概率论与数理统计期末复习资料

合集下载

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(2)连 续型随 机变量 的分布 密度
(3)离 散与连 续型随 机变量 的关系 (4)分 布函数
(5)八 大分布
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
ba
f
(x)


b
1
a
,
0,
a≤x≤b
其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
xa, ba
x<a, a≤x≤b
x
F (x) f (x)dx

1,
x>b。
当 a≤x1<x2≤b 时,X 落在区间(x1, x2 )内的概率为
P( A)
条件概
下,事件 B 发生的条件概率,记为P(B / A) P(AB) 。
P( A)

条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω/B)=1P( B /A)=1-P(B/A)
(13) 乘法公式:P(AB) P(A)P(B / A)
乘法公 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
(2)连 续型随 机变量 的分布 密度

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。

下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。

一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。

2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。

3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。

5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。

二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。

2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。

三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。

2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。

3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。

四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。

2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。

3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。

五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。

概率论与数理统计复习要点

概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

概率论与数理统计期末总复习资料

概率论与数理统计期末总复习资料

古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出m (m ≤a +b)个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球。

解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a A C r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关。

例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 P (B )=120/1001=0.048 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子(N ≥n)的任一个之中,求下列事件的概率:(1) A ={指定n 个格子中各有一个质点};(2) B ={任意n 个格子中各有一个质点}; (3) C ={指定的一个格子中恰有m (m ≤n )个质点}.解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布。

故样本点总数为:N n(1)在n 个格子中放有n 个质点,且每格有一个质点,共有n !种不同放法;因此,事件A 包含的样本点数:n!,则 n Nn A P !)(=(2)先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n !种不同方法;因此,事件B 包含的样本点数: n NnN A C n =!,则n nNNA B P =)((3)在指定的一个格子中放m (m ≤n )个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有m n N --)1(种不同方法.因此,事件C 包含的样本点数:mn C m n N --)1(, 则mn m m n nm n mn N N N C N N C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} 。

概率论与数理统计期末复习

概率论与数理统计期末复习

概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。

概率论与数理统计复习资料

概率论与数理统计复习资料

概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。

概率论与数理统计复习资料要点总结

概率论与数理统计复习资料要点总结

《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

《概率统计》、《概率论与数理统计》、《随机数学》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。

1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。

6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。

7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。

9、会求分布中的待定参数。

10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。

11、掌握连续型随机变量的条件概率密度的概念及计算。

12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。

13、了解求二维随机变量函数的分布的一般方法。

14、会熟练地求随机变量及其函数的数学期望和方差。

会熟练地默写出几种重要随机变量的数学期望及方差。

15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。

会用独立正态随机变量线性组合性质解题。

17、了解大数定理结论,会用中心极限定理解题。

18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。

19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。

概率论与数理统计总复习

概率论与数理统计总复习
一、随机变量与概率 (一)概念之间的关系

机 试 验
可能结果
基 本 事 件
Ai
只有两个
不含任何ω Φ
Ai Aj 完
不可能 i j 备 Ai任何组合事件A p(Ai ) 0事
Ai
i
必然
Ωi
Ai
件 组
Ai

1 P(A i) n
概 完
i 1,2, n 备


可能结果
条件:

贝努利试验
n次重复
定义 随机变量 X 的取值可以一一列举(有限或无限)
称X 为离散型随机变量。
分布律(分布列) 表示法
公式法
PX xk pk
k 1,2,
列表法 X x1 x2
xk
xn
pk p1 p2
pk
pn
性质
1. PX xk 0 k 1,2,
n
2. pk 1
7 7
k 1
2、连续性随机变量 定义 对于随机变量X,若存在非负函数
将 F( y) 用 F[h( y)] 及有关函数表述出来。
利用 F '( y) f ( y) 求出Y的密度函数。
f
(
y)
F
(h(
y))'
h(
y)
h'
(
y)
0
y
其他
14
14
三、二维随机变量及其分布
(一)二维随机变量(X,Y) 的分布函数
定义 对于任意实数 x, y 二元函数
F(x, y) P{X x,Y y}
X为离散型其分布列为 PX xk pk
k 1,2,, n.
X为连续型其密度函数为 f (x).

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。

两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。

2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习

概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

P(X k)
n
Cnk pk qnk
(q p)n 1
k 0
k 0
随机变量X服从参数为n,p的二项分布,记为X ~ b(n, p) 当n=1时,即为(0-1)分布。
3.泊松分布(Poisson分布)
若随机变量X的概率分布律为
P( X k) ke ,k 0,1, 2,, 0
对随机试验,若样本空间只包括两个元素,即
S {e1, e2},则一定能在S上定义一个服从(0-1)分布
的随机变量,令
X

0 1
e e1 e e2
例 抛硬币一次,定义随机变量X为出现正面的次数,

X

0 1
反面 正面
X01
pk 1
1
2
2
2.二项分布
随机试验E只有两个可能结果:A和 A ,则称E为伯
则 P(A1 A2
An ) P(A1) P( A2 ) P( An )
2. A 是A的对立事件,则 P A 1 P A
3. A B 则 P(B A)=P(B) P(A)
4. 一P(A B) P(A) P(B) P(AB),当A,B互斥 即AB
例 将一枚硬币抛掷两次,观察其出现正面的情况,设 A={至少有一次为正面H},B={两次掷出同一面}, 求P(B|A)
解:样本空间S={HH,HT,TH,TT},A={HH,HT,TH}, B={HH,TT}。则可得:
P(B|A)=1/3
条件概率的计算公式:
P
B|A

P Aபைடு நூலகம் P A
事件间的关系与事件的运算
1. 事件间的关系

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料概率论与数理统计期末复习资料⼀填空1.设A ,B 为两个随机事件,若A 发⽣必然导致B 发⽣,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独⽴,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______.3.⼰知10件产品中有2件次品,从该产品中任意取3件,则恰好取到⼀件次品的概率等于______.4.已知某地区的⼈群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使⼈患某种疾病的概率为0.008,不吸烟使⼈患该种疾病的概率是0.001,则该⼈群患这种疾病的概率等于______.5.设连续型随机变量X 的概率密度为?≤≤=,,0;10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______.6.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设⼆维随机变量(X ,Y )的分布律为则P {X <1,Y 2≤}=______.8.设随机变量X 的期望E (X )=2,⽅差D (X )=4,随机变量Y 的期望E (Y )=4,⽅差D (Y )=9,⼜E (XY )=10,则X ,Y 的相关系数ρ= ______.9.设随机变量X 服从⼆项分布)31,3(B ,则E (X 2)= ______.10.中⼼极限定理证明了在很⼀般条件下,⽆论随机变量Xi 服从什么分布,当n →∞时,∑=ni iX1的极限分布是_________________11.设总体X ~N (1,4),x 1,x 2,…,x 10为来⾃该总体的样本,∑==101101i ixx ,则)(x D = ______.·12.设总体X ~N (0,1),x 1,x 2,…,x 5为来⾃该总体的样本,则∑=512i ix服从⾃由度为______的2χ分布.13.E (x )=5,E (5x )=________14.估计量的评选标准有______、_______、_______15.对假设检验问题H 0:µ=µ0,H 1:µ≠µ0,若给定显著⽔平0.05,则该检验犯第⼀类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独⽴,P (A )=0.3,P (B )=0.4,则P (A B )=__________.17.盒中有4个棋⼦,其中2个⽩⼦,2个⿊⼦,今有1⼈随机地从盒中取出2个棋⼦,则这2个棋⼦颜⾊相同的概率为_________.18.设随机变量X 的概率密度??≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.19.设离散型随机变量X 的分布律为,则常数C=_________.20.设离散型随机变量X 的分布函数为F (x )=≥<≤<≤<≤--<,2,1;21,6.0;10,3.0;01,2.0;1,0x x x x x 则P{X>1}=_________. 21.相关系数ρxy _______时,X 与Y 正相关,相关系数ρxy _______时,X与Y 负相关,相关系数ρxy _______时,X 与Y 不相关。

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率统计》、《概率论与数理统计》、《随机数学》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。

1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。

6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。

7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。

9、会求分布中的待定参数。

10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。

11、掌握连续型随机变量的条件概率密度的概念及计算。

12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。

13、了解求二维随机变量函数的分布的一般方法。

14、会熟练地求随机变量及其函数的数学期望和方差。

会熟练地默写出几种重要随机变量的数学期望及方差。

15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。

会用独立正态随机变量线性组合性质解题。

17、了解大数定理结论,会用中心极限定理解题。

18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。

19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。

20、掌握极大似然估计法,无偏性与有效性的判断方法。

21、会求单正态总体均值与方差的置信区间。

会求双正态总体均值与方差的置信区间。

23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题。

24、掌握正态总体均值与方差的检验法。

概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法。

2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

3.准确地选择和运用全概率公式与贝叶斯公式。

4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用。

分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差。

5.会用中心极限定理解题。

6.熟记(0-1)分布、二项分布、泊松分布的分布律、期望和方差,指数分布(参数λ)、均匀分布、正态分布的密度函数、期望和方差。

数理统计部分必须要掌握的内容以及题型 1.统计量的判断。

2.计算样本均值与样本方差及样本矩。

3.熟记正态总体样本均值与样本方差的抽样分布定理。

4.会求未知参数的矩估计、极大似然估计。

5.掌握无偏性与有效性的判断方法。

6.会求正态总体均值与方差的置信区间。

7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤。

概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法。

古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出m (m ≤a +b)个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出m(m ≤a +b)个球,求取出的m 个球中有k 1(≤a ) 个白球、k 2(≤b ) 个黑球、k 3(≤c ) 个红球(k 1+k 2+k 3=m )的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子(N ≥n)的任一个之中,求下列事件的概率:(1) A ={指定n 个格子中各有一个质点};(2) B ={任意n 个格子中各有一个质点}; (3) C ={指定的一个格子中恰有m (m ≤n )个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

如对于事件A ,B ,A 或B ,已知P (A ),P (B ),P (AB ),P (A Y B ),P (A |B ),P (B |A )以及换为A 或B 之中的几个,求另外几个。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A Y B ) 例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求: P (A -B ),P (A Y B ),)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式。

若已知导致事件A 发生(或者是能与事件A 同时发生)的几个互斥的事件B i ,i =1,2,…,n ,…的概率P (B i ) ,以及B i 发生的条件下事件A 发生的条件概率P (A |B i ),求事件A 发生的概率P (A )以及A 发生的条件下事件B i 发生的条件概率P (B i | A )。

例:玻璃杯成箱出售,每箱20只。

假设各箱含0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。

试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。

4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用。

分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差。

(1)已知一维离散型随机变量X 的分布律P (X =x i )=p i ,i =1,2,…,n ,… 确定参数求概率P (a <X <b ) 求分布函数F (x )求期望E (X ),方差D (X )求函数Y =g (X )的分布律及期望E [g (X )]例:随机变量X 的分布律为.X 1 2 3 4 pk 2k 3k 4k确定参数k求概率P (0<X <3),}31{<<X P 求分布函数F (x )求期望E (X ),方差D (X )求函数2)3(-=X Y 的分布律及期望2)3(-X E(2)已知一维连续型随机变量X 的密度函数f (x ) 确定参数求概率P (a <X <b ) 求分布函数F (x )求期望E (X ),方差D (X )求函数Y =g (X )的密度函数及期望E [g (X )]例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他0202x kx x f ,确定参数k求概率}31{<<X P 求分布函数F (x )求期望E (X ),方差D (X )求函数X Y =的密度及期望)(X E (3)已知二维离散型随机变量(X ,Y )的联合分布律P (X =x i ,Y =y j )=p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {(X ,Y )G }求边缘分布律P (X =x i )=p i.,i =1,2,…,m ,…;P (Y =y j )=p .j , j =1,2,…,n ,… 求条件分布律P (X =x i |Y =y j ),i =1,2,…,m ,…和P (Y =y j |X =x i ), j =1,2,…,n ,… 求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求函数Z =g (X , Y )的分布律及期望E [g (X , Y )] 例YX0 1 2 30 0.05 0.1 0.15 0.2 1 0.03 0.05 0.05 0.07 20.020.050.10.13求概率P (X 求边缘分布律P (X =k ) k =0,1,2 和P (Y =k ) k =0,1,2,3求条件分布律P (X =k |Y =2) k =0,1,2和P (Y =k |X =1) k =0,1,2,3 求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律(4)已知二维连续型随机变量X 的联合密度函数f (x , y ) 确定参数求概率P {(X ,Y )G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求函数Z =g (X , Y )的密度函数及期望E [g (X , Y )]例:已知二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值; 求概率P (X <Y )求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题。

例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。

6.熟记(0-1)分布、二项分布、泊松分布的分布律、期望和方差,指数分布(参数λ)、均匀分布、正态分布的密度函数、期望和方差。

数理统计部分必须要掌握的内容以及题型 1.统计量的判断。

对于来自总体X 的样本n X X X ,,,21Λ,由样本构成的各种函数是否是统计量。

相关文档
最新文档