数学期始考试(2009[1][1].1

合集下载

2009年高考全国卷1数学真题(理科数学)(附答案)

2009年高考全国卷1数学真题(理科数学)(附答案)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=•球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-2(10)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,PQ 到α的距离为P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )23第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。

2009年全国考研数学一真题及答案.doc

2009年全国考研数学一真题及答案.doc

以 X ,Y , Z 分别表示两次取球所取得的红球、黑球与白球的个数。
(Ⅰ)求 p X 1 Z 0 ;
(Ⅱ)求二维随机变量 X , Y 概率分布。
第 4 页 共 24 页
9. (本题满分 11 分)
设总体 X 的概率密度为 f ( x)
2xe x , x 0 ,其中参数 (
0,其他
0) 未知, X 1 ,
S1
an , S2
a2 n 1 ,求 S1 与 S2 的值。
n1
n1
3.
x2 (本题满分 11 分)椭球面 S1 是椭圆
y2 1 绕 x 轴旋转而成,圆锥面 S2 是过点
43
第 3 页 共 24 页
x2 4,0 且与椭圆
4
y2 1
3
相切的直线绕 x 轴旋转而成。
(Ⅰ)求 S1及 S2 的方程
(Ⅱ)求 S1与 S2 之间的立体体积。
2z
9. 设函数 f u, v 具有二阶连续偏导数, z f x, xy ,则

xy
10. 若二阶常系数线性齐次微分方程
y ay by 0 的通解为 y C1 C2 x ex ,则非齐
次方程 y ay by x 满足条件 y 0 2, y 0 0的解为 y

11. 已知曲线 L : y x2 0 x
均值和样本方差。若 X kS2 为 np 2 的无偏估计量,则 k

三、解答题( 15- 23 小题,共 94 分 .请将解答写在答题纸指定的位置上 明、证明过程或演算步骤 .)
.解答应写出文字说
1. (本题满分 9 分)求二元函数 f ( x, y) x2 2 y2 y ln y 的极值。
2. (本题满分 9 分)设 an 为曲线 y xn 与 y xn 1 n 1,2,..... 所围成区域的面积,记

2009年高考数学试题(全国卷)

2009年高考数学试题(全国卷)

2009年普通高等学校招生全国统一考试一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D)345种(6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-2(10)已知二面角α-l -β为600 ,动点P 、Q 分别在面α、β内,P ,Q到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。

2009年浙江高考理科数学卷(含详细答案解析)

2009年浙江高考理科数学卷(含详细答案解析)

绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科) 本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 棱台的体积公式球的表面积公式 )(312211S S S S h V ++= 24S R π= 其中S 1、S 2分别表示棱台的上、下底面积,球的体积公式 h 表示棱台的高334R V π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,{|0}A x x =>,{|1}B x x =>,则UAB =( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >答案:B【解析】 对于{}1U C B x x =≤,因此UAB ={|01}x x <≤.2.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C【解析】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 3.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +答案:D 【解析】对于2222(1)1211z i i i i z i+=++=-+=++ 4.在二项式251()x x-的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5答案:B【解析】对于()251031551()()1rrrr r r r T C x C x x--+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=5.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则32AE a =,2a DE =,即有0tan 3,60ADE ADE ∠=∴∠=.6.某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7答案:A【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A .3 B .4 C .5 D .6 答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现. 8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )答案:D【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A 2 B 3 C 5 D 10答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=. 10.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 答案:C【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x k x x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2009-2010学年第一学期高级部期中考试获奖名单

2009-2010学年第一学期高级部期中考试获奖名单

2009—2010学年第一学期高级部期中考试获奖名单一、英才奖七年级:1.七(1)钟毅6、七(5)潘馨祎2、七(5)施文汇七(6)韩靖蔚3、七(6)周颖8.七(5)陆志扬4.七(5)王逸婷七(6)王越洲七(6)曹俊奕10、七(5)管承元七(6)朱玲琦八年级:1.八(6)李西蒙 5.八(5)焦润堃2.八(5)张瑾 5.八(6)汤卓婷3.八(6)许辰8.八(5)谈建晟3.八(6)梁雪9.八(6)钱姝文4.八(5)曹子舟10.八(5)刘天翌10.八(6)郑逸飞九年级:1.九(4)王梦熙 6.九(4)周晨逸1.九(5)张震宇 6.九(6)何天成3.九(6)徐书婷8.九(3)顾夕云3.九(6)钱怡9.九(5)高妮5.九(5)殷琪安9.九(5)戴志杰二、学习之星七年级:七(1)周璟雯徐汪涛徐玉雨七(2)吴朵朱丹华石雯玥徐良奔七(3)周桃桃姚逸泓沈平沙吴润泽曹子渊七(4)张梦琪张佩王志成吴旷晔曾梦宇七(5)艾青洪裕婷王雨周王艺霏徐苏恒王葳朱宇翔万佳豪七(6)杨哲宁董昕怡王意如韩嘉豪王静芬八年级:八(1)孙杰顾禹超李伟涛八(2)顾韶光王静怡汪斌八(3)薛倚天朱倩曾子玉陈惠妍八(4)朱科刘淑颖黄崟娴范海炀八(5)陆诗婷岳天懿顾思凌王睿沁李欣莹八(6)韩韬朱子茵方妤九年级:九(1)陈彤李海涛方凯莉九(2)杨成明韩未刘诗雯九(3)邹圆圆徐汪杰丁博文九(4)陈卿朱虹朱德明九(5)章怡宁尹小昕孙怡赵洁九(6)殷雯迪施晓莹王恺华屹丹三、进步之星七年级:1.七(1)田振杰 4.七(4)胡江鹏2.七(2)陈春丞 5.七(5)王艺霏3.七(3)高洁静 6.七(6)连漪八年级:1.八(1)王欣 4.八(4)周泽豪2.八(2)赵家琪 5.八(5)沈鑫逸3.八(3)黄山 6.八(6)姜璐九年级:1.九(1)王孜 4.九(4)赵万阳2.九(2)曹彧飞 5.九(5)石希曦3.九(3)吴苏玲 6.九(6)庄梦怡。

2009年高考理科数学试题及答案-全国卷1

2009年高考理科数学试题及答案-全国卷1

2009年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅱ)一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D (5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4(C )4(D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(10)已知二面角α-l-β为600,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为则P 、Q 两点之间距离的最小值为(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。

2009年黄浦区初三第一学期期末考试数学试卷

2009年黄浦区初三第一学期期末考试数学试卷

ED C BA CBA C 黄浦区2009学年度第一学期期终基础学业测评初三数学试卷一、选择题本大题共6题,每题4分,满分24分) 1、三角形的重心是(A )三角形三条角平分线的交点; (B )三角形三条中线的交点; (C )三角形三条高所在直线的交点; (D )三角形三条边的垂直平分线的交点.2、如图,在梯形ABCD 中,E 、F 分别为腰AD 、BC 的中点,若3,5==,则向量可表示为(A ); (B )-; (C )2; (D )2-.(第3题) 3、如图,在△ABC 中,4,3,2===BC AC AB ,则C tan 的值是 (A )21; (B )43; (C )32; (D )以上都不是. 4、若方程01322=++x x 的两个实数根为α、β,则积αβ为 (A )21; (B )31; (C )21- ; (D )31-. 5、下列各组图形中,一定相似的是(A )两个矩形;(B )两个菱形;(C )两个正方形;(D )两个等腰梯形.6、将二次函数2x y =的图像沿y 轴方向向上平移1个单位,则所得到图像的函数解析式为 (A )12+=x y ;(B ) 12-=x y ; (C )2)1(+=x y ; (D )2)1(-=x y . 二、填空题(本大题共12题,每题4分,满分48分)7、若a ∶b ∶c =2∶3∶4,且18=++c b a ,则=-+c b a ____________.9、如图,D 、E 是ABC ∆边AB 、AC 上的两点,且DE ∥BC ,ED ∶BC =3∶5,则AD ∶=BD ___________.(第9题)(第10题)DCBGAE10、如图,正方形ABCD 被3条横线与3条纵线划分成16个全等的小正方形,P 、Q 是其中两个小正方形的顶点,设==,,则向量=____________.(用向量、来表示) 11、若两个相似三角形的相似比为1∶2,且其中较大者的面积为2010,则其中较小的三角形的面积为__________.12、如图,平面直角坐标系中一点A ,已知OA =5,其中O 为坐标原点,OA 与x 轴正半轴所成角α的正切值为2,则点A 的坐标为__________.13、计算:=︒︒60cot 60tan __________. 14、在平面直角坐标系中,抛物线322++=x x y 的顶点坐标是__________.15、一个矩形的周长为20,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是________.(请注明定义域)16、若点()n A ,3在二次函数322-+=x x y 的图像上,则n 的值为__________.17、如图,在ABC ∆中,O BC AC ACB ,3,4,90===∠︒是边AB 的中点,过点O 的直线l 将ABC ∆分割成两个部分,若其中的一个部分与ABC ∆相似,则满足条件的直线l 共有___________条.18、如图,在ABC ∆中,AB =AC ,BD 、CE 分别为两腰上的中线,且BD ⊥CE ,则=∠ABC tan __________. 三、解答题(本大题共7题,满分78分)19、(本题10分)已知关于x 的一元二次方程01222=+++-k k kx x 有两个实数根. (1)试求k 的取值范围;(2)若此方程的两个实数根1x 、2x ,满足21121-=+x x ,试求k 的值.C水平线20、(本题10分)已知二次函数c bx x y ++=2的图像经过点()3,0和()3,1.(1)试求此函数的解析式;(2)试问:将此函数的图像沿y 轴方向平移(向上或向下)多少个单位可以使其图像经过坐标原点?21、(本题10分)如图,在ABC ∆中,D BC AC AB ,8,5===是边AB 上一点,且21tan =∠BCD . (1)试求B sin 的值; (2)试求△BCD 的面积.22、(本题10分)林场工作人员王护林要在一个坡度为5∶12的山坡上种植水杉树,他想根据水杉的树高与光照情况来确定植树的间距.他决定在冬至日(北半球太阳最偏南),去测量一棵成年水杉树,测得其在水平地面上的影长AB =16米,测得光线与水平地面夹角为α,已知53sin =α.(如图1) (1)请根据测得的数据求出这棵成年水杉树的高度(即AT 的长);(2)如图2,他以这棵成年水杉树的高度为标准,以冬至日阳光照射时前排的树影不遮挡到后排的树为基本要求,那么他在该山坡上种植水杉树的间距(指MN 的长)至少多少米?(精确到1.0米)23、(本题12分)如图,在ABC ∆中,P BC AC ACB ,,90==∠︒是ABC ∆形内一点,且︒=∠=∠135APC APB .(1)求证:CPA ∆∽APB ∆;(2)试求PCB ∠tan 的值.24、(本题12分)已知二次函数k x k x y -++-=)1(2的图像经过一次函数4+-=x y 的图像与x 轴的交点A .(如图)(1)求二次函数的解析式;(2)求一次函数与二次函数图像的另一个交点B 的坐标;(3)若二次函数图像与y 轴交于点D ,平行于y 轴的直线l 将四边形ABCD 的面积分成1∶2的两部分,则直线l 截四边形ABCD 所得的线段的长是多少?(直接写出结果)BCDA BCD P EFA 25、(本题14分)在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1) (1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF 交于点P .(如图2)①求证:BDE ∆∽BCF ∆;②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明; ③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.(图1)(图2)2009年黄浦区初三第一学期期末考试参考答案与评分标准一、选择题1、B ;2、B ;3、D ;4、A ;5、C ;6、A . 二、填空题7、2; 8、4; 9、3∶2; 10、4121-;11、21005; 12、()2,1; 13、3; 14、()2,1-; 15、()x x S -=10 (0<x <10); 16、12; 17、3; 18、3. 三、解答题 19、解:(1)∵方程有实数根,∴0)1(4422≥++-=∆k k k ,--------------------------------(2分) 解得1-≤k .-------------------------------------------------(2分)(2)由根与系数关系知:⎩⎨⎧++==+1222121k k x x k x x ,------------------------(2分) 又21121-=+x x ,化简代入得2122-=++k k k ,------------------(2分) 解得1-=k ,-------------------------------------------------(1分)经检验1-=k 是方程的根且使原方程有实数根,∴1-=k .----------------------------------------------------(1分)20、解:(1)由条件得⎩⎨⎧++==c b c133,------------------------------------(3分)解得⎩⎨⎧=-=31c b ,-----------------------------------------------(3分)∴解析式为32+-=x x y .-------------------------------------(1分)(2)向下3个单位. ---------------------------------------------(3分) 21、解:(1)作BC AH ⊥,垂足为H ,----------------------------------(1分)∵5==AC AB ,∴421==BC BH ,-----------------------------------------(1分) 在ABH ∆中,322=-=BH AB AH ,----------------------(2分)∴53sin ==AB AH B .----------------------------------------(1分) (2)作BC DE ⊥,垂足为E ,在BDE ∆中, B sin 53=,令k BD k DE 5,3==,------------------(1分)则k DE BD BE 422=-=,------------------------------------(1分)又在CDE ∆中,21tan =∠BCD , 则k BCDDECE 6tan =∠=,-------------------------------------(1分)于是EC BE BC +=,即864=+k k ,解得54=k ,--------------------------------------------------(1分) ∴54821=⨯=∆DE BC S BCD .------------------------------------(1分)22、解:(1)在ABT ∆中,53sin =∠ABT ,令k BT k AT 5,3==,----------(1分)则1622=-=AT BT AB ,即164=k ,---------------------(1分)解得4=k ,-----------------------------------------------(1分)∴123==k AT .-------------------------------------------(1分)答:这棵成年水杉树的高度为12米. ------------------------------(1分) (2)作MT NH ⊥,垂足为H ,在TNH ∆中, TNH ∠sin 53=,令k TN k TH 5,3==,--------(1分) 则k HT NT NH 422=-=,------------------------------(1分)又在NMH ∆中,125=NH MH , ∴k MH 35=,k MH NH MN 31322=+=,----------------(1分) 由12353=+=+=k k HT MH MT ,解得718=k ,----------------------------------------------(1分)∴778313==k MN ≈11.2. ---------------------------------(1分) 答:在该山坡上种植水杉树的间距至少11.2米. 23、解:(1)∵在ABC ∆中,,,90BC AC ACB ==∠︒∴︒=∠45BAC ,即︒=∠+∠45PAB PAC ,-----------(1分) 又在APB ∆中,︒=∠135APB ,∴︒=∠+∠45PAB PBA ,--------------------------(1分)∴PBA PAC ∠=∠,-------------------------------(1分) 又APC APB ∠=∠,--------------------------------(1分) ∴CPA ∆∽APB ∆.---------------------------------(2分)(2)∵ABC ∆是等腰直角三角形,∴21=AB CA ,--------------------------------------(1分) 又∵CPA ∆∽APB ∆,∴21===AB CA PB PA PA CP ,-------------------------(2分) 令k CP =,则k PB k PA 2,2==,------------------(1分)又在BCP ∆中,︒︒=∠-∠-=∠90360BPC APC BPC ,(1分) ∴2tan ==∠PCPBPCB .----------------------------(1分) 24、解:(1)由4+-=x y ,得()0,4A ,----------------------------------(1分) 又二次函数图像经过点A ,则()k k -++-=14160,----------------------------------(1分) 解得4=k ,-----------------------------------------------(1分) 所以二次函数解析式为452-+-=x x y .----------------------(1分)(2)由⎩⎨⎧-+-=+-=4542x x y x y ,--------------------------------------(2分) 解得⎩⎨⎧==0411y x ,⎩⎨⎧==2222y x ,-----------------------------------(2分)所以点B 的坐标为(2,2). --------------------------------(1分) (3)3或242.------------------------------------------------(3分) 25、解:(1)作BC DH ⊥,垂足为H ,在四边形ABHD 中,AD ∥BC ,︒=∠==90,1A AB AD ,则四边形ABHD 为正方形,--------------------------------(1分) 又在C D H ∆中,1,1,90=-====∠︒BH BC CH AB DH DHC ,-----------------------------------------------------------------------(1分)∴︒︒=∠-=∠452180DHCC .-----------------------------(1分) (2)①∵四边形ABHD 为正方形,∴︒=∠45CBD ,︒=∠45ADB ,-------------------------(1分) 又∵︒=∠45EBF ,∴CBF DBE ∠=∠-------------------------------------(1分) 又∵︒=∠=∠45C BDE ,-------------------------------(1分)∴BDE ∆∽BCF ∆.------------------------------------(1分) ②BEF ∆是等腰直角三角形,-------------------------------(1分) ∵BDE ∆∽BCF ∆, ∴CBFBBD BE =,------------------------------------------(1分) 又∵︒=∠=∠45DBC EBF ,∴EBF ∆∽DBC ∆,------------------------------------(1分) 又在DBC ∆中,︒=∠=∠45C DBC ,为等腰直角三角形,---(1分) ∴BEF ∆是等腰直角三角形. ③延长EF 交BC 的延长线于点Q , 易知2==CD BD ,∵BDE ∆∽BCF ∆, ∴21==CB DB CF DE , 则x CF x DE 22,1-=-=, ∴x CF CD DF 2=-=,又∵xxDF CF DE CQ -==1, ∴xx x CQ 221+-=,------------------------------------(1分)∵221xx x BQ DE BP DP +-==, ∴xx x xx x y +-=+-⨯=1221222,(0<x <1). -------------(2分)。

2009年考研数学一试题与答案解析

2009年考研数学一试题与答案解析

2009年全国硕士研究生入学统一考试年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x ®时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==- (B)11,6a b ==(C)11,6a b =-=- (D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ££被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =òò,则{}14max k k I ££=(A)1I(B)2I(C)3I (D)4I(3)设函数()y f x =在区间[]1,3-上的图形为上的图形为则函数()()0xF x f t dt =ò的图形为的图形为1 ()f x-20 2 3x-1O(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n na ®¥=,则()f x23x1-2-11 ()f x0 23x1-1 1 ()f x0 2 3x1 -2-1 1()f x23x1-2 -11(A)当1n n b ¥=å收敛时,1n n n a b ¥=å收敛.(B)当1n n b ¥=å发散时,1n n n a b ¥=å发散.(C)当1n n b ¥=å收敛时,221n nn a b ¥=å收敛. (D)当1n n b ¥=å发散时,221n n n a b ¥=å发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基12233,,+++αααααα的过渡矩阵为的过渡矩阵为 (A)101220033æöç÷ç÷ç÷èø (B)120023103æöç÷ç÷ç÷èø(C)111246111246111246æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø (D)111222111444111666æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø(6)设,A B均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O æöç÷èø的伴随矩阵为的伴随矩阵为(A)**32OB AO æöç÷èø (B)**23O B AO æöç÷èø(C)**32O A B O æöç÷èø (D)**23OA B O æöç÷èø(7)设随机变量X 的分布函数为()()10.30.72x F x x -æö=F +F ç÷èø,其中()x F 为标准正态分布函数,则EX =(A)0 (B)0.3 (C)0.7 (D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为点个数为(A)0 (B)1(C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2z x y ¶=¶¶. (10)若二阶常系数线性齐次微分方程0y ay by ¢¢¢++=的通解为()12e xy C C x =+,则非齐次方程y ay by x ¢¢¢++=满足条件()()02,00y y ¢==的解为y =. (11)已知曲线()2:02L y xx =££,则Lxds =ò. (12)设(){}222,,1x y z x y z W =++£,则2z dxdydz W=òòò. (13)若3维列向量,αβ满足2T =αβ,其中Tα为α的转置,则矩阵Tβα的非零特征值为. (14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k =.三、解答题(15-23小题,共94分请将解答写在答题纸指定的位置上解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分) 求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分) 设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ¥¥-====åå,求1S 与2S 的值.(17)(本题满分11分) 椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b x Î,使得()()()()f b f a f b a x ¢-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0d d >内可导,且()0lim x f x A +®¢=,则()0f +¢存在,且()0f A +¢=.(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdy I x y z ++=å++òò,其中å是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--æöç÷=-ç÷ç÷--èøA ,1112-æöç÷=ç÷ç÷-èøξ(1)求满足21=A ξξ的2ξ.2231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x xx x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布. (23)(本题满分11 分)设总体X 的概率密度为2,0()0,xxe x f x l l-ì>=íî其他,其中参数(0)l l >未知,1X ,2X ,…n X 是来自总体X 的简单随机样本.(1)求参数l的矩估计量.(2)求参数l的最大似然估计量.2009年考研数学试题答案与解析(数学一)一、选择题:1~8小题,每小题4分,共32分. (1)当0x ®时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则等价无穷小,则(A)11,6a b ==-. (B)11,6a b ==.(C)11,6a b =-=-.(D)11,6a b =-=. 【答案】【答案】A. 【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx®®®®®---==-×---洛洛230sin lim 166x a ax a b b ax a®==-=-× 36a b \=- 故排除(B)、(C). 另外201cos lim3x a axbx®--存在,蕴含了1cos 0a ax -®()0x ®故 1.a =排除(D). 所以本题选(A ). (2)如图,正方形(){},1,1x y x y ££被其对角线划分为被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =òò,则{}14max kk I ££=(A)1I . (B)2I . (C)3I . (D)4I .【答案】【答案】A. 【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ³££=>òò; {}3(,),012cos 0x y y x x I y xdxdy £-££=<òò.所以正确答案为(A).-1-111xy 1D 2D3D4D(3)设函数()y f x =在区间[]1,3-上的图形为上的图形为则函数()()0x F x f t dt =ò的图形为的图形为(A)(B)(C)(D)【答案】D.【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:,从而可得出几个方面的特征:①[]0,1x Î时,()0F x £,且单调递减.②[]1,2x Î时,()F x 单调递增. ③[]2,3x Î时,()F x 为常函数.()f x O23x1-2-11()f x O 23x1-1 1 ()f x O 2 3x1-2-11()f x O23x1-2 -11 1()f x -2O 2 3x-11④[]1,0x Î-时,()0F x £为线性函数,单调递增.⑤由于F(x)为连续函数为连续函数结合这些特点,可见正确选项为(D ).(4)设有两个数列{}{},n n a b ,若lim 0n n a ®¥=,则,则(A )当1nn b¥=å收敛时,1n nn a b¥=å收敛. (B )当1nn b¥=å发散时,1n nn a b¥=å发散.(C)当1n n b ¥=å收敛时,221n nn a b ¥=å收敛. (D)当1n n b ¥=å发散时,221n nn a b ¥=å发散.【答案】C. 【解析】方法一:【解析】方法一:举反例:(A )取1(1)n n na b n==-(B )取1n n a b n ==(D )取1n na b n ==故答案为(C ).方法二:因为lim 0,n n a ®¥=则由定义可知1,N $使得1n N >时,有1na <又因为1n n b ¥=å收敛,可得lim 0,n n b ®¥=则由定义可知2,N $使得2n N >时,有1n b < 从而,当12n N N >+时,有22n nn a b b <,则由正项级数的比较判别法可知221n nn a b¥=å收敛.(5)设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基到基122331,,a a a a a a +++的过渡矩阵为的过渡矩阵为(A)101220033æöç÷ç÷ç÷èø. (B)120023103æöç÷ç÷ç÷èø.(C)111246111246111246æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø. (D)111222111444111666æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø. 【答案】A.【解析】因为()()1212,,,,,,n nA h h h a a a =,则A 称为基12,,,n a a a 到12,,,nh h h 的过渡矩阵. 则由基12311,,23a a a 到122331,,a a a a a a +++的过渡矩阵M 满足满足()12233112311,,,,23M a a a a a a a a a æö+++=ç÷èø12310111,,22023033a a a æöæöç÷=ç÷ç÷èøç÷èø所以此题选(A).(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O æöç÷èø的伴随矩阵为的伴随矩阵为 ()A **32O B A O æöç÷èø.()B **23OB A O æöç÷èø. ()C **32O A B O æöç÷èø.()D **23O A B O æöç÷èø. 【答案】B.【解析】根据CC C E *=,若111,C C C CC C *--*==分块矩阵O A B O æöç÷èø的行列式221236O AA B B O ´=-=´=(),即分块矩阵可逆,即分块矩阵可逆11116601O B BO A O A O A O B B O B B O A O A O A **---*æöç÷æöæöæöç÷===ç÷ç÷ç÷ç÷èøèøèøç÷èø1236132O B OB A O A O ****æöç÷æö==ç÷ç÷ç÷èøç÷èø故答案为(B ).(7)设随机变量X 的分布函数为()()10.30.72x F x x -æö=F +F ç÷èø,其中()x F 为标准正态分布函数,则EX =(A)0. (B)0.3. (C)0.7. (D)1. 【答案】C.【解析】因为()()10.30.72x F x x -æö=F +F ç÷èø, 所以()()0.710.322x F x x -æö¢¢¢=F +F ç÷èø, 所以()()10.30.352x EXxF x dxx x dx +¥+¥-¥-¥é-ùæö¢¢¢==F +F ç÷êúèøëûòò()10.30.352xx x dx x dx +¥+¥-¥-¥-æö¢¢=F +F ç÷èøòò而()0x x dx +¥-¥¢F =ò,()()11221222x x x dx u u u du +¥+¥-¥-¥--æö¢¢F =+F =ç÷èøòò 所以00.3520.7EX =+´=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为的间断点个数为 (A)0. (B)1. (C)2. (D)3.【答案】【答案】B.【解析】【解析】()()(0)(0)(1)(1)1[(0)(1)]21[(00)(1)]2Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =£=£==+£===£=+£==×£=+£=,X Y 独立独立1()[(0)()]2Z F z P X z P X z \=×£+£(1)若0z <,则1()()2Z F z z =F(2)当0z ³,则1()(1())2Z F z z =+F0z \=为间断点,故选(B ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y ¶=¶¶. 【答案】"'"12222xf f xyf ++. 【解析】''12z f f yx ¶=+׶,2"'""'"1222212222z xf f yx f xf f xyf x y ¶=++×=++¶¶. (10)若二阶常系数线性齐次微分方程0y ay by ¢¢¢++=的通解为()12x y C C x e =+,则非齐次方程y ay by x ¢¢¢++=满足条件()()02,00y y ¢==的解为y = . 【答案】2xy xe x =-++.【解析】由12()x y c c x e =+,得121l l ==,故2,1a b =-= 微分方程为''2'y y y x -+=设特解*y Ax B =+代入,',1y A A ==220,2A Ax B xB B -++=-+==\特解特解 *2y x =+\12()2x y c c x e x =+++ 把 (0)2y = ,'(0)0y =代入,得120,1c c ==- \ 所求2xy xe x =-++ (11)已知曲线()2:02L y x x =££,则Lxds =ò. 【答案】136【解析】由题意可知,2,,02x x y x x ==££,则,则()()22214ds x y dx x dx ¢¢=+=+,所以()22222011414148Lxds x x dx x d x =+=++òòò()2320121314836x =×+=(12)设(){}222,,1x y z x y z W =++£,则2z dxdydz W=òòò. 【答案】415p .【解析】【解析】 方法一:21222200sin cos z dxdydz d d d ppqj r jr j r =òòòòòò()2124000cos cos d d d ppq j j r r =-òòò3cos 1423515d pjp j p =×-×=ò方法二:由轮换对称性可知2z dxdydz W=òòò2x dxdydz W=òòò2y dxdydz Wòòò所以,()212222400011sin 33z dxdydz x y z dxdydz d d r dr p p j q j W W=++=òòòòòòòòò 14002214sin sin 33515d r dr d pp p p pj j j j =××=òòò (13)若3维列向量,a b 满足2Ta b =,其中T a 为a 的转置,则矩阵Tba 的非零特征值为.【答案】2.【解析】2Ta b =()2TTba b b a b b \==×,Tba \的非零特征值为2. (14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = . 【答案】1-. 【解析】2X kS -+为2np 的无偏估计的无偏估计22()E X kX np -\+=2(1)1(1)(1)11np knp p npk p p k p p k \+-=\+-=\-=-\=-三、解答题:15~23小题,共94分.(15)(本题满分9分)分) 求二元函数()22(,)2ln f x y x y y y =++的极值.【解析】【解析】2(,)2(2)0x f x y x y ¢=+=2(,)2ln 10y f x y x y y ¢=++=故10,x y e= =2212(2),2,4xx yy xyf y f x f xy y¢¢¢¢¢¢=+ =+=则12(0,)12(2)xxef e¢¢=+,1(0,)0xy ef ¢¢=,1(0,)yyef e ¢¢=. 0xx f ¢¢>而2()0xy xx yy f f f ¢¢¢¢¢¢-<\二元函数存在极小值11(0,)f e e=-.(16)(本题满分9分)分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记所围成区域的面积,记122111,n n n n S a S a ¥¥-====åå,求1S 与2S 的值.【解析】由题意,ny x =与n+1y=x 在点0x =和1x =处相交,处相交,所以112111111a ()()1212nn n n n x xdx xxn n n n +++=-=-=-++++ò,从而1111111111S lim lim(-)lim()23122+22Nn nN N Nn n a a N N N ¥®¥®¥®¥=====-++=-=++åå 2211111111111111=)22+1232N 2N+123456n n n S a n n ¥¥-====--++-=-+-+åå()( 由2(1)1(1)2n n x x n-++-+ln(1+x)=x- 取1x =得22111ln(2)1()11ln 2234S S =--+=-Þ=-.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(Ⅰ)求1S 及2S 的方程的方程 (Ⅱ)求1S 与2S 之间的立体体积.【解析】(I )1S 的方程为222143x y z ++=,过点()4,0与22143x y +=的切线为122yx æö=±-ç÷èø, 所以2S 的方程为222122y z x æö+=-ç÷èø.(II )1S 与2S 之间的体积等于一个底面半径为32、高为3的锥体体积94p 与部分椭球体体积V 之差,其中22135(4)44V x dx p p =-=ò.故所求体积为9544p p p -=.(18)(本题满分11分)分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b x Î,使得()()()()f b f a f b a x ¢-=-(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0d d >内可导,且()0lim x f x A +®¢=,则()0f+¢存在,且()0f A +¢=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aj -=----,易验证()x j 满足:满足:()()a b j j =;()x j 在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aj -=--.根据罗尔定理,可得在(),a b 内至少有一点x ,使'()0j x =,即,即'()f x '()()0,()()()()f b f a f b f a f b a b ax --=\-=-- (Ⅱ)任取0(0,)x d Î,则函数()f x 满足:在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x x d ÎÌ,使得,使得()'00()(0)x f x f f x x -=-……()*又由于()'0lim x fx A +®=,对上式(*式)两边取00x +®时的极限可得:时的极限可得:()()00000'''00()00lim lim ()lim ()0x x xx x f x f f f f A x x x x ++++®®®-====-故'(0)f +存在,且'(0)f A+=.(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=å++òò,其中å是曲面是曲面222224x y z ++=的外侧.【解析】2223/2()xdydz ydxdz zdxdyI x y z S++=++òò,其中222224x y z ++= 2222223/22225/22(),()()xy z x x x y z x y z ¶+-=¶++++①2222223/22225/22(),()()y x z y y x y z x y z ¶+-=¶++++② 2222223/22225/22(),()()zx y z z x y z x y z ¶+-=¶++++③ \①+②+③=2223/22223/22223/2()()()0()()()xyzx x y z y x y z z x y z ¶¶¶++=¶++¶++¶++由于被积函数及其偏导数在点(由于被积函数及其偏导数在点(00,0,0)处不连续,作封闭曲面(外侧))处不连续,作封闭曲面(外侧)222211:.016x y z R R S ++=<<有1132223/233313434()3xdydz ydxdz zdxdy xdydz ydxdz zdxdy R dV x y z R R R p p S S S W ++++====×=++òòòòòòòòò(20)(本题满分11分)分)设111111042A --æöç÷=-ç÷ç÷--èø 1112x -æöç÷=ç÷ç÷-èø(Ⅰ)求满足21A x x =的2x . 231A x x =的所有向量2x ,3x .(Ⅱ)对(Ⅰ)中的任意向量2x ,3x 证明1x ,2x ,3x 无关.【解析】(Ⅰ)解方程21A x x =()1111111111111,111100000211042202110000A x ---------æöæöæöç÷ç÷ç÷=-®®ç÷ç÷ç÷ç÷ç÷ç÷---èøèøèø()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k x æöæöç÷ç÷=-+ç÷ç÷ç÷ç÷èøèø,其中1k 为任意常数.解方程231A x x =2220220440A æöç÷=--ç÷ç÷èø()21111022012,2201000044020000A x -æöç÷-æöç÷ç÷=--®ç÷ç÷ç÷ç÷èøç÷èø故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200h æöç÷ç÷=ç÷ç÷ç÷èø 故 321121000k x æöç÷æöç÷ç÷=-+ç÷ç÷ç÷ç÷èøç÷èø,其中2k 为任意常数. (Ⅱ)证明:(Ⅱ)证明:由于121212*********21112(21)()2()(21)22221k k k k k k k k k k k k k -+--=+++-+-+-+ 102=¹故123,,x x x 线性无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x xx x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.【解析】(Ⅰ)(Ⅰ) 0101111a A a a æöç÷=-ç÷ç÷--èø 0110||01()1111111aaa E A a a a a l l l l l l ll -----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a l l l l l l l l l l l l l l l l =---+--+-=---+-=--++--=-+--=--+-- 123,2,1a a a l l l \==-=+(Ⅱ)(Ⅱ)若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a l ==,则,则 220l =-< ,31l = ,不符题意,不符题意 2) 若20l = ,即2a =,则120l =>,330l =>,符合,符合3) 若30l = ,即1a =-,则110l =-< ,230l =-<,不符题意,不符题意 综上所述,故2a =.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数. (Ⅰ)求{}10p X Z ==;(Ⅱ)求二维随机变量(),X Y 概率分布.【解析】(Ⅰ)在没有取白球的情况下取了一次红球,利用压缩样本空间则相当于只有1个红球,2个黑球放回摸两次,其中摸了一个红球个黑球放回摸两次,其中摸了一个红球12113324(10)9C P X Z C C ´\====×. (Ⅱ)X ,Y 取值范围为0,1,2,故,故()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0461112,0,0,136311,1,2,10910,291,20,2,20C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ××========××××========×××=======××====×======X Y0 1 20 1/4 1/6 1/36 1 1/3 1/9 0 21/9(23)(本题满分11 分)分)设总体X 的概率密度为2,0()0,xxex f x ll -ì>=íî其他,其中参数(0)l l >未知,1X ,2X ,…,n X 是来自总体X 的简单随机样本.(Ⅰ)求参数l 的矩估计量;的矩估计量; (Ⅱ)求参数l 的最大似然估计量的最大似然估计量【解析】【解析】 (1)由EX X =而22022ˆxEX x edx X Xl l l l+¥-===Þ=ò为总体的矩估计量为总体的矩估计量 (2)构造似然函数)构造似然函数()()12111L ,.....,;;ni i n nx nn i i i i x x f x x e l l l l =-==å==××ÕÕ取对数11ln 2ln ln n ni i i i L n x x l l ===+-åå令111ln 222001ni n n i iii i d L nnx d x x nl ll====Þ-=Þ==ååå故其最大似然估计量为2Xl ¢¢=。

2009年数学一试题答案、解析

2009年数学一试题答案、解析

2009年数学一试题答案、解析2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。

(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则()(A )11,6a b ==- (B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。

参见水木艾迪考研数学春季基础班教材《考研数学通用辅导讲义》(秦华大学出版社)例 4.67,强化班教材《大学数学强化 299》16、17 等例题。

【答案】A22220000sin sin 1cos sin lim lim lim lim ln(1)()36x x x x x ax x ax a x a axx bx x bx bx bx→→→→---===---- 230sin lim 166.x a ax a b b axa →==-=- 36ab =-意味选项B ,C 错误。

再由21cos lim 3x a axbx →-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。

(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}K K I ≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。

对称性与轮换对称性在几分钟的应用是水木艾迪考研数学重点打造的技巧之一。

参见水木艾迪考研数学春季班教材《考研数学通用辅导讲义----微积分》例 12.3、12.14、12.16、12.17,强化班教材《大学数学同步强化 299》117 题,以及《考研数学三十六技》例 18-4。

安徽省屯溪一中2008-2009学年第一学期期中考试高一数学试题.doc1

安徽省屯溪一中2008-2009学年第一学期期中考试高一数学试题.doc1

安徽省屯溪一中2008-2009学年第一学期期中考试高一数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。

第I 卷(选择题,共60分)一. 选择题(本大题共12题,每题5分,共60分。

在下列各题的四个选项中,只有一个选项是符合题目要求的。

)1. 方程组⎩⎨⎧=-=+0432534y x y x 的解集为( )(A )(4,3) (B ){}3,4 (C ){})3,4( (D ){})4,3(2.下面函数中是幂函数的是( )(A )2)2(+=x y (B )xy 1-= (C )21x y = (D )x y 3= 3.函数)(x f x x-=1的图像关于( ) (A )y 轴对称; (B )直线x y -=对称;(C )坐标原点对称; (D )直线x y =对称。

4.已知函数)(x f 在区间[]b a ,上单调,且0)()(<⋅b f a f ,则方程0)(=x f 在区间[]b a ,上( )(A )至少有一实根 (B )至多有一实根 (C )没有实根 (D )必有唯一的实根5.设集合P ={}12=x x ,Q ={}1=ax x ,若P Q ⊆,则实数a 的值所组成的集合是( ) (A ){}1 (B ){}1- (C ){}1,1- (D ){}1,1,0- 6.已知函数)(x f 对于任意的实数a 、b 满足)()()(b f a f ab f +=,且p f =)2(,q f =)3(,那么)324(f 等于( )(A )42q p + (B )24q p + (C )q p 24+ (D )qp 42+7.三个数7.06、67.0、6log 7.0的大小关系是( ) (A )7.07.0666log 7.0<< (B )6log 67.07.07.06<<(C )67.07.07.066log << (D )7.067.067.06log <<8.对于0>a ,且1≠a ,下列说法中正确的是( )①若N M =,则N M a a log log =;②若N M a a log log =,则N M =;③若N M =,则22log log N Ma a =; ④若22log log N M a a =,则N M =;(A )①③ (B )②③ (C )② (D )①②③9.集合{}b a A ,=,{}e d c B ,,=,则从A 到B 可以建立( )个不同的映射。

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2009-2010学年第一学期线性代数A期末试卷A卷及参考答案

2.(6 分)设 n 阶方阵 A 满足 A2 + 9 A + 7 E = 0, ,求证 A − 2 E 可逆且求其逆.
⎛ 0 1 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 −4 3 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3、 (8 分)解矩阵方程 ⎜ 1 0 0 ⎟ X ⎜ 0 0 1 ⎟ = ⎜ 2 0 −1 ⎟ . ⎜ 0 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 1 −2 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
浙江科技学院 2009-2010 学年第一学期线性代数A考试试卷A卷 一、填空题(每小题 4 分,共 20 分)
1. 已知 4 阶行列式 D 的第二行元素分别为 1、2、3、4,与它们对应的余子式依次 为 4、 −3 、2、 −1 ,则 D =__________ . 2. 设 A 是三阶方阵, A* 是其伴随矩阵, | A |=
第 3 页
⎛1 0 0 ⎞ ⎛ 1 2 1⎞ ⎜ ⎟ ⎟ −1 5.(8 分)解: A= (α 1 , α 2 , α 3 )= ⎜ 1 2 3 ⎟ , B= ( β1 , β 2 , β 3 )= ⎜ ⎜- 1 1 3 ⎟, P = A B , ⎜1 3 4 ⎟ ⎜ 0 1 - 1⎟ ⎝ ⎠ ⎝ ⎠ 2 1 ⎞ ⎛ 1 ⎜ ⎟ 由 ( A, B ) ⎯⎯ →( E , A B ), 求得P = A B = ⎜ 5 1 −14 ⎟ ⎜ −4 −1 10 ⎟ ⎝ ⎠
第 4 页
⎛ 1 0 5 ⎜ ⎜ 令 P = ( p1 , p2 , p3 ) = ⎜ −2 0 5 ⎜ 1 ⎜ 0 ⎝ 2 ⎞ 5⎟ 1 ⎟ ,则 P 为正交矩阵, 5⎟ ⎟ 0 ⎟ ⎠
从而 x = Py 为正交变换,使 f = − y12 + 2 y2 2 + 4 y32 四、证明题(6 分) 证:设 k1α1 + k 2α 2 + k3α 3 + k 4 (α 5 − α 4 ) = 0, 由 R(I)=R(II)=3, 得 α 4 可由 α 1 ,α 2 ,α 3 惟一线性表示, 设为 α 4 = l1α1 + l2α 2 + l3α 3 , 代入得 (k1 − l1 k 4 )α 1 + (k 2 − l 2 k 4 )α 2 + (k 3 − l3 k 4 )α 3 + k 4α 5 = 0, 因为 α1 , α 2 , α 3 , α 5 线性无关, 所以 k1 − l1 k 4 = k 2 − l 2 k 4 = k 3 − l 3 k 4 = k 4 = 0, 从而 k1 = k 2 = k 3 = k 4 = 0 ,得证。

2009年全国硕士研究生入学考试数学一真题(2009考研数一真题答案解析)

2009年全国硕士研究生入学考试数学一真题(2009考研数一真题答案解析)

2009年全国硕士研究生入学统一考试部分数学一试题答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】 A【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C 。

另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D 。

所以本题选A 。

(2)如图,正方形(){},1,1x y x y ≤≤四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=()A 1I .()B 2I . ()C 3I .()D 4I .【答案】A【解析】本题利用二重积分区域的对称性及被积函数的奇偶性。

24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是x关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ≥≤≤=>⎰⎰;{}3(,),012cos 0x y y x x I y xdxdy ≤-≤≤=<⎰⎰.所以正确答案为A.(3)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x ∈时,()0F x ≤,且单调递减。

2009-数一标准答案及解析

2009-数一标准答案及解析

= P( XY ≤ z ) = P( XY ≤ z Y= 0) P(Y= 0) + P( XY ≤ z Y= 1) P(Y= 1) FZ ( z ) 1 = [ P( XY ≤ z Y = 0) + P( XY ≤ z Y = 1)] 2 1 = [ P( X ⋅ 0 ≤ z Y = 0) + P( X ≤ z Y = 1)] 2
+∞
−∞
x −1 xΦ′ dx 2

+∞
−∞
+∞ +∞ x −1 x −1 ′ ( u ) du 2 xΦ′ ( x ) dx = 0 , ∫ xΦ′ dx = u 2 ∫ ( 2u + 1) Φ= −∞ −∞ 2 2
所以 EX = 0 + 0.35 × 2 = 0.7 . ( 8 ) 设 随 机 变 量 X 与 Y 相 互 独 立 , 且 X 服 从 标 准 正 态 分 布 N ( 0,1) , Y 的 概 率 分 布 为
x −1 , 2
0.7 x − 1 Φ′ , 2 2
所以 EX =

+∞
−∞
xF ′ ( x= )dx

+∞
−∞
x − 1 x 0.3Φ′ ( x ) + 0.35Φ′ dx 2
= 0.3∫

+∞
−∞
xΦ′ ( x ) dx + 0.35∫
所以 I1
2
{( x , y ) y ≥ x ,0≤ x≤1}
∫∫
y cos xdxdy > 0 ;
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 6 - 页 共 19 页

自考高等数学一历年真题

自考高等数学一历年真题

全国2010年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设函数x x f 31)(+=的反函数为)(x g ,则)10(g =( )A.-2B.-1C.2D.32.下列极限中,极限值等于1的是( )A.e)11(limxx x -∞→ B.x x x sin lim ∞→ C.2)1(lim xx x x +∞→ D.x xx arctan lim ∞→3.已知曲线x x y 22-=在点M 处的切线平行于x 轴,则切点M 的坐标为A.(-1,3)B.(1,-1)C.(0,0)D.(1,1) 4.设C x F x x f +=⎰)(d )(,则不定积分⎰x f xxd )2(2=( )A.C F x +2ln )2( B.F (2x )+C C.F (2x )ln2+C D.2x F (2x )+C5.若函数),(y x z z=的全微分y y x x y z d cos d sin d +=,则二阶偏导数yx z∂∂∂2=( )A.x sin - B.y sin C.x cos D.y cos 二、填空题(本大题共10小题,每小题3分,共30分) 6.设函数f (x )的定义域为[0,4],则f (x 2)的定义域是______.7.极限=-+-∞→17272lim n nnn n ______. 8.设某产品的成本函数为C (q )=1000+82q ,则产量q =120时的边际成本为______.9.函数212x xy -=在x =0处的微分d y =______.10.曲线2ln -+=x x xy 的水平渐近线为______.11.设函数f (x )=x (x -1)(x -2)(x -3),则方程0)(='x f 的实根个数为______.12.导数⎰=-xt t t xd )1(d d ______.13.定积分x x d |1|20⎰-=______.14.二元函数f (x ,y )=x 2+y 4-1的极小值为______. 15.设y =y (x )是由方程e y -xy =e 所确定的隐函数,则导数xy d d =______.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数||sin )(x x x x f -=,问能否补充定义f (0)使函数在x =0处连续?并说17.求极限)5cos 1(lim 2xx x -∞→. 18.设函数y =ax 3+bx 2+cx+2在x =0处取得极值,且其图形上有拐点(-1,4),求常数a ,b ,c 的值. 19.求微分方程)1()2(322y x y y ++='的通解.20.求不定积分⎰--x xx d 112.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设函数f (x )=sin e -x ,求)0()0()0(f f f ''+'+.22.计算定积分⎰-=121d 12arctanx x I .23.计算二重积分⎰⎰+=Dy x y xI d d )1(2,其中D 是由直线y =x ,y =2-x 及y轴所围成的区域.五、应用题(本题9分)24.在一天内,某用户t 时刻用电的电流为2)24(1001)(2+-=t t t I (安培),其中240≤≤t .(1)求电流I (t )单调增加的时间段;(2)若电流I (t )超过25安培系统自动断电,问该用户能否在一天内不被断电?六、证明题(本题5分)25.设函数f (x ),g (x )在区间[-a ,a ]上连续,g (x )为偶函数,且f (-x )+f (x )=2. 证明:⎰⎰-=aaax x g x x g x f 0d )(2d )()(.全国2010年1月高等教育自学考试高等数学(一)试题 课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

2009年第一届大学生数学竞赛(非数学类)预赛试题解答

2009年第一届大学生数学竞赛(非数学类)预赛试题解答

评阅人
L 为 D 的正向边界,试证:
sin y − sin x dx = (1) ∫ xe dy − ye L
∫ xe
L
− sin y
dy − yesin x dx ;
专业:
sin y − sin x dx ≥ (2) ∫ xe dy − ye L
5 2 π . 2
π
证法一:由于区域 D 为一正方形,可以直接用对坐标曲线积分的计算法计算.
x →0
+ enx
)}
e(ln(e x + e 2 x + x
+ enx ) − ln n)
}
………………….….…(2 分)
其中大括号内的极限是
0 型未定式,由 L′Hospital 法则,有 0
lim
x →0
e(ln(e x + e2 x + x
+ n) =(
+ enx ) − ln n)
n +1 )e 2
(4)设函数 y = y ( x) 由方程 xe
f ( y)
= e y ln 29 确定,其中 f 具有二阶导数,
d2y 且 f ′ ≠ 1 ,则 =____________________. dx 2
16 10 [1 − f ′( y )]2 − f ′′( y ) . , 3x 2 − , 2 x + 2 y − z − 5 = 0 , − 15 3 x 2 [1 − f ′( y )]3
(1) 左边 =

π esin y dy − ∫ π e− sin x dx = π ∫ (esin x + e− sin x )dx , ...…(4 分) 0 0 π

高等数学上、下册考试试卷及答案6套[1]

高等数学上、下册考试试卷及答案6套[1]

高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。

六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。

淮阴中学高二年级第一次综合考试数学试题附答案

淮阴中学高二年级第一次综合考试数学试题附答案

淮阴中学⾼⼆年级第⼀次综合考试数学试题附答案江苏省淮阴中学⾼⼆上第⼀次调查测试数学试卷命题沈毅审定薛林⽣⼀、填空题:(每⼩题5分,共70分)1.将两个数a=3,b=65交换,使a=65,b=3,下⾯语句中正确的是(填序号)▲(1)ab ba ←←(2)ca ab bc ←←←(3)a b b c c a ←←←(4)ya xb b y ax ←←←←2.抛掷⼀枚质地均匀的硬币,如果连续抛掷2次,那么两次出现正⾯朝上的概率是▲3.在某样本的频率分布直⽅图中,共有11个⼩长⽅形,若中间⼀个⼩长⽅形的⾯积等于其他10个⼩长⽅形的⾯积的和的41,且样本容量为160,则中间⼀组的频数为▲ 4.已知,x y 的取值如下表所⽰,从散点图分析y 与x 线性相关,且回归⽅程为0.95y x a =+,则a = ▲5.某篮球学校的甲、⼄两名运动员练习罚球,每⼈练习10组,每组罚球40个.命中个数的茎叶图如右上.则罚球命中率较⾼的是▲6.已知等腰直⾓三⾓形ABC 中,⾓C 为直⾓,在∠CAB 内作射线AM ,则事件“030CAM <∠”的概率为▲7.在ABC ?中,A=1200,AB=5,BC=7,则其⾯积为▲ 8.若函数f(x)=sinx+cos(x+t)为偶函数,则t= ▲甲⼄0 1 2 398 1 3 4 8 92 3 0 1 1 30 2 4 5 6 7 7 第5题9.如果执⾏下⾯的程序框图,那么输出的S 等于▲10.已知总体的各个体的值由⼩到⼤依次为2,3,3,7,a ,b ,12,14.7,18.3,20,且总体的中位数为10,若要使该总体的⽅差最⼩,则a 、b 的取值分别是▲ 11.函数∑=--=91i |)1i 2(x |)x (f 的最⼩值是▲12.已知函数f(x)=x 2cos 3)x 4(sin 22++π,在],0[π上任取⼀点x 0,则事件f(x 0)>0的概率为▲13.给出n 个数:1,2,4,7,……,其规律是:第1个数是1,第2个数⽐第1个数⼤1, 第3个数⽐第2个数⼤2,第4个数⽐第3个数⼤3,依此类推要计算这n 个数的和,现已给出了该问题算法的程序框图,则在图中执⾏框中的(1)处应填上的语句是▲14.若**N n ,N m ∈∈,Int(x)表⽰不超过x 的最⼤整数,则下⾯⼀段伪代码的⽬的是▲请将填空题的答案填⼊下⼀页Read m,nWhile )nm(Int n m ≠ c )nm(Int n m ?-←m n ← n c ← End While Print n第14题江苏省淮阴中学2008-2009学年⾼⼆第⼀次调查测试数学试卷答题纸⼀、填空题:1、_____________________2、_____________________3、___________________4、_____________________5、_____________________6、___________________7、_____________________8、_____________________9、___________________ 10、____________________ 11、_____________________ 12、__________________ 13、____________________ 14、_____________________⼆、解答题:(本⼤题共6⼩题,共90分。

2009年江西高考理科数学卷(含详细答案解析)

2009年江西高考理科数学卷(含详细答案解析)

绝密★启用前2009年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。

第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上作答。

若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

参考公式如果事件互斥,那么球的表面积公式,A B()()()P A B P A P B +=+24S R π=如果事件,相互独立,那么 其中表示球的半径,A B R球的体积公式()()()P A B P A P B ⋅=⋅如果事件在一次试验中发生的概率是,那么A p 343V R π=次独立重复试验中恰好发生次的概率其中表示球的半径n k R()(1)kk n k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数为纯虚数,则实数的值为2(1)(1)z x x i =-+-x A .B .C .D .或1-011-1答案:A【解析】由 故选A210110x x x ⎧-=⇒=-⎨-≠⎩2.函数的定义域为y =A .B .C .D .(4,1)--(4,1)-(1,1)-(1,1]-答案:C 【解析】由.故选C 21011141340x x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<--+>⎩⎩3.已知全集中有m 个元素,中有n 个元素.若非空,则U =A B U ()()U U A B U ððA B I A B I 的元素个数为A . B .C .D .mn m n +n m -m n -答案:D【解析】因为,所以共有个元素,故选D [()()]U U U A B A B =I U ðððA B I m n -4.若函数,,则的最大值为()(1)cos f x x x =02x π≤<()f xA .1B .CD 212+答案:B【解析】因为==()(1tan )cos f x x x =+cos x x 2cos(3x π-当是,函数取得最大值为2. 故选B3x π=5.设函数,曲线在点处的切线方程为,则曲2()()f x g x x =+()y g x =(1,(1))g 21y x =+线在点处切线的斜率为()y f x =(1,(1))f A . B . C . D .414-212-答案:A【解析】由已知,而,所以故选A(1)2g '=()()2f x g x x ''=+(1)(1)214f g ''=+⨯=6.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若22221x y a b+=0a b >>1F x P 2F,则椭圆的离心率为1260F PF ∠=o ABC .D .1213答案:B【解析】因为,再由有从而可得B 2(,)b P c a -±1260F PF ∠=o232,b a a=c e a ==7.展开式中不含的项的系数绝对值的和为,不含的项的系数绝对值的(1)nax by ++x 243y 和为,则的值可能为32,,a b n A . B . 2,1,5a b n ==-=2,1,6a b n =-=-= C . D .1,2,6a b n =-==1,2,5a b n ===答案:D【解析】,,则可取,选D 5(1)2433n b +==5(1)322n a +==1,2,5a b n ===8.数列的通项,其前项和为,则为{}n a 222(cos sin )33n n n a n ππ=-n n S 30S A . B .C .D .470490495510答案:A【解析】由于以3 为周期,故22{cossin }33n n ππ-2222222223012452829(3)(6)(30)222S +++=-++-+++-+L 故221010211(32)(31)591011[(3)][9]25470222k k k k k k ==-+-⨯⨯=-+=-=-=∑∑选A9.如图,正四面体的顶点,,分别在两两垂直的三条射线,,上,ABCD A B C Ox Oy Oz 则在下列命题中,错误的为 A .是正三棱锥O ABC -B .直线∥平面OB ACD C .直线与所成的角是AD OB 45oD .二面角为D OB A --45oyxzOA B CD答案:B【解析】将原图补为正方体不难得出B 为错误,故选B10.为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,3集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为35A .B .C .D .3181338148815081答案:D【解析】故选D 5553(323)50381P -⨯-==11.一个平面封闭区域内任意两点距离的最大值称为该区域的“直径”,封闭区域边界曲线的长度与区域直径之比称为区域的“周率”,下面四个平面区域(阴影部分)的周率从左到右依次记为,则下列关系中正确的为1234,,,ττττ A . B .C .D .143τττ>>312τττ>>423τττ>>341τττ>>答案:C【解析】前三个区域的周率依次等于正方形、圆、正三角形的周长和最远距离,所以、1τ=、,第四个区域的周率可以转化为一个正六边形的周长与它的一对平行边之间2τπ=33τ=的距离之比,所以,选C 4τ=4231ττττ>>>12.设函数的定义域为,若所有点构成一()0)f x a =<D (,())(,)s f t s t D ∈个正方形区域,则的值为a A . B .C .D .不能确定2-4-8-答案:B【解析】,,,选B 12max ||()x x f x -==||a =4a =-︒︒绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008学年第二学期初三数学期始考试卷一、选择题:本大题共12小题,每小题3分,共36分, 1. 已知⊙O 的半径为r ,圆心O 到直线l 的距离为d ,若直线l 与⊙O 有唯一的一个交点,则下列结论正确的是( ) A.d ≤ r B.d ≥ r C.d =r D.d <r2. 下列各说法中:① 圆的每一条直径都是它的对称轴; ② 长度相等的两条弧是等弧 ;③ 相等的弦所对的弧也相等; ④ 同弧所对的圆周角相等; ⑤ 90°的圆周角所对的弦是直径; ⑥ 任何一个三角形都有唯一的外接圆;其中正确的有( ) A .3个 B .4个 C .5个 D .6个3.若如图所示的两个四边形相似,则α∠的度数是( ) A .60 B .87 C .75 D .1204.如图,AB 是⊙O 的直径,AB =4,AC 是弦, AC=∠AOC = ( ) ( ) A .150° B .140° C .130° D .120°第4题图5.如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( )A .和B .谐C .社D .会6.将点(53)P ,向下平移1个单位后,落在函数ky x=的图象上,则k 的值为( ) A.10k =B.12k =C.18k = D.20k =7.将函数y kx k =+与函数ky x=的大致图象画在同一坐标系中,正确的函数图象是( )B .C .60 75α60 138 第3题图图1图2 第5题图第11题 8.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切,切点为D 。

如果∠A =35°,那么∠C 等于( )A 、20°B 、30°C 、35°D 、55°9、如图,已知△ABC 的六个元素,则下面甲、乙、丙三角形中和△ABC 全等的图形是( )a bc ACB 50°72°58°甲a c50°乙ca50°a丙72°50°A .甲和乙B .乙和丙C .只有乙D .只有丙 10.如图,直线AB 切圆O 于点C ,OAC OBC ∠=∠, 则下列结论错误的是( )A .OC 是ABO △中AB 边上的高B .OC 所在直线是ABO △的对称轴 C .AC BC >D .OC 是AOB ∠的平分线11.已知函数2y ax bx c =++的图象如图所示,那么关于x 220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根12.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =1,AB =23, BC =2,P 是BC边上的一个动点(点P 与点B 不重合),DE ⊥AP 于点E 。

设AP =x ,DE =y 。

在下列图象中,能正确反映y 与x 的函数关系的是( )二、填空题:本大题共7小题,每小题3分,共21分13. △ABC 中,AB=5,∠C=90°, 2sin 5B ∠=,则AC= 。

14.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).BCDPE第12题图AAB CD第10题DO CB A(第14题图)15.抛物线2y a x b x c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = .16.如果圆锥的底面半径为2cm ,母线长为4cm ,那么它的侧面积等于 cm 2。

17.如图,⊙M与x 轴相交于点(20)A ,,(80)B ,,与y 轴相切于点C ,则圆心M 的坐标是 .18.当22x -<<时,下列函数中,函数值y 随自变量x 增大而增大的是(只填写序号)①2y x =;②2y x =-;③2y x=-;④268y x x =++. 19. 把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红的概率是 。

三、解答题(本题63分 20.(本题8分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律. 例如:0()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8; ……根据以上规律,解答下列问题:(1)4()a b +展开式共有 项,系数分别为 ; (2)()n a b +展开式共有 项,系数和...为 .(第23题)x(第16题图)21.(本题10分)学习完统计知识后,小兵就本班同学的上学方式进行调查统计. 如图(9)是他通过收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班共有 名学生; (2)将表示“步行”部分的条形统计图补充完整; (3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是 度; (4)若全年级共1000名学生,估计全年级步行上学的学生有 名;(5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是 .22.(本题7分)如图5,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(4分) (2)求点B 的坐标.(3分) 23、(本题8分)如右图,在由25个小正方形组成的方格内有A 、B 、C 三个格点,你能只用直尺画CD ⊥AB 吗?请说出你画的理由。

图(9)步行 骑车 上学方式B24.(本题8分)已知:抛物线24y ax bx =++的对称轴为x=-1,且与x 轴相交于点A 、B ,与y 轴相交于点C ,其中点A 的坐标为(-3,0), (1) 求该抛物线的解析式;(2) 若该抛物线的顶点为D ,求△ACD 的面积。

25、(本题10分)△ABC中,小明测得AC=1, ∠ACB=90︒,在测量∠ABC时,他发现量角器的半径OM正好与BC相同,且此时量角器的读数30︒,当他将量角器沿BC方向平移,请问他平移多少距离时,能使量角器的半圆弧经过A点?此时A点在量角器上的读数是多少?(精确到度)。

︒)O'26.(本题12分)已知:AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E。

(1)求证:CD是半圆O的切线(图①);(2)作EF⊥AB于点F(图②),猜想EF与已有的哪条线段的一半相等,并加以证明;(3)在上述条件下,过点E作CB的平行线CD于点N,当NA与半圆O相切时(图③),求∠EOC的正切值。

2008学年第二学期初三数学期始考试卷答题卷二、填空题:本大题共7小题,每小题3分,共21分三、解答题(本题63分)20.(本题8分)(1)4()a b +展开式共有 项,系数分别为; (2)()n a b +展开式共有 项,系数和...为 . 21.(本题10分) 22.(本题7分)图(9)23.(本题8分)24.(本题8分)B25.(本题10分))O'26.(本题12分)2008学年第二学期初三数学期始考试卷答案一、选择题:本大题共12小题,每小题3分,共36分,二、填空题:本大题共7小题,每小题3分,共21分 三、解答题(本题63分20.每空2分. (1)4()a b +展开式共有 5 项,系数分别为1,4,6,4,1 ;(2)()n a b +展开式共有 n+1 项,系数和...为 2n.21. 每空2分.(1)该班共有 40 名学生;(2)略(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是 108 度; (4)若全年级共1000名学生,估计全年级步行上学的学生有 200 名; (5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是 0.3 .22.解:(1)∵点(21)A -,在反比例函数1my x=的图象上. 2m1=-∴ 即2m =- 又(21)A -,,(03)C ,在一次函数2y kx b =+图象上. 213k b b -+=⎧⎨=⎩∴即13k b =⎧⎨=⎩∴反比例函数与一次函数解析式分别为:2y x=-与3y x =+ ··········· 4分 (2)由32y x y x =+⎧⎪⎨=-⎪⎩得23x x +=-,即2320x x ++= 2x =-∴或1x =-于是21x y =-⎧⎨=⎩或12x y =-⎧⎨=⎩∴点B 的坐标为(12)-, ·············································································· 3分23.如图,连接MC 或NC 即可, 3分证明 △CPM ∽△ABN 或△CNK ≌△ABN 5分24. 解:(1)由题意得2413,28934038433ba aa b b x x =--=--+==-∴-+-------⎧⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎩解得4抛物线的解析式为y=-分34分(2)D 是抛物线248433y x x =--+的顶点16,3D ∴点的坐标为(-1)设AC 与抛物线对称轴的交点为E4分25.解:(1)连结AO’,由题意 ∵AC=1, ∠ACB=90︒,∠ABC=30︒ ∴AB=2,BC=OM=AO’2分 由勾股定理得CO’== 2分 ∴平移的距离BO’=2分∵'tan AO C ∠=2分∴'35A O C ∠=︒此时A点在量角器上的读数是35︒。

相关文档
最新文档