简单的轴对称图形(1)练习
简单的轴对称图形
B
☆线段是轴对称图形,它的对称轴是它的垂直平分线 线段是轴对称图形 它的对称轴是它的垂直平分线. 轴对称 对称轴是它的垂直平分线 ☆垂直且平分一条线段的直线叫这条线段的垂直平 垂直且平分一条线段的直线叫这条线段的 一条线段的直线叫这条线段 简称中垂线 分线(简称中垂线midperpendicular). . 分线 简称中垂线 线段的垂直平分线的性质: ☆线段的垂直平分线的性质:线段的垂直平分线上的 到这条线段两个端点 距离相等. 两个端点的 点到这条线段两个端点的距离相等.
练一练
如图, 如图,在 RtABC 中, 是∠ABC 的平 BD 分线, 分线, ⊥ AB,垂足为 E , DE 与 DC 相 DE 等吗?为什么? 等吗?为什么? A
E D B C
折一折 你能利用折纸的方法将线段AB分成两段彼此相等的 你能利用折纸的方法将线段 分成两段彼此相等的 线段吗? 线段吗?
谈一谈
同学们,这节课你有什么体会和收获呢? 同学们,这节课你有什么体会和收获呢?
作业布置
1、作业本:简单的轴对称图形(一) 、作业本:简单的轴对称图形( 2、一课一练:简单的轴对称图形 、一课一练:
思考练习 某一个星期六,嘉三中初 某一个星期六, 一段的同学参加义务劳动, 一段的同学参加义务劳动, 其中有四个班的同学分别在 M、N两处参加劳动,另外 两处参加劳动, 、 两处参加劳动 四个班的同学分别在道路 AB、AC两处劳动 AB、AC两处劳动,现要在 两处劳动, 道路AB、 的交叉区域内 道路 、AC的交叉区域内 A 设一个荼水供应点P, 设一个荼水供应点 ,使P到 到 两条道路的距离相等, 两条道路的距离相等,且使 PM=PN,请你找出点 的位 ,请你找出点P的位 并说明理由。 置,并说明理由。
简单的轴对称的图形(综合题)
1简单的轴对称图形基本练习(带☆号的有难度,酌情选择):1.如图⑴,在△ABC 中,DE 垂直平分AC ,若AB=6cm ,BC=4cm ,则△BCD 的周长 为 .2.在如图⑴,△ABC 中,AB=AC ,AC 的垂直平分线交AB 于D ,若△ABC 与△DBC 的周长分别为26cm 和18cm ,则△ABC 的三边由小到大为 .3.如图⑵,在△ABC 中,DF 、EG 分别垂直平分AB 和AC ,点D 、E 在BC 上,BC=8cm ,∠BAC=106°,则△ADE 的周长等于 .∠DAE=______4.如图(3),在△ABC 中,∠C=90°,DE 垂直平分线段AB , 垂足为E ,交BC 于D , ∠CAD ∶∠ADC=2∶3,则∠CAB .5.如图(4),△ABC 中,DE 是AC 的垂直平分线,若AC=6,△ABD 的周长是13,则△ABC 的周长是 ;若△ABC 的周长是30,△ABD 的周长是25,则AC= . 若∠C=30°,则∠ADB= .D E C A B 如图(1) 如图(2) 如图(4) F G B A C D F如图(5) BA C DE 如图(,3)2☆6.如图(5)在△ABC 中,∠A CB=90°,∠B 的平分线交AC 的垂直平分线DE 于D ,过点D 作DF ⊥AB 于F ,若AF=6cm ,BF=28cm ,则BC= .7.如图(6),在△ABC 中,AB=AC=40, DE 垂直平分AB 于D ,交AC 于E ,若BC=20时,△EBC 的周长为 ;若△EBC 的周长为70时,则BC= .8.如图(7),在△ABC 中,AB=AC , AB 的垂直平分线交BC 的延长线于E ,交AC 于F ,连接BF ,∠A=50°,AB+BC=16cm ,则△BCF 的周长和∠EFC 分别等于( ).A .16cm ,40°B .8cm ,50°C .16cm ,50°D .8cm ,40°9.若三点A 、B 、C 不在同一条直线上,点P 满足PA=PB=PC ,则平面内这样的点P 有( ).A .1个B .2个C .1个或2个D .无法确定10.下列说法中①若直线PE 是线段AB 的垂直平分线,则EA=EB ,PA=PB ;②若EA=EB ,PA=PB ,则直线PE 垂直平分线段AB ;③若PA=PB ,则点P 必是线段AB 垂直平分线上的点;④若EA=EB ,则经过点E 的直线垂直平分线段AB .其中正确的个数为( )A .1个B .2个C .3个D .4个11.如图(8),如图,已知点C 是∠AOB 的平分线上一点,点PQ 分别在边OA 、OB 上,要想得到OP=OQ ,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为.①∠OCP=∠OCQ ;②∠OPC=∠OQC ;③PC=QC ;④PQ ⊥OC .A OB CP QED C A B N M A B C D 如图(6)如图(7)如图(10)如图(8) 如图(9)3BC A B CD AE 12.如图(9),AB ∥CD ,CE 平分∠ACD ,且交AB 于E ,∠A=118︒,则∠AEC 等于 .13.如图(,10),已知∠C=90︒,AD 平分∠CAB ,AD=BD=2CD ,点D 到AB 的距离等于5cm ,则BC= .14.若△ABC 中有两边的垂直平分线的交点恰好在第三边上,则△ABC 必定是( ).A .锐角三角形B .直角三角形C .等腰三角形D .等边三角形15.(1)如图,AD 平分∠BAC ,DE ∥AC ,则△ 是等腰三角形;(2)如图,AD 平分∠BAC ,CE ∥AB ,则△ 是等腰三角形;(3)如图,AD 平分∠BAC ,CE ∥AD ,则△ 是等腰三角形;(4)如图,AD 平分∠BAC ,EF ∥AD 交AB 于G ,则△ 是等腰三角形;(5)如图,AD 平分∠CAB ,BF ∥AD ,则△ 是等腰三角形.16.如图,△ABC 中,AB=AC ,∠B=36°,D 、E 是BC 上两点,使∠ADE=∠AED=2∠BAD ,则图中等腰三角形共有 个.☆17.如图,已知Rt △ABC 中,∠C=90°,∠A=30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个三、解答题:1.已知:∆ABC 中,AB=AC=8厘米,∠A=50°,AB 的垂ED C A BNM 第15(1)题 第15(2)题 第15(3)题 第15(4)题 第15(5)题 第16题 第17题4直平分线MN 分别交AB 于D ,交AC 于E ,BC=3厘米.求:⑴∠EBC 的度数;⑵∆BEC 的周长.2.如图,∆ABC 中,AB=AC ,∠A=80°,AB 的垂直平分线MN 交AC 的延长线于D .求∠DBC 的度数.3.如图,在∆ABC 中,∠C=90︒,∠B=15︒,AB 的垂直平分线交BC 于D ,交AB 于M ,BD=8cm ,求AC 长.4.在△ABC 中,∠A=120°,AB=AC ,AC 的垂直平分线EF 交AC 于点于E ,交BC 于F ,求证:BF=2CF . A B C M D DC A B N M55.已知,在△ABC 中,AD 是高,BC 的垂直平分线交AC 于点于E ,BE 交AD 于F , 求证:点E 在AF 的垂直平分线上.☆6.已知,如图,点O 是∠APB 内一点,点M 、N 分别是O 点关于PA 、PB 的对称点,连接MN ,MN 与PA 、PB 的交点分别是E 、F ,若MN=18cm ,则△OEF 的周长是多少?7.已知,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,F 在AC 上,BD=DF . 求证:CF=EB .6☆8.如图,已知在△ABC 中,∠C=2∠B ,AD 是∠BAC 的平分线,求证:AB=AC+CD .9.如图,已知,BD 是四边形ABCD 的∠ABC 的平分线,∠A+∠C=180°.求证:AD=DC .10.如图,已知D 是ΔABC 中 BAC 的相邻外角平分线上的一点.求证:DB+DC>AB+AC .ADB C11.有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.☆12.在△ABC中,AB=AC,AB的垂直平分线与AC•所在直线相交所得的锐角为40°,求底角∠B的大小.(请画图求解)☆13.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F.求证:AF=EF.7814.如图,在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB ,过D 点作EF ∥BC 交AB 于E ,交AC 于F ,求证:EF=BE+CF .15.已知:如图,△ABC 中,AD 平分∠BAC ,E 是CA 延长线上的一点,EG ∥AD ,交AB 于F .求证:AE=AF .16.已知:如图,在△ABC 中,D 是BC 上任意一点,DE ⊥BC ,交AC 于F ,交BA 的延长线于E ,且AE=AF ,求证:AB=AC .BC D AFE917.已知:如图,BD 是等边△ABC 的高,E 是BC 延长线上的一点,且CE=CD ,DF ⊥BC ,垂足为F .求证:DF 平分∠BDE .☆18.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点.(1)连接OA ,判断OA 、OB 、OC 的大小关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动过程中始终保持AN=BM ,请判断△OMN 的形状,并证明你的结论.☆19.已知,在△ABC 中,AD ⊥BC 于D ,CD=AB+BD ,∠ABC 的平分线交AC 于点E ,B CA N M O10AB CACBD 求证:点E恰好在BC的垂直平分线上.☆20.在等边△ABC所在的平面内求一点P,使△PAB、△PBC、△PAC都是等腰三角形,具有这样性质的点P有( ),请画出图形.A.1个B.4个C.7个D.10个21.如图,已知ABCD是正方形,请你在正方形所在的平面内找出P点,使P点与正方形ABCD 的各边都构成等腰三角形,这样的点共有多少个?请一一把它们找出.☆22.几何模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB的值最小.11方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小.应用:请画图找出满足下列条件的点:(1) 已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短.(2) 正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PE+PB 最短.(3) 如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.(4) 如图所示,P 为△ABC 边AB 上一点,在AC 上求作一点Q ,在BC 上求作一点M ,使△PQM 的周长最小.● B A C P A Q PB C A Bl BDA C E1.如图1,已知BD平分∠ABC,AC=BC,∠C=90°,AE⊥BD于E,判断AE与BD的数量关系并证明.2.如图3,在△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF3.(1)如图6,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB 的大小;(2)如图7,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O 旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.1213 27.(本题6分)如图,已知,AC=BC,∠BCA=90°,点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM ,求证: ME=BD .。
《简单的轴对称图形》典型例题1(1)
说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。
例4 分析:因为 是等腰三角形,因此, ,所以只要求出 的度数,就可以求出 的度数. 根据三角形内角和定理,又可求出 的度数.
解:∵ 和 是邻补角,又 ,
∴
∵ ,∴ (等边对等角)
∴
说明:在等腰三角形中,两个底角相等,内角和为 ,所以只要知道等腰三角形的一个内角,就很容易求出它的另外两个角.
例2分析:本题依据线段垂直平分线的性质可以得到.
解: 是AB的垂直平分线
∴
∴ 厘米Βιβλιοθήκη 是等腰三角形∴ 厘米∴ 的周长是 厘米
例3分析:注意到题中所给的条件AB=AC,得到三角形为等腰三角形。利用等腰三角形的性质对问题(1)可得 ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为 可得此等腰三角形的顶角只能为 这一种情况。
《简单的轴对称图形》典型例题
例1想一想等边三角形的三个内角各是多少度,它有几条对称轴。
例2如图,已知 是等腰三角形, 都是腰,DE是AB的垂直平分线, 厘米, 厘米,求 的周长.
例3
例4如图,已知:在 中, , ,求 各内角的度数.
例5如下图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE.
例6分析:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.等腰三角形的“三线合一”是等腰三角形的重要性质.
解:因等腰三角形的“三线合一”,
所以AD既是△ABC的顶角平分线又是底边上的高,
∴ ∠ADC=90°.
∴ ∠A=180°-30°-30°=120°,
简单的轴对称
。 试 一 试
C
E O A D B
1、在Rt△ABC中,BD是角平分线,DE⊥AB, 垂足为E,DE与DC相等吗?为什么? 2 、 如 图 ,OC 是 ∠ AOB 的 平 分 线 , 点 P 在 OC 上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则 4 PE=__________cm.
C
D
E
D
A
E
图(1)
B
B
C
图(2)
通过今天这节课你有什么收获?
(1) 角是轴对称图形。 (2)角平分线上的点到这个角的两边的距离相 等。 (3)线段是轴对称图形。 (4)垂直并且平分线段的直线叫做这条线段的垂直 平分线。简称中垂线。 (5)线段垂直平分线上的点到这条线段的两 个端点距离相等。
作业:
盈姐姐,这回你可是又输给我了,怎么就没有见你赢过呢?第壹卷 第十五章 送炭冬日里天亮得晚,众人到达宝光寺的时候,还是黑蒙 蒙的。待壹行人进了寺院,冰凝暗自庆幸,幸亏自己来了!目之所及,满目疮痍,零乱不堪:大殿只复建了壹半的工程,配殿几乎还没有开 工。想想这复建工程也确实是困难重重。首先是大冬日里,天寒地冻,很多工程根本开展不起来。土地冻得僵硬,刨都刨不动;泥水只能壹 点点地调和,调多了,还没等用上呢,水就冻了;粉刷、油漆等工程更是得完全停下来。而且冬天日短,壹天之中也就三、四个时辰能开工, 因此工程进度非常缓慢。另外,现在又进入了腊月,这年根儿底下,工匠们都惦记着回家过年,也没有心思在这里干活儿,人手紧缺得不行。 而僧人们本来就要忙着工程,还要顾着腊八节的施粥,加上自火灾后,已经将近2个月无法接待香客,香油钱自是在吃老本儿,所以,能用 于施粥的钱两比往年少了许多,更有捉肘见襟的尴尬。正在这个节骨眼儿上,年家雪中送炭来了。寺内住持大师听到僧人报来的消息,感动 得浊泪横流,慌忙迎了出来,与年府大管家年峰正正好迎了壹个照面:“这位施主,本寺突遭变故,无力为计,今日幸得施主倾力相助,大 恩大德,本寺永相难忘!”“高僧客气了,这也是积德行善之事,不足挂齿。”“敢问贵府尊姓?本寺无以为报,只求早晚能为施主多多诵 经祈福。”“高僧不必多虑,留不留名,都是积德行善之事,还忘高僧海涵,恕不告之罪。”“施主这般所为,让老纳惭愧。”“高僧不必 惭愧,本府只有壹事相求。”“您快请说,本寺壹定尽力办到。”“本府的二丫鬟也壹并随行,未出闺阁的丫鬟,行动多有不便,还望高僧 能够安排个歇息之处,”“好办,好办,请女施主且随老纳到后院来,有壹处僻静的修行之所,只是条件甚为简陋,勉强仅够歇息而 已。”“那就足够了,二丫鬟也不是排场之人。”年峰将冰凝安顿好,又将银子捐给了寺庙,就忙着张罗施粥的事情去了。冰凝正在后院屋 子里正壹边看书壹边歇息,就听得含烟和壹个男子的对话,自然知道这是上次在宝光寺救下的那个男孩子的父亲,回想起对方那副高高在上, 有钱能使鬼推磨的样子,冰凝的气就不打壹处来:哼,这回是不是还要给什么赏赐?这积德行善之事跟赏赐搅到壹起,这还算是对佛祖心怀 真诚吗?如果这个“本王”再敢提什么赏赐的话,她壹定会捡些个最刻薄的语言还回去。结果,完全出乎冰凝的意料,不但没有听到对方傲 慢的施舍,反倒是渐行渐远的脚步声,那感觉,仿佛是壹腔愤怒打在了空气中,令她无处发泄,恼羞成怒之余,下意识地,她随手将耳畔的 碎发狠狠地拂到了耳后,那镯子上的小小银铃随之发出了
9.2(1)简单的轴对称图形(1)
解: 因为DE是线段BC的垂 直平分线, 即 BE=CE=6, 所以 △BCE的周长 =BE+CE+BC =6+6+10 =22. 8
当堂训练一(P73练习第1题)
1. 如图,△ABC中,AD垂直平分边BC, AB=5,那么AC=_________. 答案
5
解:因为AD是BC 的垂直平分线,所 以AC=AB=5
(第 1 题)
2014-8-18 9
当堂训练二
1.垂直并且平分一条线段的直线称为这条线 段的垂直平分线 ___________或___________ . 中垂线 2.若点P是线段AB的垂直平分线上的一点, 则 PA=PB ; 3.如图,△ABC中,DE是BC的中垂线, 8cm AB+AC=8cm,则△ACE的周长是____ . 解∵ DE是BC的中垂线 ∴BE=CE 又∵ AB+AC=8cm ∴ △ACE的周长 =AE+AC+CE 2014-8-18 10 =AB+AC=8cm
2014-8-18
4
做一做
在纸上画出线段AB及它的中 点O,再过O点画出与AB垂直 的直线CD,沿直线CD将纸对 折,看看线段OA与OB是否重 合?
你将发现线段是不是轴对称图形?
2014-8-18 5
线段的垂直平分线(中垂线)
P
.
因为P是线段AB的垂直 平分线上的一点,
所以PA=PB
2014-8-18 6
线段的垂直平分线(中垂线)
1、特征
线段的垂直平分线上的一点 到 这条线段的两个端点的 距离相等
2、画法
2014-8-18
一用刻度尺取线段的中点,
二用直角三角板画垂线
7
例题
例1 如图9.2.2,△ABC中,BC=10,边 BC的垂直平分线分别交AB、BC于点E、 D.BE=6,求△BCE的周长.
(完整版)七年级数学简单的轴对称图形练习题
1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。
北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设
北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。
三年级轴对称练习题
三年级轴对称练习题题一:轴对称的图形在纸上画一个圆,并把圆上的点用线段连接起来,可以得到一条由线段组成的图形。
接下来,找出这个图形中的轴对称线,并填写下面的问题。
1. 这个图形有几条轴对称线?答:_____________2. 写出所有的轴对称线。
答:_____________3. 这个图形是关于哪些点的轴对称?答:_____________题二:线的轴对称连续两个图形都是以直线为轴对称线,请你画出直线,并填写下面的问题。
1. 画出直线。
答:_____________2. 你如何判断这个直线是轴对称线?答:_____________3. 这个直线将图形划分成了哪两部分?答:_____________题三:字母的轴对称下面是一些字母,请你判断每个字母是否具有轴对称性。
1. 字母 A 是否具有轴对称性?答:_____________2. 字母 B 是否具有轴对称性?答:_____________3. 字母 C 是否具有轴对称性?答:_____________4. 字母 D 是否具有轴对称性?答:_____________题四:图形的轴对称观察下面的图形,并回答相关问题。
1. 判断这个图形是否具有轴对称性。
答:_____________2. 如果存在轴对称线,画出轴对称线。
答:_____________3. 这个图形是关于哪些点的轴对称?答:_____________题五:轴对称的图形拼接请你使用下面提供的轴对称图形,将它们拼接成一个整体,并回答相关问题。
(在此给出轴对称图形的具体形状,可以使用方块、三角形等简单图形的轴对称示意图。
)1. 将拼接好的图形绘制在纸上。
答:_____________2. 这个拼接图形是否具有轴对称性?答:_____________3. 如果存在轴对称线,画出轴对称线。
答:_____________以上是关于三年级轴对称的练习题,希望能够帮助到你。
七年级数学简单的对称图形1
发现:
(1)角是轴对称图形, 角平分线所在直线是它 的对称轴.
(2)角平分线上的点 到这个角的两边的距离 相等.
1.如图,在Rt△ABC中,BD 是∠ABC的平分线,DE⊥AB , 垂足为E .DE与DC 相等吗 ? 为什么?
E
B
A D C
2.如图用直尺和量角 器在直线MN上找一点P. 使点P到射线OA和OB的距 离相等. B N P M
A O 解:作∠AOB的角平 分线,交MN与一点,则 交点P即为所求.
﹙ ﹙
∵MN是线段AB的垂直平分线, 交AB于点O, 想一想:线段是轴对称图形吗 ? ∴AO = OB,∠AOC = ∠BOC; 如果是,你能找出他的一条对称轴吗? 在△AOC与△BOC中 试一试按下列步骤做一做 : M C CO = CO; (1)画一条线段AB,对折 ∠AOC = ∠BOC; AB使点A,B重合,折痕AB的 AO O =; BO 交点为 O A(B) N ∴ △AOC≌△BOC(SAS) (2)在折痕上任取一 ∴ CA=CB( 全等三角形,对应 点 C, 沿 CA 将纸折叠; 边相等)
§7.2 简单的轴对称图形 (一)
∵OC平分∠AOB A ∴ ∠DOC= ∠EOC D ( 1 )在一张纸上任意画 又∵CD⊥OA,CE C 一个角∠ AOB,沿角的两 ⊥OB ,垂足分别为点 D, 点E 边将其剪下。并将这个角对 折,使两边重合; O ) ∴∠ ODC= ∠OEC B E (CDO 2)在折痕(即角平分线) 在△ 与△CEO中 你在图中发 上任选一点 C ; ∠ODC= ∠OEC; ( 3)过点 C 折OA 边的垂 现了哪些相等的 ∠ DOC= ∠ EOC ; 线,得到新的折痕 CD,其中, 线段?换一点,再 OC=OC 点D是折痕与OA边的交点, ∴ △CDO≌△CEO 试一试? 即垂足; (AAS) (4)将纸打开,新的折痕与 OB边的交点为E. ∴CD=CE (全等三角形 对应边相等 )
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。
5.3 简单的轴对称图形(1)
20°
.
数学
返回目录
名师点拨:
(1)若题目中没有明确顶角或底角的度数,做题时要注意分情况
进行讨论计算;
(2)等腰三角形的顶角可以是直角、钝角或锐角,而底角只能是
锐角.
数学
返回目录
知识点三 等边三角形的定义和性质
1.定义:三边都相等的三角形是 等边三角形 ,也叫正三角形.
2.性质:等边三角形是特殊的等腰三角形,它除了具有等腰三角
等腰三角形的 顶角 ,腰与底边的夹角叫做等腰三角形的
底角
.
2.性质:①等腰三角形是轴对称图形,对称轴是它的顶角平分
线所在的直线;②等腰三角形顶角的平分线、底边上的高、
底边上的中线重合(简称“ 三线合一 ”).
数学
返回目录
▶▶ 典型例题
【例1】如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点
腰三角形的个数是
3
.
数学
返回目录
三、解答题
1.如图,在△ABC中,已知AB=AC,AD为∠BAC的平分线,且
∠2=36°,BD=2,求∠BAC,∠B的度数及BC的长.
解:因为AD为∠BAC的平分线,∠2=36°,
所以∠1=∠2=36°,∠BAC=2∠2=72°.
又因为AB=AC,所以AD⊥BC,BD=CD,
解:因为AB=AC,AD是∠BAC的平分线,
所以BD=CD.
因为△ABC的周长为16,
1
所以AB+BD= ×16=8.
2
因为△ABD的周长为12,所以AD=12-8=4.
数学
返回目录
6.如图,A,B是直线l同侧的两点.请在直线l上找一点C,使得
AC+CB最小,并说明理由.
生活中的轴对称(经典例题)
班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。
初一数学简单的轴对称图形试题
初一数学简单的轴对称图形试题1.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】根据轴对称图形的定义依次分析各个图形即可判断.一定是轴对称图形的有(2)(3)(4)(5).【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.2.角是轴对称图形,它的对称轴是_________________.【答案】角平分线所在的直线【解析】根据角的对称性即可得到结果.角是轴对称图形,它的对称轴是角平分线所在的直线.【考点】本题考查的是角的对称轴点评:解答本题的关键是熟练掌握角是轴对称图形,它的对称轴是角平分线所在的直线.注意角平分线是一条射线,而对称轴是一条直线,故要加上“所在的直线”.3.指出下列图形的所有对称轴数,并画出其中一条对称轴.【答案】(1)5条;(2)5条;(3)2条【解析】根据轴对称图形和对称轴的定义即可得到结果.(1)有5条对称轴;(2)有5条对称轴;(3)有2条对称轴,如图所示:【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫对称轴.4.已知:如图,CF⊥AB于E,且AE=EB,已知∠B=40°,求∠ACD、∠DCF的度数.【答案】∠ACD=80°,∠DCF=130°【解析】由AE=EB可得∠A=∠B,再由CF⊥AB结合三角形的内角和即可求得结果.∵AE=EB,∴∠A=∠B=40°,∵CF⊥AB,∴∠BEC=∠AEC=90°,∴∠BCE=∠ACE=50°,∴∠ACD=80°,∠DCF=130°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是熟记等腰三角形的两个底角相等,三角形的内角和为180°.5.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.【答案】120°【解析】由题意设底角为x°,则顶角为4x°,根据三角形的内角和为180°即可得到关于x的方程,解出即可.设底角为x°,则顶角为4x°,由题意得4x+x+x=180解得x=30,4x=120则它的顶角是120°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是熟记等腰三角形的两个底角相等,三角形的内角和为180°.6.等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.【答案】15厘米【解析】题目中没有明确腰或底边,故要分情况讨论,再结合三角形的三边关系即可得到结果.当腰为3厘米时,三边长为3,3,6,而3+3=6,此时无法构成三角形;当底为3厘米时,三边长为3,6,6,此时可以构成三角形,周长为3+6+6=15厘米.【考点】本题考查的是等腰三角形的性质,三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边.7.如图,△ABC中,DE垂直平分AC,AE=3,△ABD的周长为13,那么△ABC的周长为____.【答案】19【解析】由DE垂直平分AC可得AD=DC,再结合△ABD的周长可得AB+BC的值,即可求得结果.∵DE垂直平分AC,AE=3∴AD=DC.AC=2AE=6∵△ABD的周长是13∴AB+BD+AD="13"∴AB+BD+DC=13即AB+BC=13∴AB+BC+AC=19则△ABC的周长为19.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.8.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点D,E,BE=6,则△BCE的周长为__________.【答案】22【解析】由DE垂直平分BC可得BE=CE,即可求得结果.∵DE垂直平分BC∴BE=CE=6∴△BCE的周长=BE+CE+BC=22.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.9.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距离相等,并说明你的理由.【答案】如图所示:点P就是所求的点.【解析】使PC=PD,即作CD的中垂线,并且P到∠AOB两边的距离相等,即作角平分线,两线的交点就是点P的位置.如图所示:点P就是所求的点.【考点】本题主要考查了尺规作图的一般作法点评:解答本题的关键是熟练掌握到线段两端距离相等的点在这条线段的垂直平分线上;到角两边距离相等的点在这个角的平分线上.10.如图,已知△ABC中,DE垂直平分AC,交C于点E,交BC于点D,△ABD的周长是20厘米,AC长为8厘米,你能判断出△ABC的周长吗?试试看.【答案】28厘米【解析】由DE垂直平分AC可得AD=DC,再结合△ABD的周长可得AB+BC的值,即可求得结果.∵DE垂直平分AC,∴AD=DC.∵△ABD的周长是20厘米,∴AB+BD+AD="20"∴AB+BD+DC=20即AB+BC=20又AC=8,∴AB+BC+AC=28则△ABC的周长为28厘米.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.。
简单的轴对称图形练习题
轴对称复习练习题1.已知等腰三角形的一个角为42 0,则它的底角度数_______.2.下列10个汉字:林 上 下 目 王?田 天 王 显 吕,其中不是轴对称图形的是______有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.3.如图,镜子中号码的实际号码是___________.4.等腰三角形的两边长分别是3和7,则其周长为______.5.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 6.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________度.7.如图,AB=AC ,0120BAC ∠=,AB 的垂直平分线交BC 于点D ,那么ADC ∠= 。
8、如图,ABC △的周长为32,且AB AC AD BC =⊥,于D ,ACD △的周长为24,那么AD 的长为 .9.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠FEM 的度数为________.10.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,则这个三角形的腰长及底边长为________________________.二、选择题1.下列图形是轴对称图形的是( )A .B .C . D.2.到三角形三条边的距离都相等的点是这个三角形的( ) NM E F CB A D A B CDA B M C N O图3 A .三条中线的交点 B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点3.在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形4.直角三角形三边垂直平分线的交点位于( )A.三角形内????B.三角形外??? ?C.斜边的中点? ?D.不能确实5.如图3,已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12 B .24C .36D .不确定6.如图4所示,Rt △ABC 中∠C=90°,AB 的中垂线 DE 交BC 于D ,交AB 于点E .当∠B=30°时,图中不一定相等的线段有( )A .AC=AE=BE B .AD=BDC .CD=DED .AC=BD7.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30o B .40o C .45o D .36o8.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB于点D ,交AC 于点E ,则△BEC 的周长为( )A .13 B .14 C .15 D .16 9.如图,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( )A .20B .30C .35D .40 A DE B图4 A C BD E10、如图,在Rt ABC △中, 90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知 10=∠BAE ,则C ∠的度数为( )A . 30B . 40C . 50D . 6011.如图,已知直线110AB CD DCF =︒∥,∠,且AE AF =,则A ∠等于( )A .30︒B .40︒C .50︒D .70︒ 12.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC , DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图 中的等腰三角形是 .(写出一个即可)13、如图,在⊿ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过O 点作EF ∥BC ,交AB 于E ,交AC 于F ,BE =5cm ,CF =3cm ,则EF 的长为 ..三、解答题1.如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .2、如图, △ABC 中, D 、E 分别是AC 、AB 上的点, BD 与CE 交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.⑴ 上述三个条件中, 哪两个条件....可判定△ABC 是等腰三角形(用序号写出所有情形);⑵ 选择第⑴小题中的一种情形, 证明△ABC 是等腰三角形.3、如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接A D C E B B A D C A FB C D E B D EMAAC、CF,求证:CA是∠DCF的平分线。
北师大版七年级下册《5.3 简单的轴对称图形》同步练习( 无答案)
北师大七下《5.3 简单的轴对称图形》同步练习一.选择题(共6 小题)1.如图,AD 是△ABC 中∠BAC 的平分线,DE⊥AB 于点E,DF⊥AC 于点F.若S△ABC=28,DE=4,AB=8,则AC 长是()A.8 B.7 C.6 D.52.在Rt△ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 于点D,BC=7,BD=4,则点D 到AB 的距离是()A.2 B.3 C.4 D.53.如图,BD 平分∠ABC,BC⊥DE 于点E,AB=7,DE=4,则S△ABD=()A.28 B.21 C.14 D.74.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A.PQ≤5 B.PQ<5 C.PQ≥5 D.PQ>55.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC、AC 于D、E 两点,∠B=60°,∠BAD=70°,则∠BAC 的度数为()A.130°B.95°C.90°D.85°6.如图,在等边三角形ABC 中,在AC 边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n 为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n 的值而定二.填空题(共7 小题)7.如图,三条公路两两相交,现计划修建一个油库,如果要求油库到这三条公路的距离都相等,则油库的位置有个.8.如图,△ABC 中,AB=6,∠BAC 的平分线交BC 于点D,DE⊥AC 于点E,DE=4,则△ABD 面积是.9.如图,在四边形ABCD 中,E为AB 的中点,DE⊥AB 于点E,∠A=66°,∠ABC=90°,BC=AD,则∠C 的大小为.10.如图,在△ABC 中,∠B=40°,∠C=45°,AB 的垂直平分线交BC 于点D,AC 的垂直平分线交BC 于点E,则∠DAE=.11.如图,在△ABC 中,AB=AC,D、E 是△ABC 内的两点,AE 平分∠BAC,∠D=∠DBC =60°,若BD=5cm,DE=3cm,则BC 的长是cm.12.如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=.13.如图,在△ABC 中,BC=8cm,∠BPC=118°,BP、CP 分别是∠ABC 和∠ACB 的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是cm,∠DPE=°.三.解答题(共23 小题)14.如图,Rt△ABC 中,∠ACB=90°,D 是AB 上一点,BD=BC,过点D 作AB 的垂线交AC 于点E,求证:BE 垂直平分CD.15.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于点 D ,AC 的垂直平分线 BE 与 CD 交于点 F ,与 AC 交于点 E .(1)判断△DBC 的形状并证明你的结论.(2)求证:BF =AC .(3)试说明 CE = 1BF . 2 16.如图,在 Rt △ABC 中,∠ACB =90°,∠A =22.5°,斜边 AB 的垂直平分线交 AC 于点 D ,点 F 在 AC 上,点 E 在 BC 的延长线上,CE =CF ,连接 BF ,DE .线段 DE 和 BF 在数量和位置上有什么关系?并说明理由.17.如图,已知等腰△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC 于点 D ,点 P 是 BA 延长线上一点,点 O 是线段 AD 上一点,OP =OC .(1)求∠APO +∠DCO 的度数;(2)求证:点 P 在 OC 的垂直平分线上.18.如图,在等腰三角形△ABC 中,AB =AC ,BD 平分∠ABC ,在 BC 的延长线上取一点 E , 使 CE =CD ,连接 DE ,求证:BD =DE .19.如图,在ABC 中,AB=AC,点E 在CA 的延长线上,EP⊥BC,垂足为P,EP 交AB 于点F,FD∥AC 交BC 于点D.求证:△AEF 是等腰三角形.20.如图,△ABC 中,BD 平分∠ABC,CD 平分∠ACB,过点D 作EF∥BC,与AB、AC 分别相交于E、F,若已知AB=9,AC=7,求△AEF 的周长.21.如图,△ABC 中,D 是AB 边上一点,在AC 的延长线上取CE=BD,连接DE 交BC 于F,若DF=EF.求证:△ABC 为等腰三角形.22.如图,在△ABC 中,∠BAC=90°,BE 平分∠ABC,AM⊥BC 于点M,AD 平分∠MAC,交BC 于点D,AM 交BE 于点G.(1)求证:∠BAM=∠C;(2)判断直线BE 与线段AD 之间的关系,并说明理由.23.如图,在等边△ABC 中,点D,E 分别在边BC,AC 上,且DE∥AB,过点E 作EF⊥DE,交BC 的延长线于点F,(1)求∠F 的度数;(2)若CD=3,求DF 的长.24.如图,过等边△ABC 的边AB 上一点P,作PE⊥AC 于E,Q 为BC 延长线上一点,且PA=CQ,连PQ 交AC 边于D.(1)求证:PD=DQ;(2)若△ABC 的边长为1,求DE 的长.25.如图所示,已知等边△ABC 的边长为a,P 是△ABC 内一点,PD∥AB,PE∥BC,PF ∥AC,点D、E、F 分别在BC、AC、AB 上,猜想:PD+PE+PF=,并证明你的猜想.26.如图,在等边△ABC 的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF 是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR 为何种三角形?试说明理由.27.如图,在△ABC 中,AB=AC,D 为BC 的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.28.如图,四边形ABDC 中,∠D=∠ABD=90°,点O 为BD 的中点,且OA 平分∠BAC.(1)求证:OC 平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.29.在△ABC 中,DE 垂直平分AB,分别交AB、BC 于点D、E,MN 垂直平分AC,分别交AC、BC 于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN 的度数;(2)如图2,若∠BAC=70°,求∠EAN 的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN 的度数.(用含α的代数式表示)30.在△ABC 中,AD 平分∠BAC,E 是BC 上一点,BE=CD,EF∥AD 交AB 于F 点,交CA 的延长线于P,CH∥AB 交AD 的延长线于点H,①求证:△APF 是等腰三角形;②猜想AB 与PC 的大小有什么关系?证明你的猜想.31.如图,△ABC 中,∠ACB=90°,以AC 为边在△ABC 外作等边三角形ACD,过点D 作AC 的垂线,垂足为F,与AB 相交于点E,连接CE.(1)说明:AE=CE=BE;(2)若AB=15cm,P 是直线DE 上的一点.则当P 在何处时,PB+PC 最小,并求出此时PB+PC 的值.32.如图,△ABC 是等边三角形,分别延长AB 至F,BC 至D,CA 至E,使AF=3AB,BD =3BC,CE=3CA,求证,△DEF 是等边三角形.33.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.以OC 为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD 的形状,并说明理由;(2)探究:当α 为多少度时,△AOD 是等腰三角形?34.如图,△ABC 中,AB=BC=AC=12cm,现有两点M、N 分别从点A、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s,点N 的速度为2cm/s.当点N 第一次到达B 点时,M、N 同时停止运动.(1)点M、N 运动几秒后,M、N 两点重合?(2)点M、N 运动几秒后,可得到等边三角形△AMN?(3)当点M、N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN?如存在,请求出此时M、N 运动的时间.35.已知:如图,△ABC 是边长3cm 的等边三角形,动点P、Q 同时从A、B 两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P 到达点B 时,P、Q 两点停止运动.设点P 的运动时间为t(s),解答问题:当t 为何值时,△PBQ 是直角三角形?36.如图,△ABC 中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P 从点C 开始,按C→A →B→C 的路径运动,且速度为每秒1cm,设出发的时间为t 秒.(1)出发2 秒后,求△ABP 的周长.(2)问t 为何值时,△BCP 为等腰三角形?(3)另有一点Q,从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm,若P、Q 两点同时出发,当P、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把△ABC 的周长分成相等的两部分?第10 页(共10 页)。
小学数学-有答案-北师大版数学三年级下册21_轴对称(一)练习卷
小学数学-有答案-北师大版数学三年级下册2.1 轴对称(一)练习卷一、选择题1. 下面的英文字母,()不是轴对称图形.A.QB.MC.T2. 下面图形中,是轴对称图形的有().A.4个B.3个C.2个D.1个3. 下图是一些国家的国旗,其中是轴对称图形的有()。
①加拿大;②摩洛哥;③澳大利亚;④瑞典A.4个B.3个C.2个D.1个4. 下列图形中,不是轴对称图形的是()。
A.等腰三角形B.线段C.钝角D.平行四边形二、判断题正方形不是轴对称图形.(________)圆形只有12条对称轴。
(________)由同一平面上的两个圆组成的图形一定是轴对称图形.(________)左图是五边形,每条边都相等,它有三条对称轴.(________)三、填空题这个图形________条对称轴.长方形有________条对称轴,正方形有________条对称轴,圆有________条对称轴,等腰三角形有________条对称轴.填一填。
①将轴对称图形沿对称轴对折后,对称轴两边的图形________;②生活中常见的轴对称图形有________;③我们用手拧动水龙头属于________现象;④物体从竿子的顶部滑下来属于________现象。
将一张正方形纸沿着某个方向对折,再对折,对折4次后有________条折痕。
有些汉字的形状也是近似轴对称的,如“日、田”你能再写出这样的汉字吗?四、作图题画出所有的对称轴五、填空题看图填空(1)上图中点A和点________到对称轴的距离都是2格.(2)点B和点B′到对称轴的距离都是________格.(3)点________和点________到对称轴的距离都是5格六、作图题在下面的图形中,你能画出几条对称轴?参考答案与试题解析小学数学-有答案-北师大版数学三年级下册2.1 轴对称(一)练习卷一、选择题1.【答案】A【考点】轴对称图形的辨识轴对称确定轴对称图形的对称轴条数及位置【解析】此题暂无解析【解答】根据轴对称图形的意义可知:T、M都是轴对称图形,而Q不是轴对称图形;故选A.2.【答案】C【考点】轴对称图形的辨识轴对称将简单图形平移或旋转一定的度数【解析】此题暂无解析【解答】略3.【答案】B【考点】轴对称图形的辨识轴对称整数的加法和减法【解析】此题暂无解析【解答】一个图形沿着一条直线对折后两边能够完全重合,这个图形就是轴对称图形,折痕所在的直线就是对称轴.4.【答案】D【考点】轴对称轴对称图形的辨识作轴对称图形【解析】平行四边形是中心对称图形,而轴对称图形是以对称轴为中心的两部分能够完全重合的图形.【解答】A,B,C它们各有一条对称轴.而平行四边形,它没有对称轴.故答案为:D.二、判断题【答案】L1案】x【考点】图形与变换【解析】此题暂无解析【解答】略【答案】L1案】x【考点】圆的认识与圆周率轴对称确定轴对称图形的对称轴条数及位置【解析】此题暂无解析【解答】圆中任意一条直径所在的直线都是对称轴,因此圆有无数条对称轴.【答案】√【考点】图形与变换【解析】此题暂无解析【解答】略【答案】L1案】x【考点】确定轴对称图形的对称轴条数及位置轴对称图形的辨识【解析】此题暂无解析【解答】略三、填空题【答案】3【考点】图形与变换【解析】此题暂无解析【解答】如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.【答案】2,4,无数,1【考点】确定轴对称图形的对称轴条数及位置轴对称图形的辨识轴对称【解析】此题暂无解析【解答】略【答案】完全重合,水瓶,旋转,平移【考点】轴对称平移轴对称图形的辨识【解析】此题暂无解析【解答】根据轴对称图形的定义去判断即可.【答案】15【考点】简单图形的折叠问题轴对称垂直与平行的特征及性质对折第一次,多出1条折痕;对折第二次,多出2条折痕;对折第三次,多出4条折痕;对折第四次,多出8条折痕.【解答】1+2+4+8=15(条)【答案】王;美;中;口;天;大;品【考点】轴对称图形的辨识轴对称整数的认识【解析】此题暂无解析【解答】略四、作图题【答案】【考点】画轴对称图形的对称轴整数的乘法及应用整数的除法及应用【解析】此题暂无解析【解答】略五、填空题【答案】A(2)3(3)c,C【考点】轴对称作轴对称图形平移【解析】(1)对应点到对称轴的距离是相等的,根据图形的特点判断对应点到对称轴的格数即可.【解答】(1)图中A点和点A′到对称轴的距离都是2格;(2)点B和B到对称轴的距离都是3格;(3)点C和点C到对称轴的距离都是5格.故答案为A′:3;C,C′六、作图题【答案】无数条,3条图1是两个同心圆,它们的任意一条直径所在的直线,都是它们的对称轴,所以图1可以画无数条对称轴.图2由三个大小相等的圆相交而成的,过任意一个圆的圆心和另外两个圆的交点的直线都是它们的对称轴,所以,可以画出三条对称轴.画法如下图所示.【考点】确定轴对称图形的对称轴条数及位置画轴对称图形的对称轴轴对称图形的辨识【解析】如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.【解答】图1是两个同心圆,它们的任意一条直径所在的直线,都是它们的对称轴,所以图1可以画无数条对称轴.图2由三个大小相等的圆相交而成的,过任意一个圆的圆心和另外两个圆的交点的直线都是它们的对称轴,所以,可以画出三条对称轴.画法如下图所示.。
13.1.1轴对称精选练习(1)含答案(新人教版八年级上)
13.1 轴对称13.1.1 轴对称一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是()A.B.C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.11月2日,即1102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.(•綦江县)请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.13.1.1 轴对称一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,0102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678.;15.甲、由、中、田、日等.;16.1,3,7;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=B D,AE=BE,CF=DF,AO=BO;(2)∠BAC=∠ABD,∠ACD=∠B DC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的轴对称图形(1)练习
一.目标导航
1.推导线段的垂直平分线的性质和判定,了解三角形外心的位置和性质. 2.推导角平分线的性质和判定,了解三角形内心的位置和性质.
3.能熟练运用上述性质和判定进行推理和计算,并能归纳已知线段平分线和角平分线时
常作的辅助线,初步了解“面积法”在推理和计算中的作用. 二.基础过关
1.三角形的三条角平分线 ,且这个点(三角形的内心) 与三角形 的距离相等.
2.如图,在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D. (1)若BC=8,BD=5,则点D 到AB 的距离是 .
(2)若BD ∶DC=3∶2,点D 到AB 的距离为6,则BC 的长是 .
3 .三角形三边的垂直平分线 (三角形的外心),且交点到三角形 的距离相等.
4.在△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 .
5.Rt △ABC 中,∠C 是直角,O 是角平分线的交点,AC=6,BC=8,BA=10,O 到三边的距离r= . 6.如图:已知,BE 、CE 分别平分∠ABC 和∠ ACD 且∠ BEC=30度, 则∠ EAC= 度. 7.如图, 在∆ABC 中,DE 是AC 的垂直平分线,AE=5cm, ∆ABD 的周长为 13cm,则∆ABC 的周长为 cm
8.如图,在△ABC 中,∠C=90°,且AC=BC,AD 平分∠BAC,交BC 于 D,DE ⊥AB 于E,AB=6cm,则△BDE 的周长是 .
9. 如图,已知在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于___ ____.
10.在Rt △ABC 中,∠B 为直角,DE 是AC 的垂直平分线,E 在BC 上,∠BAE ∶∠BAC =1∶5,则∠C =________. 三.能力提升
11.如图,要在S区建一个集贸市场,使它到公路、铁路距离相等且离公路,并且与A 、B 两村的距离也相等,应建在何处?
7题图
9题图
C
E 10题图
8题图
11题图
C A
E
B 6题图
2题图
12.如图,在△ABC 中,AB=AC ,D 是AB 的中点,且DE ⊥AB .已 知△BCE 的周长为8,且AC-BC=2,求AB 、BC 的长.
12题图
13.如图,△ABC的外角∠BCD 的平分线与外角∠CBE 的平分线相交于点P. 求证:点A P平分∠BAC .
13题图 14.如图,AD 是△ABC的角平分线,DE ⊥AB 于E,DF ⊥AC 于F.试判定AD 与EF 的关系,并说明理由.
14题图
15.AD 是△ABC的角平分线, (1)求证:AB:AC=BD:DC
(2) 当AB=9,AC=7,BD=4时,求BC 的长
16.如图:已知AD//BC,DE 平分∠ADC,CE 平分∠ BCD,E 在AB 上,求证:AD+BC=DC
P
E
C
16题图
17.已知:E 是正方形ABCD 的中点,点F 在BC 上,且AE 平分∠DAF,
求证:AF=AD+CF
17题图 18.如图,∠ABC=90°,AB=BC ,AE 是角平分线,CD ⊥AE 交AE 延长线于D ,•试判断CD 与AE 的关系,并请说明理由.
18题图
归纳已知角平分线时常作的辅助线:
四.聚沙成塔
如图,已知: △ABC 中,AD 是中线, ∠ 1= ∠2, ∠ 3= ∠4 . 求证:BE+CF>EF
D
D E
A
B。