎么用列举法表示?
3、描述法:
x-7<3的解集中的元素太多,且拿出一部分元素又不具有某种规律,所以列举法在这里就受到了限制。
但是,们可以用这个集合中元素所具有的共同特征来描述:不等式x-7<3的解集中所含元素的共同特征是:,x 73,x 10x R ∈-<<且即 因此,我们可以把这个集合表示为}{
10D x R x =∈<
定义:用集合中元素的共同特征表示集合的方法(即把集合中元素的公共属性描述出来, 写在大括号里的方法)。
表示形式:如}{
()A x I p x =∈其中竖线前x 叫做此集合的代表元素;p 叫做元素x 所具有的公共属性;即若x 具有性质p ,则x ∈A ;若x ∈A,则x 具有性质p 。
例1.用描述法表示下列集合:
(1)由适合x 2-x-2>0的所有解组成的集合; (2)到定点距离等于定长的点的集合;
(3)抛物线y=x 2上的点; (4)抛物线y=x 2上点的横坐标;
(5)抛物线y=x 2上点的纵坐标;
例2:试分别用列举法和描述法表示下列集合:
(1)方程220x -=的所有实数根组成的集(2)由大于10小于20的所有整数组成的集合。
例3:(1)用自然语言描述集合{1,3,5,7,9};(2)用列举法表示集合
{|18}A x N x =∈≤<知识点四、集合的分类
由此可以得到:
集合的分类:::()empty set ⎧⎪
⎨⎪∅-⎩
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含有任何元素的集合
例6.观察下列三个集合的元素个数
1. {4.8, 7.3, 3.1, -9};
2. {x ∈R ∣0<x<3};
3. {x ∈R ∣x 2+1=0} 8. {3,x ,x 2-2x}中,x 应满足的条件是______.
课堂练习:
1.由下列对象组成的集体属于集合的是____ ____(填序号). ①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市; ④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生. 2.下列四个说法中正确的个数是________.
①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合. 3.用“∈”或“∉”填空.
(1)-3______N ;(2)3.14______Q ;(3)13______Z ;(4)-1
2______R ;(5)1______N *;
(6)0________N .
4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________. 5.已知x 、y 、z 为非零实数,代数式
x |x|+y |y|+z |z|+|xyz|
xyz
的值所组成的集合是M ,则M 中元素的个数为________.
6.方程x 2-2x +1=0的解集中含有________个元素.
7.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC(填“能”或“不能”)________为等腰三角形.
9.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 因式分解
因式分解的主要方法有:公式法、提取公因式法、分组分解法、十字相乘法、、,另外还应了解求根法及待定系数法.
1、公式法(乘法公式)(主要针对二项式、三项式)
略
例1.用立方和或立方差公式分解下列各多项式: (1) 38x +
(2) 30.12527b -
(3) 34381a b b -
(4) 76a ab -
2、提取公因式法与分组分解法(四项及以上)
分组分解法的关键在于如何分组.常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式 题型一、分组后能提取公因式
例2.把2105ax ay by bx -+-分解因式。
变式2:把2222()()ab c d a b cd ---分解因式。
10.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x.
题型2.分组后能直接运用公式
例3.把22x y ax ay -++分解因式。
变式3:把22
2
2428x x y y z
+
+-分解因式。
3、十字相乘法(二次三项式ax 2+bx +c (a ≠0)) (1)2()x p q x pq +++型的因式分解
这类式子在许多问题中经常出现,其特点是:①二次项系数是1;②常数项是两个数之积;③ 一次项系数是常数项的两个因数之和.
∵2()x p q x pq +++2()()()()x px qx pq x x p q x p x p x q =+++=+++=++, 运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. (2)一般二次三项式2ax bx c ++型的因式分解
由2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1
1
22a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么
2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下
一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.(十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,
右边相乘等于常数项,交叉相乘再相加等于一次项系数。
)
必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解. 题型一、2()x p q x pq +++型的因式分解 例4.把下列各式因式分解: (1) 276x x -+ (2) 21336x x ++
例5.把下列各式因式分解:
(1) 2524x x +-
(2) 2215x x --
例6.把下列各式因式分解:
(1) 226x xy y +- (2) 222()8()12x x x x +-++
题型二、一般二次三项式2ax bx c ++型的因式分解
例7.把下列各式因式分解:(1) 21252x x -- (2) 22568x xy y +-
变式练习:
(1)x 2-6x+5 (2)x 2+15x+56 (3)x 2+2xy-3y 2
(4)(x 2+x)2-4(x 2+x)-12 (5)12x 2-5x-2 (6)5x 2+6xy-8y 2
4、其他因式分解的方法:(1)配方法 (2)求根法 (3)待定系数法 (4)拆、添项法。